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Abstract

Threshold cryptography is typically based on the idea of secret-sharing a private-key s ∈
F “in the exponent” of some cryptographic group G, or more generally, encoding s in some
linearly homomorphic domain. In each invocation of the threshold system (e.g., for signing or
decrypting) an “encoding” of the secret is being recovered and so the complexity, measured
as the number of group multiplications over G, is equal to the number of F-additions that are
needed to reconstruct the secret. Motivated by this scenario, we initiate the study of n-party
secret-sharing schemes whose reconstruction algorithm makes a minimal number of additions.
The complexity of existing schemes either scales linearly with n log |F | (e.g., Shamir, CACM’79)
or, at least, quadratically with n independently of the size of the domain F (e.g., Cramer-Xing,
EUROCRYPT ’20). This leaves open the existence of a secret sharing whose recovery algorithm
can be computed by performing only O(n) additions.

We resolve the question in the affirmative and present such a near-threshold secret sharing
scheme that provides privacy against unauthorized sets of density at most τp, and correctness
for authorized sets of density at least τc, for any given arbitrarily close constants τp < τc. Re-
construction can be computed by making at most O(n) additions and, in addition, (1) the share
size is constant, (2) the sharing procedure also makes only O(n) additions, and (3) the scheme
is a blackbox secret-sharing scheme, i.e., the sharing and reconstruction algorithms work uni-
versally for all finite abelian groups F . Prior to our work, no such scheme was known even
without features (1)–(3) and even for the ramp setting where τp and τc are far apart. As a by-
product, we derive the first blackbox near-threshold secret-sharing scheme with linear-time
sharing. We also present several concrete instantiations of our approach that seem practically
efficient (e.g., for threshold discrete-log-based signatures).

Our constructions are combinatorial in nature. We combine graph-based erasure codes that
support “peeling-based” decoding with a new randomness extraction method that is based on
inner-product with a small-integer vector. We also introduce a general concatenation-like trans-
form for secret-sharing schemes that allows us to arbitrarily shrink the privacy-correctness gap
with a minor overhead. Our techniques enrich the secret-sharing toolbox and, in the context of
blackbox secret sharing, provide a new alternative to existing number-theoretic approaches.
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1 Introduction

1.1 Motivation

Threshold signatures and threshold cryptosystems [24, 23] typically rely on linear secret sharing
schemes [44, 9] “over the exponent” of some abelian group G. Specifically, each server i holds a
share si of the secret key s, and, loosely speaking, the signing process (or decryption process in
threshold encryption) has the following form: The client broadcasts to the servers a public value
M (e.g., the hash of the message on which we want to sign) and each server i replies with Msi . The
goal of the client is to compute the signature Ms. If the client gets enough responses, say at least
τcn out of the n servers, she can compute the signature (or decrypt the ciphertext) by computing a
linear combination of the shares “in the exponent”, i.e., ∏Mαisi , where the coefficients αi depend
on the set T of servers that are available, and satisfy ∑αisi = s. The client computes Mαisi by raising
each Msi to the power of αi. By using repeated squaring, this requires between log |αi| and 2log |αi|
group multiplications, and so the overall complexity for |T |= n is about n log |αi|multiplications.1

The cost of computing ∏Mαisi can be quite large when there are many servers and when the
group is large. For example, if one uses Shamir’s secret sharing [44] the cost is Ω(n log p) multipli-
cations where p is the order of group G, even without accounting for the cost of computing the
Lagrange coefficients. Alternatively, by employing a blackbox secret sharing (BBSS) [24, 19] that
works “universally” over any ring (or even abelian group), the cost can be made independent of p.
However, the best existing schemes [21] use relatively large coefficients of bit-length Ω(n logn) and
so the recovery in the exponent takes at least Ω(n2 logn) multiplications. Furthermore, this holds
even for the ramp setting where the correctness τc threshold of the scheme is bounded away from
the privacy threshold τp. (See Section 1.5 for more details about the cost of these two approaches
and of other related works.)

Our goal in this paper is to design secret-sharing schemes in which the overall complexity
of the recovery is linear in the number of parties. More precisely, we would like to minimize the
number of group multiplications that are performed during reconstructions. One should note that
the question can (and will) be studied purely in terms of linear secret sharing schemes regardless
of the encryption/signature system that is being used. Keeping in mind that every addition in Zp

translates into a multiplication over the group G, we are interested in the following secret-sharing
task:

Design a secret sharing scheme over Zp that supports secret-recovery with a small
number of additions. Sepcifically, is it possible to achieve an asymptotic upper-bound
of O(n) additions?

1.2 Our Results

We initiate the study of Additive-Only Secret-Sharing Schemes (AOS) and settle the above ques-
tion in the affirmative for near-threshold secret sharing schemes. Such schemes provide privacy
against unauthorized sets of density at most τp, and correctness for authorized sets of density at
least τc, given some arbitrarily-close constants τp < τc. We prove the following main theorem.

1The overhead of computing ∏Mαisi can be reduced by computing a multi-exponentiation, namely computing the
final result directly rather than computing each Mαisi separately and multiplying the results. This optimization, e.g.
using Pippenger’s algorithm [42], improves performance by a factor of O(logn), but when logn� |αi| (which is the
typical case in the threshold setting) this optimization has a limited effect compared to our improvements.
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Theorem 1.1 (main theorem). For every constants 0 < τp < τc < 1 there exists an ensemble of (τp,τc)
near-threshold secret sharing schemes whose recovery algorithm makes only O(n) additions. Moreover, (1)
the share size is constant, (2) the sharing also makes O(n) additions, and (3) the scheme is a BBSS scheme
and the sharing and reconstruction algorithms work universally for all finite abelian groups G.

A few comments are in place.

• (Ensembles) The term ensemble refers to the fact that the scheme is parameterized with
reusable public parameters that are sampled during the randomized set-up of the system. It
is guaranteed that, except with exponentially small failure probability over the choice of the
parameters, the resulting scheme satisfies correctness and privacy for all sets of density at
most τc and τp, respectively. That is, each choice of the public parameters defines a scheme,
and for almost all choices of the public parameters, τc-correctness and and τp-privacy hold.
The public parameters can be placed in a public file and can be re-used. We can also com-
pletely remove the public parameters without affecting the asymptotic complexity of the
scheme at the expense of introducing a negligible statistical error in the correctness and pri-
vacy. (See Remark 4.6.) In typical applications (e.g., threshold cryptography), this relaxation
has a minor effect (if any) since the secret sharing scheme will be employed inside a compu-
tational system that can be broken anyway with a small probability.

• (Main vs secondary features) We view the “near-threshold” property as well as items (1–3)
as “bonus” features. That is, even a weak theorem that, for every large prime p, promises
a ramp secret sharing scheme that supports some concrete privacy and correctness thresholds
(τp,τc) (e.g., (1/3,2/3)) and achieves recovery with O(n) additions and, say, quadratic shar-
ing complexity and super-constant share size, would be useful for many usage scenarios.
Furthermore, to the best of our knowledge, even the existence of such a weak scheme was
open prior to this work. We will later present such weak versions of the main theorem that
have very good concrete complexity and are likely to be useful in practice. (See Section 1.4.)

• (Some advantages of the secondary features) The BBSS property is especially useful for
RSA-based threshold cryptography (e.g., threshold RSA signatures such as in [45]). More-
over, as a by-product, Theorem 1.1 recovers some recent fundamental results about the com-
plexity of secret-sharing schemes, such as the existence of BBSS near-threshold schemes
with constant-size shares [21] and the existence of linear-time computable secret-sharing
schemes [25, 18]. (See Section 1.5). In fact, to the best of our knowledge, even if we ignore
the complexity of recovery, our results are the first to obtain linear-time computable BBSS
schemes for any ramp-secret sharing scheme.

• (Application to LWE-based schemes) Our result is also relevant in the context of LWE-based
constructions (e.g., the threshold FHE of [11]). In this case, instead of placing the shares
si ∈ Fp in the exponents, one releases “noisy” versions of the shares modulo a larger prime
q, and recovery is applied over “noisy” shares. Large interpolation coefficients expand the
noise magnitude by a large factor and lead to errors (e.g., bad threshold-decryption). To
avoid this, one can encode separately each bit of the share, however, this means that, in the
recovery, each party has to send log p noisy elements instead of a single one. Motivated by
this problem, Ball et al. [3] studied the problem of secret-sharing with 0-1 reconstruction
coefficients. (See Section 1.5.) We note that the binary-reconstruction requirement can be
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typically relaxed to the more liberal requirement of an addition-only reconstruction algorithm
with low depth since the bit-length of the noise grows linearly with the “depth” of the algo-
rithm. Indeed, all our constructions achieve an optimal depth of O(logn), which makes them
valuable also in the LWE setting.

