
Optimized Discrete Logarithm Computation for
Faster Square Roots in Finite Fields

Thomas Pornin

NCCGroup, thomas.pornin@nccgroup.com

4 June, 2023

Abstract. For computing square roots in a finite field GF (q) where q − 1 = 2nm
for an odd integer m and some integer n, the classic Tonelli-Shanks algorithm starts
with an exponentiation (the exponent has size about log2 q − n bits), followed by a
discrete logarithm computation in the subgroup of 2n-th roots of unity inGF (q); the
latter operation has costO(n2) multiplications in the field, which is prohibitive when
n is large. Bernstein proposed an optimized variant with lookup tables, leading to a
runtime cost of O((n/w)2), using w-bit tables of cumulative size O(2wn/w). Sarkar
recently improved on the runtime cost, down to O((n/w)1.5), with the same overall
storage cost. In this short note, we explore the use of a straightforward divide-and-
conquer variant of the Pohlig-Hellman algorithm, bringing the asymptotic cost down
toO(n log n), and further study some additional optimizations. The result appears to
be competitive, at least in terms of number of multiplications, for some well-known
fields such as the 224-bit field used in NIST standard elliptic curve P-224 (for which
n = 96).

1 Introduction
Let GF (q) be a finite field such that q = 1 + 2nm, for an odd integerm, and integer n ≥ 1
(q is not necessarily prime; everything in this note also applies to field extensions). Extracting
square roots in GF (q) is easy when n = 1, in which case q = 3 mod 4 and it suffices to raise
the input x to the power (q + 1)/4. When n = 2, the field order is q = 5 mod 8 and Atkin’s
formulas[2] can be used. For larger n, one may apply the classic algorithm described first by
Tonelli[12] then rediscovered by Shanks[9]; it uses the following steps:

1. If input x is zero, then return zero.
2. Let v = x (m−1)/2, then w = xv and u = wv. This implies that u = xm, and thus u2n =

xq−1 = 1.
3. Let g be a fixed, known generator of the cyclic group of the 2n-th root of 1 in GF (q).

Find integer e (with 0 ≤ e < 2n) such that u = ge.
4. If e is odd, then x is not a quadratic residue. Otherwise, a square root of x isw · g (2n−e)/2.

Step 3 is really a specialized version of the discrete logarithm problem, in base g. This
problem is computationally “easy” since the order of g is 2n, which is a very smooth inte-
ger; however, it is still an expensive step, especially if n is large. In all of the following, we
consider only the number of multiplications in GF (q) as the measure of runtime cost, with
some provision for squarings, whose individual cost is typically about 80% of that of generic



multiplications1. We will use the notation “xS + yM” to designated a cost of x squarings and
y generic multiplications.

Tonelli’s algorithm, for step 3, uses a bit-by-bit process, which can be described recur-
sively:

– If u2n−1 = 1, then e is even, otherwise e is odd. Set e0 = e mod 2 accordingly.
– Set u′ = u/ge0 and solve (recursively) u′ = (g2)e1 for exponent e1 (since u′ has then order

2n−1, and g2 is a generator of the 2n−1-th roots of 1).
– Return e0 + 2e1.

This process can be organized in an iterative way (really, tail-recursive). Division by ge0
can be replaced with multiplication by g1−e0 , provided that the returned exponent is then
e0 + 2e1 − 1 mod 2n. The generator g is supposed to have been chosen in advance; such a
generator can be found by choosing a non-square element in GF (q), and raising it to the
power m (which generator is selected does not matter for the rest of this paper). Similarly,
successive squarings of g (g2, g4...) can be precomputed. That process requires about n2/2
multiplications (most of which being squarings). If the input x is not secret, and thus the
implementation does not need to be constant-time, then (on average) half of the recursive
invocations can be skipped, by noticing that if u2n−j = 1, then e is a multiple of 2j and we can
use u′ = (g2j )ej ; the cost is then lowered to about n2/4multiplications.

This cost, being quadratic in n, can become prohibitive when n is large. A well-known
case is when working in the finite field over which the standard NIST elliptic curve P-224 is
defined[6]; that field uses q = 2226 −296 + 1, i.e. n = 96, in which case the cost of the Tonelli-
Shanks algorithm is about 2500 field multiplications. A square root is used when decoding
a public key (curve point) from its compressed format, and that single square root operation
is then close, in runtime cost, to that of a generic curve point multiplication by a scalar; thus,
the overhead on, for instance, signature verification, is non-negligible. Similarly inconvenient
fields are used in curve cycles for recursive proof composition systems, where a large n value
improves polynomial arithmetics[4].

