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Abstract. The sum of two n-bit pseudorandom permutations is known
to behave like a pseudorandom function with n bits of security. A re-
cent line of research has investigated the security of two public n-bit
permutations and its degree of indifferentiability. Mandal et al. (IN-
DOCRYPT 2010) proved 2n/3-bit security, Mennink and Preneel (ACNS
2015) pointed out a non-trivial flaw in their analysis and re-proved
(2n/3 − log2(n))-bit security. Bhattacharya and Nandi (EUROCRYPT
2018) eventually improved the result to n-bit security. Recently, Gun-
sing at CRYPTO 2022 already observed that a proof technique used in
this line of research only holds for sequential indifferentiability. We re-
visit the line of research in detail, and observe that the strongest bound
of n-bit security has two other serious issues in the reasoning, the first
one is actually the same non-trivial flaw that was present in the work
of Mandal et al., while the second one discards biases in the random-
ness influenced by the distinguisher. More concretely, we introduce two
attacks that show limited potential of different approaches. We (i) show
that the latter issue that discards biases only holds up to 23n/4 queries,
and (ii) perform a differentiability attack against their simulator in 25n/6

queries. On the upside, we revive the result of Mennink and Preneel and
show (2n/3 − log2(n))-bit regular indifferentiability security of the sum
of public permutations.

Keywords: indifferentiability · sum of permutations · attacks · resolu-
tions

1 Introduction

The question of how to achieve a secure pseudorandom function (PRF) from
a pseudorandom permutation (PRP) has played a central role in symmetric
cryptography. After all, we have the availability of many cryptographic primi-
tives such as AES [10] that behave – or are at least claimed to behave – like



a pseudorandom permutation, whereas for, e.g., stream encryption or message
authentication, we would like to have a primitive that behaves like a pseudoran-
dom function. Dedicated pseudorandom functions, in turn, are scarce [1, 6, 24].
Instead, over the last decades, the question of PRF design has mostly been
dominated by approaches of building them generically from PRPs.

An n-bit PRP behaves like an n-bit PRF, but only as long as the number
of evaluations is below 2n/2, a result known as the PRP-PRF switch [3, 5, 8,
14, 16, 17]. As this birthday bound could be restrictive in case of small block
ciphers, various beyond birthday bound constructions have been analyzed. One
such construction is the sum of PRPs:

FK0,K1(x) = E(K0, x)⊕ E(K1, x) ,

where E is a PRP with a block size of n bits. The construction was first in-
troduced by Bellare et al. [4]. Lucks [19] proved around 22n/3 security, Bellare
and Impagliazzo [2] around 2n/n security, and Patarin [26–28] proved optimal
2n security, up to constant, albeit using the mirror theory. Dai et al. [11] proved
around 2n security using the chi-squared method.

These results were all in the case where the underlying primitive was a PRP,
i.e., a building block E that, when instantiated with a secret key, behaves like
a secret random permutation. A natural related question is to what degree the
sum of two public permutations behaves like a public random function. In other
words, suppose we are given two n-bit permutations Π0, Π1, to what degree

FΠ0,Π1(x) = Π0(x)⊕Π1(x)

behaves like a random function. As this function is keyless, we cannot rely on
conventional indistinguishability (as we considered the sum of PRPs in), but
instead, we should consider this function in the indifferentiability framework of
Maurer et al. [22], or more specifically the version of Coron et al. [9] tailored
towards symmetric cryptographic primitives. In this framework, one compares
the function F in conjunction with the primitives Π0, Π1 with a random function
R in conjunction with a simulator ensemble S0,S1, and one says that F behaves
like R if there exists a simulator ensemble such that these two worlds are hard
to distinguish.

In the indifferentiability framework, Mandal et al. [20] proved that the sum of
permutations behaves like a random function up to 2n/2 queries, and even up to
22n/3 queries with a slightly more involved simulator. Mennink and Preneel iden-
tified a flaw in the reasoning of Mandal et al. [20] and re-proved (2n/3− log2(n))
security. Bhattacharya and Nandi [7] proved optimal 2n indifferentiability of
F , using a simulator that is slightly more involved than that of Mandal et al.
and Mennink and Preneel. Lee [18] proved 2(r−1)n/r security for the sum of r
permutations, but only for even integers r ⩾ 4. Our focus is on the sum of
two permutations. A more detailed description of the earlier security analyses is
given in Section 3.
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1.1 Issues With Existing Security Analyses

This state of the art suggests that the case of the sum of permutations is closed:
there is a proof of optimal 2n security both in the case of secret permutations as
in the case of public permutations. However, nothing is further from the truth.

First of all, Gunsing [15] recently discussed a faulty reasoning in a proof
technique used in the indifferentiability of tree hashing. In a nutshell, this proof
technique consists of replacing the distinguisher by a slightly stronger distin-
guisher for which the security analysis was easier. The author also observed that
the same technique was used for the indifferentiability of the sum of permu-
tations. As a matter of fact, all four indifferentiability results on the sum of
permutations [7,18,20,25] use this proof technique. Concretely, it turns out that
this proof technique only works in the case of sequential indifferentiability (i.e.,
where the distinguisher should first make its primitive queries before making
construction queries, cf., Section 2.3). Concluding, all indifferentiability results
on the sum of permutations known to date only hold for sequential indifferen-
tiability. This issue of ‘sequentiality’ is discussed in detail in Section 3.1.

Inspired by this, we aimed to fix the proof of Bhattacharya and Nandi [7]
to reattain 2n (regular) indifferentiability, but while doing so, we observed that
this was not easily done. To the contrary, we observed two additional issues in
the security proof of Bhattacharya and Nandi that made it impossible for us to
reattain optimal 2n security.

The first issue, dubbed ‘fresh oracle’, is about the fact that the proof assumes
that any query to the random oracle returns a uniform random value. This is
not the case when the inverse simulator tries a value and rejects it when it is
not a suitable value, as this rejection leads to a bias in future values. The ideal
world could be modified to have the more uniform behavior, but this comes at
the cost of 3n/4-bit security, diminishing the optimal n-bit security bound. We
show this as an attack described in Section 5. Interestingly, this difference does
not lead to an attack on the real construction, as the real world behaves more
like the regular ideal world and not the modified one. So this bias is a feature,
not a bug, and it is necessary to prove more than 3n/4-bit security, even in the
sequential setting.

The second issue, dubbed ‘random range’, centers around the problem that
the proof assumes that the ranges of the primitives are randomly sampled. This
is not the case as the adversary can freely choose this by making inverse queries
with a desired range. This is a fundamental error that basically ignores the
inverse queries. (The problem is of the same vein as what Mennink and Preneel
identified for the proof of Mandal et al., though more ingenious.) The issue is not
solvable, except by removing the inverse query direction. The issue is discussed
in detail in Section 3.3.

To conclude, whereas Gunsing [15] already suggested that the entire line of
research on the indifferentiability of the sum of permutations only holds in the
case of sequential indifferentiability, we go even further to state that the proof of
2n indifferentiability contains two fundamental and seemingly unsolvable gaps.
A summary of these issues is given in Table 1. In short, the only result remaining
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that is not fundamentally problematic is that of Mennink and Preneel [25], which
proves (2n/3 − log2(n)) bits of security, but its result has to be reduced to the
weaker sequential indifferentiability setting. There is no known result for the
normal indifferentiability setting.

Table 1. Overview of the previous results with the claimed security level and the
different errors they contain.

paper security level
sequentiality
(Section 3.1)

fresh oracle
(Section 3.2)

random range
(Section 3.3)

[20] 2n/3 [15] — [25]
[25] 2n/3− log2(n) [15] — —
[7] n [15] now now

Section 4 2n/3− log2(n) — — —

1.2 New Indifferentiability Proof

Taking all issues in earlier analyses into account, the best result to date is 22n/3/n
sequential indifferentiability, i.e., the result of Mennink and Preneel [25] but only
for the case of sequential indifferentiability. As this state of affairs is rather un-
satisfactory, we reconsider the (regular) indifferentiability of the sum of permu-
tations in Section 4, and manage to prove 22n/3/n (regular) indifferentiability.
The idea of the proof is to extend the analysis of Mennink and Preneel. We make
use of its result in the sequential setting as a black box and extend it to the (reg-
ular) indifferentiability setting by proving that queries of the simulator can be
swapped at a cost of 22n/3, maintaining the same bound. The new security result
is also included in Table 1.

1.3 Generic Attack

Inspired by the fact that we managed to restore the proof of Mennink and
Preneel [25] in the (regular) indifferentiability setting, one might be tempted to
investigate the possibility to restore the proof of Bhattacharya and Nandi [7]
in the (regular) indifferentiability setting. However, it turns out that this is not
possible: in Section 5 we describe an attack in 23n/4 queries that show that the
‘fresh oracle’ simplification cannot be made and in Section 6 we describe a generic
differentiability attack in 25n/6 queries, that succeeds against the simulator of
Bhattacharya and Nandi, which is in fact the most logical choice of simulator
and all previous works use a variant of it.

Our generic attack implies that the best ‘one can hope for’ is 25n/6 indifferen-
tiability, except for possibly expanding the simulator to a much more advanced
one. Admittedly, this still exposes a gap between the 22n/3/n indifferentiability
bound of Section 4, but it turns out (as also testified by the multiple issues found
in earlier analyses) that proving tightness for the indifferentiability of the sum
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of permutations is very hard, and we leave tightness of the indifferentiability of
the sum of permutations as an open problem.

1.4 Applications

Besides being of general theoretical interest, the sum of two public random per-
mutations has important implications for the design of cryptographic schemes.
Examples include as a building block to construct beyond-birthday-bound do-
main extender [23], as a building block to construct collision-resistant compres-
sion function [29,30], and as a building block to construct variable input length
random oracle [12].

2 Preliminaries

2.1 Notation

Let n ⩾ 1 be an integer. Let {0, 1}n be the set of all n-bit strings. Let func(n)
be the set of all functions from {0, 1}n → {0, 1}n and perm(n) the set of per-

mutations on {0, 1}n. For a set X , we denote by x
$←− X the uniformly random

sampling of an element from X . If x and y are two bit-strings of the same length,
we denote by x⊕ y their bit-wise XOR.

2.2 Sum of Permutations

We will restrict our focus to the sum of two independent public permutations.5

Let Π0, Π1 ∈ perm(n) be two n-bit permutations. The sum of permutations is
the construction F : {0, 1}n → {0, 1}n defined as

FΠ0,Π1(x) = Π0(x)⊕Π1(x) . (1)

The output of Π0 will typically be denoted y0, the output of Π1 will typically be
denoted y1, and the output of F will be denoted z = y0 ⊕ y1. See also Figure 1.
In the remainder, we will drop the superscript access of F for brevity.

2.3 Indifferentiability

Maurer et al. [22] introduced indifferentiability as an extension of indistinguisha-
bility, in order to measure the degree in which a keyless function behaves like its
random counterpart. Coron et al. [9] applied the model to cryptographic hash
functions, and we will adopt their model. In fact, in our work, we will restrict our
focus to the construction F : {0, 1}n → {0, 1}n built on top of two permutations
Π0, Π1 : {0, 1}n → {0, 1}n.

Before stating what we mean when a construction is indifferentiable, we first
pose the differentiability setup.

5 It is possible to describe a variant based on one permutation Π ∈ perm(n) using
domain separation, as in Π(x∥0)⊕Π(x∥1).
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Π0 Π1

y0 y1

z

Fig. 1. The sum of permutations.

Definition 1 (Differentiability Setup). Let F : {0, 1}n → {0, 1}n be the

construction of (1) based on ideal permutations Π0, Π1
$←− perm(n). Denote

Π = (Π0, Π1) for brevity. Let R $←− func(n) be a random function with the
same domain and range as F . Let S = (S0,S1) be a simulator with the same
domain and range as Π = (Π0, Π1) that has access to R. The advantage of
an indifferentiability distinguisher D against F with respect to simulator S is
defined as

AdvF,S(D) =
∣∣∣P [
DF,Π,Π−1

= 1
]
− P

[
DR,S,S−1

= 1
]∣∣∣ . (2)

The differentiability setup is depicted in Figure 2. We will refer to (F,Π,Π−1)
as the real world and to (R,S,S−1) as the ideal world. The attacker can make
a construction query to C (F in the real world and R in the ideal world) and
it can make a primitive query to P (Π± in the real world and S± in the ideal
world).

Π0, Π1F R S0,S1

real world ideal world

D

Fig. 2. The indifferentiability setup.
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In (regular) indifferentiability as formalized by Coron et al. [9], the distin-
guisher has full freedom in the order in which it makes the queries.

Definition 2 ((Regular) Indifferentiability). The construction F : {0, 1}n →
{0, 1}n of (1) built on ideal permutations Π0, Π1

$←− perm(n) is regularly ε-

indifferentiable from a random oracle R $←− func(n) if there exists a simulator
S = (S0,S1) such that

Advindif
F,S (D) < ε

for any distinguisher D that can make its construction and primitive queries in
a fully adaptive manner.

We will also discuss a weaker variant of indifferentiability, called public indif-
ferentiability as introduced by Yoneyama et al. [31] and Dodis et al. [13]. Here,
the queries made by the distinguisher to the construction oracle are public and
known to the simulator. Canonically, the simulator will internally execute its
own queries corresponding to the given input to deduce the result given by the
construction oracle.

Definition 3 (Public Indifferentiability). A construction F : {0, 1}n →
{0, 1}n of (1) built on ideal permutations Π0, Π1

$←− perm(n) is publicly ε-

indifferentiable from a random oracle R $←− func(n) if there exists a simulator
S = (S0,S1,Scon) such that

Advseq-indif
F,S (D) < ε

for any distinguisher D that can make its construction and primitive queries in
a fully adaptive manner. The procedure Scon(x) is executed whenever D makes
the query R(x).

We also look at another variant, sequential indifferentiability as introduced by
Mandal et al. [21]. Sequential indifferentiability differs from (regular) indifferen-
tiability only in the sense that the distinguisher cannot make its queries in a fully
adaptive manner. Instead, it is restricted to first making its primitive queries
and then its construction queries. It turns out that sequential indifferentiability
is equivalent to public indifferentiability for stateless ideal primitives [21], which
includes the sum of permutations.