1.3 Technical Overview

1.3.1 Additive-only erasure codes.

We begin by ignoring the privacy condition in an attempt to construct “non-private” additive-only
τc-correct schemes with a recovery algorithm that performs only O(n) operations. When privacy
is removed, this is essentially equivalent to erasure codes that correct in the presence of (1− τc)-
fraction of erasures. (For now, we think of the secret as a vector of Θ(n) field elements.) Our first
observation is that graph-theoretic codes, e.g., binary low-density parity-check (LDPC) codes [27]
and their derivatives (e.g., [38]) admit an additive-only decoding algorithm.

Let us focus, for concreteness, on the LDPC case. An LDPC code that maps k-long information
words to n-long codewords is described by a (n− k)× n binary parity-check matrix H which is
sparse: i.e., each of its rows/columns contains a constant number of ones. The set of codewords is
the right kernel of H, i.e., all vectors v∈ Fn

2 for which Hv = 0n−k. We think of H as a constant-degree
bipartite graph G (the Tanner graph of H) whose n left vertices correspond to the codeword and
its right n−k nodes correspond to constraints nodes. (In other words, each constraint corresponds
to a row of H.) The constraint associated with a right node asserts that the sum of all the left
nodes connected to it is 0. Given a partial codeword yT = (yi)i∈T we use the following peeling-
based decoding algorithm: (1) For i ∈ T assign yi to the ith left vertex; (2) While possible, pick
a right (constraint) vertex r that all its neighbors i1, . . . , id−1 have been assigned except for one
neighbor id and set the value of the idth left-node to 0− (i1+ . . .+ id−1). (The algorithm works with
any subset of d− 1 neighbors that have already been assigned values. To simplify the notation,
we denoted these neighbors as i1, . . . , id−1.) It turns out that a proper choice of the graph (or the
sparse matrix) guarantees that, if one starts with a sufficiently large set of un-erased symbols T ,
the decoding process never stops until all the codeword is recovered. In particular, such codes can
achieve a constant rate R = k/n and recover from a constant fraction of erasures. (In fact, one can
get an almost optimal trade-off and, for any small ε > 0, design a sparse LDPC that recovers the
codeword from (R+ ε) fraction of un-erased symbol, see e.g., [39, 38].)

Observe that the above procedure works over any field, or even abelian group, G. In particu-
lar, if the codeword is a vector that satisfies the equation Hv = 0n−k then the peeling-based decoder
works properly.2 Indeed, the success of the decoding is independent of the underlying domain
and depends only on the combinatorial properties of the graph. The decoder performs at most m
additions where m = O(n) is the number of edges in the constant-degree graph. Let us further
assume, for now, that the code also admits an encoder that maps k-long vectors to n-long code-
words by making O(n) blackbox additions. This assumption does not hold in general for LDPC
codes, but it holds for other related codes that support similar peeling-based decoding with O(n)
additions, e.g., [38]. (We will also explain later how to generically rely on an arbitrary LDPC code
that does not satisfy this additional requirement.)

2The condition Hv = 0n−k is well defined over any abelian group G by interpreting the multiplication of a group
element by an integer as iterated addition over G. See Section 2 for details.
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1.3.2 From additive-only codes to additive-only secret-sharing.

It is well-known that secret-sharing schemes are closely related to erasure codes [44, 16, 40]. The
literature contains two main approaches for deriving secret-sharing from codes. The first tradi-
tional approach of Massey [40] (which is also implicit in Shamir’s work [44]) is algebraic in nature
and relies on the dual-distance of the code. Roughly speaking, the idea is to sample a codeword
y = (s,y1, . . . ,yn) and deliver yi as the share of the ith party. An authorized coalition of density τc

can recover the secret, by using decoding under (1− τc)-fraction of erasures. It can be proved that
privacy holds for sets of density τp if the code has a dual distance of τpn+ 1. Unfortunately, the
codes that are employed in our work (e.g., LDPC codes) fail to achieve this property.

A second, more recent, approach of Cramer et al. [18] is information-theoretic in nature. The
idea is to encode a random information vector r into a codeword y = (y1, . . . ,yn) and deliver yi as
the share of the ith party. The main observation is that, for a privacy threshold τp that is strictly
smaller from the code’s rate R, a τp-fraction of the parties has a small amount of information
about the information vector. Specifically, given their view, the information vector is distributed
uniformly over a set of size exponential in (R− τp)n. Thus, one can use pairwise independent
hashing to extract from the information word r an element that is almost-uniform conditioned on
the view of the adversary, and use this element to pad the secret. (In fact, Ω(n) secrets can be
packed using this approach.) One can set the parameters so that the error is sufficiently small,
and apply a union-bound over all un-authorized sets. This leads to a collection of ramp (or even
near-threshold) secret sharing schemes. Furthermore, if the family of hash functions is linear, the
resulting scheme is linear, and if the code and hash function are computable in linear-time then so
is the secret sharing scheme.3 Unfortunately, while it possible to compute pairwise-independent
hash functions by making a linear number of arithmetic operations [32, 4, 25], it is impossible to
compute such functions by making only a linear number of additions, when the underlying field
is large. More precisely, a family H of pairwise-independent hash functions whose input domain
is ZΘ(n)

p cannot be computed by a family of additive circuits over Zp of size O(n). In fact, one can
prove that the size s must be at least quasilinear in n log p. To see this, observe that H must contain
at least pΘ(n) functions (see, e.g., [1]) but the number of different s-size additive circuits (over Zp)
is at most 22s logs. Indeed, an s-size additive circuit is fully specified by an s-size digraph that each
of its vertices has an in-degree of at most 2 and so it can be represented by 2s logs bits.4

Our approach. Our approach follows the approach of Cramer et al. [18] except that instead of
applying the hash function we apply to the information vector r a random linear combination
with small, constant-size integer coefficients. We replace the information-theoretic argument with
a linear-algebraic argument and show that a random linear combination with small-integer coeffi-
cients “extracts” well from any source that is uniformly distributed over a “nice” low-dimensional
subspace. Furthermore, this extraction works in a domain-independent way. In more detail, fix
the generating matrix M of the code and a subset T , and consider a random “small” integer column
vector a ∈ Nk. We show that a extracts well in the following scenario: Fix an arbitrary group G,

3In fact, the above description does not appear implicitly in [18] who present the construction only for the case of
linear codes and use linear-algebraic arguments. However, as sketched above, the same transform can be applied to
any, possibly non-linear, code by replacing the linear-algebraic argument with information-theoretic reasoning.

4The argument holds even if pairwise independence is replaced with weaker primitives such as universal hash
functions from ZΘ(n)

p to Zp by using the existing bounds on the size of such families [47].
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and consider a random vector r R←Gk, then a · r is almost surely uniform over G even conditioned
on the T -restricted codeword (Mr)T . Equivalently, in linear algebraic terms, for every prime p, the
vector a almost surely falls out of the row span of MT modulo p.

The actual statement depends on the magnitude of the integers in M and here the fact that the
code has O(n) additive complexity plays on our side. Roughly, the analysis, which uses elementary
linear algebra and probability, treats separately each small prime and each prime larger than some
p0 = O(n). This resembles the case analysis of BBSS of [21] with an important distinction: In [21]
the authors design different schemes for each case and glue them together via CRT, and in our
case the construction is uniform and the distinction between different primes happens only in
the analysis. Indeed, conceptually, our approach exploits the combinatorial structure induced
by graph-based codes and avoids the relatively complicated number theory that is employed by
previous BBSS schemes.

1.3.3 Deriving near-threshold schemes

The techniques introduced so far yield ramp secret sharing but they fall short of providing near-
threshold BBSS schemes. (The main loss is due to the analysis over small primes.) To obtain
the main theorem, we import the coding-theoretic paradigm of code concatenation to the domain
of secret sharing. Specifically, by using a simple combinatorial object known as sampler graph that
satisfies some expansion-like properties, we show that it is possible to generically combine a “fast”
ramp secret sharing scheme over n parties with a “slow” near-threshold scheme over a constant
number d of parties, and derive a new near-threshold scheme that is almost as efficient as the fast
scheme. The efficiency degrades by a constant factor that depends on the complexity of the slow
scheme applied to d parties.