In theTonelli-Shanks algorithm, the input value (u) ismodified bit-by-bit (in low-to-high
order) so as to become a 2j-th root of 1 for decreasing values of j. The Adleman-Manders-
Miller algorithm[1] is a variant in which the modifications of the input u are instead accu-
mulated separately; this variant has complexity quadratic in n, and is on average somewhat
slower than Tonelli-Shanks.

Bernstein improved on the Tonelli-Shanks performance with the use of precomputed ta-
bles[3]. Themethod is an extension of the discrete logarithm part, to processw bits at a time,
for some parameter w. Namely, u2n−w is a 2w-th root of 1, and these 2w roots can be precom-
puted; the discrete logarithm of such a root can then be obtained with a reverse-lookup in
a table of these roots. Moreover, precomputed tables of powers of g (n/w tables of 2w ele-
ments, with table i containing values giw+j for j = 0 to 2w − 1) speed up the other opera-
tions. Bernstein’s method achieves cost O((n/w)2) field multiplications, with a storage cost

1That ratio can vary depending on the field and the implementation, but since amultiplication can
be computed with two squarings[13] with ab = ((a + b)/2)2 − ((a − b)/2)2, squaring cost cannot
really be less than half of that of a multiplication.

2



of O(2wn/w) field elements for the tables2. The P-224 field is explicitly used as example by
Bernstein, with w = 6: precomputed tables then contain 64 field elements each (1024 in
total, about 29 kB), and the total cost is 90S + 138M (not counting the cost of the initial
exponentation with power (m − 1)/2, which can be done in cost 126S + 10M for that field).

More recently, Sarkar proposed an improved variant of Bernstein’s method[8]. While
Bernstein’s algorithm can be viewed as aw-bit extension of Tonelli-Shanks, Sarkar’s proposal
is a combination of such a variant, and of a w-bit extension of Adleman-Manders-Miller.
Sarkar showed thatwith a careful choice of how todo that combination, a sub-quadratic com-
plexity can be achieved, namely O((n/w)1.5) field multiplications, for the same table storage
cost as in Bernstein’s algorithm (O(2wn/w) field elements).While the subquadratic complex-
ity necessarily implies a lower cost for large enough values of n, it is not necessarily better for
a specific, fixed n. With the same example used by Bernstein (P-224’s field with n = 96, and
using w = 6), Sarkar’s method has a 146S + 82M cost (not counting the initial exponentia-
tion), which is the exact same number of field operations as with Bernstein’s method, albeit
with a higher squaring-to-multiplications ratio, thus offering slightly better performance if
the implementation of squarings happens to be faster than that of general multiplications.

In this note, we explore a different variant. The Tonelli-Shanks algorithm can be viewed
as a sub-case of the Pohlig-Hellman algorithm for solving discrete logarithmswith smooth or-
der[7]. The Pohlig-Hellman algorithm handles order powers pa one digit (in base p) at a time,
like Tonelli-Shanks, which can be viewed as a split of pa into p and pa−1; this admits a natural
extension into amore balanced split into two pa/2 halves. This “divide-and-conquer” strategy
leads to a O(n log n) cost3. Applied to the specific problem of computing square roots in fi-
nite fields, the same O(n log n) complexity is obtained, which is asymptotically better than
bothBernstein’s andSarkar’smethods. Precomputed tables canmoreover help speedup some
parts of the algorithm. With the same example as previously (P-224’s field, with n = 96),
and using 6-bit tables (w = 6, for the same overall storage cost in O(2wn/w) field elements),
we reduce the cost to 142S + 60M (still not counting the initial exponentation), which has
a lower total number of operations (202 instead of 228), and an even higher squaring-to-
multiplications ratio. In practical terms, the performance difference is minor, but it becomes
significant for larger values of n.

The following sections describe our algorithm and discuss a few extra optimizations. An
heavily commented example implementation (using Sage) is available at:

https://github.com/pornin/modsqrt

2 The Improved Method
Algorithm 1 is the direct transcription of the generic method described in the previous sec-
tion, which is common to Tonnelli-Shanks, Adleman-Manders-Miller, Bernstein, Sarkar and
the new method. It uses DLPpow2 (algorithm 2), which is the Pohlig-Hellman variant im-
proved with the divide-and-conquer strategy. We stress out that neither algorithm is novel;

2All precomputed tables are prepared in advance, and are not modified when used, so that, in an
embedded system context, they can be stored as ROM/Flash, which is a less scarce resource thanRAM.

