
Cryptanalysis of Symmetric Primitives over
Rings and a Key Recovery Attack on Rubato ⋆

Lorenzo Grassi1, Irati Manterola Ayala2, Martha Norberg Hovd2, Morten
Øygarden2, H̊avard Raddum2, and Qingju Wang3

1 Ruhr University Bochum, Bochum, Germany
2 Simula UiB, Bergen, Norway

3 Telecom Paris, Institut Polytechnique de Paris, France
lorenzo.grassi@ruhr-uni-bochum.de

{irati,martha,haavardr,morten.oygarden}@simula.no
qingju.wang@telecom-paris.fr

Abstract. Symmetric primitives are a cornerstone of cryptography, and
have traditionally been defined over fields, where cryptanalysis is now
well understood. However, a few symmetric primitives defined over rings
Zq for a composite number q have recently been proposed, a setting
where security is much less studied. In this paper we focus on studying
established algebraic attacks typically defined over fields and the extent
of their applicability to symmetric primitives defined over the ring of
integers modulo a composite q. Based on our analysis, we present an
attack on full Rubato, a family of symmetric ciphers proposed by Ha et
al. at Eurocrypt 2022 designed to be used in a transciphering framework
for approximate fully homomorphic encryption. We show that at least
25% of the possible choices for q satisfy certain conditions that lead to
a successful key recovery attack with complexity significantly lower than
the claimed security level for five of the six ciphers in the Rubato family.

Keywords: Algebraic cryptanalysis, composite modulus, Rubato, Key recovery
attack, Arithmetization oriented primitives

1 Introduction

Symmetric cryptography is the most fundamental form of encryption and its
history goes back thousands of years. In modern times, the first cipher to be
standardized was the symmetric encryption algorithm DES in 1977 [63], and
since then many other symmetric ciphers have been proposed and standardized.
The continued development of other areas of cryptography has often required
symmetric ciphers with particular properties, which prompts the proposals of
new schemes. This cycle of demand and proposal continues to this day.

As symmetric cryptography evolves, so does its cryptanalysis. Security claims
and notions have been formalized, and it has long been standard to assess the

⋆ Author list in alphabetical order.

security of new primitives by examining their susceptibility to known attacks,
e.g., linear [61] and differential [17,18] attacks as well as refined and generalized
versions of them [15,16,19,55,73]. Another class of attacks is algebraic attacks,
such as interpolation [50], higher-order differential [58,55], or computing Gröbner
bases for a set of polynomials representing the encryption function.

However, the procedure and success of many attacks depend on the ring or
field over which the symmetric primitive is defined, especially algebraic attacks.
This dependency is the main topic of our paper, as we assess how attacks on
primitives defined over fields may carry over to primitives defined over rings.

1.1 From Traditional Symmetric Primitives to Symmetric
Primitives over Integer Rings Modulo Composites

Traditional Symmetric Primitives. Since computers work with bits, the
traditional symmetric ciphers (from DES and onwards) have been built on bit-
strings, which must be embedded with mathematical operations in order to per-
form any cryptographic algorithm. The natural algebraic structure for these ci-
phers has therefore been the binary field F2, or one of its extensions F2n . These
fields are very convenient for computers, as addition is simply the XOR opera-
tion, and multiplication is simply the AND for F2, or a particular matrix/vector
multiplication over F2 for multiplying elements of F2n .

The non-linear operations in these types of ciphers may be performed using
S-boxes: permutations on short bit-strings that can easily be implemented via
a look-up table. S-boxes should be designed such that describing them with
polynomials over the base field produces polynomials of the highest possible
degree which the S-box size will permit, as security may be compromised if this
is not the case. There are alternative ways of performing non-linear operations,
for example the method of ARX ciphers, which uses addition modulo 2n as an
operation in the cipher (see [11,12,13] for examples). However, S-boxes are by
far the most common way to perform non-linear operations.

The linear operations in symmetric ciphers should combine the outputs from
different non-linear operations as a means to thwart attacks. Iterating the non-
linear and linear operations over several rounds quickly makes the polynomials
describing encryption depend on all unknown key variables and have the max-
imum possible degree for the given number of unknowns and the base field.
The fields F2 and the more general F2n are well understood for algebraic crypt-
analysis, and it has become increasingly easy to argue convincingly that ciphers
defined over either these fields are secure against algebraic attacks.

Arithmetization-Oriented Symmetric Primitives. The traditional ciphers
work very well for simple encryption/decryption of binary data. However, with
the evolution of more sophisticated cryptographic constructions like multi-party
computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge
(ZK) protocols there has been an increasing demand for arithmetization-oriented
symmetric primitives to be used together with MPC, ZK, or FHE. While tradi-
tional primitives have been designed to be efficient in software and hardware, the

2

MPC-/ZK-/FHE-friendly primitives are subject to a different efficiency metric.
Instead of minimizing the number of bitwise operations, these designs aim to
minimize the cost related to the number of non-linear operations. Roughly:

– MPC-friendly schemes aim to minimize the number of non-linear operations
necessary to evaluate them;

– ZK-friendly schemes aim to minimize the number of non-linear operations
necessary to verify them;

– FHE-friendly schemes aim to minimize the multiplicative depth of their rep-
resentation when encryption and decryption are expressed as circuits.

Several specialized MPC-/ZK-/FHE-friendly symmetric primitives have recently
been proposed, for example MiMC [4],Vision/Rescue [6], Chaghri [7],Rasta [32],
Ciminion [33], Reinforced Concrete [43], HadesMiMC/Poseidon [46,44]. All
these primitives are characterized by the following:

– they are usually defined over a prime field Fp for a large prime p (usually
log2(p) ≥ 64), whereas traditional schemes are defined over binary fields;

– they can be described by a simple algebraic expression over their natural
field, whereas classical schemes require a more complex algebraic expression.

The first point is motivated by the fact that MPC/ZK/FHE protocols often
also rely on primitives from public-key cryptography, which are usually defined
over prime fields. It is therefore more convenient to deal with a symmetric prim-
itive that works directly over a prime field, rather than one instantiated over a
binary field, which would require conversion to/from the prime field.

The second point is related both to the cost metric of MPC/ZK/FHE pro-
tocols, and to the fact that any sub-component (such as the non-linear S-boxes)
that defines the symmetric primitive must be computed on the fly. Indeed, due
to the huge size of the field these primitives are typically defined over, functions
such as the S-box cannot be pre-computed and stored as a look-up table. Some
simple non-linear algebraic function is therefore used instead of a look-up table,
which leads to a simpler algebraic description, making the scheme potentially
vulnerable to algebraic attacks [3,14,34,45,51].

