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Abstract. Coercion-resistance is one of the most challenging security
properties to achieve when designing an e-voting protocol. The JCJ vot-
ing scheme, proposed in 2005 by Juels, Catalano and Jakobsson, is one of
the first voting systems where coercion-resistance was rigorously defined
and achieved, making JCJ the benchmark for coercion-resistant proto-
cols. Recently, the coercion-resistance definition proposed in JCJ has
been disputed and improved by Cortier, Gaudry, and Yang. They identi-
fied a major problem, related to leakage of the number of discarded votes
by revoting; and proposed CHide, a new protocol that solves the issue
and satisfies a stronger security notion. In this work we present an im-
proved version of CHide, with complexity O(n logn) instead of O(n2) in
the number n of received ballots, that relies on sorting encrypted ballots
to make the tallying phase faster. The asymptotic complexity of our pro-
tocol is competitive with other state-of-the-art coercion-resistant voting
protocols satisfying the stronger notion for coercion resistance.

1 Introduction

Internet voting is a type of electronic voting that allows voters to cast their
ballot remotely through the Internet, without the need of physically going to a
polling station. Since the first attempts of introducing the Internet as a legally
binding way of casting votes in Estonia and the United States in the early 2000’s,
Internet voting solutions increased in popularity and are currently used to vary-
ing degrees in several countries around the world [18, 29]. Prominent examples
include Switzerland [14], Canada [6] and Australia [16].

As with other electronic voting initiatives, the promises of Internet voting are
higher voter turnout, lower cost and accessibility [21]; potentially at the expense
of simplicity, transparency and privacy. Cryptographic protocols are particularly
suited to the task, and in recent years many protocols were designed to achieve
secure Internet-based elections that ensure voter privacy, vote verifiability and
the correctness of the outcome [2, 9, 26].

There is one additional threat, however, that is equally crucial to address in a
fair and democratic election process: coercion resistance. Informally, a coercion-
resistant protocol must defend voters from attackers that pressure them to vote
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in a specific way, either through threats or rewards. Because of its remote nature,
Internet voting substantially increases the attack surface with respect to coercion
resistance, since it introduces new and convenient attacks compared to voting
in person at the polling station. These include coercing voters to reveal all the
voting material, or monitoring their behavior during the election day.

JCJ Protocol. Juels, Catalano and Jakobsson [20] achieved important progress in
this field by proposing one of the first formal definitions of coercion resistance and
designing a protocol to achieve it. To this date, JCJ still remains the reference
point for research on the topic. Roughly speaking, a voting protocol is coercion
resistant if and only if voters are able to generate some kind of fake credential
that could be handed over to the coercer in case of attack, preserving the original
legitimate ones and thus their ability to vote [20]. Votes with fake credentials
are discarded later, in the cleansing phase of the election process.

One of the main drawbacks of JCJ and related protocols, such as Civitas [9],
is their quadratic complexity3, since they usually require to check each credential
against the ones in the following votes. Consequently, this approach to voting
has generally limited the scalability of the protocol.

JCJ Leakage. Recently, the security definition presented in JCJ was disputed,
for example in [11] and [15], due to its limitation in handling revotes and ballots
cast under invalid credentials. Ideally, the only types of leakage that should be
allowed are those that inevitably arise from the election result. In particular,
an unavoidable leakage is the difference between the total processed ballots and
the number of valid votes. In [11] Cortier, Gaudry and Yang showed that the
JCJ protocol leaks significantly more than this simple difference. Since the votes
with duplicate credentials (i.e. the revotes) and votes with invalid credentials
are handled and discarded separately, the JCJ protocol leaks the size of both
sets individually, instead of leaking only the size of their union. Moreover, they
presented CHide, an improved version of the original JCJ protocol that solves
this security issue.

Contributions. However, CHide brings us back to the original scaling issue
present in JCJ, as it also takes quadratic time in the number n of received
ballots. 4 The techniques used to run JCJ in linear time [25] require leaking
the duplicated and invalid credentials separately, and fail to generalize easily to
CHide. In this work we overcome this issue and present an improved version
of CHide, with complexity O(n log n) instead of O(n2), using sorting over en-
crypted data to make the tallying protocol faster. The resulting protocol achieves
asymptotic complexity competitive with other state-of-the-art coercion-resistant

3 Civitas mitigates this quadratic complexity: split the voters into blocks and tally each
block separately. However, this significantly increases leakage, revealing how many
votes were eliminated for each block, rather than just once for the whole election.