3This was already noted by Shoup ([10], section 11.2.3), but Shoup does not claim authorship of
that idea, which may have been expressed previously.

3

https://github.com/pornin/modsqrt


only the combination of the two for the purpose of extracting square roots (whichwas appar-
ently previously overlooked) and the various optimization techniques discussed thereafter.

Algorithm 1 Square Root Extraction inGF (q)
Input: x ∈ GF (q), with q = 2nm + 1 (m = 1 mod 2, n ≥ 1)
Output: y ∈ GF (q) such that y2 = x, or⊥ if x is not a square inGF (q)
1: if x = 0 then
2: return 0
3: v← x (m−1)/2
4: w← xv
5: u← wv
6: e← DLPpow2(u, g, n)
7: if e = 0 mod 2 then
8: return w · g (2n−e)/2
9: else
10: return⊥

Algorithm 2 DLPpow2:Discrete Logarithm among 2n-th Roots of 1 inGF (q)

Input: u, g ∈ GF (q) and n ≥ 1 such that g2n−1 = −1 and u2n = 1
Output: e such that 0 ≤ e < 2n and u = ge
1: if n = 1 then
2: if u = 1 then
3: return 0
4: else
5: return 1
6: a← bn/2c
7: b← n − a
8: c← DLPpow2(u2b , g2b , a)
9: d← DLPpow2(u · g2a−c , g2a , b)
10: return c + (d − 1 mod 2b)

Soundness. The reason the algorithm always works is that 2n-th roots of 1 in a finite field
GF (q) are a cyclic group. Thus, if g is a generator of that group, then g2j is a generator of the
2n−j-th roots of 1 and has order exactly 2n−j . If u = ge, then u2b = (ge)2b = (g2b )e, therefore
the first recursive call must yield e modulo the order of g2b , i.e. c = e mod 2a. If we write
e = c + 2af , then 0 ≤ f < 2b, and:

u · g2a−c = gcg2
af g2

a
g−c

= (g2a )f +1

whichmeans that the second recursive call returns d = f +1modulo the order of g2a , which is
2b.We thus get f = d−1 mod 2b, which yields the complete value of f given its possible range

4



of values. The use of amultiplication of u by g2a−c, instead of a division of u by gc, promotes
efficiency becausemultiplications are typically substantially faster than divisions in finite field
implementations, but requires a corrective action,which is here the (inexpensive) subtraction
of 1 from the obtained d value. In some finite fields, we can use a plain division by gc instead:
if q = p2 for a prime p = 3 mod 4, then GF (q) is a degree 2 extension of GF (p) that can
be defined with a symbolic element i =

√
−1. In that case, the inverse of a 2n-th root of 1 in

GF (q) is simply its conjugate, i.e. is obtained by negating the “imaginary part”; thus, for such
a field, the cost of dividing by gc is about the same as the cost of a single multiplication in the
field.

Complexity. Assuming no precomputed values, the computations of g2b , u2b , and g2a are
done in at most 2b ≤ n + 1 squarings in total, while u · g2a−c needs at most 2a − 1 ≤ n − 1
multiplications (with a square-and-multiply algorithm, noting that 2a−c fits on a bits, unless
c = 0, in which case g2a−c = g2a , which we also compute and can thus reuse in that case).
This is a total of at most 2nmultiplications. The two recursive calls are for parameters a and
b, whose sum is n; thus, the total cost must be lower than 2nh, with h being the recursion
depth, which is necessarily at most dlog2 ne (recursion depth is easily seen to be montonous
in n, and when n is itself a power of two, the depth is exactly log2 n). Thus, the total number
of field multiplications in this algorithm is less than 2n log2 n, which justifies the assertion
that the complexity isO(n log n).

Precomputed Tables. Let w ≥ 1 be an integer; we can precompute powers of g into
lookup tables. Namely, we include in the implementation a two-dimensional table G with
G[i] [j] = gj2iw , for 0 ≤ j < 2w and 0 ≤ iw < n. This tableG is in fact exactly the same as the
one used in Bernstein’s algorithm, thus necessarily with the same storage cost. UsingG:

– The computations of g2b and g2a become free, since these values are just specific elements
ofG (namely, g2a = G[ba/wc] [2a mod w]).

– The computation of g2a−c becomes the product of about a/w elements ofG, and can be
computed with at most da/we multiplications.