In our case, the fast scheme is the ramp secret sharing with O(n) additive complexity for shar-
ing and recovering from the previous section. The slow scheme can be taken to be any BBSS
near-threshold or even threshold scheme, such as the scheme of Benaloh and Leichter [8] that is
based on monotone formulas for the threshold function. It should be emphasized that, in our set-
ting, the concatenation maneuver cannot be applied at the code level since the bottleneck is not the
code (i.e., the correctness properties) but the analysis of the BBSS that incurs a loss in the privacy
threshold.

Our amplification approach abstracts and generalizes a previous transformation of [10] (see
Remark 5.3).5 We note that this amplification approach is quite generic and can be applied to
any natural efficiency measure as well as to robust secret-sharing schemes. Concatenation tech-
niques (aka party virtualization) are commonly used in the context of secure computation and
distributed computing [14, 26, 30, 31, 33, 22] and also appear in protocols for verifiable secret
sharing [2]. However, apart from [10], this technique was hardly used in the secret-sharing con-
text. (Though it was implicitly used when concatenated codes were employed, e.g., by [18] who
employed the code of [29].) We believe that secret-sharing concatenation forms a useful tool in
the secret-sharing toolbox that is likely to lead to other applications and can probably simplify,
in retrospect, previous constructions. As our concrete setting demonstrates, in some scenarios,
secret-sharing concatenation cannot be replaced by concatenation in the code-level.

5We thank Yuval Ishai for bringing to our attention this reference that was missing from the conference version.

6



1.4 A Practical Instantiation

Theorem 1.1 mainly forms a feasibility result. However, our techniques give rise to potentially
practical ramp secret-sharing schemes. Let us focus for concreteness on the problem of construct-
ing threshold BLS-signatures [12] instantiated over, say, the commonly used BLS12-381 curve. In
this case the signature is computed as (H(m))s in a subgroup of the curve, whose order r is a
prime which is 255 bits long. The secret is s and secret sharing must be computed modulo r.
In this case, we can focus on the prime p = r of bit length 255 and design an LSS over the field
Fp = {0, . . . , p−1}. (The following example works even for much smaller primes.) Let us assume
that there are n ≥ 1000 parties. Assume that we have an R-rate erasure code of codeword length
n that can recover the information word given a fraction of τc = (R+ εc) un-erased symbols, by
making D · n additions for decoding. Then, our basic construction (encode + extract via short
inner-product) can be set to have a privacy threshold of τp = (R−εp), except with statistical failure
probability of 2−100, so that recovering a secret costs (D+(1.1/εp)n additions. (See Theorem 3.6.)
For εp = 0.1 this adds an overhead of 11 operations per party. Next, we should decide which code
to use. There are numerous options here and let us review some of them.

Using capacity-achieving LDPCs. We can use LDPC codes that almost achieve the capacity, i.e.,
τc = (R+ εc) where εc can be arbitrarily small (the computational overhead D grows with 1/εc).
Such an ensemble of LDPC codes appears in [39, 38, 41]. However, these codes typically achieve
a weak correctness property: For every authorized set T of density τc, a random code sampled
from the ensemble can decode a T -partial codeword, except with probability which is inverse
polynomial in the codeword length. Note that there are two issues here: (1) a non-negligible error
probability and (2) the existence of “bad sets” for which decoding fails given a description of the
code. The problem can be fully avoided by using other ensembles that achieve sub-optimal, yet
constant, decoding capability and rate.6 Regardless, we argue that even weakly-correct ensembles
of secret-sharing schemes may be useful in some scenarios. First, observe that privacy remains
“strong”, that is, our construction ensures that, except for probability 2−100, the scheme is private
for every coalition of density τc. Keeping this in mind, we can think of the correctness threshold as a
way to guarantee liveliness against random failures. In this case, the weak correctness guarantee
promises that most of the time reconstruction succeeds. Furthermore, we can share the secret
key independently also via some “slow” secret sharing scheme, e.g., Shamir. Whenever the fast
scheme fails (due to a failure of the decoding algorithm to handle some authorized coalition T ),
we can use the slow track to generate a signature via Shamir’s reconstruction.

Using standard LDPCs. Suppose that the privacy and correctness threshold can be far apart. A
typical example is the case where τp = 1/3 and τc = 2/3 which corresponds to the classical setting
in MPC and byzantine agreement in which the adversary can corrupt up to n/3 of the parties. In
this case, we can use a random (3,6) LDPC code whose binary parity-check matrix represents a
random graph with left-degree of 3 and right degree of 6. (In fact, it is better to sub-sample the
code from a sub-family of “expurgated codes”). Peeling-based decoding takes at most 3n additive
operations and can correct up to 0.429-fraction of errors for sufficiently large lengths n (and is
therefore well within the bounds τp = 1/3 and τc = 2/3). Concretely, for n = 350 (resp., 700 and
1225), decoding fails with probability smaller than 10−6 for erasure fractions of 0.3 (resp., 0.375 and

6In fact there are deterministic families of such codes and we employ them as part of the proof of Theorem 1.1.
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0.4), see [43, Figure 3.156]. The overall complexity of recovering a secret or computing a signature
is less than 10n additions (since εp = R− τp = 1/2−1/3 = 1/6).

Low complexity encoding. There are families of LDPC codes (and variants of them) that admit
fast and even linear-time encoding (see [43]). In fact, in our context, there is a simple way to
generically achieve this additional feature. Instead of generating a codeword in the Kernel of
an LDPC matrix H, sample a truly random vector v and publish its syndrome Hv = z as public
information. The computation is fast (since H is sparse) and we can think about (H,z) as the
specification of the code. The peeling-based algorithm works as before except that in each peeling
step when looking at the ith constraint the right-hand side value is set to be vi, which is whp
non-zero. We abstract this idea via the notion of public shares/header and think of z as public
information that is left in a public repository.

It is important to mention that this approach has a caveat. Whenever a secret is reconstructed,
the public share which potentially contains large field elements should be combined in the compu-
tation (instead of only using 0’s for right-hand side values). This means that a client who asks for a
signature has to raise the hashed document to the power of the typically-large entries of the public
share z. Still, this part of the computation can be pre-computed by the client non-interactively or
while waiting for the servers’ responses. Alternatively, we can partially delegate the work to the
servers by asking each of them to locally raise the hashed document to the power of (vi : i ∈ S)
for a constant-size set of indices that is determined pseudorandomly (e.g., by applying a hash
function on the identity of the server). In a concrete example where |v|= n/2, if we ask each party
to handle, say C = 3 random public entries, then 2n/3 of the parties are expected to cover all but
n/2 · e−4C/3 = n/2 · e−12/3 ≈ n/109 of the public elements, and so the client is left with a small over-
head. Of course, the whole problem can be avoided by using codes with linear additive encoding
complexity (e.g., the cascade LDPC construction of [39]).

The above discussion covers only a few of the possible instantiations and other choices would
likely lead to different efficiency trade-offs. We, therefore, present our constructions and proofs in
a modular way that generically supports both weakly-correct ensembles and public shares/headers.

1.5 Related Work

There is a rich literature that tries to improve various efficiency measures of secret sharing schemes
and most notably the share size (See Beimel’s survey [6]). While we are not aware of previous
works that studied the additive complexity of recovering secrets, let us mention some of the most
relevant previous works.

Computational complexity of Secret Sharing. Druk and Ishai [25] constructed near-threshold
linear secret sharing schemes (LSS) over constant-size fields in which one can share a secret by
computing O(n) arithmetic operations where multiplication is counted as a single operation. Ex-
tensions of this result to the case where the secret is a vector of length Ω(n), and to the case of exact
threshold secret sharing (over a sufficiently large field), were introduced by Cramer et al. [18] and
by Li [37]. All these constructions make use of scalar multiplication where the scalars are arbitrary
field elements, and so, when they are employed over a large field Fp, both sharing and recovery
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have a cost of O(n log p) additions.7 In an orthogonal direction, Bogdanov et al. [10] studied the
parallel complexity of the recovery algorithm, and showed that one can construct near-threshold
secret sharing schemes whose recovery algorithm can be realized in AC0.

BBSS schemes. BBSS schemes were first introduced by Desmedt and Frankel [24] and were fur-
ther developed by [19, 20, 21] (see also references therein). Near-threshold BBSS with constant-
size shares were recently constructed by [21]. Roughly speaking, they (1) glue together, via CRT,
schemes that work individually for each prime p < n and combine the result with (2) a scheme
that works simultaneously for all large primes. Consequently, part (1) of the construction induces
recovery coefficients whose order is of the order of nth primorial integer Pn (the product of the
first n primes). Since the bit-length of Pn is Ω(n logn) this means that recovering the secret under
scheme (1) takes Ω(n2 logn) additions. Part (2) has also similar complexity since it employs “Reed-
Solomon over the integers” where each entry is of magnitude Ω(n logn), leading to Ω(n2 logn)
addition during reconstruction.