Definition 4 (Sequential Indifferentiability). A construction F : {0, 1}n →
{0, 1}n of (1) built on ideal permutations Π0, Π1

$←− perm(n) is sequentially ε-

indifferentiable from a random oracle R $←− func(n) if there exists a simulator
S = (S0,S1) such that

Advseq-indif
F,S (D) < ε

for any distinguisher D that is restricted to first making its primitive queries and
then making its construction queries.
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Algorithm 1 Definition of the uniform simulator with parameter ℓ

1: function Sb(x)
2: if x ∈ domain(Pb) then
3: return Pb(x)

4: z ←R(x)
5: yb

$←− {0, 1}n \ (range(Pb) ∪ (range(P1−b)⊕ z))
6: Pb(x)← yb
7: P1−b(x)← yb ⊕ z
8: return yb

1: function S−1
b (yb)

2: if yb ∈ range(Pb) then
3: return P−1

b (yb)

4: for ℓ times do
5: x

$←− {0, 1}n \ domain(P0)
6: z ←R(x)
7: if yb ⊕ z /∈ range(P1−b) then
8: Pb(x)← yb
9: P1−b(x)← yb ⊕ z
10: return x
11: return ⊥

Clearly, sequential indifferentiability is a weaker variant than (regular) indifferen-
tiability in the sense that it significantly restricts the power of the distinguisher.
Intuitively, in sequential indifferentiability, the queries that matter most are the
primitive queries, and the construction queries made afterwards are only made
to verify consistency in the primitive queries. The distinguisher has no possibility
to use these construction queries to smartly select upcoming primitive queries.

The definition of indifferentiability requires the existence of a simulator S. For
a lower bound this means that providing an explicit one is sufficient. However, for
an upper bound one would have to show attacks for any simulator, which is very
difficult to do. Instead, for our attacks we focus on the most logical definition
of the simulator, which we call the uniform simulator as it selects its values
uniformly at random. It has a parameter ℓ determining how many times a loop
should be executed. All previous works [7, 20, 25] use essentially this simulator
with varying ℓ.

Definition 5 (Uniform Simulator). The uniform simulator with parameter
ℓ is defined in Algorithm 1.

The uniform simulator internally keeps two partial permutations P0 and P1

consisting of the previously made queries. Additionally, on input Sb(x) (with
b ∈ {0, 1}) it not only sets Pb(x), but also P1−b(x) and similarly for S−1

b (yb) it
sets both Pb(x) = yb and P1−b(x) for some x.

The forward simulator simply samples uniformly from all possible outputs
{0, 1}n\(range(Pb)∪(range(P1−b)⊕z)), where b denotes the selected permutation
and z = R(x) is the output of random oracle for the input x.
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The backward simulator is slightly more involved. It chooses a new input x
uniformly at random (note that domain(P0) = domain(P1)), consults the random
oracle to get z = R(x) and checks whether this x is possible as the condition
yb⊕ z /∈ range(P1−b) is required. It repeats this process up to ℓ times. If there is
still no suitable x found, the simulator fails by returning ⊥.

The parameter ℓ determines how many times the simulator tries an x. If ℓ = 1
the simulator never retries, leading to a failure probability equal to the birthday
bound. For larger ℓ the simulator can try multiple times, making the failure
probability smaller and smaller. On the other hand, ℓ should not be too large
as the simulator makes at most ℓq queries to the random oracle for q primitive
queries. The first two works [20,25] set ℓ = 2 and [7] sets ℓ = n.

Remark 1. The simulator given in [7] is slightly different, as they do not resample
previously selected guesses: let xi be chosen at iteration i of the loop (1 ⩽ i ⩽ ℓ),

then xi
$←− {0, 1}n\(domain(P0)∪{x1, . . . , xi−1}). This difference is negligible and

only influences the failure probability. In fact, the selection of the parameter ℓ
does not influence the outputs of the simulator at all, conditioned on the fact that
it did not fail. Only the failure probability is impacted, which has a probability
of O

(
qℓ+1/2ℓn

)
.

3 Earlier Security Analysis

The sum of secret permutations has a long history, dating back to Impagliazzo
and Rudich in 1988 [17]. A long sequence of research [2, 4, 11, 19, 26–28] has
lead to a final conclusion that the sum of two secret permutations is hard to
distinguish from a random function up to 2n queries.

In this work, we are however concerned with the sum of public permutations,
a problem that is more recent. In 2010, Mandal et al. [20] gave two indifferentia-
bility results, one proving 2n/2 with a naive simulator (the simulator of Defini-
tion 5 with ℓ = 1), and one result with a more involved simulator (the simulator
of Definition 5 with ℓ = 2) achieving 22n/3 security. However, later, Mennink
and Preneel observed that the latter result was flawed. In detail, the analysis
of Mandal et al. relied on the premise that if the distinguisher makes q primi-
tive queries, for any value z ∈ {0, 1}n there are not more than O(q2/2n) tuples
{(x0, y0), (x1, y1)} satisfying y0 ⊕ y1 = z, a premise that was obviously false as
the distinguisher can make inverse queries to the primitive. (Refer to [25, Section
4.3] for a more detailed discussion of the issue.) A noteworthy proof technique
used by Mandal et al. was that the proof started with a transition of the dis-
tinguisher D to a more powerful distinguisher D′ to make the security analysis
easier (this transition is explained in more detail in Section 3.1).

In 2015, Mennink and Preneel re-proved 22n/3/n security [25], with the same
simulator (the simulator of Definition 5 with ℓ = 2) and a comparable proof
technique as Mandal et al., but with a different bad event in the security analysis.
In 2018, Bhattacharya and Nandi [7] proved optimal 2n indifferentiability of F .
The simulator of Bhattacharya and Nandi only marginally changed from the
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simulator of Mandal et al., the only difference being that the simulator would
potentially redraw up to ℓ = n. In 2017, Lee [18] proved 2(r−1)n/r security for
the sum of r permutations for even integers r ⩾ 4.

It is important to mention that all these results adopted the proof technique
used by Mandal et al. to start the proof by replacing the distinguisher D by
a more powerful distinguisher D′, or a similar technique, to make the security
analysis easier. In the context of tree hashing, Gunsing [15] pointed out that this
reasoning is faulty, and only holds in the case of sequential indifferentiability. We
elaborate on this ‘sequentiality’ in detail in Section 3.1. In addition, we observe
two additional issues in the proof of Bhattacharya and Nandi, namely the ‘fresh
oracle’ problem (in Section 3.2) and the ‘random range’ problem (in Section 3.3).

3.1 Sequentiality

As shown in [15] all known results only hold for sequential indifferentiability. We
explain the problem specifically for the case of the sum of permutations. In all
previous works [7, 18,20,25] the error appears in a similar form.

Moving from D to D′. The works [20, 25] make an explicit modification to
the distinguisher. For any distinguisher D another distinguisher D′ is constructed
that behaves as follows:

1. Interact like D;
2. At the end of the interaction, query P0(x) and P1(x) for any construction

query C(x) made in the previous step (if not already done);

3. Output the same decision as D.

As D′ outputs the same decision as D and its extra queries happen at the end
of the interaction, its advantage is the same as that of D. Furthermore, as C(x)
can be derived from P0(x) and P1(x), we can ignore the construction queries
from the transcript and focus just on the primitive queries of the form P0(x) and
P1(x). However, this last reasoning where the construction queries are ignored
is incorrect and cannot be done. It ignores the fact that future queries can
depend on the output of these construction queries. For example, let D be the
distinguisher that generates two arbitrary inputs x1 and x2 and interacts as
follows:

1. Make the construction query z1 = C(x1);

2. Make the construction query z2 = C(x2);

3. Compare z1 and z2 lexicographically and define xmin and xmax as:

– If z1 ⩽ z2, then xmin = x1 and xmax = x2;

– Otherwise, xmin = x2 and xmax = x1;

4. Make the primitive queries ymin
0 = P0(x

min) and ymin
1 = P1(x

min);

5. Make the primitive queries ymax
0 = P0(x

max) and ymax
1 = P1(x

max).
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Here, the final transcript looks like(
(x1, C(x1)), (x2, C(x2)), (x

min,P0(x
min),P1(x

min)), (xmax,P0(x
max),P1(x

max))
)
.

While it is the case that C(x1) = P0(x1)⊕P1(x1) and C(x2) = P0(x2)⊕P1(x2)
can be derived from the full transcript (as x1 and x2 are either xmin or xmax),
they cannot simply be dropped, simplifying the transcript to(

(xmin,P0(x
min),P1(x

min)), (xmax,P0(x
max),P1(x

max))
)
,

as this transcript is not well-defined. The input to the first query is xmin, but
this definition only makes sense given C(x1) and C(x2), whose values are still
unknown.

One way to salvage the results is to consider the weaker notion of sequen-
tial indifferentiability, where all primitive queries have to be made before the
construction queries. In this setting this dependence is not present as the con-
struction queries happen last. Hence, we can downgrade a proof containing this
flaw to the sequential indifferentiability setting.

Public Construction Queries. The works [7, 18] do not make an explicit
modification to D but they make a similar mistake. Again, at the end of the
interaction we give the outputs P0(x) and P1(x) for every made construction
query C(x). Furthermore, if P0(x) is made, then P1(x) is given and vice versa.
This means that for query i, the tuple

(xi,P0(xi),P1(xi))

is known, from which the construction output C(xi) = P0(xi) ⊕ P1(xi) can
be derived immediately. However, this step implicitly reorders some primitive
queries. Consider the same interaction as before, where the final transcript looks
like(
(x1, C(x1)), (x2, C(x2)), (x

min,P0(x
min),P1(x

min)), (xmax,P0(x
max),P1(x

max))
)
.

Now, with the ‘additional’ information added this becomes(
(x1,P0(x1),P1(x1)), (x2,P0(x2),P1(x2))

)
.

Whenever xmin = x2, this reorders the primitive queries made. In the real world
this does not matter, but in the ideal world the primitive is a simulator for which
the order can be important. In general, for stateless primitives, like random
functions and permutations, the order of the queries does not matter as there is
no state to be influenced. However, most simulators are stateful, in which case the
queries influence the state and with that the distribution of future queries as well.
Ideally, the simulator should behave like a stateless primitive as much as possible.
We quantify this notion by looking at what influence swapping two queries has
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on the distribution of the outputs. The core of our new indifferentiability proof
in Section 4 is to show that we can reorder the simulator queries up to O

(
22n/3

)
queries. Additionally, we also show an impossibility result in Section 6 where
we make use of the fact that for the uniform simulator the order does matter,
leading to an attack on it using O

(
25n/6

)
queries.

This reordering of the simulator queries has more in common with the notion
of public indifferentiability. In this setting, which is equivalent to the previously
mentioned sequential indifferentiability, the queries made by the distinguisher
to the construction are publicly available to the simulator. The simplest way
the simulator can make use of this is by making the queries S0(x) and S1(x)
internally whenever the distinguisher queries R(x). This does correspond to the
transformation made in [7], but it only holds for public indifferentiability. Note
that it is true that the simulator can internally execute S1(x) whenever S0(x)
is made as this is a query to the simulator. However, it can only execute these
when R(x) happens if the construction queries are public. This is the case for
public indifferentiability, but in (regular) indifferentiability they are not.

Reording Simulator Queries. We use this reordering idea in our new in-
differentiability proof. In essence, we use many intermediate worlds in which
the verification are step-wise moved to the end to convert the transcript corre-
sponding to the public indifferentiability setting to the regular one. Instead of
directly verifying the construction queries, we delay by a predetermined num-
ber of queries. We illustrate this using the example above. We start with the
world corresponding to the case of public indifferentiability, where the verifica-
tion queries of construction queries happen immediately. We denote them just
before the construction queries, but this does not matter and is an arbitrary
choice.(

(x1,P0(x1),P1(x1)), (x1, C(x1)), (x2,P0(x2),P1(x2)), (x2, C(x2)),

(xmin,P0(x
min),P1(x

min)), (xmax,P0(x
max),P1(x

max))
)
,

where we do denote duplicate queries. We start with delaying the second veri-
fication query. We do this one step at a time. After three steps (one swap with
the construction query, two with primitive queries) it will be verified at the end:(

(x1,P0(x1),P1(x1)), (x1, C(x1)), (x2, C(x2)), (x
min,P0(x

min),P1(x
min)),

(xmax,P0(x
max),P1(x

max)), (x2,P0(x2),P1(x2))
)
.

Now that the second query is completed, we move to the first query. After four
delaying steps (two over a construction queries two over primitive queries), we
get the following:(

(x1, C(x1)), (x2, C(x2)), (x
min,P0(x

min),P1(x
min)),
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(xmax,P0(x
max),P1(x

max)), (x1,P0(x1),P1(x1)), (x2,P0(x2),P1(x2))
)
.

This corresponds to the normal transcript resulting from the indifferentiability
setting, completing the process. We use the same idea in our proof, in reverse, to
convert a normal transcript to one used in public indifferentiability. Furthermore,
as there the construction queries can be derived from the primitive queries, they
can essentially be ignored. In general they still have to be executed at the end
to verify consistency, resulting in a sequential transcript. What is left to show
is that this swapping of simulator queries has limited influence on its output
distribution, which is a major part of the proof requiring a lot of computation.

3.2 Fresh Oracle

Even if we still consider [7] and restrict our focus to sequential indifferentiability,
there is another problem, giving at most 3n/4 bits of security. The problem is
that for every query in the ideal world, the output of the construction oracle R
is considered to be uniformly random. However, the inverse simulator can have
a candidate output x, query the random oracle z = R(x), reject x as an output
based on z and continue with a new candidate x′. This means that whenR(x) for
the same candidate x is queried later, its output will not be uniformly random,
as it was rejected earlier and it is known what values are rejected. While it is
not known what the candidate outputs were, it will still give a bias. Consider
the following example:

1. Suppose there is some earlier interaction, giving non-empty domain D and
ranges R0 and R1, all of size q. There is no bias in R yet;

2. Make the inverse query x1 = S−1
0 (y1) for an arbitrary y1 /∈ R0;

3. Make the construction query z2 = R(x2) for an arbitrary x2 /∈ D ∪ {x1}.

In [7] the distribution of z2 is considered to be uniformly random over {0, 1}n.
However, there is the possibility that x2 was a rejected candidate in step (2),
making the probability that z2 ∈ R1 ⊕ y1 slightly more likely. More precisely,
we can consider the outputs of R(x) to be determined just before step (2). As
all values are independently and uniformly chosen, the probability that R(x) ∈
R1⊕ y1 is q/2n. For X = {x ∈ {0, 1}n \D | R(x) ∈ R1 ⊕ y1 } we have E [|X|] =
(2n−|D|)q/2n. Before step (2) there are trivially |X| values x ∈ {0, 1}n \D such
that R(x) ∈ R1⊕y1. After step (2) this value stays the same, because x1 /∈ X as
the simulator would reject x1 otherwise and redraw. Therefore there are still |X|
values in {0, 1}n \D ∪ {x1} such that R(x) ∈ R1 ⊕ y1 while the size of possible
values for x decreased by one. This means that at step (3), conditioned on that
the simulator did not fail, we have that

P [z2 ∈ R1 ⊕ y1] = E
[

|X|
2n − |D| − 1

]
=

(2n − |D|)q
2n(2n − |D| − 1)

=
q

2n
2n − q

2n − q − 1
=

q

2n

(
1 +

1

2n − q − 1

)
,

13



which is slightly higher than the uniform probability of q/2n. Note that it actu-
ally does not matter for the distribution how many times the simulator retries.
Given the fact that it did not fail, the probabilities will always be the same.
The only influence that the number of retries gives is the probability for failure,
which is roughly qℓ+1/2ℓn for ℓ attempts.