– We can stop the recursion earlier by using a reverse lookup of the current root of 1 in
the last sub-table of G, when u is necessarily a member of the roots contained in that
sub-table. For instance, if working with the P-224 field with 6-bit tables (w = 6), then
four recursion layers yield n = 6, i.e. the input u at that depth is a 64-th root of 1, and
the tableG[15] contains exactly all 64 such roots.We can thus simply locate the input in
that table.

The reverse lookup can work with only a subset of the input value (as a bit pattern). For
instance, if using q = 2224 − 296 + 1 (the P-224 field) and w = 6, them, for an input u
which is a 64-th root of 1, we can represent u as a canonical integer in the 0 to q − 1 range,
and inspect only the 9-bit pattern starting at bit 88 of the value: this 9-bit pattern is enough to
disambiguate all 64 possible roots.We can even do slightly better by considering the canonical
representation of 2u instead: in that case, the 8-bit pattern at offset 24 is enough.

Mutualized Squarings. InDLPpow2, the preparation for the first recursive call implies
the computation of u2b , which normally uses b squarings. The second recursive call receives

5



u′ = u · g2a−c as parameter, and will itself compute u′2b
′
when preparing for its own first

recursive call. Note that b′ ≈ b/2 ≈ a/2, and:

u′2
b′
= u2

b′ (g2a−c)2b
′

= u2
b′ (g2b

′
)2a−c

Since the b′ < b, we already obtained u2b
′
for free when computing u2b . Therefore, to com-

pute u′2b
′
, we can use either b′ squarings, or instead reuse the already obtained u2b

′
and com-

pute (g2b
′
)2a−c, which will need about a/wmultiplications using the precomputed tables; if

w ≥ 3, then the latter method is normally faster. This optimization primarily applies at the
shallowest level of the recursion, and not at the level immediately below (if that call computes
u′2b

′
with the alternatemethod, then it iself does not get u′2b

′′
“for free”); if n is large then the

optimization may also yield some additional gains at depth 2, though the main advantage is
at depth 0.

Avoiding the Final Exponentiation. In the square root computation (algorithm 1),
we ultimately compute g (2n−e)/2. This exponentiation can be mutualized with the computa-
tions in DLPpow2; namely, in addition to returning the exponent e, the function may also
return a square root of g−e = 1/u. This is applied in DLPpow2ext (algorithm 3). Note that
only the rightmost path of the recursion tree applies themodification; the other calls toDLP-
pow2 are unchanged.

Algorithm 3 DLPpow2ext:Discrete Logarithm and Inverse Square Root

Input: u, g, s ∈ GF (q) and n ≥ 1, with g2n−1 = −1, u2n = 1, and s2 = g (s = ⊥ if g is not a square)
Output: (e, t) such that 0 ≤ e < 2n, u = ge and t2 = 1/u (or (0,⊥) if u is not a square)
1: if n = 1 then
2: if u = 1 then
3: return (0, 1)
4: else
5: return (1, s)
6: a← bn/2c
7: b← n − a
8: c← DLPpow2(u2b , g2b , a)
9: if s = ⊥ then
10: if c mod 2 = 1 then
11: return (0,⊥)
12: else
13: k← g (2a−c)/2

14: else
15: k← s2a−c
16: (d, z) ← DLPpow2ext(uk2, g2a , g2a−1 , b)
17: t ← kz
18: return (c + (d − 1 mod 2b), t)

6



In DLPpow2ext, basis g is in fact equal to the original g raised to the power 2j for some
known integer j, thus s = √g is the original g raised to the power 2j−1. The returned value is
correct because the first parameter toDLPpow2ext is the exact same value as was used in the
plainDLPpow2, and the obtained z is a square root of 1/(uk2); the value kz is then a square
root of 1/u.

UsingDLPpow2ext, the square root extraction itself avoids the final exponentiation (al-
gorithm 4). The exact gain depends on the used tables; notably, the computation of (√g)2a−c
might be a worse fit for the table boundaries than g2a−c, cancelling some of the gains.

Algorithm 4 Square Root Extraction inGF (q) (extended)
Input: x ∈ GF (q), with q = 2nm + 1 (m = 1 mod 2, n ≥ 1)
Output: y ∈ GF (q) such that y2 = x, or⊥ if x is not a square inGF (q)
1: if x = 0 then
2: return 0
3: v← x (m−1)/2
4: w← xv
5: u← wv
6: (e, t) ← DLPpow2ext(u, g,⊥, n)
7: if t ≠ ⊥ then
8: return wt
9: else
10: return⊥

Shortcuts and Constant-Time Operations. In some practical usage scenarios, the
input is non-secret; this is the case for elliptic curve point decompression, when the point to
decompress is a public key. For non-secret inputs, some shortcuts may be applied:

– If the input is not a square, then this is detected on the leftmost path of the recursion
tree, after only n− 1 squarings: for the input u, the value u2n−1 turns out to be equal to -1,
which implies that the discrete logarithm e is odd. The whole square root computation
can then be aborted at that point, and return a failure (⊥).