Symmetric Primitives over Quotient Rings with Composite Modu-
lus. The areas of MPC, ZK, FHE, and their associated symmetric primitives
are constantly evolving. While traditionally defined over fields such as Fp and
Fpn , there has recently been a surge of new MPC-protocols defined over a ring
Z2n [28,30,57,62,72]. One method for creating such a ring-based protocol is to
construct a MAC over a ring, then apply it in an adapted framework [28].

As with MPC, the vast majority of ZK protocols are also based over fields,
but there has recently been a handful of suggestion over rings here as well, e.g.,
proof systems based on VOLEs over rings [9,10], and the SNARK Rinocchio [38].

The story is slightly different for FHE, as these schemes have most often
been defined over polynomial rings, but also here the associated primitives have

3

typically been defined over fields. There are, however, two recently proposed sym-
metric schemes defined over rings: Elisabeth [27] and Rubato [49]. Furthermore,
these schemes are not used to construct an FHE scheme, but rather combined
with already existing FHE schemes as part of a larger framework.

Elisabeth is a family of stream ciphers proposed by Cosseron et al. at Asi-
acrypt 2022, designed and optimized to be used in combination with the TFHE
scheme in a Hybrid Homomorphic Encrypton (HHE) framework. Whereas pre-
vious ciphers designed for HHE are defined over fields, Elisabeth is defined over
the ring Z16. This definition impacts the design of the scheme from a security
perspective, which we discuss briefly in Section 4 in the bigger picture of how to
design a non-linear function over a ring. However, defining the cipher over the
ring Z16 also has positive impacts on efficiency, as it allows Elisabeth to exploit
the various subroutines of TFHE to the fullest, and runs significantly faster than
comparable FHE-friendly ciphers for TFHE.

Rubato is a family of ciphers proposed by Ha et al. at Eurocrypt 2022 designed
to be used in a transciphering framework for approximate FHE. The cipher is
based on the novel idea of introducing noise to a symmetric cipher of a low
algebraic degree, which the authors use to argue that very few rounds is sufficient
for achieving security. The design of Rubato is very similar to HERA [25], another
FHE-friendly cipher. A critical difference is that HERA is defined over a field Fp

for p a prime, while this condition is relaxed to a ring Zq for any 25- or 26-bit
integer q in the design of Rubato. We refer to Section 5 for a detailed description
of the cipher and the framework wherein it is designed to be used.

1.2 Our Contributions

Even though symmetric primitives over rings have been proposed, the cryptanal-
ysis used to argue for their security is developed for primitives over fields. Since
symmetric primitives over rings are rather new in the literature, knowledge of
cryptanalysis specific to the ring setting is limited. It is therefore timely that the
cryptanalysis of symmetric primitives is developed to also assess their security
when they are defined over rings, not just fields. In this paper, we aim to start
filling this gap.

Security of Symmetric Primitives over the Ring Zq. First of all, we aim
to better understand the differences in the security of a symmetric primitive
defined over a ring Zq with respect to one defined over a field Fp. We focus
first on adapting the brute force attack in Section 2, whilst the algebraic attacks
based on linearizaton, Gröbner bases, interpolation, and higher-order differential
are discussed in Section 3.

The reason we focus on algebraic attacks is twofold. First, the main focus of
this paper is arithmetization-friendly symmetric schemes. These schemes admit
a simple algebraic expression, which in general implies that algebraic attacks
are much more powerful than statistical attacks. Second, many statistical at-
tacks (e.g., differential [17]) only exploit the property that (Fq,+) or (Zq,+)

4

are groups, and they work whether the analyzed primitive admits a polynomial
representation or not. Hence, it is very likely that such attacks work in a similar
way over both rings and fields. We leave the problem of analyzing this aspect in
more detail for future work.

Most of the mentioned algebraic attacks can be adapted to work when the
cryptographic function admits a polynomial representation over Zq, though they
are not as straightforward as in the finite field case. We report the following:

– Brute force attack: perhaps surprisingly, we note that an adaptation of the
brute force attack can be significantly cheaper than the straightforward
O(qn) for a primitive over Zq with n secret elements. For instance, if q = py,
the cost is O(y · pn), as opposed to O(py·n).

– Linearization: this attack works similarly to that of the finite field case,
though there are subtle difference. In particular, if other linear algebra meth-
ods than (an adaptation of) Gaussian elimination is to be used, the solving
procedure for a linear equation system over Zq must be repeated for every
prime factor of q.

– Gröbner bases: if the polynomial system is overdetermined and admits a
unique solution, it can be solved through Gröbner basis techniques, albeit
at a higher cost than what we expect when solving it over finite fields.
Whether solutions to more general polynomial systems over Zq can be found
by Gröbner basis methods is an open problem;

– Interpolation: there exist dedicated methods for interpolating polynomials
over Zq. Moreover, for some compositions of q, the maximal degree of poly-
nomials can be significantly smaller than q, which could make interpolation
attacks competitive.

– Higher-order differential: beyond restricting to prime factors of q, we have
not been able to find good generalizations of zero sums. We therefore do not
expect higher-order differential attacks to pose much of a threat to ciphers
designed over Zq.

Based on this analysis we discuss how to design the non-linear components of a
symmetric scheme over Zq for preventing these attacks in Section 4.

Key Recovery Attack on Full Rubato. We present Rubato in Section 5, and
give an attack on full Rubato in Section 6. We exploit the fact that Rubato can,
in fact, be described by polynomials of low degree in Zq. As already mentioned,
the designers of Rubato introduced adding random noise drawn from a Gaussian
distribution to the Rubato key stream to make algebraic attacks much harder.
We show how to overcome the addition of random noise by making use of a brute
force attack on the key modulo small factors of q. If some factors are small enough
the brute force attack has complexity much lower than the claimed security level
and allows the attacker to identify positions in the key stream where no noise has
been added, leaving the cipher open to a full key recovery with a linearization
attack. We provide experimental data verifying that the brute-force method we
introduce works as intended and can be used to remove the noise.

5

We further discuss the assumptions underlying the attack in Section 7 and
show that for all but one Rubato variant, at least 25% of the possible choices
for q leads to a cipher that can be broken with time complexity less than the
claimed security level. For example, if q contains the factor 12, the secret key in
Rubato-80M can be successfully recovered with time complexity 257.06 using less
than 250.000 known key stream elements and less than 25 GB of memory.

Restoring the Security of Rubato. Lastly, in Section 8 we discuss some
countermeasures that allow to reestablish the security of Rubato, and which
could be crucial for the design of new symmetric primitives over rings Zq. These
include increasing the width of the noise distribution, increasing the number of
rounds, and using non-polynomial S-boxes.