As a consequence, z2 is not uniformly distributed but has a slight positive
bias towards the set R1 ⊕ y and a slight negative bias towards the other values.
The earlier works [20, 25] circumvent this problem by adding a bad event for
repeated evaluations of R(x), contributing to limiting the proven security level
to (2n/3− log2(n)) bits. A way to view the flaw is that the proof in [7] does not
consider the regular ideal world, but that it implicitly considers a modified ideal
world. This modified world, which we will call ‘fresh ideal world’, is similar to the
regular ideal world, but when the random function R(x) is asked for an output
on input x, it will always output a uniformly random value from {0, 1}n, even
when it was queried x before. The only exception is when it was queried by the
distinguisher or when it can be derived from the primitive queries, then it will
be consistent with the previous values. We formalize this in Algorithm 2, where
the modified random function is denoted by R′ and the modified simulator by
S ′. The latter is based on the existing simulator S[R′], with its oracle access
to R′ made explicit. Although the change is small, this ‘fresh ideal world’ is
significantly different from the regular ideal world. We formally show this as an
attack between these two worlds in Section 5 using O

(
23n/4

)
queries. This attack

works in the sequential indifferentiability setting, so even there the simplification
of (implicitly) replacing the regular ideal world with the fresh ideal world is not
possible when a security level of more than 3n/4 bits is desired.

Algorithm 2 The ‘fresh ideal world’

1: function R′(x)
2: if x ∈ domain(F) then
3: return F(x)

4: z
$←− {0, 1}n

5: if query from distinguisher then
6: F(x)← z

7: return z

1: function S ′
b[R′](x)

2: yb ← Sb[R′](x)
3: y1−b ← S1−b[R′](x)
4: F(x)← yb ⊕ y1−b

5: return yb

1: function S ′−1
b [R′](yb)

2: x← S−1
b [R′](yb)

3: y1−b ← Sb[R′](x)
4: F(x)← yb ⊕ y1−b

5: return x
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3.3 Random Range

The final problem we describe is that the ranges R0 and R1 cannot be considered
to be random subsets of {0, 1}n as by using inverse queries (halve of) these sets
can basically be constructed as desired. These sets were actually considered to be
random in [20] as highlighted and fixed in [25]. We note that this same problem is
actually again present in [7] as their Lemma 1 considers these sets to be random
and independent subsets of {0, 1}n. This is a fundamental problem in the proof
and cannot be salvaged, bare the disallowance of any inverse queries.

4 New (Regular) Indifferentiability Proof

In this section we show that the F construction is regularly indifferentiable from
a random oracle R. Surprisingly, we show that the Mennink-Preneel’s simulator
[25], identical to the uniform simulator from Definition 5 with ℓ = 2, suffices to
provide security up to 22n/3/n queries.

In what follows, we first give a general security lifting lemma in the context
of F . Specifically, we characterize the indifferentiability advantage into three
terms: (1) the sequential indifferentiability advantage, (2) the failure probability
and (3) the sequential difference. As the proof in [25] does hold in the sequen-
tial indifferentiability setting, we can directly use this result for term (1). This
work also implicitly bounds the failure probability, but, again, only in the se-
quential setting. We show an upper bound for (2) that also holds in the regular
indifferentiability setting by using straightforward computations. The sequential
difference is more involved and highly non-trivial. It is the part that is ignored in
previous papers. Our approach is generic with the potential of allowing similar
resolutions for other works with the same issue. We argue that we can swap
two consecutive primitive queries with only receiving a loss of O

(
q/22n

)
. We

use this fact to move the primitive queries corresponding to construction queries
around. Instead of having them at the end of the interaction, we move them to
just before their construction companions. By doing this, we are able to put the
construction queries at the end, as we already know their output, making the
transcript suitable for the sequential setting. As there are most q such queries
that we have to swap at most q times, this results in an extra O

(
q3/22n

)
term

for (3), maintaining the proven security level.

4.1 Assumptions

In order to simplify our analysis, we make the following assumptions on the
indifferentiability game, none of which result in a loss of generality for our sub-
sequent derivation of an upper bound for the indifferentiability advantage (b will
always denote an unspecified bit):

– The simulator never aborts on a forward primitive query.
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– Every forward primitive query x is broadcast to both primitives immediately,
and the adversary receives both y0 = P0(x) and y1 = P1(x) as response; as
such we think of a forward query as just an input x without specifying one
of the two primitives.

– After every inverse primitive query yb to P−1
b , the response x is immedi-

ately fed to the other primitive, and the adversary receives both x and
y1−b = P1−b(x) (the only exception being when x = ⊥); this along with
the first assumption means that every primitive query can be represented in
the transcript as a triple (x, y0, y1).

– For every construction query x made by the adversary, the transcript con-
tains a corresponding primitive query-response triple (x, y0, y1) for some
y0, y1; this can be enforced by processing all the missing x’s as forward prim-
itive queries at the end of the game and appending the generated triples at
the end of the transcript.

– Every primitive query-response triple (x, y0, y1) in the transcript corresponds
to some construction query x; this can similarly be enforced by querying all
the missing x’s to the construction (or random oracle) at the end of the
game.

– The adversary never makes a repeated construction query or a pointless
primitive query (i.e., a primitive query which has already been settled while
processing a previous primitive query).

A construction query-response pair (x, z) and a primitive query-response triple
(x, y0, y1) which share the same x will be called companion queries; the above
assumptions then imply that the queries in the transcript always occur in such
companion pairs. When needed, we will write a primitive query-response triple
as (x, y0, y1)

+ and (x, y0, y1)
−
b to denote a query to S+ and S−b respectively.

Aborted queries to S−b will be denoted as (yb,⊥)−b or simply as (yb,⊥) when b
is either irrelevant or clear from the context.

4.2 Transcript

A transcript τ of length σ is a sequence (τ1, . . . , τσ), where for all j ∈ [σ], τj is
one of the following:

– a construction query-response pair (x, z);
– a completed primitive query-response triple (x, y0, y1);
– an aborted primitive query (yb,⊥).

Accordingly, we partition [σ] into three sets c(τ), p(τ), and a(τ), which corre-
spond respectively to the three cases for τj above.

Definition 6 (Sequential Transcript). A transcript τ is said to be sequential
when all the construction queries are at the end, i.e., when c(τ) exactly coincides
with [i..σ] for some i.

We can transform each transcript τ = (τ1, . . . , τσ) to a sequential transcript
through the following steps:
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1. for each i ∈ c(τ), look at the companion i′ ∈ p(τ) (i.e., the i′ such that τi
and τi′ share the same x), and if i < i′, put τi′ at position i while pushing
each of τi, . . . , τi′−1 one place to the right;

2. once all construction queries are to the right of their companion primitive
queries, push all the construction queries to the end of the transcript without
changing their order.

We denote by τ̂ the output of the above transformation on τ , and treat τ 7→
τ̂ as a mapping from transcripts to sequential transcripts. Algorithm 3 gives
an algorithmic description of this transformation. We use the array-indexing
notation τ̂ [i] to indicate the current i-th element of the array τ̂ , to emphasise
the dynamic nature of τ̂ while the algorithm is running.

Algorithm 3 Sequentialising a transcript

1: function Seq(τ)
2: q ← |τ |
3: τ̂ ← τ
4: for i← 1 to q − 1 do ▷ Step 1
5: if τ̂ [i] is a construction query then
6: (x, )← τ̂ [i]
7: for i′ ← i+ 1 to q do ▷ Companion search
8: if τ̂ [i′] is a primitive query then
9: (x′, , )← τ̂ [i′]
10: if x = x′ then ▷ Companion detection
11: temp← τ̂ [i′]
12: for j ← 1 to i′ − i do
13: τ̂ [i′ − j + 1]← τ̂ [i′ − j]

τ̂ [i]← temp

14: for i← 1 to q − 1 do ▷ Step 2
15: if τ̂ [i] is a construction query then
16: for i′ ← i+ 1 to q do
17: if τ̂ [i′] is a primitive query then
18: temp← τ̂ [i′]
19: for j ← 1 to i′ − i do
20: τ̂ [i′ − j + 1]← τ̂ [i′ − j]

τ̂ [i]← temp

21: return τ̂

4.3 Additional Notation

Any adversary D can be viewed as a two-stage algorithm (Dint,Ddist), where
Dint and Ddist represent D’s interactive and distinguishing phases, respectively.
Formally, Dint is an interactive oracle algorithm that outputs a transcript of its
interaction with its oracle, and Ddist is an algorithm that takes as input the
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transcript generated by Dint’s interaction with its oracle and outputs a guess
bit.

Fix q and a simulator S. Let T D denote the set of all possible transcripts
consisting of exactly q construction queries and q primitive queries (in companion
pairs) that can be realized by D in an interaction with (R,S) (we call such a
game a (q, q)-query game). For all τ ∈ T , we write Pre [τ ] and Pid [τ ] to denote
the probability of realizing τ by an interaction with (F,Π) (the real world) and
(R,S) (the ideal world) respectively; since we are considering only deterministic
adversaries, this probability only depends on the random coins of the oracles and
not on D. By extending this notation, we write Pre [T ′] to denote

∑
τ∈T ′ Pre [τ ]

for any T ′ ⊆ T D. More generally, for an event E, we also use Pre [E] and Pid [E]
to denote the probability of E in the real world and the ideal world respectively.
Let

– T D↪→1 :=
{
τ ∈ T D | Ddist(τ) = 1

}
;

– T D↪→0 :=
{
τ ∈ T D | Ddist(τ) = 0

}
= T D \ T D↪→1;

– T D⩾ :=
{
τ ∈ T D | Pid [τ ] ⩾ Pre [τ ]

}
;

– T D
bad := {τ ∈ T D | a(τ) ̸= ∅};

– T D
good := {τ ∈ T D | a(τ) = ∅} = T D \ T D

bad .

For brevity, we also let T D⩾
good = T D⩾ ∩ T D

good and T D⩾
bad = T D⩾ ∩ T D

bad .

Remark 2. We note that T D and its various subsets defined above depend on q
and S, and Pid [τ ] also depends on S; when we need to make this dependence
explicit, we will add the relevant symbols to the notation—for instance, T D

becomes T D(q,S), and Pid [τ ] becomes PS
id [τ ]. Fortunately, most often q and S

will be clear from context, allowing us to drop these explicit references and keep
the notation cleaner. We always assume that the adversary D adapts to q; this
could for instance be realised by letting D be a collection of several instances
Dq for different choices of q, such that Dq is specifically tailored for playing a
(q, q)-query game.

Definition 7 (Failure Probability). We define the failure probability of S in
a (q, q)-query game as

FP (q,S) := max
D

PS
id

[
T D
bad(q,S)

]
.

Definition 8 (Sequential Difference). We define the sequential difference of
S in a (q, q)-query game as

SD (q,S) := max
D

∑
τ∈T D⩾

good(q,S)

(
PS
id [τ ]− PS

id [τ̂ ]
)
.

In Lemma 2 of the Supplementary Material we show that for any q and any
simulator S we have

Advindif
F,S (q, q) ⩽ Advseq-indif

F,S (q, q) + SD (q,S) + FP (q,S) . (3)
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4.4 Mennink-Preneel Simulator

We aim to employ (3) with the same simulator used in [25] to achieve security
up to 22n/3/n queries. This simulator is identical to the uniform simulator from
Definition 5 with ℓ = 2. From now on, we denote this simulator by S.

First we show in Lemma 3 of the Supplementary Material that the simulator
has a limited probability to fail. That is, for the simulator S we have

FP (q,S) ⩽ 2q

2n
+

13q3

22n
. (4)

We continue with the main part of the proof, showing that the sequential differ-
ence of S is bounded by O

(
q3/22n

)
.

Lemma 1. For Mennink-Preneel’s simulator S, we have

SD (q,S) ⩽ 46q3

22n
.

Proof. Fix an adversary D. For any τ = (τ1, . . . , τ2q) ∈ T D⩾
good, let C

τ denote the
partially sampled R as revealed to the adversary through all the construction
queries in the game, and let DCτ and RCτ be respectively the domain and range
of Cτ .

For some τ = (τ1, . . . , τ2q) ∈ T D⩾
good, consider primitive queries τi = (x, y0, y1), τj =

(x′, y′0, y
′
1) with i < j, and let R0 and R1 respectively denote the range of P0 and

the range of P1 right before the i-th query. We call the pair (τi, τj) erratic when
it satisfies one of the following:

– τj is queried to S+, and {Cτ (x)⊕ y′1, y1 ⊕ Cτ (x′)} ∩ R0 ̸= ∅;
– τj is queried to S+, and {Cτ (x)⊕ y′0, y0 ⊕ Cτ (x′)} ∩ R1 ̸= ∅;
– τj is queried to S−b , and yb ⊕ y′1−b ∈ RCτ .

As y0, y1, y
′
0 and y′1 are all sampled uniformly from at most 2n − 2q values and

y′1−b is sampled from 2n − q values when x′ /∈ DCτ , and the event x′ ∈ DCτ

happens with probability at most q/(2n − q), we can bound the probability by

Pid [(τi, τj) erratic] ⩽ max

(
2q

2n − 2q
+

2q

2n − 2q
,

q

2n − q
+

q

2n − q

)
⩽ max

(
4q

2n
+

4q

2n
,
2q

2n
+

2q

2n

)
=

8q

2n
, (5)

using that q ⩽ 2n−2. We partition T D⩾
good into the set T D⩾

ill of ill-behaved tran-

scripts, and the set T D⩾
well of well-behaved transcripts, based on the following

criterion: τ ∈ T D⩾
ill if for some x, x′, x′′ ∈ DCτ , Cτ (x) = Cτ (x′) = Cτ (x′′). We

have that ∑
τ∈T D⩾

ill

Pid [τ ] ⩽
q3

22n
. (6)
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Fix a transcript τ ∈ T D⩾
well , and let C := Cτ . We first observe that responses

obtained from the random oracles are sampled independent of the rest of the
game, and D (eventually) sees the random oracle outputs of all x that occur
in primitive query-response triples, so we can always condition on the outputs
of all the construction queries when computing the probabilities of simulator
responses. In the analysis that follows we assume that all the probabilities are
implicitly conditioned on the random oracle outputs (which is the same as as-
suming that the random oracle output C(x) is known for each triple (x, y0, y1)).