Secret sharing with small recovery coefficients. Ball et al. [3] studied the related problem of
designing threshold LSS in which the secret can be recovered by a 0-1 linear combination. Note
that the existence of such a scheme with constant-size shares would also lead to recovery by O(n)
additions. Unfortunately, Ball et al. rule out this possibility by showing that if the recovery vector
is a 0-1 vector, the share size must be Ω(n logn) assuming that the field is of characteristic 2 or
(for general fields) assuming that the scheme satisfies a natural uniform distribution requirement.
Our results bypass this lower-bound by considering the more general recovery model of O(n)-size
additive circuit and by allowing a gap between the privacy and correctness thresholds.8

On the positive side, it is observed in [3] that a “bit-decomposition” of Shamir’s scheme gives
rise to a secret sharing scheme in which each share contains log |F| field elements for |F| > n. Re-
construction can be applied by taking a 0-1 linear combination of the shares, and so the number
of additions over F is Ω(n log |F|) for a linear threshold of Θ(n). From our perspective, this variant
has no advantage over “standard” Shamir as the total number of additions remains the same, i.e.,
Ω(n log |F|).

As already mentioned, for the motivating application in [3] (i.e., slow-noise-growth in LWE-
based construction), the binary-reconstruction requirement can be typically relaxed to the more
liberal requirement of an addition-only reconstruction algorithm with low (e.g., logn) depth. From
this point of view, our solutions are valuable also in the LWE setting.

Recovering a secret “in the exponent”, and the cost of computing the interpolation coefficients.
Although the issue we discuss here is general, we focus on the motivating example from the
introduction in which a secret key s ∈ Zp is being shared among n servers, and a client broadcasts
M ∈ G and wishes to compute the value Ms. The textbook solution, based on Shamir’s secret
sharing, is to ask each server respond with Msi , and, assuming that the client receives the shares of
a sufficiently large coalition T of size at least τcn recover the secret in the exponent. This process
consists of two steps:

7Also note that, unlike [18], in our setting of threshold cryptography the secret is naturally interpreted as a single
element in a large field or ring.

8We do not know whether both relaxations are needed.
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1. Computing over Zp the Lagrange coefficients (αi)i∈T such that s = ∑i αisi.

2. Computing ∏Mαisi where the product is over G.

The first stage is computed over Zp and can be done naively by computing O(n2) additions and
multiplications. It can also be implemented using FFT, as suggested in [13], and making only
O(n log2(n)) additions and multiplications (and as shown in [48], this technique provides better
performance, roughly from n ≈ 256). The second stage consists of O(n log p) multiplications over
the cryptographic group G which are typically more expensive than modular operations.

To capture the distinction between the above 2 steps, one could partition the cost of the secret-
sharing recovery algorithm Rec(T,(si)i∈T∪{n+1}) into two parts: (1) Given T the cost of generating
an Addition-Only circuit RecT for recovering the secret given T -shares; and (2) The number of ad-
ditions that RecT performs. Our definitional framework measures the total number of additions
that are performed in both steps, and, even under this strict measure of complexity, our construc-
tions achieve linear complexity. This is in contrast to Shamir, and all other existing schemes that
achieve super-linear complexity even if we count only the complexity of Step (2).

Let us emphasize that the gain is even more significant when working over groups of un-
known order. Specifically, the cost of computing Lagrange coefficients is extremely prohibitive
for the case of RSA-based threshold cryptography, such as threshold RSA signatures as suggested
in [45]. Indeed, since the order of the group Z∗N is unknown, the interpolation coefficients must be
computed over the integers. This leads to very large coefficients as they are the result of multiply-
ing O(n) integers. Subsequently, raising values to the power of these exponents modulo N can be
quite inefficient.

An alternative interactive solution. Deviating from the textbook solution, one can get a linear
complexity via the following alternative route. The client can ask who is willing to participate
in the recovery. Then, each available party broadcasts her name. Finally, once the coalition is
known the coefficients are determined and each party can locally raise her share to the power
of αi and send the result to the client that just needs to multiply everything. This solution has
two drawbacks: It adds interaction and it is not resilient to malicious parties or to simple failures.
In contrast, our solution is non-interactive and can be easily adapted to malicious settings by
assuming that the original shares are committed and that each “signature” share consists of a zero-
knowledge proof of consistency. In the discrete-log setting, this can be done relatively cheaply.

2 Preliminaries

By default, all logarithms are taken to base 2. We let h2(·) denote the binary entropy function, that
maps a real number α ∈ (0,1) to h2(α)=−α logα−(1−α) log(1−α) and is set to zero for α ∈{0,1}.
We use the following standard estimate for the binomial coefficients(

n
αn

)
≤ 2h2(α)n. (1)

For a matrix M we let Mi and Mi denote the ith row and ith column of M, respectively. All vectors
are column vectors by default. For two random variables X and Y , we say that X ≡ Y if they are
identically distributed.
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2.1 Secret Sharing: Definitions

We begin by recalling the notion of a partial access structures, that defines authorized and unautho-
rized sets while allowing a gap between them. A ramp access structures is a partial access structures
with two thresholds, where all sets smaller than the first threshold are unauthorized and all sets
larger than the second threshold are authorized.

Definition 2.1 (partial access structure and ramp access structure). A partial access structure over
n parties is a pair Γ = (Γ0,Γ1) where Γ0,Γ1 ⊆ 2[n] are non-empty collections of sets such that B 6⊆ A for
every A ∈ Γ0,B ∈ Γ1. Sets in Γ1 are called authorized, and sets in Γ0 are called unauthorized.

For 0 < τp < τc ≤ 1, the (τp,τc)-ramp access structure over n parties Γ = (Γ0,Γ1) is defined by letting
Γ0 be the collection of all subsets of size at most τpn and letting Γ1 be the collection of all subsets of size at
least τcn.

We move on and define the semantics of secret-sharing schemes. Our definition is equivalent
to standard definitions (e.g., [7, 17]) though our syntax is slightly different. Notably, the dealing
function, which distributes the shares, (s1, . . . ,sn), of the secret s, is also allowed to generate an
additional “public” share, sn+1 that is available to all parties.

Definition 2.2 (Secret-sharing schemes). A pair of deterministic algorithms, (Deal,Rec) is a secret-
sharing scheme that realizes a (possibly partial) access structure Γ = (Γ0,Γ1) with domain of secrets S,
domain of random strings R, and finite domains of shares S1, . . . ,Sn and Sn+1 (the latter domain is for public
shares) if the following hold:

• (Correctness): For any authorized set T ∈ Γ1 and every secret s ∈ S, the following T -correctness
property holds:

Pr[Rec(T,(si)i∈T∪{n+1}) 6= s] = 0,

where (s1, . . . ,sn,sn+1)
R← Deal(s). (The latter notation means that r is selected uniformly at random

from R, and (s1, . . . ,sn,sn+1) = Deal(s;r).)

• (Privacy): For any unauthorized set T ∈ Γ0 and every secret s ∈ S, the following T -privacy property
holds:

(si)i∈T∪{n+1} ≡ (s′i)i∈T∪{n+1}

where (s1, . . . ,sn,sn+1)
R← Deal(s) is a random s-sharing, and the vector (s′1, . . . ,s

′
n,s
′
n+1)

R← Deal(0)
is a random 0-sharing for some fixed canonical element 0 in S.

Note that privacy is a property of the sharing algorithm Deal.

Ensembles of secret sharing. Let Γ = {Γn}n∈N be a sequence of access structures where Γn is
an n-party (possibly partial) access structure. A triple of efficient algorithms (Setup,Deal,Rec) is
a δ -ensemble of Γ secret sharing schemes if for every n, except with probability 1− δ (n) over the
choice of pp R← Setup(1n), the n-party scheme (Dealpp,Recpp) realizes Γn. We highlight the following
properties of this definition.

• We refer to δ as the failure or error probability of the ensemble and take it by default to be
negligible in n.
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• We can use a relaxed version of ε-weakly-correct δ -private ensemble that requires strong privacy
and weak correctness. Here strong privacy means that

Pr
pp

R←Setup(1n)

[∀ unauthorized T,(Dealpp,Recpp) is T -private]≥ 1−δ (n),

and weak correctness means that for every n and every authorized set T

Pr
pp

R←Setup(1n)

[(Dealpp,Recpp) is T -correct]≥ 1− ε(n).