4 The CHide preprint was independently updated by the authors to address this issue.
We discuss further in Section 5.
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voting protocols satisfying a stronger security notion. We also show an improved
version of the protocol that removes the registrars altogether.

The rest of the paper is organized as follows. We start with the building
blocks of our protocol in Section 2. In Section 3, we describe our protocol and
prove its security for stronger coercion resistance in Section 4. We finish with
estimates of efficiency gains in Section 5 and conclude in Section 6.

2 Cryptographic Primitives

ElGamal Encryption Scheme. Due to its homomorphic properties, the ElGamal
encryption scheme [12] is a popular choice for designing voting schemes.

Let G be a multiplicatively written group of order q, with generator g, for
which solving the Decisional Diffie Hellman (DDH) problem is hard. The private
key sk is sampled at random from Zq, while the public key pk is gsk. The encryp-
tion of a message m is defined as Enc(m, pk; r) = (gr, gm ·pkr) ∈ G2 where r ∈ Zq

is a random value. We omit the randomness when not explicitly necessary.
Let E0 = (1, 1), E1 = (1, g), and E−1 = (1, g−1) be the respective encryp-

tions of 0, 1,−1 with randomness 0. Re-encryption can be done by multiplying a
ciphertext by an encryption of 0. In particular, let X ∈ G2 be an ElGamal cipher-
text, then we define ReEnc(X, pk; r) = X ·Enc(0, pk; r), where the multiplication
operation is component-wise.

For a number nT of election trusteers, we use a (t, nT ) threshold version of
ElGamal, so pk is produced via a distributed key generation, and a minimum of
t+ 1 parties are required to jointly decrypt.

Designated-Verifier Zero-Knowledge Proof. Similarly to JCJ and CHide, our pro-
tocol uses Designated-Verifier Zero Knowledge Proofs (DVZKPs) [19]. Roughly
speaking, a DVZKP is a zero-knowledge proof (ZKP) in which only the verifier
designated by the prover is able to be convinced about the correctness of the
proof. In particular the verifier V holds a key pair. Using the public key, the
prover produces a proof for a statement, such that only V is convinced that
the statement is true. This is achieved by allowing V to produce fake but valid
DVZKPs for any statement, using their private key.

In particular, the usage of a DVZKP instead of a traditional ZKP is crucial
for the evasion strategy, since it allows voters to be sure about the credentials re-
ceived and, at the same time, they are able to produce fake credentials alongside
fake proofs to hand over in case of attacks.

Circuits over encrypted bits. The basic building block for our tallying algorithm
is the CGate protocol, originally presented in [27], in the re-randomized version
[10]. Informally, on input of two encryptions X,Y of x and y, respectively, with
y ∈ {0, 1} it outputs a ciphertext Z which is the encryption of xy. If both x and
y are bits, this allows to compute the conjunction And. Since the Not operator
can be computed as Not(X) = E1 · X−1, every other Boolean operator can be
easily implemented by combining these two. Algorithm 1 formalizes the idea.
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In particular, for our sorting algorithm, we need an operator for equality
Eq(X,Y ) = Not(XY/CGate(X,Y )2) and a less-than operator Less(X,Y ) =
Y/CGate(X,Y ). Indeed, let a, b be two values and A1, ..., Ak and B1, ..., Bk

their bitwise encryptions. To check a < b keeping the result encrypted we use
this recursive formula: L0 = 0, Li = Less(Ai, Bi) · CGate(Li−1,Eq(Ai, Bi)) for
i = 1, ..., n. At the end Lk is the encryption of a < b.

Algorithm 1 CGate protocol
Require: X,Y encryptions of x, y, with y ∈ {0, 1}, number of participants a.
Ensure: Z an encryption of xy.
1: Compute Y0 = E−1 · Y 2 and set X0 = X, a = t+ 1
2: for i = 1 to a do
3: Participant Pi picks r1, r2 ∈ Zq and s ∈ {−1, 1} randomly
4: Pi computes Xi = ReEnc(Xs

i−1, pk; r1) and Yi = ReEnc(Y s
i−1, pk; r2)

5: Pi produces a ZKP πi that Xi and Yi are well formed
6: Pi reveals Xi, Yi and πi