We will find it useful to derive expressions for Pid [τi | τ1, . . . , τi−1] for any
i ∈ p(τ). Fix i, and define τhead := (τ1, . . . , τi−1). First let τi = (x, y0, y1)

+. Let
R0 and R1 be the ranges of the partial permutations P0 and P1 respectively just
before the i-th query. Writing z := C(x), we have

Pid [τi | τhead] =
1

2n − |R0 ∪ (R1 ⊕ z)|
. (7)

Next let τi = (x, y0, y1)
−
0 . For arbitrary G ⊆ DC and H ⊆ {0, 1}n define

SG→H := {x ∈ G | C(x) ∈ H ∩ RC},

the set of elements in G which have an image under C in H. Finally, let D ⊆ DC

be the shared domain of P0 and P1 just before the i-th query. (Note that all
these sets are functions of τhead.) In Lemma 4 of the Supplementary Material we
show that

Pid [τi | τhead] =
∣∣SDC\D→R1⊕y0

∣∣+ 2n − q|D|/2n

(2n − |D|)2
. (8)

We are now ready to derive the bound claimed in the lemma statement. Define

∆τ := Pid [τ ]− Pid [τ̂ ] .

For each construction-query index i ∈ c(τ), let i∗ denote the companion primitive-
query index in p(τ) (i.e., τi = (x, z) and τi∗ = (x, y0, y1) for some x, y0, y1, z).
We recall that we construct τ̂ from τ as follows:

– for each i ∈ c(τ), if i < i∗ then put τi∗ at position i while pushing each of
τi, . . . , τi∗−1 one place to the right.

– once all construction queries are to the right of their companion primitive
queries, push all the construction queries to the end.

We first observe that the second step above does not affect the probability of
the transcript, because the output of the construction queries is already fixed
from the companion primitive queries. (Note that this may not hold for certain
simulators which try to cheat by returning a query-response triple (x, y0, y1)
without ensuring that y0 ⊕ y1 = R(x), but it holds for our simulator.) Thus,
when computing Pid [τ̂ ] we can pretend that the second step did not happen.

In the first step, we can assume that we check each i ∈ c(τ) in order. Consider
the smallest i ∈ c(τ) satisfying i < i∗. Then, τi∗ moves i∗ − i places to the left.
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This can be seen as a sequence of i∗ − i adjacent transpositions, where the j-th
transposition consists of swapping τi∗ with τi∗−j . Let τ

(i,j) denote the transcript
obtained after j transpositions, with the convention that τ (i,0) = τ ; also let
τ [i] := τ (i,i

∗−i) denote the transcript at the moment when τi∗ has reached the
target position. We also add i to a (mutable) set I, initialised as empty, which
will eventually hold all the indices which need to be processed as above through
a sequence of adjacent transpositions.

We can inductively extend this notation for the rest of the transpositions as
follows: having obtained τ [i

′] for the latest (and largest) i′ ∈ I, we look for the

smallest i ∈ c
(
τ [i

′]
)
satisfying i < i∗; we then move τ

[i′]
i∗ i∗ − i places to the left

through i∗ − i adjacent transpositions, the j-th of which swaps τ
[i′]
i∗ with τ

[i′]
i∗−j ;

and finally, i is added to I. τ (i,j) continues to denote the transcript obtained
after j transpositions, with the convention that τ (i,0) = τ [i

′], and τ [i] := τ (i,i
∗−i)

now denotes the transcript at the moment when τ
[i′]
i∗ has reached the target

position. For the last i to be added to I, τ [i] = τ̂ .

Remark 3. We point out that it would be difficult to define the notation by listing
out at the outset all the i ∈ c(τ) satisfying i < i∗ and going through them one
by one; this is because processing the i-th entry changes the positions of the
next i∗ − i entries, which could contain the next candidate to be processed. We
further point out that the above notation is nevertheless well-defined, because
the positions of the candidate entries can only increase during the handling of
previous candidates, and we process them in increasing order, thus ensuring the
same i is never repeated.

Remark 4. One part of the notation we abuse is i∗, which we assume is defined
at every stage in accordance with the transcript τ (i,0) = τ [i

′] for the immediate
predecessor i′ of i in I, i.e., it shows the position of a query in p

(
τ [i

′]
)
. Making

its dependence on τ explicit would make the notation more cumbersome, so we
deem it best for the sake of clarity to leave this dependence implicit and add this
clarifying remark. It may be worth noting that the condition i < i∗ is invariant
under the processing of previous entries, even with the lazy definition of i∗.

For an i ∈ I and a j ∈ [i∗− i], we observe that the first i∗− j − 1 entries are

identical in τ (i,j−1) and τ (i,j); we call this common prefix τ
(i,j)
head . Similarly, the

last σ− i∗+ j− 1 entries of the transcripts are also identical, forming a common

suffix we call τ
(i,j)
tail . Then we see that

Pid

[
τ (i,j−1)

]
= Pid

[
τ
(i,j)
head

]
· Pid

[
τi∗−j | τ (i,j)head

]
· Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
· Pid

[
τ
(i,j)
tail | τi∗ , τi∗−j , τ

(i,j)
head

]
,

Pid

[
τ (i,j)

]
= Pid

[
τ
(i,j)
head

]
· Pid

[
τi∗ | τ (i,j)head

]
· Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
· Pid

[
τ
(i,j)
tail | τi∗−j , τi∗ , τ

(i,j)
head

]
.
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We define

ρ(i,j)τ :=
Pid

[
τ (i,j−1)

]
Pid

[
τ (i,j)

] =
Pid

[
τi∗−j | τ (i,j)head

]
· Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
Pid

[
τi∗ | τ (i,j)head

]
· Pid

[
τi∗−j | τi∗ , τ (i,j)head

] . (9)

For each i ∈ I, we further define

ρ[i]τ :=
∏

j∈[i∗−i]

ρ(i,j)τ =
Pid

[
τ (i,0)

]
Pid

[
τ [i]

] ,

and finally, we define

ρτ :=
∏
i∈I

ρ[i]τ =
Pid [τ ]

Pid [τ̂ ]
.

Using this, and the fact that 1/(1 + x) ⩾ 1− x for all x, we can write

∆τ =

(
1− 1

ρτ

)
· Pid [τ ] =

1−
∏
i∈I

∏
j∈[i∗−i]

1

ρ
(i,j)
τ

 · Pid [τ ]

⩽

1−
∏
i∈I

∏
j∈[i∗−i]

(
1− (ρ(i,j)τ − 1)

) · Pid [τ ]

⩽
∑
i∈I

∑
j∈[i∗−i]

(ρ(i,j)τ − 1) · Pid [τ ] .

We next try to to find a suitable upper bound for ρτ . Fix an i ∈ I and a

j ∈ [i∗ − i]. Our first task will be to find an upper bound for ρ
(i,j)
τ . In Lemma 5

of the Supplementary Material we find one depending on whether (τi∗−j , τi∗) is
an erratic pair or not. We get

ρ(i,j)τ ⩽ Φ(i,j)(τ) :=


1 +

5

22n
if (τi∗−j , τi∗) is erratic,

1 +
5q

22n
otherwise,

for all τ ∈ T D⩾
well . Furthermore, as the probability that (τi∗−j , τi∗) is an erratic

pair is at most 8q/2n by (5) we derive for Φ(i,j) that

Eid

[
Φ(i,j)(τ)

]
⩽

(
1 +

5

2n

)
Pid [(τi, τj) erratic]

+

(
1 +

5q

22n

)
Pid [(τi, τj) not erratic]

⩽ 1 +
40q

22n
+

5q

22n
= 1 +

45q

22n
,
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Using this bound and the one in (6), and extending the definition of ∆τ to all

of T D⩾
good, we have

SD (q,S) = max
D

∑
τ∈T D⩾

good

∆τ = max
D

 ∑
τ∈T D⩾

well

∆τ +
∑

τ∈T D⩾
ill

∆τ


⩽ max

D

 ∑
τ∈T D⩾

well

∑
i∈I

∑
j∈[i∗−i]

(ρ(i,j)τ − 1) · Pid [τ ] +
∑

τ∈T D⩾
ill

Pid [τ ]


⩽ max

D

∑
i∈I

∑
j∈[i∗−i]

Eid

[
Φ(i,j)(τ)− 1

]
+

∑
τ∈T D⩾

ill

Pid [τ ]


⩽ max

D

(
45q3

22n
+

q3

22n

)
=

46q3

22n
,

thus establishing Lemma 1. ⊓⊔

Using equations (3), (4) and Lemma 1, and the observation from [15] that [25,
Theorem 2] implies sequential indifferentiability with the same advantage, we get
the following full indifferentiability bound.

Corollary 1. For 9n ⩽ q ⩽ 2n−2, there exists a simulator S making at most 2q
queries to R such that

Advindif
F,S (q, q) ⩽

√
9nq3

22n
+

2q

2n
+

59q3

22n
.

5 Sequential Difference ‘Fresh Ideal World’

In this section, we show an attack with complexity O
(
23n/4

)
that can distinguish

the ideal world from the ‘fresh ideal world’ as described in Section 3.2. It works
for any uniform simulator as described in Definition 5. Moreover, the attack
makes primitive queries before making construction queries, meaning that the
simplification of considering random oracle outputs fresh is even problematic
when considering the weaker sequential indifferentiability setting.

The intuition behind this attack is that in the regular ideal world the con-
struction oracle output C(x) is uniformly at random and independently selected
from {0, 1}n at start and does not change during the interaction. However, in the
fresh ideal world the output C(x) is not fixed at the start but is redrawn every
time. Consequently, some biases introduced when making well-tailored backward
queries, where the simulator does not select values with specific construction or-
acle outputs, are not present. We can exploit this flaw to differentiate between
these worlds using O

(
23n/4

)
queries as shown below.
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5.1 Attack Setup

Let q = 2k for some k with q ⩽ 2n−1. We make at most 2q queries to the
primitive oracle and at most q queries to the construction oracle. We define the
distinguisher D as follows:

1. Let X ⊆ {0, 1}n be an arbitrary set of size q;
2. Call P−1

0 (0n−k ∥ y) for all y ∈ {0, 1}k;
3. Call P−1

1 (0n−k ∥ y) for all y ∈ {0, 1}k;
4. Call C(x) for all x ∈ X;
5. Count the number of x ∈ X such that ⌊C(x)⌋n−k = 0n−k and call it c;
6. Return 1 when c is lower than some cutoff d and 0 otherwise.

Note that as pointless queries are not made, the value of C(x) can be deter-
mined in either step (2), (3) or (4). The cutoff d is the midpoint between the
expected values in the two different worlds. The distinguisher D is formally given
in Algorithm 4, with implicit calls by the simulator made explicit.

We will compute the expectation and variance of c in both the regular ideal
world (µ1 and σ2

1) and the fresh ideal world (µ2 and σ2
2). These values will be

used to determine the advantage.

5.2 Ideal World

In the regular ideal world, we can view C(x) to be fixed at the start for all x.
It does not matter whether the attacker retrieves it in step (2), (3) or (4), the
probability that ⌊C(x)⌋n−k = 0n−k for a fixed x ∈ X is always 1/2n−k = q/2n. As
every x is also independent from the other values, the total count is distributed
as the binomial distribution B(q, q/2n), leading to

µ1 =
q2

2n
,

σ2
1 =

q2

2n

(
1− q

2n

)
⩽

q2

2n
.

5.3 Fresh Ideal World

In the fresh ideal world, however, C(x) is not fixed at the start but is sampled
fresh at every invocation. This means that we have to separate the different steps.

Let c
(2)
2 , c

(3)
2 and c

(4)
2 denote the subcounts in step (2), (3) and (4), respectively,

so that c2 = c
(2)
2 + c

(3)
2 + c

(4)
2 . We compute them separately.

For c
(2)
2 we consider the output of an arbitrary query made in step (2). As the

simulator samples x uniformly from all possibilities, the probability that x ∈ X
is q/2n. Furthermore, the simulator samples C(x) uniformly over all possibilities
such that C(x) /∈ R1 ⊕ (0n−k ∥ y). As the previous queries are also sampled
fresh, R1 is uniformly distributed over all possible subsets, hence there is no bias
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Algorithm 4 Distinguisher between the normal and ‘fresh ideal world’

1: function DP,C

2: X ← { 0n−k ∥ x : x ∈ {0, 1}k }
3: c(2) ← CountInverse(0)
4: c(3) ← CountInverse(1)
5: c(4) ← CountConstruction()
6: c← c(2) + c(3) + c(4)

7: if c ⩽ d then
8: return 1
9: else
10: return 0

1: function CountInverse(b)
2: c← 0
3: for y ∈ {0, 1}k do
4: yb ← 0n−k ∥ y
5: if yb /∈ range(Pb) then
6: x← P−1

b (yb)
7: y1−b ← P1−b(x)
8: z ← yb ⊕ y1−b

9: if x ∈ X and ⌊z⌋n−k = 0n−k then
10: c← c+ 1

11: return c

1: function CountConstruction
2: c← 0
3: for x ∈ X do
4: if x /∈ domain(P0) then
5: z ← C(x)
6: if ⌊z⌋n−k = 0n−k then
7: c← c+ 1

8: return c

leading to q/2n for the probability that ⌊C(x)⌋n−k = 0n−k happens. Finally, as
there are always q queries made in step (2), we get

E
[
c
(2)
2

]
= q · q

2n
· q

2n
=

q3

22n
.

For c
(3)
2 we simply have that ⌊C(x)⌋n−k = 0n−k is not possible, as the simula-

tor rejects any x with C(x) ∈ R0⊕(0n−k ∥ y′) and { 0n−k ∥ y : y ∈ {0, 1}k } ⊆ R0.
As a consequence,

c
(3)
2 = 0.

Note that the number of queries made in step (3) is not always q as there can
pointless queries that are already made in step (2). This happens whenever the
simulator sets P1(x) as 0

n−k ∥ y′ for a y′ ∈ {0, 1}k, which happens exactly when
⌊C(x)⌋n−k = 0n−k which has a probability of q/2n. Therefore, the number of
queries made in step (3) has an expected value of q − q2/2n.
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For c
(4)
2 we have that C(x) is freshly sampled, hence the probability that

⌊C(x)⌋n−k = 0n−k happens is q/2n. We still have no bias in the chosen x, so
the probability that x ∈ X for a specific x is also still q/2n. However, we do
not necessarily make the maximum possible number of q queries as we ignore
pointless queries. Let q(2) and q(3) denote the number of queries made in step
(2) and (3), respectively, of which the output lies within X. Then, we have that

E
[
c
(4)
2

∣∣∣ q(2), q(3)] = (q − q(2) − q(3))
q

2n
.

As E
[
q(2)

]
= q2/2n and E

[
q(3)

]
= (q− q2/2n)q/2n = q2/2n− q3/22n, we get by

the law of total expectation that

E
[
c
(4)
2

]
=

(
q − E

[
q(2)

]
− E

[
q(3)

]) q

2n
=

(
q − 2q2

2n
+

q3

22n

)
q

2n

=
q2

2n
− 2q3

22n
+

q4

23n
.