– In the precomputed tables,G[i] [0] = 1 andG[i] [2w−1] = −1 for all i; we can skipmul-
tiplications by 1, and replace multiplications by −1with significantly cheaper negations.
This induces significant savings when w is small (1 or 2).

– More generally, all table lookups are a simple dereferencing at an index-dependent ad-
dress.

Conversely, when the input is secret, none of these shortcuts may be used. In particular:

– All multiplications must be performed, regardless of whether an operand happens to be
equal to 1 or -1. In some cases, a constant-time conditional negation can be used if it can
be shown that the operand can only be 1 or -1, for all possible inputs.

– All table lookups must use a constant-time process which reads all entries and combines
them using Boolean operations to retain only the value of the correct entry. The cost of
a lookup is then proportional to the table size (2w), which disfavours large tables.

7



– The case of x = 0 cannot be discarded out-of-band; thus, it may happen that zero values
occur in the computation. The main effect is that the reverse-lookup (at the deepest re-
cursion level) will get as input a root of 1 or a zero, and must be able to gracefully handle
the latter case. Note that if x = 0, then w = 0, so it does not really matter what values
DLPpow2ext returns in that case, as long as it does not crash or misbehave in any other
detectable way.

These considerations also apply to previous algorithms such as Bernstein’s or Sarkar’s.

3 Performance
We present in table 1 a synthetic performance evaluation, for various values of n (96 to 512)
and w (2 to 8), which were already used as examples in [8] (table 2).

n w Bernstein [3] Sarkar [8] This work
S +M total S +M total S +M total

96 2 94S + 1178M 1272 182S + 338M 520 310S + 172M 482
4 92S + 302M 394 170S + 122M 292 191S + 124M 315
6 90S + 138M 228 146S + 82M 228 142S + 60M 202
8 88S + 80M 168 100S + 80M 180 142S + 64M 206

128 2 126S + 2082M 2208 239S + 514M 753 390S + 206M 596
4 124S + 530M 654 228S + 194M 422 233S + 138M 371
6 122S + 255M 377 235S + 115M 350 233S + 113M 346
8 120S + 138M 258 136S + 138M 274 188S + 60M 248

256 2 254S + 8252M 8512 519S + 1484M 2003 903S + 464M 1367
4 252S + 2082M 2334 484S + 514M 998 546S + 320M 866
6 250S + 948M 1198 469S + 332M 801 546S + 261M 807
8 248S + 530M 778 448S + 194M 642 461S + 138M 599

512 2 510S + 32898M 33408 991S + 4098M 5089 2056S + 1042M 3098
4 508S + 8258M 8766 972S + 1538M 2510 1259S + 734M 1993
6 506S + 3743M 4249 1057S + 955M 2012 1259S + 571M 1830
8 504S + 2082M 2586 960S + 514M 1474 1086S + 320M 1406

Table 1:Comparison of runtime costs of this workwithBernstein’s and Sarkar’s algorithms.
For each case, the number ofmultiplications is presented twice, first with squarings and non-
squarings separated, then grouped together. Values do not include the cost of the initial ex-
ponentiation (to the power (m − 1)/2), which is the same for all algorithms and does not
depend on the parameter w. Values for Bernstein’s and Sarkar’s algorithms are from [8].

Not captured in table 1 is the storage cost. In general, this is (2w − 1)n/w field elements
for all three algorithms (valuesG[i] [0] need not be stored since they are all equal to 1); how-
ever, Sarkar’s algorithm can somewhat reduce that storage size whenw happens not to exactly
divide n; in the table examples, this applies to cases n = 128, 256 and 512 for w = 6.

8



We see in table 1 that our new algorithm is on par with Sarkar’s, and significantly outper-
forms itwhenn/w is large. This corresponds to the better asymptotic complexity.Conversely,
when w does not exactly divide n, or when n/w is not a power of two, table boundary effects
tend to have an adverse effect on our performance; this is especially visible for n = 96, where
increasing the table sizes from w = 6 to w = 8 (which triples the storage cost) makes perfor-
mance strictly worse. Sarkar’s algorithm includes a compile-time search for an optimal “split
sequence”, which tends to better adapt to such conditions. In the algorithm described in this
paper, we use a simple split of the input n into a + b with a = bn/2c; this is not necessarily
optimal, and it is conceivable that for specific values of n and w, some slightly skewed split
strategies would yield better performance. This is currently unexplored.