2 General Security of Symmetric Primitives: Fields
Versus Integers Modulo q

In this section, we recall fundamental properties of polynomial functions over Zq,
and discuss their immediate security impact. We show that polynomials over Zq

are generally more restricted in their degrees than polynomials over finite fields.
On top of that, we shall see that a symmetric primitive that can be written out
as a polynomial in Zq will offer less resistance against a brute force attack when
compared to a primitive defined over a finite field of similar size.

2.1 Notation and Preliminaries

Notation. We fix the following notation for the rest of the paper. Let q denote
a composite integer with prime factorization q = py1

1 · · · pya
a , where pi is prime

and yi ≥ 1 for i = 1, . . . , a. Lowercase letters refers to single integers, and
boldface lowercase letters refers to vectors or sequences of integers. Uppercase
letters indicate functions, including matrices. A table of frequently used notation
is found in Appendix A.

Polynomial Functions. It is well known that not every function over Zq admits
a polynomial representation when q is composite. The existence of null polyno-
mials, i.e., non-trivial elements in Zq[x] that evaluate to 0 for all x ∈ Zq, then fol-
lows from a quick counting argument. Univariate polynomial functions and null
polynomials have been well-studied in the literature, see e.g., [52,67] for general
Zq, and [39] for the important case of Zpy . Let ρ = ρ(q) be the smallest integer
such that ρ! ≡ 0 mod q. Then there are

∏ρ
i=0 q/gcd(i!, q) distinct polynomial

functions Zq → Zq, each of which has a canonical representation as a polynomial
in Zq[x] of degree at most ρ [67, Corollary 9 and Theorem 10]. Note that ρ can be
significantly smaller than q. Indeed, we have ρ(q) = max{ρ(pyi

i)|1 ≤ i ≤ a}, and
y(p− 1)+ 1 ≤ ρ(py) ≤ py [40, Lemma 8]. Finally, a classification of null polyno-
mials is also known [67, Theorem 6],[39, Theorem 1]. While we are not aware of

6

similar studies of multivariate polynomial functions over Zq, a coordinate-wise
application of the aforementioned result implies an upper bound of degree nρ
for polynomials in n variables.

Univariate permutation polynomials have also been studied in the literature.
An exact characterization is known for q = 2y [64]. For more general values of
q, a formula counting the number of permutation polynomials is given in [70].

A necessary condition for a function F defined over Zq to admit a polynomial
representation is preservation of congruence. We state the multivariate version
in the following, with the proof given in Appendix B.

Lemma 1. Let u be a divisor of q, and F a polynomial function Zn
q → Zq.

i) For any x ∈ Zn
q : F (x) mod u ≡ F (x mod u) mod u .

ii) ∀n1,n2,n3 ∈ Nn : F (n1 · u+ n2) mod u ≡ F (n3 · u+ n2) mod u .

The Chinese Remainder Theorem. Many problems in Zq can be simplified
by working over the (powers of) prime factors of q. The classical tool for this is
the Chinese Remainder Theorem (CRT), which we recall in the following.

Theorem 1. Let q =
∏a

i=1 p
yi

i where gcd(pi, pj) = 1 for all i ̸= j. Let b1, . . . , ba ∈
Z such that 0 ≤ bi < pyi

i for 1 ≤ i ≤ a. Then there exists a unique integer x that
satisfies the two following conditions:

– 0 ≤ x < q, and
– for all 1 ≤ i ≤ a: x ≡ bi mod pyi

i .

Suppose that we want to recover an element x ∈ Zq, for q = py1

1 · p
y2

2 , from
its values modulo pyi

i . By Bézout’s identity, there exist µ1, µ2 ∈ Z such that
µ1 · py1

1 + µ2 · py2

2 = 1, which can be computed via the extended Euclidean
algorithm. Then, the solution x to x ≡ b1 mod py1

1 and x ≡ b2 mod py2

2 is
given by x = b1 ·µ2 · py2

2 + b2 ·µ1 · py1

1 . This strategy can easily be generalized to
values of q with more distinct prime factors.

2.2 Solving Polynomial Systems Modulo q

Let F1, . . . , Fn : Zn
q → Zq be n polynomial functions and consider the following

system of equations
F1(x1, . . . , xn) = b1

...
Fn(x1, . . . , xn) = bn .

(1)

The discussion in the previous subsection prompts the following strategy for
solving such a system of equations.

1. For i ∈ {1, . . . , a}, rewrite Eq. (1) modulo pyi

i .
2. Solve each of the systems modulo pyi

i .
3. Reconstruct a solution in Zn

q using CRT.

7

In the case of yi = 1, solving the system modulo pi can be done using any
algorithm for solving polynomial systems over finite fields. Greater care is needed
if yi ≥ 2. In the following, we describe a way to further break down the problem.

It is well-known that any x ∈ Zpy can be written as x =
∑y−1

i=0 x(i) ·pi, where
x(0), . . . , x(y−1) ∈ Zp. Based on this, one strategy for solving the equation system
modulo py is the following:

i) rewrite the equations in Eq. (1) modulo p and solve the system (by exhaus-

tive search if necessary), finding x
(0)
1 , . . . , x

(0)
n ;

ii) rewrite the equations modulo p2. It is simple to note that the only vari-
ables appearing in the system are those with superscript (0) and (1), i.e.

x
(0)
1 , . . . , x

(0)
n and x

(1)
1 , . . . , x

(1)
n . Since x

(0)
1 , . . . , x

(0)
n are known from the pre-

vious step, one only needs to solve for x
(1)
1 , . . . , x

(1)
n ;

iii) more generally, given x
(0)
1 , . . . , x

(0)
n , x

(1)
1 , . . . , x

(1)
n , . . . , x

(i−1)
1 , . . . , x

(i−1)
n , rewrite

the equations modulo pi, and solve the system in order to find x
(i)
1 , . . . , x

(i)
n .

By working iteratively, one finds a solution (x1, . . . , xn) ∈ Zn
py to the system of

equations modulo py. There is the possibility that the reduced systems contain
parasitic solutions, i.e., solutions modulo pi for some i < y, that do not lift to a
solution modulo py. In this case, one can always go back to a smaller modulus
and look for a different solution.

While this approach puts a restriction on what values x
(i)
1 , . . . , x

(i)
n can take,

there is still the problem that the system solving routine must be done in the
ring Zpi , where the usual field-based algorithms cannot be readily applied. For
now we have mentioned exhaustive search as one possible solving method; more
sophisticated methods will be discussed in Section 3.