Combining all this gives

µ2 = E
[
c
(2)
2 + c

(3)
2 + c

(4)
2

]
=

q3

22n
+ 0 +

q2

2n
− 2q3

22n
+

q4

23n

=
q2

2n
− q3

22n
+

q4

23n
⩽

q2

2n
− q3

22n+1
,

using that q ⩽ 2n−1. For the variance we have that every single query is a
Bernoulli variable. In step (2) the probability is q2/22n and in step (3) the
probability is q/2n, giving variances of q2/22n(1−q2/22n) ⩽ q2/22n and q/2n(1−
q/2n) ⩽ q/2n, respectively. The variance of a sum of variables is the sum of the
variances of the individual variables with the covariances between the variables
added. But in our case the variables in step (2) negatively influence future queries
and variables in step (3) have no influence, leading to a negative correlation,
hence

σ2
2 ⩽

q3

22n
+

q2

2n
⩽

2q2

2n
,

where we additionally use the fact that at most q queries are made in both step
(2) and (4).

5.4 Advantage

For the advantage we use Lemma 6 of the Supplementary Material, leading to
an advantage of at least

Advseq-indif
(R,S),(R′,S)(D) ⩾ 1− 4(σ2

1 + σ2
2)

(µ1 − µ2)2
⩾ 1− 12q2

2n
24n+2

q6
⩾ 1− 23n+6

q4
,

where Advseq-indif
(R,S),(R′,S)(·) denotes the sequential indifferentiability advantage be-

tween the ideal world (R,S) and the fresh ideal world (R′,S) with R′ the mod-
ified random oracle that always gives fresh results.

26



6 Generic Differentiability Attack

In this section, we show an attack with complexity O
(
25n/6

)
that can distinguish

the ideal world with the uniform simulator from the real world. The intuition
behind this attack is that the uniform forward simulator returns a value uni-
formly sampled from all possibilities. While this sounds reasonable it turns out
that this actually does not exactly match the real world for all interactions. This
uniformity changes the distribution of outputs when the order of the queries is
changed in the ideal world, while the order does not matter in the real world.
We can exploit this flaw to attack the uniform simulator using O

(
25n/6

)
queries

as shown below.

6.1 Attack Setup

Let q = 2k for some k with q ⩽ 2n−3. We make at most 3q queries to the
primitive oracle and at most q queries to the construction oracle.

1. Call P−1
1 (0n−k ∥ y) for all y ∈ {0, 1}k;

2. Call C(xi) = zi for q fresh xi;
3. Let I be the index set consisting of all i such that ⌊zi⌋n−k = 0n−k in the

previous step;
4. Call P0(xi) for all i ∈ I (optional);
5. Call P0(xj) = yj for q fresh xj ;
6. Count the number of j such that ⌊yj⌋n−k = 0n−k and call it c;
7. Return 1 when c is lower than some cutoff d and 0 otherwise.

Step (4) is denoted as optional. We define two related distinguishers depending
on whether step (4) is executed or not. We denote D∅ for the distinguisher that
skips (4) and DI for the distinguisher that executes (4). Again, the cutoff d
is the midpoint between the expected values in the two different worlds. The
distinguishers D∅ and DI are formally given in Algorithm 5, with again implicit
calls by the simulator made explicit.

By the triangle inequality we get that∣∣∣P [
DR,S,S−1

∅ = 1
]
− P

[
DR,S,S−1

I = 1
]∣∣∣ (10)

⩽
∣∣∣P [
DR,S,S−1

∅ = 1
]
− P

[
DF,Π,Π−1

∅ = 1
]∣∣∣

+
∣∣∣P [
DF,Π,Π−1

∅ = 1
]
− P

[
DF,Π,Π−1

I = 1
]∣∣∣

+
∣∣∣P [
DF,Π,Π−1

I = 1
]
− P

[
DR,S,S−1

I = 1
]∣∣∣

= Advindif
F,S (D∅) + 0 +Advindif

F,S (DI)

⩽ 2max
(
Advindif

F,S (D∅),Advindif
F,S (DI)

)
,

where the reasoning for the 0 is given in Section 6.2. This means that if we
show that there is a non-negligible difference between adding the queries I or
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Algorithm 5 Distinguisher on the uniform simulator, with the highlighted lines
9–11 included in DI but not in D∅

1: function DP,C

2: for y ∈ {0, 1}k do
3: y1 ← 0n−k ∥ y
4: x← P−1

1 (y1)
5: y0 ← P0(x)

6: for 1 ⩽ i ⩽ q do

7: x
$←− {0, 1}n \ (domain(P0) ∪ domain(C))

8: z ← C(x)
9: if ⌊z⌋n−k = 0n−k then
10: y0 ← P0(x)
11: y1 ← P1(x)

12: c← 0
13: for 1 ⩽ j ⩽ q do

14: x
$←− {0, 1}n \ (domain(P0) ∪ domain(C))

15: y0 ← P0(x)
16: y1 ← P1(x)
17: if ⌊y0⌋n−k = 0n−k then
18: c← c+ 1

19: if c ⩽ d then
20: return 1
21: else
22: return 0

not in the ideal world, i.e., there is a non-trivial lower bound for (10), there is
a distinguisher (either D∅ or DI) that has a non-negligible advantage on the
original construction. In Section 6.3 we will derive such a lower bound on (10),
leading to

2max
(
Advindif

F,S (D∅),Advindif
F,S (DI)

)
⩾ 1−O

(
25n

q6

)
.

6.2 Real World

In the real world, the construction oracle is defined as F (x) = Π0(x) ⊕Π1(x).
This means that a construction query F (x) will behave the same as the two prim-
itive queriesΠ0(x) andΠ1(x). Therefore, the primitive queriesΠ0(xi) optionally
made in step (4) have no influence as they are already implicitly executed in the
construction query F (xi) in step (3). As the only difference between D∅ and DI

are these ‘extra’ primitive queries, their output probabilities do not differ, and
hence

P
[
DF,Π,Π−1

∅ = 1
]
− P

[
DF,Π,Π−1

I = 1
]
= 0.
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6.3 Ideal World

In this section we focus on finding a lower bound for∣∣∣P [
DR,S,S−1

∅ = 1
]
− P

[
DR,S,S−1

I = 1
]∣∣∣ .

In order to do this, we will compute the expectation and variance of c for both
D∅ (µ∅ and σ2

∅) and DI (µI and σ2
I ). These values will be used to determine the

advantage. We are mostly interested in the difference between the expectations
which we can denote as

µI − µ∅ =
∑
j

δj ,

δj = pI,j − p∅,j ,

where p∅,j = P∅
[
⌊yj⌋n−k = 0n−k

]
and pI,j = PI

[
⌊yj⌋n−k = 0n−k

]
, where P∅ [·]

(resp., PI [·]) denotes the probability is taken when interacting with distinguisher
D∅ (resp., DI).

Now we will look at the probability that ⌊yj⌋n−k = ⌊S0(xj)⌋n−k = 0n−k for
a fixed j when I is excluded or included. By the behavior of the simulator, the
probability is of the form

pj = P
[
⌊yj⌋n−k = 0n−k

]
= E

[
q −Wj

2n − Vj

]
,

where Wj denotes the number of elements that exclude ⌊yj⌋n−k = 0n−k from
occurring and Vj denotes the number of excluded values to draw. This notation
is more generic and we denote W∅,j and V∅,j when interacting with D∅ and
similar for DI .

In Lemma 7 of the Supplementary Material we show that

δj ⩾
q3

23n+2
+O

(
q4

24n

)
.

The intuition behind this difference is that the queries i ∈ I satisfy ⌊zi⌋n−k =
0n−k, which means that ⌊S0(xi)⌋n−k ̸= 0n−k. Therefore, these queries do not
directly exclude possibilities for ⌊yj⌋n−k to hit 0n−k, while excluding other op-
tions. This slightly increases the probability of ⌊yj⌋n−k = 0n−k, leading to the
difference. As µI − µ∅ =

∑
j δj , this implies that

µI − µ∅ ⩾
q4

23n+2
+O

(
q5

24n

)
= Ω

(
q4

23n

)
,

1

(µI − µ∅)2
= O

(
26n

q8

)
.

Furthermore, in Lemma 9 of the Supplementary Material we show that the
expectation for a single event in both cases is

p∅,j , pI,j =
q

2n
+O

(
q3

23n

)
,
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immediately giving its variance of at most the same value. Furthermore, the
variance of a sum of variables is the sum of the variables, with the pairwise
correlations added. In our case the variables are negatively correlated as when
⌊yj⌋n−k = 0n−k happens one more possibility to hit is discarded for future
queries, reducing its probability. This means that we can upper bound the vari-
ances as

σ2
I , σ

2
∅ ⩽

q2

2n
+O

(
q4

23n

)
= O

(
q2

2n

)
.

Finally, using Lemma 6 of the Supplementary Material we get that the advantage
is at least

(10) ⩾ 1−
4(σ2

I + σ2
∅)

(µI − µ∅)2
= 1−O

(
q2

2n

)
O
(
26n

q8

)
= 1−O

(
25n

q6

)
,

as desired.

7 Conclusion

The contributions of this work are both negative and positive. On the negative
side, we demonstrated that previous best security result on the sum of per-
mutations is flawed and not easily fixed as there is an attack in 25n/6 queries.
On the positive side, the security claim of the second-best result, guaranteeing
22n/3/n security, can be reattained. The two results, albeit highly technical and
non-trivial, admit a gap. We expect that security beyond 22n/3/n may still be
possible but that such result will require resorting to a more sophisticated simu-
lator and/or following an entirely different proof approach. Indeed, to be precise,
our 22n/3/n security result for the simulator of Definition 5 with ℓ = 2 took the
result of Mennink and Preneel, with 22n/3/n sequential indifferentiability, as a
black box and performed a query shuffling approach that was valid as long as
the number of queries is at most 22n/3/n. Going beyond this security bound thus
requires resolving both bottlenecks.
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Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Ice-
land, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and
Theory of Programming & Track C: Security and Cryptography Foundations.
Lecture Notes in Computer Science, vol. 5126, pp. 643–654. Springer (2008),
https://doi.org/10.1007/978-3-540-70583-3\_52

30. Stam, M.: Beyond Uniformity: Better Security/Efficiency Tradeoffs for Compres-
sion Functions. In: Wagner, D.A. (ed.) Advances in Cryptology - CRYPTO 2008,
28th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 17-21, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5157, pp.
397–412. Springer (2008), https://doi.org/10.1007/978-3-540-85174-5\_22

31. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 92-A(8), 1795–1807 (2009), https:

//doi.org/10.1587/transfun.E92.A.1795

33



Supplementary Material

A Technical Lemmas

Lemma 2. For any q and any simulator S we have

Advindif
F,S (q, q) ⩽ Advseq-indif

F,S (q, q) + SD (q,S) + FP (q,S) .

Proof. Fix q, S, and D := Dq. We have

Advindif
F,S (D) :=

∣∣P [
AR,S = 1

]
− P

[
AF,Π = 1

]∣∣
=

∣∣Pid

[
T D↪→1

]
− Pre

[
T D↪→1

]∣∣ . (11)

Claim. We have the bound

Advindif
F,S (D) ⩽ Pid

[
T D⩾

]
− Pre

[
T D⩾

]
. (12)

Proof (of Claim). First consider the case when Pid

[
T D↪→1

]
≥ Pre

[
T D↪→1

]
. Then

from (11) we have

Advindif
F,S (D) = Pid

[
T D↪→1

]
− Pre

[
T D↪→1

]
=

∑
τ∈T D↪→1

Pid [τ ]−
∑

τ∈T D↪→1

Pre [τ ]

=
∑

τ∈T D↪→1∩T D⩾

(
Pid [τ ]− Pre [τ ]

)
+

∑
τ∈T D↪→1\T D⩾

(
Pid [τ ]− Pre [τ ]

)
.

By definition of T D⩾, we have Pid [τ ] ⩽ Pre [τ ] for all τ /∈ T D⩾. Thus,

Advindif
F,S (D) ⩽

∑
τ∈T D↪→1∩T D⩾

(
Pid [τ ]− Pre [τ ]

)
⩽

∑
τ∈T D⩾

(
Pid [τ ]− Pre [τ ]

)
= Pid

[
T D⩾

]
− Pre

[
T D⩾

]
.

Next consider the case when Pid

[
T D↪→1

]
< Pre

[
T D↪→1

]
. Then from (11) we have

Advindif
F,S (D) = Pre

[
T D↪→1

]
− Pid

[
T D↪→1

]
=

(
1− Pre

[
T D↪→0

] )
−

(
1− Pid

[
T D↪→1

] )
= Pid

[
T D↪→0

]
− Pre

[
T D↪→0

]
=

∑
τ∈T D↪→0

Pid [τ ]−
∑

τ∈T D↪→0

Pre [τ ]

=
∑

τ∈T D↪→0∩T D⩾

(
Pid [τ ]− Pre [τ ]

)
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+
∑

τ∈T D↪→0\T D⩾

(
Pid [τ ]− Pre [τ ]

)
⩽

∑
τ∈T D↪→0∩T D⩾

(
Pid [τ ]− Pre [τ ]

)
⩽

∑
τ∈T D⩾

(
Pid [τ ]− Pre [τ ]

)
= Pid

[
T D⩾

]
− Pre

[
T D⩾

]
,

thus establishing the claim. ⊓⊔

From (12) we continue

Advindif
F,S (D) ⩽ Pid

[
T D⩾

]
− Pre

[
T D⩾

]
= Pid

[
T D⩾
good

]
− Pre

[
T D⩾
good

]
+ Pid

[
T D⩾
bad

]
− Pre

[
T D⩾
bad

]
. (13)

For the last two terms in (13), we have the bound

Pid

[
T D⩾
bad

]
− Pre

[
T D⩾
bad

]
⩽ Pid

[
T D⩾
bad

]
⩽ Pid

[
T D
bad

]
⩽ FP (q,S) . (14)

To bound the first two terms in (13), we first note that for any τ , Pre [τ ] = Pre [τ̂ ],
since the sampling in the real oracle does not depend on the order of queries.
Thus we have

Pid

[
T D⩾
good

]
− Pre

[
T D⩾
good

]
=

∑
τ∈T D⩾

good

(
Pid [τ ]− Pre [τ ]

)
=

∑
τ∈T D⩾

good

(
Pid [τ̂ ]− Pre [τ̂ ] + Pid [τ ]− Pid [τ̂ ]

)
=

∑
τ∈T D⩾

good

(
Pid [τ̂ ]− Pre [τ̂ ]

)
+

∑
τ∈T D⩾

good

(
Pid [τ ]− Pid [τ̂ ]

)
⩽

∑
τ∈T D⩾

good

(
Pid [τ̂ ]− Pre [τ̂ ]

)
+ SD (q,S) . (15)

We consider an adversary D̂ which calls Dint and plays a sequential indifferen-
tiability game as follows (at any point in the game, we call a construction query
x fresh if it’s not yet part of a primitive query-response triple (x, y0, y1)):

– When Dint makes a primitive query, D̂int passes it to the oracle and passes
the response back to Dint;

– When Dint makes a fresh construction query x, D̂int adds it to a queue
(initialized as empty), and makes a forward primitive query x to the oracle;
it receives the triple (x, y0, y1), and returns (x, y0⊕y1) as the query-response
pair to Dint;
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– When Dint makes a construction query x that is not fresh, D̂int simply adds
it to the queue of construction queries;

– Once the queries of Dint have been exhausted, D̂int releases the construction
queries from the queue in order;

– Finally, D̂dist examines the transcript from D̂int and outputs a guess bit
(which may or may not coincide with the output bit of Ddist.