7: end for
8: P1, ..., Pa verify all the proofs. Let Π = (X1, Y1, π1)||...||(Xa, Ya, πa).
9: P1, ..., Pa jointly rerandomize Xa, Ya to get X ′, Y ′, producing transcript ΠReEnc

10: P1, ..., Pa jointly compute ya = Dec(Y ′) and transcript ΠDec

11: return Z = (XX
′ya)

1
2 and verification transcript (ya, Π

Dec)||(X ′, Y ′, ΠReEnc)||Π

In [27] the authors proved that the CGate algorithm is SUC-secure. We say
that a protocol is SUC-secure if, for all adversary in the real process, there exists
a simulator in the ideal process such that no PPT environment can tell whether
they are interacting with the adversary in the real process or with the simulator
in the ideal process.

Distributed Random Bit Generation. In the same way as CHide, credentials are
generated by a particular set of authorities and are encrypted bit by bit. In
order to do so, they need to use a distributed random bit generation protocol.
In particular, they jointly produce an encrypted bit Enc(b, pk), for which each
participant knows only a share bi of b. Furthermore, the transcript of the protocol
communication is used as a DVZKP for the correctness of the protocol. We use
the RandBit protocol proposed in [11].

Mixnet. Mixnets are widely used in secure e-voting systems. Informally, a mixnet
allows a set of participants to shuffle and re-encrypt a set of ciphertexts, without
needing to know the secret key (or a secret sharing of it). On a high level,
participants privately shuffle all inputs and eventually publish them re-encrypted
in random order. Informally, we say that a mixnet is secure if, given at least one
honest participant, the permutation from the input to the output remains secret
for all the participants involved.
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In the protocol we will need a verifiable mixnet, that ensures the correctness
of the output (i.e. the output is indeed a permutation and re-encryption of the
input). A suitable candidate for our protocol is the mixnet presented in [31].

3 Protocol Description

At its core, our protocol is very similar to CHide. The participants, the
Setup phase, the Registration phase and the Voting phase are essentially the
same, while we changed both the Cleansing and Tallying phase, to substantially
reduce the computational complexity.

The main difference is that for each ballot, CHide requires to compare the
encrypted credential to every successive one and to every credentials in the reg-
ister (thus having quadratic complexity), while in our protocol we first perform
an a sorting algorithm on the encrypted votes. At the end of the protocol, votes
with the same credentials and authorized credentials are consecutive, allowing
the election authorities to recognize valid votes faster.

3.1 Participants

The participants in the protocol are:

– The public board, an append-only list of data, where all the other participants
can write. The contents of the board can be read by anyone at any time,
and the board is assumed to be honest.

– The election trustees, a set of nT authorities that performs the cleansing
and the tally. It is assumed that there are most t dishonest trustees, where
t < nT is the threshold of the encryption protocol used.

– The voters. There are nV voters and we assume that the adversary is able
to control at most nV − 2 of them.

– The auditors, a set of parties that check the consistency of the data published
on the board. In particular auditors need to check the validity of all the
ZKPs. We only need one auditor to be honest. Since every check involves
only public data, any party could serve as auditor.

– The registrars, a second set of nR authorities that provide credentials to
voters. For coercion resistance it is assumed that all of them are honest.

Table 1 fixes the notation when referring to the various election participants.

Table 1. Parameters of an election conducted with CHide.

nT number of election trustees
nR number of registrars
nC number of candidates
nV number of voters
nA number of voters controlled by A
BB the public board
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3.2 Overview

Setup Phase. A security parameter k is chosen. The election trustees jointly
run the distributed key generation (DKeyGen) protocol presented in [13], obtain-
ing a public key pk at the appropriate security level. Each trustee publishes a
commitment hi to its private share of pk on the public board, as well as pk. The
private shares are denoted ski for i = 1, ..., nT .

Registration phase. As in CHide, credentials are created by a designated
set of registrars, encrypted bitwise, sent to the voters and published on the
public board. Let s = (s1, . . . , sk) be the k-bit credential of voter v and let
S = (S1, ..., Sk) the bitwise encrypted values published on the board. Each
credential is sent privately to the voter, with designated zero-knowledge proofs
to guarantee voters that their credential is valid.5 Let R be the list of all the
authorized credentials.