It should be recalled here that in table 1, we only consider field multiplications (includ-
ing squarings) for the cost. We ignore simpler operations such as conditional selection or in-
ner function calls, and table lookups; the latter, in particular, can have a non-trivial cost if
operating on secret input, but also in general through cache effects: if large tables are used,
then the square root computation will use some cache resources and thus evict other values,
whichmay indirectly slow down other parts of the application that use the square root prim-
itive. As always, asymptotic complexity, operation counts for specific parameters, primitive
microbenchmarks, and in-application performance are different things, and none of them is
an accurate predictor of the next one.

4 Conclusion
We presented an evaluation of the application of a divide-and-conquer variant of the Pohlig-
Hellman algorithm to the computation of square roots in some “inconvenient” finite fields.
This algorithmoffers performancewhich is on parwith previsouly best known solutions, but
becomes significantly better for large values of n (or small precomputed tables), thanks to a
lower asymptotic complexity.

This is probably not an optimal solution. At least from an asymptotical point of view,
Sutherland’s algorithm[11] promises a lower complexity (O(n log n/log log n) group opera-
tions) for solving discrete logarithm in cyclic groups of order2n. For specific parameter values,
nested strategies that performs carefully selected splits and switch algorithms have been ex-
plored in other contexts using such discrete logarithms, e.g. as part of some cryptographic key
exchange protocols working on isogeny graphs between supersingular elliptic curves (see [5],
section 5). Even if using the algorithm presented here, there are at least some unexplored op-
timization areas related to the optimal order split and set of precomputed tables to obtain the
best performance, especially when w does not divide n, or when n/w is not a power of two.

References
1. L. Adleman, K. Manders and G. Miller,On taking roots in finite fields, Proceedings of the 18th

Annual Symposium on Foundations of Computer Science, pp. 175-178, 1977.
2. A. Atkin, Probabilistic primality testing (summary by F. Morain), Technical Report 1779, IN-

RIA, 1992,
http://algo.inria.fr/seminars/sem91-92/atkin.pdf

3. D. Bernstein, Faster square roots in annoying finite fields,

9

http://algo.inria.fr/seminars/sem91-92/atkin.pdf


https://cr.yp.to/papers.html#sqroot (2001)
4. S. Bowe, J. Grigg and D. Hopwood,Recursive Proof Composition without a Trusted Setup,

https://eprint.iacr.org/2019/1021
5. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes and D. Urbanik, Efficient compression of

SIDH public keys, Advances in Cryptology - EUROCRYPT 2017, Lecture Notes in Computer
Science, vol. 10210, pp. 679-706, 2017.

6. Information Technology Laboratory,Recommendations for Discrete Logarithm-based Cryp-
tography: Elliptic Curve Domain Parameters, National Institute of Standard and Technology,
SP 800-186, 2023.

7. S. Pohlig andM. Hellman, An improved algorithm for computing logarithms over GF(p) and its
cryptographic significance, IEEE Transactions on Information Theory, vol. 24, issue 1, pp. 106-
110, 1978.

8. P. Sarkar, Computing Square Roots Faster than the Tonelli-Shanks/Bernstein Algorithm,
https://eprint.iacr.org/2020/1407

9. D. Shanks, Five Number Theoretic Algorithms, Proceedings of the SecondManitoba Conference
on Numerical Mathematics, pp. 51-70, 1973.

10. V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge University
Press, 2005,
https://shoup.net/ntb/

11. A. Sutherland, Structure computation and discrete logarithms in finite abelian p-groups, Mathe-
matics of Computation, vol. 80, issue 273, pp. 477-500.

12. A. Tonelli, Sulla risoluzione della congruenza x2 ≡ c (mod pλ), Atti della Reale Accademia dei
Lincei, ser. 5, vol. 1, sem. 1, pp. 116-120, 1892.

13. Tablet CBS 01535 (anonymous), PennMuseum, Philadelphia, Achaemenid period (547-
331 BC).

10

https://cr.yp.to/papers.html#sqroot
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2020/1407
https://shoup.net/ntb/

	1 Introduction
	2 The Improved Method
	3 Performance
	4 Conclusion