It is easy to verify that, for a fixed random coin of the oracle, if D ends up with
the transcript τ , D̂ will end up with the transcript τ̂ . Define

T D
∗ := {τ̂ | τ ∈ T D⩾

good}.

Since the map τ 7→ τ̂ is injective on T D (and hence bijective from T D⩾
good to T D

∗ ),
we have ∑

τ∈T D⩾
good

(
Pid [τ̂ ]− Pre [τ̂ ]

)
=

∑
τ ′∈T D

∗

(
Pid [τ

′]− Pre [τ
′]
)
. (16)

Now, since T D
∗ ⊆ T D̂, we can set D̂dist to output 1 exactly on the set T D

∗ . Then
we have ∑

τ ′∈T D
∗

(
Pid [τ

′]− Pre [τ
′]
)
=

∑
τ ′∈T D̂↪→1

(
Pid [τ

′]− Pre [τ
′]
)

= Pid

[
T D̂↪→1

]
− Pre

[
T D̂↪→1

]
=

∣∣∣Pid

[
T D̂↪→1

]
− Pre

[
T D̂↪→1

]∣∣∣
⩽ Advseq-indif

F,S

(
D̂
)

⩽ Advseq-indif
F,S (q, q). (17)

Combining (15)-(17) gives the bound

Pid

[
T D⩾
good

]
− Pre

[
T D⩾
good

]
⩽ Advseq-indif

F,S (q, q) + SD (q,S) . (18)

Using the bounds from (14) and (18) in (13) and taking maximum over D es-
tablishes the lemma. ⊓⊔

Lemma 3. For the Mennink-Preneel Simulator S we have

FP (q,S) ⩽ 2q

2n
+

13q3

22n
.

Proof. Recall that
FP (q,S) := max

D
PS
id

[
T D
bad(q,S)

]
.

q and S will be fixed in the following discussion, so we can drop the explicit
references to them from our notation. Fix an adversary D. For each i ∈ [2q],
define

T D
badi

:= {τ ∈ T D
bad | i ∈ a(τ) and [1..i− 1] ∩a(τ) = ∅},

36



the set of transcripts in T D
bad where i-th query is the first query which causes the

simulator to be aborted. Then, T D
bad = ⊔i∈[q]T D

badi
, whence we have

Pid

[
T D
bad

]
=

∑
τ∈T D

bad

Pid [τ ] =
∑
i∈[q]

∑
τ∈T D

badi

Pid [τ ] . (19)

For any τ = (τ1, . . . , τ2q) and any i ∈ [2q], let Pid [τ<i] denote the probability
of obtaining the partial transcript (τ1, . . . , τi−1) in the first i − 1 queries, and
let Pid [τi | τ<i] denote the conditional probability of getting τi at the i-th query
having obtained τ1, . . . , τi−1 in the first i − 1 queries. (Pid [τ1 | τ<1] is simply
defined as Pid [τ1].) Finally, let Pid [τ>i | τ⩽i] denote the conditional probability
of obtaining the partial transcript (τi+1, . . . , τ2q) from the last 2q − n queries
having obtained τ1, . . . , τi in the first i queries.

Recall that S can only abort on an inverse simulator query. Let I denote
the indices where S receives an inverse query. Using this new notation, we can
rewrite (19) as∑

i∈[2q]

∑
τ∈T D

badi

Pid [τ ] =
∑
i∈I

∑
τ∈T D

badi

Pid [τ<i]Pid [τi | τ<i]Pid [τ>i | τ⩽i] (20)

We’ll concentrate on the conditional probability Pid [τi | τ<i]. Without loss of
generality assume that the adversary made an inverse query y0 to the simulator
interface S−0 , and the simulator returned (y0,⊥). This is possible if and only
if the simulator fails to sample a valid preimage x (at line 2. (a) ii.) on two
consecutive attempts. Let x0 and x1 denote the two sampled preimages. For
0 ⩽ j ⩽ 2, let Ej denote the event |{x0, x1} ∩ {x | (x, z) ∈ τ<i}| = j. Then

Pid [τi | τ<i] = Pid [τi, E0 | τ<i] + Pid [τi, E1 | τ<i] + Pid [τi, E2 | τ<i]

⩽ Pid [τi, E0 | τ<i] + Pid [τi, E1 | τ<i] + Pid [E2 | τ<i] . (21)

We will handle one by one the three terms on the right hand side of (21). Let
D and R1 respectively denote the shared domain of P0 and P1 and the range
of P1 before the i-th query. We will use the bounds |D| ⩽ q ⩽ 2n−1 (and thus
2n − |D| ≥ 2n−1), and |R1| ⩽ q.

Bounding Pid [τi, E0 | τ<i]. Let D denote the event that x0 = x1. Then, we have

Pid [τi, E0 | τ<i] = Pid [τi, E0, D | τ<i] + Pid [τi, E0,¬D | τ<i]

⩽ Pid [D | τ<i] + Pid [τi | τ<i, E0,¬D]

⩽
1

2n − |D|
+ Pid [τi | τ<i, E0,¬D]

⩽
2

2n
+ Pid [τi | τ<i, E0,¬D] (22)

where the second inequality follows from the fact that x0 and x1 are sampled
uniformly at random from a set of size 2n − |D|. Now, assume ¬D and E0 holds,
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i.e., x0 ̸= x1 and neither has been queried to the construction before. Then we
have

Pid [τi | τ<i, E0,¬D] ⩽ Pid [R(x0),R(x1) ∈ R1 ⊕ y0 | τ<i, E0,¬D]

⩽
|R1 ⊕ y0|

2n
· |R1 ⊕ y0|

2n

=
|R1|
2n
· |R1|
2n

⩽
q2

22n
, (23)

Using the bound from (23) in (22) yields

Pid [τi, E0 | τ<i] ⩽
2

2n
+

q2

22n
. (24)

Bounding Pid [τi, E1 | τ<i]. For a ∈ {0, 1}, let Fa denote the event that there

exists an i′ < i such that τi′ = (xa, z). We can decompose the event as

Pid [τi, E1 | τ<i] =

1∑
a=0

Pid [τi, E1, F
a | τ<i]

⩽
1∑

a=0

Pid [E1, F
a | τ<i] · Pid [τi | τ<i, E1, F

a] . (25)

For a = 0, x0 is sampled uniformly at random from a set of size 2n − |D|, and
there are at most q choices for i′ < i such that τi′ = (x0, z) for some z. Thus,

Pid

[
E1, F

0 | τ<i

]
⩽

q

2n − |D|
.

Further, given E1 and F0, arguing as in case 1 above, we have

Pid

[
τi | τ<i, E1, F

0
]
⩽
|R1 ⊕ y0|

2n
=
|R1|
2n

.

For a = 1 by symmetry we obtain the exact same bounds. Substituting these
bounds in (25), we have

Pid [τi, E1 | τ<i] ⩽ 2 · q

2n − |D|
· |R1|
2n

⩽
4q2

22n
. (26)

Bounding Pid [E2 | τ<i]. Since x0 and x1 are chosen uniformly at random from
a set of size 2n − |D|, and there are at most q construction queries, we have

Pid [E2 | τ<i] ⩽

(
qc

2n − |D|

)2

⩽
4q2

22n
. (27)

Using the bounds in (21), (24), (26) and (27) in (20) and applying the summation,
we have ∑

i∈[2q]

∑
τ∈T D

badi

Pid [τ ] ⩽
2|I|
2n

+
13q2|I|
22n

. (28)
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Substituting the bound from (28) in (19) and observing that |I| ⩽ q completes
the proof. ⊓⊔

Lemma 4. Using the notation in Section 4 we have

Pid [τi | τhead] =
∣∣SDC\D→R1⊕y0

∣∣+ 2n − q|D|/2n

(2n − |D|)2
.

Proof. Suppose at the first attempt (call it A0) the simulator samples x0. Then
we have

Pid [A0 fails | τhead]
= Pid

[
A0 fails, x0 ∈ DC | τhead

]
+ Pid

[
A0 fails, x0 /∈ DC | τhead

]
= Pid

[
A0 fails | x0 ∈ DC, τhead

]
· Pid

[
x0 ∈ DC | τhead

]
+ Pid

[
A0 fails | x0 /∈ DC, τhead

]
· Pid

[
x0 /∈ DC | τhead

]
= Pid

[
x0 ∈ SDC\D→R1⊕y0

| x0 ∈ DC, τhead
]
· |DC| − |D|
2n − |D|

+ Pid

[
$
(
x0

)
⊕ y0 ∈ R1 | x0 /∈ DC, τhead

]
· 2

n − |DC|
2n − |D|

=

∣∣SDC\D→R1⊕y0

∣∣
|DC| − |D|

· |DC| − |D|
2n − |D|

+
|R1|
2n
· 2

n − |DC|
2n − |D|

=

∣∣SDC\D→R1⊕y0

∣∣
2n − |D|

+
|D|
2n
· 2

n − |DC|
2n − |D|

=
1

2n − |D|
·
(∣∣SDC\D→R1⊕y0

∣∣+ |D| − |D| · |DC|
2n

)
. (29)

Suppose in the second attempt the simulator samples x1. With the knowledge
that if A0 fails, the second attempt must succeed (since τ ∈ T D⩾

good), we can now
calculate

Pid [τi | τhead] = Pid [τi, A0 succeeds | τhead] + Pid [τi, A0 fails | τhead]
= Pid

[
x0 = x | τhead

]
+ Pid [τi | A0 fails, τhead] · Pid [A0 fails | τhead]

=
1

2n − |D|
+ Pid

[
x1 = x | A0 fails, τhead

]
· Pid [A0 fails | τhead]

=
1

2n − |D|
+

1

2n − |D|
· Pid [A0 fails | τhead]

=
1

2n − |D|
·
(
1 + Pid [A0 fails | τhead]

)
. (30)

From (29) we have

1 + Pid [A0 fails]
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= 1 +
1

2n − |D|
·
(∣∣SDC\D→R1⊕y0

∣∣+ |D| − |D| · |DC|
2n

)
=

1

2n − |D|
·
(∣∣SDC\D→R1⊕y0

∣∣+ 2n − q|D|
2n

)
, (31)

since |DC| = q. Substituting (31) in (30) gives

Pid [τi | τhead] =
∣∣SDC\D→R1⊕y0

∣∣+ 2n − q|D|/2n

(2n − |D|)2
.

Remark 5. We do not compute any probabilities on getting y1 correct, as y1 is
always computed correctly once x and y0 are fixed; for transcripts with wrong
y1 values the probability trivially becomes 0.

Lemma 5. Using the notation in Section 4, we achieve the following upper

bound on ρ
(i,j)
τ :

ρ(i,j)τ ⩽


1 +

5

22n
if (τi∗−j , τi∗) is erratic,

1 +
5q

22n
otherwise.

Proof. We can consider several cases based on the swapped pair (τi∗−j , τi∗). We
note here that since we are implicitly conditioning on the outputs of all the

construction queries, whenever τi∗−j is a construction query, ρ
(i,j)
τ = 1, since the

order of the two queries won’t affect the joint probability of τi∗−j and τi∗ . Thus
it is sufficient to look at the cases where τi∗−j is a primitive query. This leaves
five different cases for (τi∗−j , τi∗):

– both are forward queries (case 1);
– only τi∗−j is a forward query (case 2);
– only τi∗ is a forward query (case 3);
– both are backward queries to the same primitive (case 4);
– both are backward queries, but to different primitives (case 5).

We examine the cases one by one. Let R0 and R1 be the ranges of the partial
permutations P0 and P1 respectively just before the (i∗ − j)-th query, i.e., up

to the point when τ
(i,j)
head has been obtained, and let D be their shared domain at

that point.

Case 1: τi∗−j = (x, y0, y1)
+, τi∗ = (x′, y′

0, y
′
1)

+

We obtain from multiple applications of (7) the equations

Pid

[
τi∗−j | τ (i,j)head

]
· Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
=

1

2n − |R0 ∪ (R1 ⊕ z)|
· 1

2n − |R0 ∪ (R1 ⊕ z′) ∪ {y0, y1 ⊕ z′}|
,
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Pid

[
τi∗ | τ (i,j)head

]
· Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
=

1

2n − |R0 ∪ (R1 ⊕ z′)|
· 1

2n − |R0 ∪ (R1 ⊕ z) ∪ {y′0, y′1 ⊕ z}|
. (32)

Define λ := |R0 ∪ (R1⊕ z)|, λ′ := |R0 ∪ (R1⊕ z′)|, δ := 2− |R0 ∩{y′1⊕ z}|− |R1 ∩
{y′0⊕ z}|, and δ′ := 2−|R0 ∩{y1⊕ z′}|− |R1 ∩{y0⊕ z′}|. It is easy to check that
0 ⩽ δ, δ′ ⩽ 2. Then we have

|R0 ∪ (R1 ⊕ z′) ∪ {y0, y1 ⊕ z′}|
= |R0 ∪ (R1 ⊕ z′)|+ |{y0, y1 ⊕ z′}| −

∣∣[R0 ∪ (R1 ⊕ z′)] ∩ {y0, y1 ⊕ z′}
∣∣

= λ′ + 2− (|R0 ∩ {y1 ⊕ z′}|+ |(R1 ⊕ z′) ∩ {y0}|) = λ′ + δ′.

Similarly we can show that

|R0 ∪ (R1 ⊕ z) ∪ {y′0, y′1 ⊕ z}| = λ+ δ.

Thus (32) becomes

Pid

[
τi∗−j | τ (i,j)head

]
· Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
=

1

2n − λ
· 1

2n − λ′ − δ′
,

Pid

[
τi∗ | τ (i,j)head

]
· Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
=

1

2n − λ′ ·
1

2n − λ− δ
. (33)

Substituting (33) in (9) yields

ρ(i,j)τ =
Pid

[
τi∗−j | τ (i,j)head

]
· Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
Pid

[
τi∗ | τ (i,j)head

]
· Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
=

(2n − λ′) · (2n − λ− δ)

(2n − λ) · (2n − λ′ − δ′)

=
(2n − λ′) · (2n − λ)− (2n − λ′) · δ

(2n − λ) · (2n − λ′ − δ′)

=
(2n − λ′ − δ′) · (2n − λ) + δ′ · (2n − λ)− (2n − λ′) · δ

(2n − λ) · (2n − λ′ − δ′)

= 1 +
2n · (δ′ − δ)− δ′λ+ δλ′

(2n − λ) · (2n − λ′ − δ′)
. (34)

We can simplify (34) using the bounds 2n − λ ≥ 2n−1, 2n − λ′ − δ′ ≥ 2n−1,
λ′ ⩽ 2q, λ ≥ q. When δ′ = δ, (34) gives

ρ(i,j)τ ⩽ 1 +
4q

22n
.