2.3 Impact on Security

It is well known that the cost of a brute force attack on a symmetric primitive
defined over a field Fpy with a secret key consisting of n field elements should
be O(pn·y) if the primitive is well-designed. The following result shows that the
cost of breaking any symmetric primitive defined over Zpy with a secret key of
n elements is significantly lower, O(y · pn), if the primitive can be described by
a system of polynomial equations

Theorem 2. Let q = py1

1 · · · pya
a and consider a symmetric primitive over Zq

relying on the secrecy of n elements. If the primitive can be described by a system
of polynomials that admits a constant number of solutions modulo pji , for 1 ≤
i ≤ a and 1 ≤ j ≤ yi, then the number of evaluations of the primitive needed to
perform a brute force attack is

O

(
a∑

i=1

yi · pni

)

8

Proof. The proof follows the procedure proposed in Section 2.2. We focus on
finding a solution modulo py; the final complexity statement is obtained by
summing over all cases on this form.

By Lemma 1, it is not necessary to write the polynomials representing the
primitive out in full. Rather, the solving procedure used in i)−iii) in Section 2.2,
at step i0 for 0 ≤ i0 ≤ y − 1, is done by evaluating the primitive for all possible

values (x
(i0)
1 , . . . , x

(i0)
n) ∈ Zn

p . For i0 ≥ 1, this search has to be repeated for each

solution that was found modulo pi0−1. Since we assume a constant number of
solutions at every step, the cost of finding all solutions modulo py is O (ypn).
Finally, we note that the last step of combining the solutions with CRT will
never be a dominant step, as the run time of the extended Euclidean algorithm
is logarithmic in the pi’s. ⊓⊔

We emphasize that it is not necessary for an attacker to know the polynomial
representation of the primitive in order to apply the attack. Moreover, we do
not expect the restriction on solutions for the various moduli to pose much of
a practical limitation. For instance, in the case of a block cipher (resp. stream
cipher), any would-be parasitic solution is likely to disappear by including a few
extra plaintext-ciphertext pairs (resp. key stream elements).

3 Algebraic Methods over Zq for Composite q

We now study the applicability of algebraic attacks on symmetric primitives
defined over Zq. As we are unaware of a generalization of algebraic attacks
for primitives that do not admit a polynomial representation, we only concern
ourselves with the cases where such a representation exists. As we shall see, there
are several differences between applying algebraic attacks to a primitive over a
ring and over a field, both with regards to efficiency and success. In fact, some
of these algebraic attacks may not work at all even if the targeted symmetric
primitive admits a polynomial representation over the ring.

We start by discussing linearization and Gröbner basis techniques. Both of
these are polynomial system solving methods, and can thus be used in the frame-
work described in Section 2.2. We then go on to investigate attacks based on
interpolation and higher-order differentials.

3.1 Linearization Attacks

Linearization is a well-known class of techniques used to solve multivariate poly-
nomial systems of equations over finite fields (see, e.g., [54]). The core idea is
to turn a system of non-linear equations into a linear system by treating each
monomial as a separate variable. In general, the method generates polynomi-
als of some degree, up to the point where the number of equations exceeds the
number of monomials so a solution can be found by linear algebra.

In symmetric cryptography, it is usually assumed that an attacker has access
to sufficiently many equations to directly linearize the system. Recall that the

9

number of possible monomials in a degree d polynomial in F[x1, . . . , xn], where
|F| > d, is bn,d :=

(
n+d
n

)
. If the symmetric primitive admits a polynomial rep-

resentation of degree d in n variables, the linearization attack requires O(bωn,d)
multiplications in F, where 2 < ω ≤ 3 is the linear algebra constant. The memory
cost of the linearization attack is O(b2n,d), and the data complexity is O (bn,d).

Linear algebra modulo q. When the polynomial system is defined over Zq

for a composite q = py1

1 . . . pya
a the usual linear algebra techniques cannot be

readily applied. The straightforward Gaussian elimination method can, however,
be adapted by restricting to multiplications by units in Zq (as opposed to non-
zero elements for the field case). When performing the ensuing reduction, one
furthermore requires the involved rows to have a unit in their pivot position to
guarantee a successful row echelon form. Note that this puts a stronger condition
on which rows can contribute in a row-reduction process, but it is unlikely to pose
much of a problem in the setting of a linearization attack where extra rows may
be sampled. More advanced linear algebra techniques, like Strassen’s algorithm
[69], can also be applied under stronger assumptions on the underlying matrix.

The idea is to recover solutions over Zpy for the various prime factors p of
q, and combine them using CRT. For y = 1, the solution is found by following
the normal algorithm over fields. For y > 1, we suggest following the first half
of a technique by Dixon, which uses p-adic expansion to recover exact rational
solutions from systems of integer coefficients [31]. We recall the method below:

For an invertible matrix A over Zpy consider the problem of finding x so that

Ax ≡ b mod py . (2)

Start by finding C ≡ A−1 mod p, which is done by solving CA ≡ I mod p,
using any algorithm that works over the field Fp. For 0 ≤ i ≤ y− 1 and b0 = b,
we then compute xi ≡ Cbi mod p and bi+1 = (bi −Axi)/p.

Note that, by construction, we have bi−Axi ≡ 0 mod p, so the coordinates
in bi+1 are well-defined elements in Zpy . The solution to Eq. (2) is now given by

x =
∑y−1

i=0 xip
i. This is verified by computing

Ax =

y−1∑
i=0

piAxi =

y−1∑
i=0

pi(bi − pbi+1) = b0 − pyby ≡ b mod py.

3.2 Gröbner Basis Attack

Some of the most powerful techniques for finding a solution to a polynomial
equation system involve computing a Gröbner basis of the associated polynomial
ideal. While the majority of work in this direction considers polynomial rings
over fields, the theory of Gröbner basis computation has also been generalized
to work over more general rings. An overview of this generalization can be found
in [2, Section 4]. A reader familiar with the theory of polynomial rings over
fields should note that there are several differences between the two cases. In

10

fact, the definitions of fundamental concepts such as S-polynomials, polynomial
reductions and even that of a Gröbner basis itself, must be adapted when working
over rings, due to the existence of zero divisors and lack of multiplicative inverses.
Still, with the proper adaptations in place, it can be shown that there exists a
Gröbner basis for any ideal in a polynomial ring over Zq.

One of the most efficient algorithms for computing Gröbner bases, the F4

algorithm [36], has also been extended to polynomial rings over Zq in the com-
puter algebra system Magma [21]. It is not clear whether the typical procedure
for complexity estimation of the F4 algorithm (c.f. [8]) can be generalized to
polynomial rings over the integers modulo q. We have run several experiments
with the F4 algorithm on randomly generated polynomial systems over both Zpy

and Fpy , and report the results in Appendix C. In all experiments we observe
that both time and memory costs are significantly larger for the polynomial sys-
tems over Zpy , than it is for their finite field counterpart. Further investigations
of the complexity of Gröbner basis computation over Zq, beyond this qualitative
comparison, are out of scope for this work.