Voting Phase. To cast a vote for candidate ν, voter v computes an encryption
of their vote C1 = Enc(ν, pk) and a bitwise encryption of their credential C2 =
(Enc(s1, pk), ...,Enc(sk, pk)), as well as two ZKPs: one to prove that C2 contains
encryptions of bits, and a second one proving knowledge of the randomness
used in C1 and that ν is a valid voting option. These ZKPs are also used to
link together C1 and C2, making the tuple C = (C1, C2) non-malleable. The
tuple and the corresponding ZKPs are published on the public board using an
anonymous channel.

During the Voting Phase, each voter can vote multiple times and only the
last vote will be counted6. During this step the auditors verify the uniqueness of
each ballot and that every ZKP is valid.

Cleansing and Tallying Phase. Once the Voting Phase is finished, the elec-
tion trustees count the votes. Let BB = {Ci} the list of all the votes, listed in
chronological order, and R = {Si} the list of all authorized credentials.

First of all, all the invalid votes marked by the auditors are discarded. Then
the election trustees parse each element ei of BB||R as (Datai, σi, fi, ci) where:

– Datai ← C1
i if ei ∈ BB; otherwise Datai is set to be a random encryption.

– σi ← C2
i if ei ∈ BB; σi ← Si otherwise.

– fi ← Enc(0, pk) if ei ∈ BB; fi ← Enc(1, pk) otherwise.
– ci is the bitwise encryption of an increasing counter and represents the

chronological order of the votes.

Then the trustees apply a mixnet protocol (for example [31] or [8]) on BB||R
and produce a verification transcript. For simplicity we will refer to each element
5 Voter authentication is out of the scope of this paper but, for example, could be

done via a digital signature by the user with a long-term key pair.
6 Note that different policies about revoting are possible and could be achieved with

a different ordering in the tallying phase.
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after the mixnet using the same notation as before, i.e. each element is in the
form (Datai, σi, fi, ci).

The election trustees perform a sorting algorithm on the set, with the fol-
lowing relation:

ei <Tally ej ⇔ Dec(σi)||Dec(fi)||Dec(ci) <Lex Dec(σj)||Dec(fj)||Dec(cj) (3.1)

where, with an abuse of notation, Dec(σi) denotes the concatenation of the
decryptions of every ciphertext in σi and <Lex is the lexicographical order. It is
important to note that:

– If two votes ei, ej ∈ BB have the same credentials, then they are sorted
chronologically thanks to the counters ci, cj . Moreover if eh is such that
ei <Tally eh <Tally ej then eh has the same credential of both ei and ej .

– If ei ∈ BB and ej ∈ R have the same credentials (i.e. ei is a ballot cast
with an authorized credential) then ei <Tally ej . Moreover if eh is such that
ei <Tally eh <Tally ej then eh has the same credential of both ei and ej .

– No two distinct elements ei, ej will compare equally in this ordering, thanks
to the counter ci in each ballot.

Informally, the ordered list is formed by blocks of consecutive ballots cast
with the same credential, ending with the corresponding element in R if they
were made with an authorized one.

During sorting, it is safe to leak the comparison result ei <Tally ej , as the
mixnet randomly permuted the votes and there are no two equal elements in the
tally order. That is, the comparisons only reveal the order of the mixed values,
which leaks nothing because they were initially in a random order.

After the sorting, for every pair of consecutive elements (ei, ei+1) in the
ordered list, the election trustees check whether Dec(σi) = Dec(σi+1). This pro-
duces an encrypted bit I1i . Let Ii be the conjunction between the bit encrypted in
I1i and fi+1. In particular Ii is an encryption of 1 if and only if ei is a vote with a
valid credential and the last vote with that credential. At this point the trustees
multiply Ii and Datai in the exponent for every i, computing CGate(Datai, Ii),
apply a second mixnet on the resulting list, and decrypt every vote.

The Sort algorithm can be any suitable comparison sort, such as Quicksort
or Mergesort, thanks to the mixnet (the stability property is guaranteed by the
flag fi and the counter ci, that also ensures the absence of equalities). The crucial
part is the evaluation of the comparison as per Equation (3.1). Indeed, let a, b
be two values and A1, ..., Ak and B1, ..., Bk their bitwise encryption. To obtain
an encryption of a < b we use this recursive formula: L0 = 0, Li = Less(Ai, Bi) ·
CGate(Li−1,Eq(Ai, Bi)) for i = 1, ..., n, with Less(X,Y ) = Y/CGate(X,Y ).