When δ′ > δ, we use δ′ − δ ⩽ 2 to get

ρ(i,j)τ ⩽ 1 +
4

2n
.

We note here that δ′ > δ =⇒ δ < 2, and this needs one of the two events
y′1⊕ z ∈ R0 and y′0⊕ z ∈ R1 to be true, which can only happen when (τi∗−j , τi∗)
is an erratic pair.
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Case 2: τi∗−j = (x, y0, y1)
+, τi∗ = (x′, y′

0, y
′
1)

−
b

Without loss of generality we can assume that b = 0. From (7) we have

Pid

[
τi∗−j | τ (i,j)head

]
=

1

2n − |R0 ∪ (R1 ⊕ z)|
, (35)

where z = C(x). Then from (8) we have

Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
=

∣∣SDC\(D∪{x})→(R1∪{y1})⊕y′
0

∣∣+ 2n − q|D ∪ {x}|/2n

(2n − |D ∪ {x}|)2
.

(36)
Using the same equations for the swapped order we have

Pid

[
τi∗ | τ (i,j)head

]
=

∣∣SDC\D→R1⊕y′
0

∣∣+ 2n − q|D|/2n

(2n − |D|)2
, (37)

Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
=

1

2n − |R0 ∪ (R1 ⊕ z) ∪ {y′0, y′1 ⊕ z}|
. (38)

With S := SDC\D→R1⊕y′
0
, S′ := SDC\(D∪{x})→(R1∪{y1})⊕y′

0
, and λ and δ as in

case 1, we have from (35)-(38)

ρ(i,j)τ =
Pid

[
τi∗−j | τ (i,j)head

]
· Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
Pid

[
τi∗ | τ (i,j)head

]
· Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
=

2n − λ− δ

2n − λ
· |S

′|+ 2n − q(|D|+ 1)/2n

|S|+ 2n − q|D|/2n
·
(

2n − |D|
2n − |D| − 1

)2

=

(
1− δ

2n − λ

)(
1 +

|S′| − |S| − q/2n

|S|+ 2n − q|D|/2n

)(
1 +

1

2n − |D| − 1

)2

. (39)

We observe that
S′ \ S ⊆ {x′′ ∈ DC | C(x′′) = y′0 ⊕ y1}. (40)

Since τ is well-behaved, the right-hand side of (40) has at most two elements.
Thus, |S′| − |S| ⩽ |S′ \ S| ⩽ 2. Moreover, in order for S′ \ S to be non-empty,
y′0 ⊕ y1 needs to be in RC, which would make (τi∗−j , τi∗) an erratic pair. When
(τi∗−j , τi∗) is not erratic, both |S′ \ S| = 0 and δ = 2, so using λ ≥ |D| we have

ρ(i,j)τ ⩽

(
1− 2

2n − λ

)(
1 +

1

2n − λ− 1

)2

=

(
1− 2

2n − λ

)(
1 +

2

2n − λ− 1
+

1

(2n − λ− 1)2

)
= 1 +

2

2n − λ− 1
+

1

(2n − λ− 1)2
− 2

2n − λ

− 4

(2n − λ)(2n − λ− 1)
− 2

(2n − λ)(2n − λ− 1)2
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⩽ 1 +
1

(2n − λ− 1)2
− 2

(2n − λ)(2n − λ− 1)
⩽ 1.

When either |S′ \S| > 0 or δ < 2 (both of which require (τi∗−j , τi∗) to be erratic)
we can use the bound

ρ(i,j)τ ⩽

(
1 +

2

2n − q2/2n

)(
1 +

1

2n − q

)2

⩽

(
1 +

2

2n − q

)(
1 +

2

2n − q
+

1

(2n − q)2

)
= 1 +

4

2n − q
+

5

(2n − q)2
+

2

(2n − q)3
⩽ 1 +

5

2n
,

where for the last inequality we use the assumption q ⩽ 2n/9.

Case 3: τi∗−j = (x, y0, y1)
−
b , τi∗ = (x′, y′

0, y
′
1)

+

Again without loss of generality we assume b = 0, which makes the ρ
(i,j)
τ in this

case the reciprocal of that in Case 2. Writing S† := SDC\D→R1⊕y0
and S′† :=

SDC\(D∪{x′})→(R1∪{y′
1})⊕y0

, and with λ′ and δ′ as in Case 1, we have

ρ(i,j)τ =
2n − λ′

2n − λ′ − δ′
· |S†|+ 2n − q|D|/2n

|S′†|+ 2n − q(|D|+ 1)/2n
·
(
2n − |D| − 1

2n − |D|

)2

=

(
1 +

δ′

2n − λ′ − δ′

)(
1 +

|S†| − |S′†|+ q/2n

|S′†|+ 2n − q(|D|+ 1)/2n

)(
1− 1

2n − |D|

)2

.

(41)

The only candidate for S† \ S′† is x′, so |S†| − |S′†| ⩽ |S† \ S′†| ⩽ 1. When
|S† \ S′†| = 0, we use δ′ ⩽ 2 and λ′ + δ′ ⩽ 2|D| to get

ρ(i,j)τ ⩽

(
1 +

2

2n − 2|D|

)(
1 +

q/2n

|S′†|+ 2n − q(|D|+ 1)/2n

)(
1− 1

2n − |D|

)2

⩽

(
1 +

2

2n − 2|D|

)(
1 +

2q

22n

)(
1− 2

2n − |D|
+

1

(2n − |D|)2

)
⩽

(
1 +

2|D|
(2n − 2|D|)(2n − |D|)

+
2

22n

)(
1 +

2q

22n

)
⩽

(
1 +

2q

(2n − 2q)(2n − q)
+

2

22n

)(
1 +

2q

22n

)
⩽ 1 +

5q

22n
.

When S† \ S′† = {x′} (which can only happen when (τi∗−j , τi∗) is an erratic
pair), we use the bound

ρ(i,j)τ ⩽

(
1 +

2

2n − 2q

)(
1 +

1 + q/2n

2n − q2/2n

)
⩽ 1 +

4

2n
.
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Case 4: τi∗−j = (x, y0, y1)
−
b , τi∗ = (x′, y′

0, y
′
1)

−
b

As before we can assume b = 0. With S and S′ as in Case 2 and S† and S′† as in
Case 3 we can use (8) repeatedly to have

Pid

[
τi∗−j | τ (i,j)head

]
=
|S†|+ 2n − q|D|/2n

(2n − |D|)2
, (42)

Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
=
|S′|+ 2n − q|D ∪ {x}|/2n

(2n − |D ∪ {x}|)2
, (43)

Pid

[
τi∗ | τ (i,j)head

]
=
|S|+ 2n − q|D|/2n

(2n − |D|)2
, (44)

Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
=
|S′†|+ 2n − q|D ∪ {x′}|/2n

(2n − |D ∪ {x′}|)2
. (45)

From (42)-(45) we get

ρ(i,j)τ =
|S†|+ 2n − q|D|/2n

|S′†|+ 2n − q(|D|+ 1)/2n
· |S

′|+ 2n − q(|D|+ 1)/2n

|S|+ 2n − q|D|/2n

=

(
1 +

|S†| − |S′†|+ q/2n

|S′†|+ 2n − q(|D|+ 1)/2n

)(
1 +

|S′| − |S| − q/2n

|S|+ 2n − q|D|/2n

)
.

When |S† \ S′†| = |S′ \ S| = 0, we get the bound

ρ(i,j)τ ⩽ 1 +
q/2n

|S′†|+ 2n − q(|D|+ 1)/2n
⩽ 1 +

2q

22n
.

Recalling from cases 2 and 3 that |S† \ S′†| > 0 or |S′ \ S| > 0 can only hold for
erratic pairs. For these we use the bounds |S† \ S′†| ⩽ 1 and |S′ \ S| ⩽ 2 to get

ρ(i,j)τ ⩽

(
1 +

1 + q/2n

|S′†|+ 2n − q(|D|+ 1)/2n

)(
1 +

2− q/2n

|S|+ 2n − q|D|/2n

)
⩽

(
1 +

2

2n

)(
1 +

2

2n

)
⩽ 1 +

5

2n
.

Case 5: τi∗−j = (x, y0, y1)
−
b , τi∗ = (x′, y′

0, y
′
1)

−
1−b

Again we assume b = 0. This case is very close to Case 4. The expressions

for Pid

[
τi∗−j | τ (i,j)head

]
and Pid

[
τi∗−j | τi∗ , τ (i,j)head

]
carry over unchanged from (42)

and (45) in Case 4. For the other two, using (8) twice yields

Pid

[
τi∗ | τi∗−j , τ

(i,j)
head

]
=
|SDC\(D∪{x})→(R0∪{y0})⊕y′

1
|+ 2n − q|D ∪ {x}|/2n

(2n − |D ∪ {x}|)2
, (46)

Pid

[
τi∗ | τ (i,j)head

]
=
|SDC\D→R0⊕y′

1
|+ 2n − q|D|/2n

(2n − |D|)2
. (47)
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Defining S⋆ := SDC\D→R0⊕y′
1
and S′⋆ := SDC\(D∪{x})→(R0∪{y0})⊕y′

1
and simplifying

as in Case 4 yields

ρ(i,j)τ =

(
1 +

|S†| − |S′†|+ q/2n

|S′†|+ 2n − q(|D|+ 1)/2n

)(
1 +

|S′⋆| − |S⋆| − q/2n

|S⋆|+ 2n − q|D|/2n

)
.

The rest of the analysis in Case 4 only uses observations on the difference |S′|−|S|,
which by symmetry also hold for the difference |S′⋆|−|S⋆|. Thus the bounds from
Case 4 also hold for Case 5.

Lemma 6. Let X1 and X2 be random variables with means µ1 and µ2 and with
variances σ2

1 and σ2
2. Then for µ = (µ1 + µ2)/2, the midpoint of the means, we

have

|P [X1 ⩽ µ]− P [X2 ⩽ µ]| ⩾ 1− 4(σ2
1 + σ2

2)

(µ1 − µ2)2
.

Proof. Assume without loss of generality that µ1 < µ2 so that µ2−µ = µ−µ1 =
(µ2 − µ1)/2. We will show that

P [X1 ⩽ µ] ⩾ 1− 4σ2
1

(µ1 − µ2)2
(48)

P [X2 ⩽ µ] ⩽
4σ2

2

(µ1 − µ2)2
, (49)

which leads to

|P [X1 ⩽ µ]− P [X2 ⩽ µ]| ⩾ 1− 4σ2
1

(µ1 − µ2)2
− 4σ2

2

(µ1 − µ2)2

= 1− 4(σ2
1 + σ2

2)

(µ1 − µ2)2
,

as desired.
We are left to prove (48) and (49), starting with (48) we derive

σ2
1 = E

[
(X1 − µ1)

2
]
=

∑
x

P [X1 = x] · (x− µ1)
2

⩾
∑
x>µ

P [X1 = x] · ((x− µ) + (µ− µ1))
2.

As both x− µ > 0 and µ− µ1 = (µ2 − µ1)/2 > 0 we get

σ2
1 ⩾

∑
x>µ

P [X1 = x] · (µ2 − µ1)
2

4
= P [X1 > µ] · (µ1 − µ2)

2

4
,

resulting in

P [X1 ⩽ µ] = 1− P [X1 > µ] ⩾
4σ2

1

(µ1 − µ2)2
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as desired. Similarly, for (49) we get that

σ2
2 ⩾

∑
x⩽µ

P [X2 = x] · ((µ2 − µ) + (µ− x))2 ⩾ P [X2 ⩽ µ] · (µ2 − µ1)
2

4
,

resulting in

P [X2 ⩽ µ] ⩽
4σ2

2

4(µ1 − µ2)2

as desired, finishing the proof.

Lemma 7. Using the notation in Section 6.3, we have

δj ⩾
q3

23n+2
+O

(
q4

24n

)
.

Proof. The values Vj and Wj depend on the output of the random oracle zj .
Although its input xj is fresh from the perspective of the distinguisher, it is
not necessarily uniformly distributed. It is the same problem as described in
Section 3.2: the inverse simulator might have queried the random oracle for the
same xj but rejected it. Because of this, we separate between a fresh, hence
uniform, random oracle query and a previously queried input for which we do
not make any assumptions:

pj = E
[
q −Wj

2n − Vj
| xj new

]
P [xj new] + E

[
q −Wj

2n − Vj
| xj old

]
P [xj old]

= Enew
j

[
q −Wj

2n − Vj

]
P [xj new] + Eold

j

[
q −Wj

2n − Vj

]
P [xj old] ,

where we define Enew
j [·] = E [ · | xj new] as a shorthand notation and similar for

‘old’. Let

δnewj = Enew
j

[
q −WI,j

2n − VI,j
− q −W∅,j

2n − V∅,j

]
,

δoldj = Eold
j

[
q −WI,j

2n − VI,j
− q −W∅,j

2n − V∅,j

]
,

then

δj = δnewj · P [xj new] + δoldj · P [xj old] .

First we compute simple bounds for P [xj new] and P [xj old]. Assume that the
inverse simulator tries an arbitrary ℓ times to get a value, then the expected
number of additional rejected values for a single inverse query is at most

ℓ−1∑
i=1

( q

2n

)i

⩽
∞∑
i=1

( q

2n

)i

=
q

2n
1

1− q/2n
=

q

2n − q
.
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As there are q inverse queries, the total expected number of values is at most

q2

2n − q
.

Therefore, the probability that a fresh query after the inverse queries was pre-
viously rejected is at most

P [xj old] ⩽
q2

(2n − q)2
⩽

2q2

22n
,

as q ⩽ 2n−2 and there are 2n − q possibilities left to choose from. This also
implies that

P [xj new] ⩾ 1− 2q2

22n
⩾

1

2
.

From this we also get the following upper and lower bound for |I|:

E [|I|] =
∑
i

P
[
⌊zi⌋n−k = 0n−k

]
=

∑
i

P
[
⌊zi⌋n−k = 0n−k | xi new

]
· P [xi new]

+
∑
i

P
[
⌊zi⌋n−k = 0n−k | xi old

]
· P [xi old]

⩽
∑
i

q

2n
· 1 +

∑
i

1 · 2q
2

22n
⩽

2q2

2n
,

E [|I|] =
∑
i

P
[
⌊zi⌋n−k = 0n−k

]
⩾

∑
i

Pnew

[
⌊zi⌋n−k = 0n−k

]
· P [xi new]

⩾
∑
i

q

2n
· 1
2
=

q2

2n+1
,

using that q ⩽ 2n−1. We will now focus on computing upper bounds on δnewj

and δoldj . From Lemma 11 of the Supplementary Material we get that

δnewj ⩾
q3

23n+1
+O

(
q4

24n

)
.