Solutions from Gröbner Bases. If the polynomial system is sufficiently
overdetermined and has a unique solution, we expect to be able to read the
solution directly from the Gröbner basis when the coefficients are in a field. We
also observed this in all the Zpy -experiments in Appendix C. The process of
recovering a solution from a Gröbner basis of more general polynomials systems,
however, is more involved (see, e.g., [23]).

When working over a field, the typical strategy is to change the monomial
order of the Gröbner basis with the FGLM-algorithm [37] into an order where
a univariate polynomial can be found. A solution to one of the variables is then
found by factoring this univariate polynomial, and the remainder of the (multi-
variate) solution is found by back-substitution and repeated solving of univariate
polynomial equations. There are several reasons why the same strategy cannot
be applied to polynomials over Zq. Firstly, we are not aware of any work that
has adapted the FGLM-algorithm to Gröbner bases over rings. Secondly, fac-
torization in Zq is not as well-behaved as in the finite field case, and there are
polynomials where no better factorization method than brute-force is known [71].
Finally, it is not even clear whether the theoretical foundations of this strategy
(c.f. [23, Section 2]) can be extended to rings.

3.3 Interpolation Attack

The goal of the interpolation attack [50] is to construct a polynomial that de-
scribes a cryptographic function. Given the interpolation polynomial, the at-
tacker can use it to set up distinguishers, forgeries, or key recovery attacks.

If the cryptographic function is described by a univariate polynomial of de-
gree d over a finite field, then this polynomial can be constructed from the
Lagrange interpolation formula using d distinct input-output pairs. This for-
mula relies on the existence of inverses of non-zero elements, and thus cannot be

11

readily applied to polynomials over Zq. That said, the problem of interpolating
polynomials modulo q has been studied in several papers, and some of these
techniques can be applied in an attack.

Interpolation of Univariate Polynomials Modulo q. Recall from Section
2.1 that univariate polynomial functions have a canonical representation of de-
gree d ≤ ρ = ρ(q). This representation can be recovered from the evaluations of
the values 0, 1, . . . , d − 1, by following the procedure described in the proof of
[40, Corollary 7]. Another interpolation method, based on Newton interpolation,
is described in [39] for Zpy . While this is a different approach, it still requires the
evaluation of all inputs 0, 1, . . . , d − 1. We remark that only knowing the poly-
nomial function modulo factors pyi

i of q does not pose much of a drawback for
an attacker. Indeed, Lemma 1 ensures that an attacker can evaluate any x ∈ Zq

modulo these factors, and find the correct output using the CRT.

As noted in Section 2.1, the upper degree bound ρ(q) can be significantly
smaller than q. Therefore, in order to ensure that interpolation attacks will not
pose a problem, any cryptographic function with a polynomial representation
over Zq should be careful in its choice of q.

3.4 Higher-Order Differential Attack

Given a vectorial Boolean function F over Fn
2 of degree d, the higher-order

differential attack [58,55] traditionally exploits the fact that
⊕

x∈V F (x) = 0 for
any affine subspace V ⊆ Fn

2 of dimension strictly larger than d. A generalization
of the attack to any prime field Fp has recently been proposed in [14]. For this
version, it is shown that if F : Fn

p → Fp is of degree deg(F) < h(p− 1), then∑
x∈W

F (x) = 0 (3)

whereW ⊆ Fn
p is an affine subspace of dimension at least h [14, Corollary 1]. The

result can be generalized further to polynomials over Fpn using the existence of
a vector space isomorphism Fpn ∼= Fn

p .

Differentials of polynomials over Zq. For polynomials over Zq, a zero-sum
similar to that of Eq. (3) can be set up by restricting to a prime factor modulus
in the following manner.

Proposition 1. Let p be a prime divisor of q, and F ∈ Zq[x1, . . . , xn] be a
polynomial of degree < h(p − 1), and let V ⊆ Fn

p
∼= Zn

p ⊆ Zn
q be an affine

subspace of dimension at least h. Then:∑
x∈V

F (x) ≡ 0 mod p.

12

Proof. Due to Lemma 1 and the result in [14], we have that∑
x∈V

F (x) mod p ≡
∑
x∈V

F (x mod p) mod p ≡
∑

x∈V⊆Fn
p

F (x) = 0.

⊓⊔

Unlike the finite field case, this result cannot be generalized to prime powers,
since there is no vector space isomorphism between Zn

p and Zpn . Indeed, we have
performed small-scale experiments on low degree polynomials F over Z2n which
generally does not sum to zero, even when the sum is taken over all of Z2n .

The zero-sum in Eq. (3) crucially relies on the fact that
∑

x∈Fp
xi = 0 for

each i < p−1. One may ask whether it is possible to obtain a similar result, and
thus a better generalization than Proposition 1, when working over Zq directly.
In Appendix D we answer this question in the negative when q is the product of
distinct primes, by giving an exact characterization of

∑
x∈Zq

xi, for any i.

4 Designing a Non-Linear (S-box) Function over Zq

We discussed possible algebraic attacks on symmetric primitives over rings Zq

in the previous section. Based on this, we now discuss three possible strategies
for designing the S-boxes and/or non-linear functions with the goal of making
algebraic attacks as hard as possible. A similar discussion for the linear layer is
presented in Appendix E.

4.1 Polynomial Non-Linear Function over Zq

As in the field case, one possible design strategy is to simply define the non-
linear invertible S-box function via an invertible polynomial function. Note that
it is well-known how to design invertible polynomial functions over a ring Zq,
see e.g. [64,66,74] for some concrete examples.

The advantage of this design is the possibility to define the S-box function in a
very efficient way, especially when the polynomial function is sparse. The obvious
downside is that it is possible to describe the complete encryption function as
a polynomial system, making the brute force attack described in Theorem 2
possible. The algebraic attacks described in the previous section should also be
considered in this case.

4.2 Learning from Elisabeth: Look-up Tables

Another possible way of designing the non-linear function is via a look-up table,
which is exactly what is proposed for the Elisabeth stream cipher [27]. Its non-
linear layer is defined using 8 different S-box functions S1, S2, . . . , S8 that are
defined over Z16 via look-up tables (not invertible in Elisabeth’s case), such that
they do not admit any polynomial representation over Z16.

13

The advantage of using look-up tables is the possibility to set up a non-linear
function that does not admit any polynomial representation over the ring Zq,
which immediately makes the cipher immune to any algebraic attack working
over Zq. The disadvantage of this strategy is that the ciphers are less applicable,
for example in the HHE setting, which combines a symmetric cipher with an
FHE scheme. Although FHE schemes are defined to evaluate any polynomial
homomorphically, there is no guarantee that a symmetric cipher which does not
admit a polynomial representation is possible to evaluate, much less that it will
be efficient. TFHE, the FHE scheme Elisabeth is designed to be combined with,
is able to evaluate a look-up table very efficiently for the parameter choices set
by Elisabeth, but it is currently the only FHE scheme able to do so, and hence
the only FHE scheme Elisabeth may practically be combined with.