The result of every comparison can then be decrypted and used according to
the chosen sorting algorithm, without leaking anything because of the mixing.
Sorting BB||R without mixing would leak the number of votes between two
authorized credentials and could lead to potential attack (for example, if an
attacker votes with a fake credential that is greater than any authorized one it
would easily detect the lie). In fact, due to the mixnet, any adversary would
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Algorithm 2 Tally

The participants must share of the secret key sk matching the public key pk
Require: The list of votes in BB and the list of keys R.
Ensure: The result of the election X and a proof Π for its correctness.
1: Parse each element in BB||R as described
2: Compute L,ΠMixnet

1 = Mixnet(BB||R)
3: Compute Ls, Π

Sort = Sort(L)
4: for ei ∈ Ls do
5: Ii = CGate(Eq(σi, σi+1), fi)
6: Datai = CGate(Datai, Ii)
7: end for
8: Compute Lf , Π

Mixnet
2 = Mixnet(Ls)

9: return X = Dec(Data) for all Data ∈ Lf and Π = ΠMixnet
1 ||ΠMixnet

2 ||ΠSort||ΠCGate

where ΠCGate is the verification transcript of all CGate computations in the cycle.

have no information about the terms of each comparison, thus the result of the
comparison is meaningless and can be simulated, as shown in the next section.

In order to prove the correctness of the sorting algorithm, the trustees add
the proofs of the correctness of every CGate computation as well the correctness
of the decryption. For further details see Section 2.

Evasion Strategy. To evade coercion a voter can simply lie about their cre-
dential s, giving a fake credential s̄ to the coercer, and manipulating the DVZKP
accordingly. In this way, voters are also able to vote with their correct credentials.

4 Security Proof

The proof is very similar to the one presented in [11]. We consider a distri-
bution B of sequence of pairs (j, ν) where j is a voter and ν is a voting option.
Additionally, fake votes are modeled as pairs where j ̸∈ [1, nV ]. In the following
Algorithms 3 and 4, we employ the real-ideal paradigm.

In the real game (Algorithm 3), the adversary takes part of the setup process
(line 2) and decides the set of voters VA it controls and the coercion target (lines
3-5). Afterwards, votes are drawn according to a distribution B and added to
the list B, containing all the votes in order. Lines 13-22 model the coercion: if
b = 1, the coerced voter obeys, hence any vote from j is removed from B and
the real credential sj is handled to the adversary. If b = 0 the voter follows the
evasion strategy, i.e. they cast a vote for their intended preference β and give to
the adversary a fake credential.

Votes are then added to BB, according to the sequence B (lines 23-29). After
each vote the adversary is allowed to see the board and add votes. Lastly the
tally is performed and the adversary guesses whether the evasion strategy was
followed or not.

In the ideal world Algorithm 4, the adversary only selects the set of voters
VA it controls and the coercion target (lines 3 and 5). Then votes from VA (line
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27) and, possibly, the coerced votes (line 24-26) are directly added to B. Then
B is handled to the tally functionality that publishes the result of the election
X, without revealing anything else.

Definition 1 [11] A voting system is coercion resistant iff for all PPT adver-
sary A, for all parameters nT , t, nV , nA, nC and for all voting distribution B,
there exists a polynomial adversary F and a negligible function µ such that:

|P(Ideal(F , k, nA, nC ,B) = 1)−P(Real(A, k, nT , t, nV , nA, nC ,B) = 1)| ≤ µ(k).

Theorem 1 Under the DDH assumption and in the Random Oracle Model, the
voting system presented in Section 3 is coercion resistant.

Proof. Let A be an adversary for the real game. We give to A the power to
impersonate t among nT election trustees and up to nA voters. Our goal is
to build an adversary F that wins the ideal game by interacting with A and
simulating the real game.

First of all, F and A run the Setup algorithm to generate a common public
key pk, secret shares of the private key sk1, ..., sknT

and the public commitments
h1, ..., hnT

. During this step F is also able to reconstruct the secret key sk by
extracting A’s secrets.

Then F follows the real game normally, until line 14, getting VA, j and β. In
the ideal game F sends the same choices for VA, j, β.

In line 22, F provides to A the real credential sj of the coerced voter. From
the ideal game F learns the size |B| of the ideal board (line 23) and uses it to
simulate the voting process (lines 23-29). For |B| times:

– F calls A with input BB getting M
– F decrypts all the valid votes and credentials in M . For every authorized

credential si, F saves the tuple (si, ν) or updates a previously saved (si, ν′).
– F adds all valid ballots in M to BB
– F chooses a random voter and a valid voting option and casts a valid vote,

adding it to BB.