Now we look at δoldj where the simulator already queried xj to the random oracle,
which means that we cannot assume that zj is uniformly distributed. While only
a few values are rejected, it is sufficient for us to not assume any structure for
it. We consider

δoldj = Eold
j

[
q −WI,j

2n − VI,j
− q −W∅,j

2n − V∅,j

]
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and we know in general that WI,j ⩽ W∅,j + |I| and VI,j ⩾ V∅,j , hence

δoldj ⩾ Eold
j

[
q −W∅,j − |I|

2n − V∅,j
− q −W∅,j

2n − V∅,j

]
= Eold

j

[
−|I|

2n − V∅,j

]
⩾ Eold

j

[
−2|I|
2n

]
⩾
−4q2

22n
,

using that V∅,j ⩽ 2(q + (j − 1)) ⩽ 4q and q ⩽ 2n−3.
Putting this together we get

δj = δnewj · P [xj new] + δoldj · P [xj old]

⩾

(
q3

23n+1
+O

(
q4

24n

))
· 1
2
− 4q2

22n
· 2q

2

22n
=

q3

23n+2
+O

(
q4

24n

)
.

Lemma 8. Using the notation in Section 6.3 and Lemma 7, we have the fol-
lowing expectations of V∅,j and VI,j:

Enew
j [V∅,j ] = 2(q + (j − 1))− (q + (j − 1))2

2n
,

Enew
j [VI,j ] = 2(q + |I|+ (j − 1))− (q + |I|+ (j − 1))2

2n
.

For W∅,j and WI,j we have:

Enew
j [W∅,j ] =

(
q(2q + (j − 1))

2n
+ ptotal∅,j−1

)
−

(
q2

2n
+ ptotal∅,j−1

)
q + (j − 1)

2n
,

Enew
j [WI,j ] =

(
q(2q + |I|+ (j − 1))

2n
+ ptotalI,j−1

)
−

(
q2

2n
+ ptotalI,j−1

)
q + |I|+ (j − 1)

2n
,

where

ptotal∅,j−1 =
∑

j′⩽j−1

p∅,j′ , ptotalI,j−1 =
∑

j′⩽j−1

pI,j′ .

Proof. As we assume that we have an input that has not been queried (implicitly
by the simulator) to the random oracle, we can assume that zj is uniformly drawn
from {0, 1}n. Let r denote the number of previous queries (the sizes of R0 and
R1 in the simulator). As zj is uniform, the expected value of V is 2r − r2/2n.
The 2r comes from the fact that all values in the ranges are excluded, and the
−r2/2n corrects double counting.

The expected value of Wj depends on the kind of previous queries. For per-
mutation 0 a possibility is excluded when ⌊y⌋n−k = 0n−k for the particular y,
while for permutation 1 this happens when ⌊y′⊕zj⌋n−k = 0n−k for the particular
y′. As zj is uniformly sampled, the probability for permutation 1 is always q/2n

for a single query. This results in the following contributions for the different
query types.
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Inverse query S−1
1 (0n−k ∥ y)

– Permutation 0: the simulator implicitly sets the value according to the ran-
dom oracle. While there can be some biases in the distribution of this set,
the probability for a single element is still q/2n as no single value is more
likely than any other, giving an expected number of q2/2n;

– Permutation 1: as the probability for a single query is always q/2n, we get
an expectation of q2/2n for q queries.

Queries in I

– Permutation 0: as for i ∈ I we know that ⌊zi⌋n−k = 0n−k we cannot have
that ⌊yi⌋n−k = 0n−k hence this value is always 0. This is the core of the
attack;

– Permutation 1: for |I| queries we get an expectation of |I|q/2n.

Earlier forward queries

– Permutation 0: the probability that a specific j′ < j satisfies ⌊yj′⌋n−k =
0n−k is pj′ (which is roughly q/2n), giving an expected number of ptotalj−1 =∑

j′⩽j−1 pj′ ;
– Permutation 1: for j − 1 queries we get an expectation of (j − 1)q/2n.

Let W∅,j and V∅,j denote these values for when the queries I are skipped and
let WI,j and VI,j denote these values for when the queries I are included. We
conclude that

Enew
j [V∅,j ] = 2(q + (j − 1))− (q + (j − 1))2

2n
,

Enew
j [VI,j ] = 2(q + |I|+ (j − 1))− (q + |I|+ (j − 1))2

2n
,

as there are q+ (j − 1) queries made in the first case and q+ |I|+ (j − 1) in the
second case.

For W we have to be a bit more careful about correcting for the double
counting as we have to split r into r0 and r1 for permutation 0 and permutation
1 (which can be different), resulting in a correction of −r0r1/q. This results in

Enew
j [W∅,j ] =

(
q(2q + (j − 1))

2n
+ ptotal∅,j−1

)
−

(
q2

2n
+ ptotal∅,j−1

)
q + (j − 1)

2n
,

Enew
j [WI,j ] =

(
q(2q + |I|+ (j − 1))

2n
+ ptotalI,j−1

)
−

(
q2

2n
+ ptotalI,j−1

)
q + |I|+ (j − 1)

2n
,

as the expected exclusions from permutation 0 is q2/2n+ptotalj−1 in both cases (with
the last term specified per case) and the expected exclusions from permutation
1 is q/2n multiplied by the total number of queries made, already established
at q + (j − 1) or q + |I| + (j − 1). Note that exclusions from permutation 1 is
independent of the value given by permutation 0, making the correction term
for double counting work.
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Lemma 9. Using the notation in Section 6.3, the following basic bounds on p∅,j

and pI,j hold for all j:

p∅,j , pI,j =
q

2n
+O

(
q3

23n

)
.

Proof. We use strong induction on j. We focus on pI,j as the case of p∅,j analo-
gous with |I| removed. As big O notation does not work well with induction, we
have to provide an explicit error term. For this, we first look at Lemma 8, from
which we can derive that

qEnew
j [VI,j ] = 2q(q + |I|+ (j − 1)) +O

(
q3

2n

)
,

2nEnew
j [WI,j ] = q(2q + |I|+ (j − 1)) + 2nptotalI,j−1 +O

(
q3

2n

)
,

hence, using that E [|I|] ∈ O
(
q2/2n

)
,

qEnew
j [VI,j ]− 2nEnew

j [WI,j ] = (j − 1)q − 2nptotalI,j−1 + g(q, n), (50)

for some g with |g(q, n)| ⩽ C1q
3/2n. We will show that

pI,j =
q

2n
+ f(q, n)

for some f with |f(q, n)| ⩽ Cq3/23n for some to be determined constant C. From
the induction hypothesis we immediately derive that

ptotalI,j−1 =
∑

j′⩽j−1

pI,j′ =
∑

j′⩽j−1

( q

2n
+ f(q, n)

)
=

(j − 1)q

2n
+ (j − 1)f(q, n).

Now we derive

Enew
j

[
q −WI,j

2n − VI,j

]
=

q

2n
+ Enew

j

[
q −WI,j

2n − VI,j
− q

2n

]
=

q

2n
+ Enew

j

[
q2n − 2nWI,j − q2n + qVI,j

2n(2n − VI,j)

]
=

q

2n
+

h(q, n)

22n
(
qEnew

j [VI,j ]− 2nEnew
j [WI,j ]

)
,

where |h(q, n)| ⩽ 4, using that VI,j ⩽ 2(q + |I| + (j − 1)) ⩽ 6q and q ⩽ 2n−3.
Using (50) we continue with

Enew
j

[
q −WI,j

2n − VI,j

]
=

q

2n
+

h(q, n)

22n
(
(j − 1)q − 2nptotalI,j−1 + g(q, n)

)
=

q

2n
+

h(q, n)

22n
(g(q, n)− (j − 1)f(q, n))
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=
q

2n
+ f ′(q, n),

where for f ′(q, n) = h(q, n)(g(q, n)− (j − 1)f(q, n))/22n we have that

|f ′(q, n)| ⩽ |h(q, n)|
22n

(|g(q, n)|+ (j − 1)|f(q, n)|)

⩽
4

22n

(
C1q

3

2n
+

qCq3

23n

)
⩽

4C1q
3

23n
+

4Cq3

24n+3

=

(
4C1 +

4C

2n+3

)
q3

23n
,

using that q ⩽ 2n−3. We know that

pI,j = Enew
j

[
q −WI,j

2n − VI,j

]
P [xj new] + Eold

j

[
q −WI,j

2n − VI,j

]
P [xj old]

=
q

2n
P [xj new] + Eold

j

[
q −WI,j

2n − VI,j

]
P [xj old] + f ′′(q, n),

with f ′′(q, n) = P [xj new] f ′(q, n), so |f ′′(q, n)| ⩽ |f ′(q, n)|. We derive the fol-
lowing two bounds on pI,j to get the desired result

pI,j ⩽
q

2n
+ Eold

j

[
q −WI,j

2n − VI,j

]
2q2

22n
+ f ′′(q, n)

⩽
q

2n
+ Eold

j

[
1

2n − VI,j

]
2q3

22n
+ f ′′(q, n) ⩽

q

2n
+

8q3

23n
+ f ′′(q, n),

pI,j ⩾
q

2n

(
1− 2q2

22n

)
+ f ′′(q, n) =

q

2n
− 2q3

23n
+ f ′′(q, n),

again using that VI,j ⩽ 2(q + |I| + (j − 1)) ⩽ 6q and q ⩽ 2n−3. We can write
this as

pI,j =
q

2n
+ e(q, n),

where we have to show that |e(q, n)| ⩽ Cq3/23n. In both cases we get that

|e(q, n)| ⩽ 8q3

23n
+ |f ′(q, n)| ⩽

(
8 + 4C1 +

4C

2n+3

)
q3

23n
⩽

(
8 + 4C1 +

C

2

)
q3

23n
.

Let C = 16 + 8C1, then

|e(q, n)| ⩽
(
C

2
+

C

2

)
q3

23n
=

Cq3

23n
,

as desired.

Lemma 10. For any arbitrary numbers a, a′, b, b′ we have

ab− a′b′ =
(a+ a′)(b− b′) + (a− a′)(b+ b′)

2
.
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Proof. By writing out the right hand side we simply get

(a+ a′)(b− b′) + (a− a′)(b+ b′)

2

=
(ab− ab′ + a′b− a′b′) + (ab+ ab′ − a′b− a′b′)

2

=
2ab− 2a′b′

2
= ab− a′b′,

which is the left hand side.

Lemma 11. Using the notation in Lemma 7, we have

δnewj ⩾
q3

23n+1
+O

(
q4

24n

)
.

Proof. From Lemma 8 we know that

Enew
j [V∅,j ] = 2(q + (j − 1))− (q + (j − 1))2

2n
,

Enew
j [VI,j ] = 2(q + |I|+ (j − 1))− (q + |I|+ (j − 1))2

2n
,

which means that

Enew
j [VI,j − V∅,j ] = 2E [|I|] +O

(
q3

22n

)
.

Additionally, we know that

Enew
j [W∅,j ] =

(
q(2q + (j − 1))

2n
+ ptotal∅,j−1

)
−

(
q2

2n
+ ptotal∅,j−1

)
q + (j − 1)

2n
,

Enew
j [WI,j ] =

(
q(2q + |I|+ (j − 1))

2n
+ ptotalI,j−1

)
−

(
q2

2n
+ ptotalI,j−1

)
q + |I|+ (j − 1)

2n
.

Combining this with Lemma 9, which states that

ptotal∅,j−1 =
∑

j′⩽j−1

p∅,j′ =
(j − 1)q

2n
+O

(
q4

23n

)
,

ptotalI,j−1 =
∑

j′⩽j−1

pI,j′ =
(j − 1)q

2n
+O

(
q4

23n

)
,

we can simplify to

Enew
j [W∅,j ] =

q(2q + 2(j − 1))

2n
− q(q + (j − 1))2

22n
+O

(
q4

23n

)
,

Enew
j [WI,j ] =

q(2q + |I|+ 2(j − 1))

2n
− q(q + (j − 1))(q + |I|+ (j − 1))

22n
+O

(
q4

23n

)
,
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concluding that

Enew
j [WI,j −W∅,j ] =

q

2n
E [|I|] +O

(
q4

23n

)
.

For the difference in the probabilities for a single query j we get

δnewj = Enew
j

[
q −WI,j

2n − VI,j
− q −W∅,j

2n − V∅,j

]
= Enew

j

[
(q −WI,j)(2

n − V∅,j)− (q −W∅,j)(2
n − VI,j)

(2n − VI,j)(2n − V∅,j)

]
⩾

1

22n
Enew
j [q2n − qV∅,j − 2nWI,j +WI,jV∅,j − q2n + qVI,j + 2nW∅,j −W∅,jVI,j ]

=
1

22n
Enew
j [q(VI,j − V∅,j)− 2n(WI,j −W∅,j) +WI,jV∅,j −W∅,jVI,j ]

=
1

22n
(
qEnew

j [VI,j − V∅,j ]− 2nEnew
j [WI,j −W∅,j ] + Enew

j [WI,jV∅,j −W∅,jVI,j ]
)
.

Using the known expectations of the differences we continue with

δnewj ⩾
1

22n

(
2qE [|I|]− qE [|I|] + Enew

j [WI,jV∅,j −W∅,jVI,j ] +O
(

q4

22n

))
=

q

22n
E [|I|] + 1

22n
Enew
j [WI,jV∅,j −W∅,jVI,j ] +O

(
q4

24n

)
.

For WI,jV∅,j −W∅,jVI,j we use Lemma 10, which says that

Enew
j [WI,jV∅,j −W∅,jVI,j ] =

1

2
Enew
j [(WI,j +W∅,j)(V∅,j − VI,j)]

+
1

2
Enew
j [(WI,j −W∅,j)(V∅,j + VI,j)] .

Now we use that VI,j − V∅,j ⩽ 2|I| and V∅,j , VI,j ⩽ 6q = O (q) (unconditional,
not only in the expectation). This leads to

Enew
j [WI,jV∅,j −W∅,jVI,j | |I|] = 2|I|Enew

j [W∅,j +WI,j ] +O (q)Enew
j [WI,j −W∅,j ]

= 2|I|O
(
q2

2n

)
+O

(
q4

22n

)
,

which combined with the law of total expectation gives

Enew
j [WI,jV∅,j −W∅,jVI,j ] = 2E [|I|]O

(
q2

2n

)
+O

(
q4

22n

)
= O

(
q4

22n

)
,

meaning that this term simply falls into the big O term, so

δnewj ⩾
|I|q
22n

+O
(

q4

24n

)
⩾

q2

23n+1
+O

(
q4

24n

)
.
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