By default, we set δ to be negligible in n and set ε to some, possibly non-negligible function,
that converges to 0.

• One can define weakly-private ensembles analogously though we will not use this variant in
the paper. That is, in this paper even for a ε weakly-correct ensemble, except with probability
δ over the choice of the public parameters, privacy holds over all unauthorized sets.

All the following variants of secret sharing (e.g., additive-only secret-sharing) can be naturally
generalized to the setting of secret sharing collections. Whenever possible, we keep this extension
implicit.

Remark 2.3 (Boosting weakly-correct ensembles). It is possible to reduce the correctness error ε of any
weakly-correct ensemble to a negligible error via standard repetition (e.g., exponential in n) by indepen-
dently sampling k = O(n/ log(ε)) public parameters pp1, . . . ,ppk and sharing the secret k times indepen-
dently with respect to each public parameter ppi. As long as ε is polynomially-bounded away from 1, i.e.,
ε < 1−1/poly(n), the overhead k is polynomial and so the privacy error remains negligible. Recovery can
be achieved by applying the original recovery algorithm to each part until we find an instance for which re-
covery succeeds.9 This increases the sharing complexity and share size by a factor of k, however we can keep
the expected running time of recovery essentially unchanged by applying the original recovery algorithm on
the ith copy for a randomly chosen i ∈ [k] and re-try if recovery fails.

Remark 2.4 (deterministic constructions, public parameters and public shares). When the Setup
algorithm is deterministic, the ensemble is referred to simply as a secret-sharing scheme. We note that
one can always turn an ensemble to a deterministic construction (with statistical error) by pushing the
public parameters as part of the public share. However, there is a conceptual difference between the public
parameters and public share since the former can be sampled once and for all (and re-used over repeated
applications) whereas the latter should be freshly sampled together with secret.

2.2 Additive-Only Algorithms and BBSS

An additive algorithm A is an algorithm that receives two types of inputs, arithmetic data inputs
x = (x1, . . . ,xk) and some binary meta-data information T = (T1, . . . ,Tm). The algorithm A manip-
ulates the arithmetic data by making queries to an addition/subtraction oracle that takes two

9Here we assume that given a pp,T and the shares of a T -subset, one can efficiently check whether the reconstruction
succeeds or fail. This assumption always hold for linear schemes (since detecting a failure boils down to checking
whether a system of equation is solvable) which are the main focus of this paper. It can also be enforced for general
schemes with a relatively minor cost via standard authentication techniques.
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arithmetic elements and returns their sum/difference. The binary meta-information can be ma-
nipulated arbitrarily. The algorithm generates arithmetic outputs y = (y1, . . . ,y`). In principle, we
can allow also binary outputs though we will not need this extension in this paper. The addi-
tive complexity of A is the maximal number of additions and subtractions that it performs.10 For
simplicity, we will ignore the complexity of non-arithmetic operations. Indeed, in all our construc-
tions, the arithmetic complexity dominates the binary complexity. For any fixing T of the binary
inputs and any fixing of an Abelian group G, the algorithm AG

T (x) = AG(T,x) defines a mapping
from x ∈ Gk to y ∈ G`. This mapping can be always described by an `× k integer matrix M such
that, for every i ∈ [m], it holds that yi = ∑

k
j=1 Mi, jx j where for a positive integer k (resp., negative

integer) and group element g ∈ G we write k · g for k-iterated additions (resp., subtractions) of g
and when k = 0 we let k ·g be the neutral element of G which will be denoted by 0.

Additive-Only Secret sharing: Syntax. We say that an (ensemble of) secret-sharing schemes is
Additive-Only if both the distribution and recovery algorithms are additive-only algorithms. For
the recovery algorithm Rec the arithmetic inputs are the shares and the binary inputs are the
public parameters pp and the set of parties T that will be represented by an n-bit vector. For
the distribution algorithm Deal, the vector of random elements r = (r1, . . . ,rk) and the secret s
are treated as arithmetic inputs and the public-parameters pp are treated as binary inputs. As a
result, the distribution algorithm can be always represented by an integer distribution matrix M
whose rows are labeled by indices in [n] such that the rows that are labeled by i correspond to the
computation of the shares of the ith party. That is, for secret s and randomness r = (r1, . . . ,rk), the
share that the ith party gets is all the entries M j ·( s

r ) for which the row j is labeled by i. Throughout
the paper, we will always assume that each party gets a single group element as a share and so we
may assume that the ith share is computed by the ith row of M. We assume that the public share
consists of ` group elements and is computed by the last ` rows of M so the distribution matrix is
always an (n+ `)× (1+ k) integer matrix.

Additive-Only Secret sharing: Semantics. We say that an additive-only secret-sharing scheme
(AOS) (Deal,Rec) realizes an access structure Γ over an Abelian group G if (DealG,RecG) realizes
Γ. We say that (Deal,Rec) is a black-box secret-sharing (BBSS) for Γ if (DealG,RecG) realizes Γ for
every Abelian group G. We say that an additive-only distribution algorithm Deal realizes Γ over G
if there exists an additive-only reconstruction algorithm Rec such that (Deal,Rec) realize Γ over G.
Similarly, we say that Deal is a BBSS for Γ if there exists an additive-only reconstruction algorithm
Rec such that (Deal,Rec) form a BBSS for Γ.

The following proposition follows from pioneering works about linear secret sharing and
black-box secret sharing [34, 5, 19] and relates the correctness and privacy properties of an AOS to
the properties of the distribution algorithm, and, more specifically, to the linear-algebraic proper-
ties of the distribution matrix M.

Proposition 2.5 (implicit in [34, 5, 19]). An additive distribution algorithm Deal with an (n+ `)× k
integer distribution matrix M realizes an access structure Γ over Fp for a prime p if and only if:

10One can always reduce the number of subtractions to 1 at the expense of doubling the number of addition by
maintaining for each intermediate arithmetic value v a pair of values a,b such that v = a− b and postpone the actual
subtraction to the end. See [46, proof of Thm 2.11] for a similar statement for the case of division/multiplication
operations.
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• (correctness) For every authorized set T ⊂ [n], the unit vector e1 = (10n−1) is spanned, modulo
p, by the rows of matrix MT that contain all the rows Mi, i ∈ [T ] and all the “public-share” rows
(Mn+1, . . . ,M`).

• (privacy) For every unauthorized set T ⊂ [n], the unit vector e1 = (10n−1) is not spanned, modulo
p, by the rows of matrix MT that contains all the rows Mi, i ∈ T and all the “public-share” rows
(Mn+1, . . . ,M`). Equivalently, there exists a sweeping (column) vector vT ∈ Nn such that MT vT = 0
(mod p) but 〈e1,vT 〉 6= 0 (mod p).

Moreover, Deal is a BBSS for Γ if the above holds for every prime p.

The first part follows from the works of Karchmer and Wigderson [34] and Beimel [5] about
the relation between linear secret sharing schemes over finite fields and span programs. The
“Moreover” part implicitly follows from the work of Cramer and Fehr [19], and specifically, from
Lemma 1 that asserts that an integer system over the integers is solvable if and only if it is solvable
over any prime. (Indeed both the privacy and correctness conditions boils down to the solvability
of an integer linear system).

2.3 Additive-Only Erasure Codes

A pair of deterministic encoder and decoder algorithms (Enc,Dec) forms an (n,k) erasure code
over alphabet Σ with correctness capability of η erasures if Enc maps an information word in Σk

to a codeword in Σn, and for every (1−η)n-subset T , and every information word x ∈ Σk and T -
partial codeword yT = (Enc(x)i)i∈T the decoder Dec(T,yT ) returns x. We consider a non-standard
notion of codes with header in which Enc(x) also outputs a public header z ∈ Σm that is always fully
available to the decoder and is not subject to erasures. (Jumping ahead public headers correspond
to public shares.) If one stores the entire information word in the public header then erasures are
trivial to correct. To avoid such trivialities, we require that the length of the information word,
k, will be larger than the length m of the header. Furthermore, letting µ := m/n be the header rate,
we define the rate R of the scheme to be k

n −µ = k−m
n and require a positive rate R. This definition

matches the standard definition of rate when there is no public header (i.e., m,µ = 0).
We say that (Enc,Dec) are additive-only erasure codes if the algorithms are additive-only al-

gorithms, i.e., the information word, codeword and public header are all treated as vectors of
arithmetic elements over a general abelian group G and the set T is treated as a binary input. We
require that correctness holds over any instantiation of an abelian group G.