Then F uses all the saved adversary ballots in lines 23-27, taking β′ = νj .
F learns X and its size in line 30 of the ideal game and use it to simulate

the tallying process in the real game:

– F runs the first mixnet for the honest authorities, while A uses the dishonest
ones.

– To perform the sorting, F simulates all the CGate operations. This can be
done since CGate is a SUC-secure protocol, as shown in [10]. F also simulates
the decryption step and thus randomly sorts the list.

– F runs the second mixnet for the honest authorities, while A uses the dis-
honest ones.

– F chooses |X| entries at random and simulates its partial decryption: every
entry not chosen is decrypted to 0, while such |X| entries are decrypted such
that the result is exactly X.
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Algorithm 3 Real
Require: A, k, nT , t, nV , nA, nC ,B
1: BB ← ∅
2: pk, ski, hi ← SetupA(k, nT , t)
3: VA ← A()
4: {si}i∈[1,nV ], R← Register(k, pk, nV)
5: (j, β)← A({si}i∈V ], R)
6: if |V | ̸= nA or j ̸∈ [1, nV ] \ VA or β ̸∈

[1, nC ] ∪ {∅} then
7: return 0
8: end if
9: B ← B(nV − nA, nC)

10: for (i, ∗) ∈ B, i ̸∈ [1, nV ] do
11: si ← FakeCred(s1)
12: end for
13: b

$← {0, 1}
14: s̃← sj

15: if b == 1 then
16: Remove all (j, ∗) from B
17: else
18: Remove all (j, ∗) from B but the last
19: Replace it with (j, β)
20: s̃← FakeCred(sj)
21: end if
22: A(s̃)
23: for (i, α) ∈ B do
24: M ← A(BB)
25: BB ← BB ∪ {m ∈M |m valid}
26: BB ← {Vote(ci, α, pk)}
27: end for
28: M ← A(BB)
29: BB ← BB ∪ {m ∈M |m valid}
30: X,Π ← TallyA(BB,R, pk, {hi, si}, t)
31: b′ ← A()
32: return b == b′

Algorithm 4 Ideal
Require: A, k, nV , nA, nC ,B
1:
2:
3: VA ← A()
4:
5: (j, β)← A()
6: if |V | ̸= nA or j ̸∈ [1, nV ] \ VA or β ̸∈

[1, nC ] ∪ {∅} then
7: return 0
8: end if
9: B ← B(nV − nA, nC)

10:
11:
12:
13: b

$← {0, 1}
14:
15: if b == 1 then
16: Remove all (j, ∗) from B
17: else
18: Remove all (j, ∗) from B but the last
19: Replace it with (j, β)
20:
21: end if
22:
23: (νi)i∈VA , β′ ← A(|B|)
24: if b == 1 and β ̸= ∅ then
25: B ← B ∪ {(j, β′)}
26: end if
27: B ← B ∪ {(i, νi)|i ∈ VA, νi ∈ [1, nC ]}
28:
29:
30: X ← result(cleanse(B))
31: b′ ← A(X)
32: return b == b′

At this point A makes its guess b and F forward the same guess in the ideal
game. The differences between a real execution and the simulation are:

– In the real game A can get either the real credential sj or a fake one. In
the simulation A always receives sj . Since in both the real and ideal worlds
fake credentials have uniformly random distribution and the DVZKP could
be simulated, A can only distinguish a real execution from a simulated one
if and only if it is able to distinguish whether s̃ is a plaintext of one of the
encrypted credentials in R or not. Since the ElGamal encryption is IND-CPA
secure under the DDH Assumption this is impossible.

– During the simulation of the voting loop (line 23-29 of the real game) F adds
random ballot, while in the real game ballots are drawn according to B. As
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before, since the ballots are encrypted, the simulation is indistinguishable
from the real game under the DDH Assumption.

– During the tally F simulates the execution of the CGate protocol. By SUC-
security, the simulation is indistinguishable from the real game[10].

– In the real game, the ballots are sorted as per relation 3.1, while in the ideal
game each comparison is simulated and thus the order is random. Being able
to distinguish between the correct order and a fake one would mean either
being able to distinguish the ballots, that is unfeasible due to the IND-CPA
security of the encryption scheme, or being able to recognize the ballots after
the mixnet, that is unfeasible thanks to the security of the mixnet.