4.3 “Cut and Sew” Approach

Either of the two strategies just proposed have their own pros and cons. Defining
an S-box as a simple polynomial allows one to evaluate large S-boxes efficiently,
while a non-polynomial S-box is immune to direct algebraic attacks. The best
scenario would be to have a design approach that incorporates the advantages
of both methods, and the “cut and sew” approach we propose, inspired by ideas
from [43], aims to do this.

In the following, we consider two concrete examples, one where q = p1 · p2
with p1 ̸= p2 and one where q = p2. By combining and generalizing them, it is
possible to design a non-linear function for any composite q. Given x ∈ Zq, the
“cut and sew” approach works as follows:

1. decompose x ∈ Zq to its components with respect to the factors of q;
2. apply a non-linear function on each component of x;
3. recompose the new components together.

Let us consider the two cases in more detail.

Case: q = p1 · p2. Let us decompose each x ∈ Zq as

x = x2 · p2 + x1

where x1 ∈ {0, 1, . . . , p2 − 1} and x2 ∈ {0, 1, . . . , p1 − 1}. An S-box S over Zq

can be then defined as

S(x) = S2(x2) · p2 + S1(x1),

where S1 : Fp2 → Fp2 and S2 : Fp1 → Fp1 . It is easy to see that if both S1 and
S2 are invertible, then S is invertible as well.

Both S1 and S2 can be instantiated with either a look-up table or a poly-
nomial function, keeping in mind that both S1 and S2 are defined over fields.
In particular, by instantiating S1 and S2 with polynomials over Fp2

and Fp1
,

it is possible to efficiently evaluate these functions even if p1 and p2 are large.

14

In order to prevent the algebraic attacks previously discussed, it makes sense
to choose S1 and S2 such that S does not admit any polynomial representation
over Zq. By Lemma 1, S admits a polynomial representation only if

∀i ∈ {1, 2} : S(x · pi + y) mod pi ≡ S(z · pi + y) mod pi (4)

for all relevant tuples (x, y, z). It is easy to verify that this equality always holds
for i = 2. Indeed, S(x · p2 + y) ≡ S(z · p2 + y) ≡ S1(y) mod p2 by the definition
of S.

For the case i = 1, one has to prove that such an equality is not satisfied
for at least one relevant tuple (x, y, z), depending on the details of S1 and S2.
For instance, if S1 and S2 are chosen as random permutations, then Eq. (4)
is not satisfied with probability 1 − 1/p1 for any given tuple (x, y, z). Since
1 − 1/p1 ≥ 1/2, a few tests should be sufficient for verifying that an S-box S
does not admit a polynomial representation. We show how to construct an S-box
S that does not admit a polynomial representation given an orthomorphism over
Fp2

and only in the case p1 > p2 in Appendix F. We give this construction for
completeness, and leave the problem to generalize such strategy, or to propose
new ones, open for future research.

While the method described above ensures that S cannot be described as a
polynomial over Zq, we note that S still reduces to S1 modulo p2. Thus, some
care is needed in the construction to ensure that this cannot be exploited in
an attack. A possible way to prevent this exploitation is by using two different
S-boxes S, S′ over Zq defined as follows

x = x2 · p2 + x1 7→ S(x) = S2(x2) · p2 + S1(x1)

x = x′
1 · p1 + x′

2 7→ S′(x) = S′
1(x

′
1) · p1 + S′

2(x
′
2)

where x2, x
′
2 ∈ Fp1

, x1, x
′
1 ∈ Fp2

, S2, S
′
2 : Fp1

→ Fp1
, and S1, S

′
1 : Fp2

→ Fp2
.

Hence, S admits a polynomial representation modulo p2, while S′ admits it
modulo p1. As a result, a symmetric primitive depending on both S and S′ will
not admit a polynomial representation modulo any of p1 or p2. Note that many
MPC-/ZK-/FHE-friendly symmetric primitives (e.g., [6,22,42,43,47,48]) are all
defined via multiple S-boxes.

Case: q = p2. Let x = x2 · p+ x1 as before for x1, x2 ∈ {0, 1, . . . , p− 1}. Here,
we suggest to define

S(x) = S2(x1) · p+ S1(x2) ,

where S1, S2 : Fp → Fp, and where we note that x1 and x2 are “swapped”, in
the sense that the output element that is multiplied by p depends only on x1,
while the input element multiplied by p depends only on x2.

4 As before, such an
S-box is invertible if and only if both S1, S2 are invertible. Moreover:

4 Note that the subspace {x ·p+x ∈ Zp2 | ∀x ∈ Fp} is invariant if S1 = S2. However, it
is possible to break such invariant subspace via a proper choices of round constants
(see e.g. [59,60] for details).

15

Lemma 2. Let p be a prime integer. The function S over Zp2 defined as S(x =
x2 · p + x1) = S2(x1) · p + S1(x2), where x1, x2 ∈ {0, 1, . . . , p − 1} and S1 is
invertible, never admits a polynomial representation over Zp2 .

Proof. If S has a polynomial representation, then it must satisfy Lemma 1, that
is, S(y · p + x) mod p = S(z · p + x) mod p, which implies S1(y) = S1(z) for
each x, y, z ∈ {0, 1, . . . , p − 1}. Obviously, this condition is never satisfied if S1

is bijective and y ̸= z. ⊓⊔

The statistical properties of an S-box constructed using the cut-and-sew ap-
proach may very well be sub-optimal. This should not cause a big problem when
the S-box is large since probabilities of differential or linear trails should still be
easy to make small enough to rule out differential or linear attacks. However, it
is something a designer should keep in mind and check if using this approach for
any particular construction.

5 Rubato

An HHE framework involves the homomorphic evaluation of some cryptographic
function, e.g., encryption of a symmetric cipher, and it is therefore desirable
that this function has a low multiplicative depth so the evaluation can be done
efficiently. However, a low depth is not advisable from a security perspective, as it
makes the cipher susceptible to the attacks described in Section 3. Furthermore,
the strategies described in Section 4 do not combine well with FHE, except in
specialized circumstances.

Rubato [49] is an attempt to strike a balance between low multiplicative depth
and security, as it is a family of symmetric cipher which admits a polynomial
representation of low degree, but with the addition of Gaussian noise to the
key stream to prevent algebraic attacks. We describe the ciphers in this section,
as well as the transciphering framework it is intended for. The notation of the
original paper is mostly adapted to ours.