Ensembles of erasure codes are defined in the natural way. A tuple C = (CG,Enc,Dec) is a
δ -ensemble of additive erasure codes that corrects up to η erasures with a rate of R and public-
information rate µ if, except with probability 1− δ over the choice of cp R← CG(1n), it holds that
(Enccp,Deccp) form an additive erasure-code with k =(R+µ)n long information word, n-long code-
words, and µn-long public header, that corrects up to η erasures. The ensemble is δ -weakly correct
if for every n and (1−η)n-subset T , except with probability 1−δ over cp R←CG(1n), it holds that for
every information word x ∈ Σk and codeword (y,z) = (Enc(x)) the decoder Dec(T,(yi)i∈T ,z) returns
x.
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3 The Basic Construction

In the basic construction, the vector of shares is sampled as a random information word r, and the
ith party receives the ith entry of the corresponding codeword. In addition, we sample a random
vector a of coefficients that is as long as the information word. The public information includes the
public part of the codeword (if it exists), the vector a, and the value z0 = s+∑i airi, where s is the
secret that is shared. If the information word r is reconstructed, then the secret s can be recovered
from z0. We also show below that an unauthorized set learns no information about the secret.

Construction 3.1 (from additive codes to AOS). Let C = (CG,Enc,Dec) be a (possibly weak) δ -
ensemble of additive erasure codes that corrects a fraction of 1− τc erasures with a rate of R and public-
information rate µ . For a parameter c ∈ N, define the AOS Sharing = (Setup,Deal,Rec) as follows:

1. Setup(1n): Sample a code parameters via cp R←CG(1n) and an integer vector a R←{0, . . . ,c−1}(R+µ)n,
output pp= (1n,cp,a).

2. Dealpp(s): Sample a random information codeword y ∈ Gn and a (possibly empty) public header
z1 ∈ Gµn by computing (y,z1) = Enccp(r) where r R← G(R+µ)n is a random information word. Set yi

to the share of the ith party, compute z0 = s+∑i airi, and set the public share z = (z0,z1).

3. Recpp(T,z,yT ): For a set T of size at most τcn, recover the information word r ∈Gn via the decoding-
under-erasure algorithm Deccp(z1,T,yT ), and output s = z0−∑i airi.

Example 3.2. Suppose that we wish to provide n shares, and use a code that has rate 2/3 and has no public
header. Then, using the notation of Section 2.3 we have that the length of the information word is k = 2n/3,
the header is of length m = 0, and the header rate is µ = 0. The construction chooses in the setup phase
a vector a of (R+ µ)n = 2n/3 coefficients (small integers in {0, . . . ,c−1}). In the deal phase, it chooses
a random information vector r of length (R+ µ)n = 2n/3, sets y = r and sets the public header z1 the be
empty. The recovery phase uses the code to recover r and output s = z0−∑

n
i=1 airi.

Next, consider a code with a public header that is obtained by taking the n/3×n parity check-matrix M
of the previous code, and encodes an n-long vector r by a codeword y = r and a public header z1 = Mr. Then,
the length of the information word is k = n, the header is of length m = n/3, the header rate is µ = 1/3, and
the rate R remains as before, i.e., R= k/n−µ = 2/3. In this case, the construction chooses in the setup phase
a vector a of (R+µ)n = n coefficients. In the deal phase, it chooses a random vector r of length (R+µ)n = n,
sets y = r and sets the public header z1 of length n/3 to be the result of multiplying the generating matrix of
the code by r. The recovery phase uses the code to recover r and output s = z0−∑

n
i=1 airi.

Analysis. The correctness of the scheme (over any group) follows trivially from the correctness
of the erasure code. Also, if the code ensemble is only weakly-correct then so is the resulting secret-
sharing ensemble. The additive complexity of sharing/recovering is exactly the complexity of
encoding/decoding plus the complexity of recovering the secret from z0, which is (R+µ)ndlog(c−
1)e+ (R+ µ)n ≤ ndlog(c− 1)e+ n. (The inequality holds since, by assumption, R+ µ ≤ 1.) The
parallel additive complexity is log logc+ logn+ log(R+ µ)+ 1 ≤ log logc+ logn+ 1. The next sub-
sections (Sections 3.1 and 3.2) will be devoted to the privacy analysis and will focus on the case
where the scheme is applied over Fp for a fixed prime.
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3.1 Privacy Lemmas

To analyze the privacy of the scheme, we restrict our attention to a fixed prime and make use of
the following simple claims.

Claim 3.3 (privacy from linear independence). Fix the code parameters cp, a prime p and a set T ⊂ [n].
Let G denote the generating matrix of the code Enccp and let GT denote the sub-matrix of G that is obtained
by keeping the rows that are indexed by the set T and the “public” part. Then, the secret-sharing scheme
from Construction 3.1 indexed by pp = (1n,cp,a) is T -private over Fp if and only if the vector a is not in
the row-span of GT over Fp.

Proof. Let G be the (n+ µn)× (Rn+ µn) generating matrix of the code Enccp whose last µn rows
correspond to the public header of the encoding. The distribution matrix M of the scheme is the

((1+ µ)n+1)× (1+(R+ µ)n) integer matrix M =

(
0(1+µ)n G

1 a

)
. Let MT denote the sub-matrix of

M that contains the rows that are indexed by T and the last µn+ 1 rows (that corresponds to the
public share). By Proposition 2.5, privacy for a set T over Fp is equivalent to the requirement that
MT does not span the vector e1 over Fp which happens, in our case, if and only if GT does not span
the vector a.

The following claim shows that a random small-integer vector is likely to fall out of the span
of a degenerate matrix.

Claim 3.4. Let M be an k× ` integer matrix with k < `, let p be a prime and c be a positive integer. Then
the probability that a randomly chosen vector a ∈ {0, . . . ,c−1}` is in the row-span of M computed modulo
p, is at most α`−k

c,p = 2−(log(1/αc,p))(`−k) where αc,p equals to 1/c if c≤ p and to dc/pe/c otherwise.

Note that αc,p < 1/c+1/p for every c and p.

Proof. Denote the row span (modulo p) of M by V . The matrix M has k′ ≤ k independent columns
Mi1 , . . . ,Mik′ over Fp. Let I = {i1, . . . , ik′} ⊂ [`] denote the set of positions of these columns. Then, for
every j /∈ I, we can write the jth column M j as MIα j for some coefficient (row) vector α j ∈ Fk′

p , and
therefore, every vector v∈V is fully determined by its values over the I-coordinates, i.e., v j = α j ·vI

for every index j /∈ I. Hence, we can write Pra[a ∈V ] as

∑
v∈V

Pr
a
[a = v] = ∑

v∈V

(
Pr
a
[aI = vI]∏

j/∈I
Pr[a j = α j · vI]

)

≤ ∑
v∈V

(
Pr
a
[aI = vI]∏

j/∈I
αc,p

)
≤ α

(`−|I|)
c,p ≤ 2−(log1/αc,p)(`−k),

where the first equality is due to the independence of the entries of a, and the second inequality
holds since, for each j and each b∈ {0, . . . , p−1} the probability that a j = b (mod p) is at most αc,p.
The claim follows.

By combining the above claims, we derive the following lemma.

16



Lemma 3.5 (privacy for a fixed prime). For every code parameter cp, parameter c ∈ N, and prime p
the following holds. For every set T ⊂ [n] of size t < Rn, the secret-sharing scheme from Construction 3.1
with parameters pp = (1n,cp,a) is T -private over Fp with probability of 2−(logα−1

c,p )(Rn−t) = (αc,p)
Rn−t over

the choice of a. Furthermore, for τp that satisfies h2(τp)< (R−τp) logα−1
c,p , the scheme is τp-private over Fp

except with exponentially small probability of 2n(h2(τp)−(R−τp) logα−1
c,p ) = 2−Ω(n) over the choice of a.

Proof. Fix the code parameters cp, a prime p and a set T ⊂ [n], and let G denote the generating
matrix of the code Enccp, and GT denote the sub-matrix of G that is obtained by keeping the rows
that are indexed by the set T and the “public” part (as in Claim 3.3).

The first part follows from Claims 3.4 and 3.3 by recalling that GT is a (t + µn)× (Rn+ µn)
matrix for (t + µn) < (Rn+ µn), and the “furthermore” part follows by a union-bound over all
τpn-size subsets of n and by using the standard inequality

( n
τpn

)
≤ 2nh2(τp).

3.2 Immediate Corollaries

Let us record two useful corollaries.