– In the simulation the result always include all the last valid ballots cast by
honest voters. In a real execution the adversary may change it by casting
ballots on behalf of an honest voter. However, to do so, the adversary must be
able to create a valid ZKP about the credential used, and this is unfeasible.

– F simulates the decryption protocol at the end. This simulation is indistin-
guishable from the real world under the DDH assumption in the ROM.

4.1 Removing the registrars

Registrars are authorities whose only role is to provide authorized credentials
to every user and publish the list of encrypted authorized credentials R.

In the base protocol we assume that all the nR registrars are honest to
achieve coercion resistance. Indeed, if the adversary is able to control at least one
registrar, it clearly has probability of at least 1

nR
to detect the evasion strategy,

since trivially it knows one of the share that forms the credential.
Informally, their only purpose is to provide some credential to the user, with

the property that the user could later deny to have received them. The same
result could be achieved by letting every user generate their own credential,
encrypt them, delete the used randomness and publish the credential.7 In this
way we are able to remove a critical point of failure for coercion resistance.

To prove the security of the protocol without registrars we need to change
the real world game (Algorithm 3) in line 4, replacing it with the following loop:

The security proof remains the same, except for the initial part and the voting
loop. Instead of receiving the credential from the registrars, F performs the loop
normally. At every iteration it checks whether the adversary created credential
is already in R or not. If the credential is duplicate then F increases an internal
counter of duplicate credentials by one.

The voting loop is simulated as before, but in the ideal world, F casts one
additional null vote for every duplicate credential, such that the number of voter
and credentials is consistent and the election result remains the same.
7 This setting requires additional checks to avoid voters with multiple credentials and

to verify their identity. Moreover, attackers should not be able to link a credential
in R to its owner. A possible solution could be linkable ring signature [22], with the
ring formed by long term authorized public keys. Lastly, k should be big enough
such that the probability of collision is negligible.
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Algorithm 5 Proposed improvement to remove registrars
1: R← ∅
2: while |RA| < nA do
3: S ← A(R)
4: R← R ∪ { s ∈ S|s valid}
5: RA ← RA ∪ { s ∈ S|s valid}
6: if |R| < nV − nA then
7: s← GenerateCred()
8: R← R ∪ {s}
9: end if

10: end while

5 Performance

5.1 Comparison with CHide

The main goal of the paper is to improve the performance of the tallying
protocol in CHide and JCJ. This is achieved by performing a preliminary sorting
step, that reduces the complexity of the tallying from quadratic to quasi-linear.

A performance comparison between our protocol and CHide can be performed
by couting the number of CGate operations. We use as example the recent Esto-
nian election, where for the first time more than half of the voters used a remote
voting system, for a total of a little more than 3 × 105 valid votes. [17]. Since
the Estonian voting system does not track the number of revotes and removed
ballots, we suppose that a total of 6× 105 votes where submitted (i.e. only half
of the total votes are valid votes) and that every registered voter voted (i.e. the
list of authorized credentials |R| contains 3× 105 registered credentials). In the
following k is the bit-length of voters’ credentials.

Each comparison during the sorting algorithm requires 3k CGate compu-
tations, as explained in 2. Thus for the sorting phase our algorithm requires
3k(9 × 105 × log2(9 × 105)) ≈ 54k × 106 CGate computations and 18 × 106 de-
cryptions. Then, to compute the check bit Ii for every pair of votes the protocol
requires 2k×9×105 CGate computations. In total, our protocols require around
56k×106 CGate computations, 18×106 intermediate decryptions and two mixnet
applications.

The CHide protocol instead requires to check that the credentials of each
casted votes unique, comparing it with each subsequent vote, and that it is
an authorized one, comparing it with every registered credentials. Each equality
operation requires only k CGate computations, thus for finding duplicates CHide
requires k(2×6×105×3×105) = 360k×109 CGate computations and the same
number of computations for checking authorized credentials. Then a mixnet is
applied and the votes are decrypted. Thus, CHide requires a total of 720k× 109

CGate computations and one mixnet application.

Recent Updates. The CHide preprint was independently updated by the authors
to address the quadratic complexity of the protocol. Their solution is quite simi-
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Table 2. Performance comparison between CHide and our protocol with respect of
the security parameter k.