5.1 Description of Rubato

For an integer q ≥ 2, let Zq := Z ∩ (−q/2, q/2] and Z×
q be the multiplicative

group of Zq. We view the state X of Rubato as a v × v matrix over Zq, where
xi,j denotes the entry in the i-th row and in the j-th column. Let the block size
n be the square of some v ∈ Z>0.

For λ-bit security Rubato takes a symmetric key k ∈ Zn
q , a nonce nc ∈ {0, 1}λ

and a counter i ∈ Z≥0 as input, and returns a block of key stream

z = Rubato[k,nc, i](is) ∈ Zℓ
q

for some ℓ < n, where is = (1, 2, . . . , n) ∈ Zn
q denotes an initial (fixed) state.

Encryption of a message vector µ ∈ Rℓ by Rubato is defined by

c = ⌊∆ · µ⌉+ z mod q,

where ∆ ∈ R is a scaling factor dependent on the norm of the message.

16

Components. We introduce the following components of Rubato:

Add-Round Key and the Key-Schedule: the Add-Round Key function (ARK)
over Zn

q is defined as

ARK[k, i](x) = x+ k • rci,

where • denotes component-wise multiplication modulo q and rci ∈ (Z×
q)

n

are round constants defined via an XOF that takes the nonce nc and the
counter i as input.

Mix Columns and Mix Rows: The linear transformation in Rubato is com-
posed of two consecutive operations: MixColumns and MixRows. Let X ∈
Zv×v
q be the state of Rubato. The linear layer is simply defined as

X
MixColumns−−−−−−−−→Mv ×X

MixRows−−−−−−→ (Mv ×X)×MT
v

where MT
v denotes the transpose of a particular matrix Mv ∈ Zv×v

q . For the
particular cases v ∈ {4, 6, 8}, Mv is defined as

Mv =

yv

yv ≪ 1
...

yv ≪ v − 1

 ,

where y4 = [2, 3, 1, 1], y6 = [4, 2, 4, 3, 1, 1] and y8 = [5, 3, 4, 3, 6, 2, 1, 1], and
yv ≪ j denotes the cyclic rotation of yv by j positions.

Feistel: A quadratic type-III Feistel [75] is applied on the state. Given the input
x = (x1, . . . , xn) ∈ Zn

q , the output is

Feistel(x) = (x1, x2 + x2
1, x3 + x2

2, . . . , xn + x2
n−1).

Rubato. Using the components described above, we illustrate the round function
of Rubato in Fig. 1 and define the function as follows:

RF[k, i] = ARK[k, i] ◦ Feistel ◦MixRows ◦MixColumns.

The final round differs slightly from the rest in that a second linear transfor-
mation is applied, together with the truncation function Trn,ℓ, which simply cuts
away the last n− ℓ entries of the state (i.e., Trn,ℓ(x1, . . . , xn) = (x1, . . . , xℓ)):

Fin[k, i+ r] =Trn,ℓ ◦ARK[k, i+ r] ◦MixRows ◦MixColumns◦
Feistel ◦MixRows ◦MixColumns ,

This final round is followed by the last function AGN, which adds Gaussian
noise. Let x = (x1, . . . , xℓ) ∈ Zℓ

q and e1, . . . , eℓ ← Dαq be sampled independently

17

Fig. 1: The round function of Rubato.

Table 1: Proposed parameters of Rubato. λ is the security level, n is the block
size, ℓ is the length of the keystream, ⌈log2 q⌉ is the bit length of q with Zq being
the ring Rubato instances operate on, (αq)2/2π is the variance of the Gaussian
distribution the noise is sampled from, r is the total number of rounds.

Parameter λ n ℓ ⌈log2 q⌉ αq r

Par-80S 80 16 12 26 11.1 2
Par-80M 80 36 32 25 2.7 2
Par-80L 80 64 60 25 1.6 2

Par-128S 128 16 12 26 10.5 5
Par-128M 128 36 32 25 4.1 3
Par-128L 128 64 60 25 4.1 2

according to an one-dimensional discrete Gaussian distribution Dαq with zero
mean and variance (αq)2/2π. Then,

AGN(x) = (x1 + e1, . . . , xℓ + eℓ) .

All in all, the r-round stream cipher Rubato is defined as follows:

Rubato[k,nc, i] = AGN◦Fin[k, i+r]◦RF[k, i+r−1]◦· · ·◦RF[k, i+1]◦ARK[k, i].

The parameters of Rubato proposed by the authors are given in Table 1.

5.2 About the Value of q: Rubato in the RtF Framework

The choice of the parameter q greatly impacts the security of Rubato, and so to
better understand the different aspects of this choice, we recall the RtF (Real-to-
Finite field) transciphering framework, which is the greater context the Rubato
ciphers are intended for. We stress, in particular, that there is no requirement
for q to be prime from an applicability perspective of this framework.

18

The RtF framework is a type of HHE framework for the approximate ho-
momorphic encryption scheme CKKS. The framework lets a client encrypt their
data using a symmetric cipher, a (comparatively) cheap operation, and the en-
crypted result is sent to a server which performs the heavy, homomorphic en-
cryption and further cloud computation. The framework was originally proposed
by Cho et al. with the symmetric cipher HERA [25], which is a more traditional
stream cipher than Rubato. HERA consists of several rounds of linear and non-
linear operations, it does not add Gaussian noise to the key stream, and it is
explicitly defined over a prime field for security. However, HERA is used in the
RtF framework in the same way as Rubato is in the description below.

On the client side of the RtF framework, the client will feed a key k into
Rubato, use the resulting key stream to encrypt a message, and finally send this
encrypted message to the server. The client will also encode and encrypt the
key k using the homomorphic encryption scheme FV and send the resulting
ciphertext to the server. Upon receiving this encryption of k, the server runs
Rubato homomorphically to produce an FV-encryption of the key stream, whilst
the encryption of the message is transformed into an FV ciphertext. The FV-
encryption of the key stream is then subtracted from the FV-encryption of the
symmetrically encrypted message, producing an FV-encryption of just the mes-
sage. Finally, an operation termed ‘half bootstrapping’ is performed to transform
the FV ciphertext into a CKKS ciphertext. After this step is completed, the RtF
framework has served its purpose, and the server may evaluate the ciphertext
further using only the CKKS scheme.

Since the RtF framework uses Rubato in combination with the FV and CKKS
schemes, there are some overlaps in the parameters of the three schemes. Of most
importance to us is that the modulus q of Rubato has to match the plaintext
modulus of FV, as the key k is encrypted using FV, and the plaintext modulus of
FV must therefore accommodate for this. There is no restriction on this plaintext
modulus other than requiring it to be an integer larger than 1 [35]. In practice,
however, it is usually taken to be a prime congruent to 1 modulo 2N , where N
is the dimension of the ring FV is defined over, but this choice is made purely
for efficiency reasons, as the choice of plaintext modulus has no impact on the
security of the FV scheme [35,1]. This is in great contrast to Rubato, where the
choice of q may severely compromise the security.