Theorem 3.6 (AOS with optimal privacy for fixed large primes). For every ε > 0, rate R > 0 and error
parameter β > 0, take c to be a constant of bit length at least (h2(τp)+β )/(R−τp). Then, Construction 3.1
instantiated with the constant c and an δ -ensemble (resp., weak δ -ensemble) of R-rate (1−τc)-erasure codes
yields an AOS-ensemble with the following properties:

• (Complexity) The additive complexity (resp., parallel additive complexity) of sharing/recovering is
exactly the complexity of encoding/decoding plus n(dlog(c−1)e+1) (resp., log logc+ logn+1).

• (Correctness) Except with probability δ over the choice of the code parameters cp and for every choice
of a, the scheme is τc-correct for every prime (resp., weakly τc-correct if the coding ensemble is weakly
correct).

• (Privacy) For every cp ∈ Setup(1n) and every prime p ≥ c, except with probability 2−βn over the
choice of a, the algorithm Deal(1n,cp,a) is (τp = R− ε)-private.

Proof. The choice of c guarantees that β < logc(R− τp)− h2(τp). The theorem now follows from
Lemma 3.5 by recalling that αc,p = 1/c when p≥ c.

Note that the privacy threshold is almost optimal: it can be arbitrarily close to R from below.
Indeed, if the underlying code is near-optimal, i.e., decoding works even when we have only
τc = (R+ ε)n non-erased symbols for an arbitrarily small constant ε (given to the code-generation
algorithm), we get a near-threshold AOS whose privacy-to-correctness gap, τc−τp, is 2ε . Further-
more, the concrete constants are relatively small! Assuming that the failure probability should
be at most 2−n (which makes sense if there are at least 100 parties), we can take β = 1 and use a
constant c of bit length at most 2(R− τp)

−1. If the number of parties is n ≥ 1000, then β can be
taken to be 0.1 and the complexity is at most 1.1(R− τp)

−1.
If we do not care about the optimality of the privacy threshold, we can derive a scheme that

works for every fixed prime (including small primes such as p = 2) with high probability.

Theorem 3.7 (AOS for small primes). For every rate R > 0 there exists small constants τp,β such that
Construction 3.1 instantiated with any constant c ≥ 2 and δ -ensemble (resp., weak δ -ensemble) of R-rate
(1− τc)-erasure codes yields an AOS-ensemble with the following properties:
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• Correctness and complexity as in Theorem 3.6.

• (Privacy) For every cp ∈ Setup(1n) and every prime p ≥ 2, except with probability 2−βn over the
choice of a, the algorithm Deal(1n,cp,a) is τp-private. Consequently, the ensemble is τp-private simul-
taneously for all primes smaller than, say, 2βn/2, except with probability 2−βn/2.

Proof. First, observe that for every prime p and constant c ≥ 2 it holds that αc,p < 5/6. Indeed, if
c = 2, it holds that α2,p = 1/p≤ 1/2 for every prime p≥ 2; and if c≥ 3, we have αc,p < 1/p+1/c≤
1/2+ 1/3 = 5/6 for every prime p ≥ 2. Next, take τp to be a sufficiently small constant for which
(R− τp) log(6/5)− h2(τp) is positive and take β < (R− τp) log(6/5)− h2(τp). This guarantees that
β < ((R−τp) logα−1

c,p −h2(τp)) and the main part of the theorem now follows from Lemma 3.5. The
“Consequently” part follows by applying a union bound over all primes of size at most 2βn/2.

4 Analyzing the Basic Construction over all Primes Simultaneously

The above theorems are not sufficiently strong to handle infinitely many primes simultaneously.
For this purpose, we will have to apply a more refined argument that exploits the fact that our
sharing algorithm makes a linear number of additions. Let us start with the following claim that
will replace Claim 3.4. In the following, we say that an integer vector v ∈ N` has an additive com-
plexity of e if the mapping that takes an integer vector x ∈N` to 〈v,x〉 can be computed by applying
at most e additions/subtractions.

Claim 4.1. Let M be an k× ` integer matrix where k < ` and assume that each row of M has an additive
complexity of e.11 Let b be an integer and c be a prime of size at least 2b. Then, except with failure probability
bk−`(2e+1)k over the choice of a ∈ {0, . . . ,c−1}`,

∃ integer vector v ∈ [±b]` s.t. Mv = 0k and 〈v,a〉 6= 0, (2)

where arithmetic is over the integers. Consequently, whenever (2) happens, the vector a is not in the row
span of M modulo p for every prime p > 2(c−1)b`.

Proof. Let N := b`−k/(2e+1)k and let V denote the set of integer vectors 0 6= v ∈ [±b]` for which the
equality Mv = 0k holds over the integers. We begin by showing that V is of size at least N−1. To see
this, consider the mapping ρ that takes v ∈ [1..b]` and sends it to Mv (computed over the integers).
Observe that the i-th entry of Mv is an integer in the range [−be, ..,be] and therefore the image of
ρ is of size at most (2be+1)k < bk(2e+1)k. Since the domain of ρ is of size b`, by the pigeonhole
principle, there exist a set of at least N = b`−k/(2e+ 1)k distinct input vectors v0, . . . ,vN−1 that are
all mapped to the same output. By the linearity of ρ , the N− 1 vectors {vi− v0|1≤ i≤ N−1} are
all non-zero vectors that are mapped by ρ to zero.

Let us further filter the set V ⊂ [1−b,b−1]` by choosing a maximal subset V ′⊂V of vectors that
are linearly independent over Fc. Denote the size of V ′ by N′. Observe that the mod-c projected
set of vectors {v mod c : v ∈V} contains N′ distinct non-zero vectors since V ⊂ [1− b,b− 1]` and
since the length of the interval, [1− b,b− 1], is smaller than 2b < c. Therefore, cN′ − 1 ≥ |V | and
N′ ≥ logc(|V |+1)≥ logc(N).

11The hypothesis can be relaxed so that e only upper-bounds the average additive complexity of the rows in M.
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To complete the main argument, it suffices to show that, except with probability c−N′ ≤ 1/N,
there exists a vector v ∈V ′ for which 〈v,a〉 6= 0 (mod c). To see this, consider the random variables

(〈v,a〉 (mod c))v∈V ′

induced by the choice of a∈{0, . . . ,c−1}n =F`
c. These random variables are mutually independent

(since the vectors in V ′ are linearly independent) and each of them is uniformly distributed over
Fc. Therefore, the probability that all of them simultaneously take the value zero is c−N′ ≤ 1/N as
promised.

Finally, the “consequently” part follows, by noting that the integer 〈v,a〉 is in the interval [±(c−
1)b`] and so 〈v,a〉 (mod p) 6= 0 for every prime p > 2(c− 1)b`. Since Mv = 0k (mod p), v certifies
that the vector a is not in the row-span of M over Fp.

In order to employ Claim 4.1, we will need a good upper-bound e on the complexity of each
row of the generating matrix of the underlying erasure code. Let us refer to such a code as e-
bounded. We note that every code whose encoding can be computed by a linear number of addi-
tions can be turned into an O(1)-bounded code.

Claim 4.2. There exists an efficient transformation that takes a constant α ∈ [0,1] and an additive erasure
code C = (CG,Enc,Dec) whose additive complexity is An and outputs an (A/α)-bounded additive erasure
code C ′ = (CG,Enc′,Dec′) whose parameters almost match the ones of C . Specifically, C ′ has an additive
complexity of An, public rate of at least µ−α , rate of R−α and it can correct up to η−α erasures where
µ,R and η are the public rate, rate and erasure correction capability of C . Furthermore, if C is a (possibly
weak) δ -ensemble then so is C ′.

Proof. Fix some cp ∈ CG(1n) and observe that the average complexity of a row in the generating
matrix of Enccp is at most An

(1+µ)n < A. Let us remove an α-fraction of the outputs whose complexity
is the largest and let Enc′cp denote the resulting code. By Markov’s inequality the resulting code
is (A/α)-bounded. Decoding can be performed by invoking Deccp while treating the removed
entries as additional erasures. The other properties of the code can be easily verified.

Theorem 4.3 (AOS for all large primes). For every constants R,µ > 0, e∈N, τp ∈ (0,R), error parameter
β > 0, and b∈N whose bit-length logb is at least (β +h2(τp)+(log(e)+2)(µ+τp))/(R−τp) the following
holds. Construction 3.1 instantiated with any prime c ≥ 2b and δ -ensemble (resp., weak δ -ensemble) e-
bounded (1− τc)-erasure codes with rate R and public rate µ yields an AOS-ensemble with the following
properties:

• Correctness and efficiency as in Theorem 3.6.