CGate Mixnet Preliminary Decryptions
CHide 720k × 109 1 -

Our Protocol 56k × 106 2 18× 106

lar to our solution, leveraging the CGate protocol to sort all the votes and achieve
a quasi-linear complexity.

While sharing the same philosophy and the same asymptotic complexity, the
two protocols have a meaningful difference that could lead to different running
times. Updated CHide avoids the preliminary mixnet by using a swap operation
between ciphertexts, instead of simply decrypting the output of each compari-
son. This restricts their choice of sorting algorithms to be data-oblivious, with
complexity O(n log2 n). Moreover, instead of using a single bit, they use a fixed
“special” counter for registered credentials, thus performing more comparisons
in the last part of the tally (the computation of Ii, as per our notation).

5.2 Comparison with related works

During the last years many different coercion resistant protocols have been
proposed, usually with the goal of reducing the quadratic complexity that is
typical of protocols descending from JCJ. Notable examples of more efficient
protocols are VoteAgain [24], AFT [3], Athena [28] and protocols based on hash
tables like [25] and [30]. The linear-time version of the JCJ protocol proposed
in [25] also uses fully homomorphic encryption. Table 5.2 summarizes the com-
parison between this and related work in terms of security and complexity.

Table 3. Comparison with other coercion resistant protocols.

Protocol Complexity Security
JCJ[20] O(n2) JCJ

Civitas [9] O(n2) JCJ
AKLM [1] O(n2) AKLM
Revote [23] O(n2) AKLM
CHide[11] O(n2) or O(n log2 n) CHide

VoteAgain [24] O(n logn) VoteAgain
AFT [3] O(n) JCJ

Athena [28] O(n) JCJ + Dups
Hash-based [25, 30] O(n) JCJ + Dups

This work O(n logn) CHide

In the table, the security levels are defined as:

– JCJ is the security level achieved by the original JCJ protocol.
– JCJ+Dups is at lower security level than JCJ, where the number of votes

for each credential also leak.
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– AKLM is at lower security than JCJ, in which it is assumed that voters
revote at the end of the voting period to escape from adversarial control.

– CHide is the security level achieved by CHide, higher than JCJ.
– VoteAgain follows its own coercion resistance definition introduced in [24]

and it is not comparable with the others.

From the state of the art, achieving a better or equivalent complexity than
our protocol requires to either change the security definition (as per [24]) or to
increase the leakage.

6 Conclusions

In this work we presented an enhanced version of CHide, that drastically
reduces the computational complexity of the tallying from O(n2) to O(n log n),
which is currently the best efficiency among voting protocols satisfying a stronger
notion of coercion resistance.

A possible way to speed up the tally even further is amortizing the process
through the whole voting phase, instead of waiting until the end of the election.
A possible approach would consist of using a bucket sorting algorithm, like the
one presented in [4]. As votes come in, they are assigned to buckets. When the
first two buckets are full, the first step of bucket sorting is performed. When the
next two buckets are full, the authorities perform the first step of the sorting
process on them and the second step on the whole for the bucket, and so on.
While maintaining the same asymptotic complexity, this approach could lead
to a vastly reduced delay between the end of the voting phase and the publi-
cation of the result. However, bucket sorting is usually susceptible to “overflow”
attacks. Indeed, typical bucket sorting algorithms like [4] allow for a fixed max-
imum number of elements in each bucket, thus an attacker could vote multiple
time with the same credential, causing the corresponding bucket to overflow and
making the sorting fail. On the other hand, increasing drastically the bucket size
to make these kind of attacks impractical, would greatly decrease the perfor-
mance, thus making the use of bucket sorting meaningless. In the end we not
find any solution to this problem but it is a topic worthy of further examination.

Unfortunately, our protocol still has the same issue of CHide regarding the
dimension of the credentials, that are encryptions of individual bit instead of
a single encrypted string. The bitwise encryption is required to realize a secure
tally, since we need to multiply ciphertexts in the exponents. A possible solution
to this problem, while keeping the overall structure of the tally in place, would
be to change the encryption protocol. This could be achieved using class group
encryption, originally presented in [7] and later studied in a threshold version
in [5]. However this approach would need to design an ad-hoc mixnet suitable
for this kind of encryption. Moreover, maintaining this level of efficiency could
be challenging, since the sorting protocol would need some adaptations to work,
in particular to avoid equal credentials.
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