• (Privacy) For every cp ∈ Setup(1n), except with probability 2−βn over the choice of a, the algorithm
Deal(1n,cp,a) is simultaneously τp-private for all primes p larger than c2n (or even p≥ 2cb(µ +R)n).

Proof. Fix some prime c > 2b. Fix n and code parameters cp ∈ Setup(1n) and let G denote the
(n+ µn)× (Rn+ µn) generating matrix of the code Enccp whose last µn rows correspond to the
public header of the encoding. For a set T of size τp, let GT denote the sub-matrix of G that is
obtained by keeping the rows that are indexed by the set T and the “public” part (as in Claim 3.3).
By Claim 3.3, it suffices to show that, except with probability 2−βn, the event (2) happens for GT

for every set T of size τpn. Recall that GT has k = (µ + τp)n rows and ` = (R+ µ)n columns and
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each of its rows has an additive complexity of e. Hence, by Claim 4.1, the event (2) happens for
any fixed T , with probability at most bk−`(2e+1)k ≤ 2−ηn where

η ≥ (R− τp)(logb)− (log(e)+2)(µ + τp).

When the bit length of b is larger than (β + h2(τ)+ (log(e)+ 2)(µ + τp))/(R− τp), we get that η >
β +h2(τ), which, by a union bound over all T ’s, yields the result.

For example, for every fixing of constants R > 0, e ∈ N, we can take τp ∈ (0,R) to be arbitrarily
close to R (up to any small constant), and get an arbitrary exponential small error probability for
all primes larger than c2n by taking a sufficiently large constant c. Alternatively, when the code
has no public information (µ = 0), for every fixed odd prime c, there exist some (small) constants
τp ∈ (0,R),β > 0 for which the construction achieves τp-privacy except with exponentially small
probability of 2−βn simultaneously for all primes larger than c2n.

In any case, by combining the above theorem with Theorem 3.7 and Proposition 2.5, we derive
the following theorem.

Theorem 4.4 (AOS for all primes). For every rate R > 0 there exists constants τp,β and c such that
Construction 3.1 instantiated with c and δ -ensemble (resp., weak δ -ensemble) of R-rate (1− τc)-erasure
codes yields an AOS-ensemble with the following properties:

• Correctness and complexity as in Theorem 3.6.

• (Privacy) For every cp ∈ Setup(1n) and every prime p ≥ 2, except with probability 2−βn over the
choice of a, the algorithm Deal(1n,cp,a) is τp-private simultaneously for all primes.

There exists a (deterministic) construction of AOS erasure codes with linear complexity con-
stant rate and constant erasure capability (e.g., by using the Capalbo et al. [15] unbalanced ex-
panders in the cascade construction of Luby et al. [38]). Thus, by Proposition 2.5, we derive the
following corollary.

Corollary 4.5. For some constants 0 < τp < τc < 1 there exists an (τp,τc)-ramp ensemble of BBSS scheme
with constant-size shares, and where the recovery and sharing algorithms make only O(n) additions, and
thee setup algorithm errs with probability 2−Ω(n). Furthermore, the public share is a single field element and
so it can be completely removed (by appending it to each party’s share).

Remark 4.6 (compressing the ensemble parameters). Since the underlying code is computed the public
parameters of the secret sharing ensemble contain only the vector a whose length is O(n) bits. Following [36,
18] this public information can be completely eliminated via information dispersal. Specifically, encode the
vector a into a vector A ∈ {0,1}O(n) using some AOS-ensemble of erasure codes with linear complexity
and hand Ai to the ith party. The share size remains constant and the additive complexity of sharing and
recovering remains unchanged. Of course, this introduces a negligible error probability in the recovery
algorithm and a negligible deviation in the privacy.

5 Deriving Near-Threshold Schemes

We will need the following proposition about the existence of bipartite sampler graphs.
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Proposition 5.1 (efficient samplers [35, 28]). For every positive constants ε > 0,δ > 0, there exists a
constant d = O(1/(ε2δ )) and a poly(n,1/ε,1/δ )-time algorithm that on input 1n outputs an bipartite
graph G = ((L,R),E) with the the following properties:

1. |L|= |R|= n and the right degree of G is d.

2. For every S⊂ L, it holds that for at least 1−δ fraction of the vertices r ∈ R, it holds that∣∣∣∣dS(r)
d
− |S|

n

∣∣∣∣≤ ε,

where dS(r) is the number of vertices in S that are connected to r.

A graph that satisfies the above properties is called an (n,d,ε,δ )-sampler.

The following lemma takes an outer “fast” ramp scheme with “bad threshold” over n parties
and near-threshold “slow” scheme over a constant d = O(1) number of parties, and generates
a new near-optimal scheme over n parties whose complexity (sharing, reconstruction and share
size) are inherited from the fast scheme up to a constant multiplicative overhead that depends on
d.

Lemma 5.2. For every ε,δ ,d and n and (n,d,ε,δ )-sampler G = ((L,R),E) the following holds for any
ε < γ < 1− ε . Let (Dealout,Recout) be an “outer” (δ ,1− δ )-ramp secret sharing scheme over n parties
and let (Dealin,Recin) be an “inner” (γ − ε,γ + ε)-ramp secret sharing scheme over d parties. Define a
secret-sharing scheme (Deal,Rec) over the n parties in L as follows:

1. Deal(s): Generate n “virtual shares” (s′r)r∈R
R←Dealout(s). For each r ∈ R, share each virtual share s′r

via (sr,`)`∈L(r)
R← Dealin(s′r) where L(r) ⊂ L is the set of left neighbors of a vertex r ∈ R in the graph

G. Set the share of the ` ∈ L party to be (sr,`)r∈R(`) where R(`) ⊂ R is the set of right neighbors of a
vertex ` ∈ L.

2. Rec(T,(si)i∈T ): For a left set T ⊂ L denote by

R+(T ) = {r ∈ R : dT (r)≥ (γ + ε)d}

the set of right vertices r that have at least (γ +ε)d neighbors in T . Recover all the virtual secrets (s′r)
for r ∈ R+(T ) by applying Recin((s′r,`)`∈L(r)∩T ) and output the result of Recout((s′r)r∈R+(T )).

Then the secret-sharing scheme (Deal,Rec) is a (γ−2ε,γ +2ε)-ramp secret sharing scheme.

Proof. For correctness, consider a left set T of size at least (γ +2ε)n. By the sampling properties of
G, the set R+(T ) is of size at least (1− δ )n and so, by the correctness of the inner scheme, at least
(1−δ )n fraction of the virtual shares are recovered by the coalition T . Hence, correctness follows
from the correctness of the outer secret-sharing schemes.

For privacy, consider a left set T of size at most (γ−2ε)n and let R−(T )= {r ∈ R : dT (r)≤ (γ− ε)d}
be the set of right vertices r that have at most (γ − ε)d neighbors in T . By the sampling proper-
ties of G, the set R−(T ) is of size at least (1− δ )n and so, by the privacy of the inner scheme, at
least 1−δ fraction of the virtual shares are perfectly hidden from the coalition T . Hence, privacy
follows from the privacy of the outer secret-sharing schemes.
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We note that the above lemma naturally generalizes to the case where the graph is unbalanced.
(We omit the details since this variant is not needed here).

Remark 5.3. Lemma 5.2 generalizes a previous transformation of [10, Lemma 2.8 and Claim 2.15] that
is restricted to the case where the inner scheme is taken to be d-out-of-d secret-sharing scheme (and so its
correctness threshold is 1). For this special case, one can slightly relax the combinatorial properties that the
graph should satisfy. For example, when the outer scheme also has a correctness threshold of 1, one can use
a disperser graph instead of a sampler graph [10, Lemma 2.8].

For every constant ε > 0, we can instantiate Lemma 5.2 with an outer (δ ,1− δ )-ramp AOS
of linear additive complexity O(n) (e.g., from Corollary 4.5) and an inner γd-threshold AOS over
d = O(1) parties of complexity polynomial in d (say based on the formula construction of [8]) and
derive a near-threshold AOS with linear complexity as promised by the main theorem (restated
here for the convenience of the reader).

Theorem 5.4 (Theorem 1.1 restated). For every constants 0 < τp < τc < 1 there exists an ensemble
of (τp,τc) near-threshold ensemble of secret sharing schemes whose recovery algorithm makes only O(n)
additions. Moreover, (1) the share size is constant, (2) the sharing also makes O(n) additions, and (3) the
scheme is a BBSS scheme and the sharing and reconstruction algorithms work universally for all finite
Abelian groups G.
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