5.3 Non-Invertible and/or Non-MDS Matrices for Rubato

Before presenting the attack on Rubato, we point out that the matrices that
define the linear layer of Rubato are not always invertible and/or not always
MDS for several values of q. We recall that a matrix M ∈ Zn×n

q is invertible if
and only if its determinant det(M) is co-prime with q, i.e., gcd(det(M), q) = 1.

Definition 1 (MDS [29]). The branch number of M ∈ Zn×n
q is defined as

B(M) = minx∈Zn
q \{0}{hw(x) + hw(M(x))}, where hw(·) is the bundle weight

in wide trail terminology. A matrix M ∈ Zn×n
q is called a Maximum Distance

Separable (MDS) matrix if and only if B(M) = n+ 1.

19

In the case of Rubato, we check all the possible integer values for q that are 25
or 26 bits. The number of q’s such that Mv for v ∈ {4, 6, 8} is invertible or MDS
and the corresponding frequencies are provided in Table 2. In the ‘Invertible’
part, where Mv is invertible over Zq, the column ‘Total’ gives the total number
of such q’s, the column ‘Prime’ gives the number of such prime q’s, and the
column ‘Composite’ gives the number of such composite q’s. The corresponding
frequencies among all the possible 3 · 224 q values are given below the numbers.
The ‘MDS’ columns are similar. We discuss these results in detail in Appendix H.

Table 2: The number of invertible matrices and MDS matrices of Rubatomatrices
Mv (v = 4, 6, 8) over all possible q-values of 25 or 26 bits.

Matrix
Property Invertible MDS

Total Prime Composite Total Prime Composite

v = 4 225.04 221.46 224.91 223.23 221.46 222.73

68.57% 5.72% 62.85% 19.56% 5.72% 13.85%

v = 6 223.68 221.46 223.33 222.62 221.46 221.77

26.67% 5.72% 20.95% 12.83% 5.72% 7.11%

v = 8 225.0 221.46 224.87 222.11 221.46 220.64

66.72% 5.72% 61.00% 8.96% 5.72% 3.24%

Impact on the Security. At the current state of the art, we are not aware
of any attack on Rubato (or Rasta-like schemes) that exploits the possible
non-invertibility of the linear layers that instantiate Rubato. For example, both
Masta and the Rasta-like variant designs proposed in [41] are defined using
non-invertible components. Still, no attacks have been proposed on them. This
is related to the fact that the encryption function changes at every evaluation
for these ciphers. Hence, even if an internal collision is found, different round
functions are applied on the same state, with the results of different outputs.

However, using the same non-MDS matrix twice in one round of Rubatomight
lead to weaker diffusion than expected by the designers, especially due to the
small number of rounds. We leave the open problem of exploiting non-invertible
and/or non-MDS matrices for future work.

6 Key Recovery Attack on Rubato

We present a key recovery attack on Rubato, which breaks the claimed security
level of five of the six proposed variants of Rubato when the modulus q belongs
to a certain class. The steps of the attacks are as follows:

1. First, we recover the correct key and noise modulo m, when m is a factor of
q lying in a particular interval.

20

2. Then, we recover the positions in the key stream where the noise added by
AGN(·) is exactly 0.

3. Finally, we recover the secret key by setting up a system of polynomial
equations using the knowledge of positions with no noise, and solving the
system by re-linearization.

For ease of exposition, we specify some further notation:

– We denote the Rubato algorithm without the final AGN(·) operation as
Ru = Ru[k,nc, i].

– The stream of Zq-elements produced by running Ru is denoted as
w = (w1, w2, . . .).

– For either Rubato or Ru, we let Rubatom or Rum denote that we are executing
all the steps of the cipher in the ring Zm rather than Zq, producing a stream
of elements in Zm.

After presenting the attack, we will present the necessary assumptions q must
meet in order to have an attack with complexity less than 2λ given the parameter
sets of the different Rubato variants, and the fraction of the valid choices for q
that results in weak instances of Rubato.

6.1 Recovering Key and Noise Modulo a Small Factor of q

First, we describe how to recover the correct key values and noise values modulo
m, where m is a factor of q lying in a particular interval. The upper and lower
bounds on the interval depend on the Rubato variant and will be determined in
Section 7.1.

Assume the attacker is given s elements of known key stream z1, . . . , zs gen-
erated by an unknown secret key (k1, . . . , kn) ∈ Zn

q , where

s :=

⌈(
n+ 2r

2r

)
· αq

⌉
.

We then have the equations

zi = wi + ei mod q, for 1 ≤ i ≤ s ,

where the noise values ei are drawn from Dαq.

Let m be a non-trivial factor of q, and let k̃ = (k̃1, . . . , k̃n) ∈ Zn
m denote a

guess for the values of the secret key modulo m. Note that if m satisfies mn < 2λ

it is possible to do an exhaustive search over all possible (k̃1, . . . , k̃n) and compute
the Rubatom key stream with complexity lower than the claimed security level.
Furthermore, from Lemma 1 we have the equality

Rubatom[k mod m,nc, i] = Rubato[k,nc, i] mod m.

For each guess (k̃1, . . . , k̃n), let w̃1, . . . , w̃s be the stream generated by Rum[k̃].

21

In order to check the correctness of a guess, we note the following. If the
guess is wrong we expect the values w̃i to be distributed uniformly at random
over Zm, and in particular, we expect the candidate noise values computed as

ẽi = (zi mod m)− w̃i for i = 1, . . . , s

to be distributed uniformly at random over Zm. This assumption stems from the
common expectation that a good cipher behaves like a random permutation. If
the guess (k̃1, . . . , k̃n) is equal to (k1 mod m, . . . , kn mod m) where (k1, . . . , kn)
is the correct secret key, we have

ẽi = (ei mod m) for i = 1, . . . , s,

where the ei-values are the actual noise values drawn from Dαq when producing
the key stream z.

If m is large enough relative to the αq parameter, we can distinguish between
a correct and incorrect guess. In other words, the non-uniformity of the Gaussian
distribution shines through even if the numbers drawn from Dαq are only given
modulo m. In Section 7.1 we establish the exact bounds on m for five of the six
Rubato variants that result in brute force attacks on k̃ where we can distinguish
the correct guess from the wrong ones with complexity smaller than 2λ. As we
shall see, this bound cannot be established in the case of Rubato-128L. After
performing this part of the attack, we learn the correct values of ei mod m for
i = 1, . . . , s, and of kj mod m for j = 1, . . . , n.

6.2 Recovering the Key Modulo a Larger Factor of q and Positions
in the Key Stream with no Noise

After recovering ei mod m for 1 ≤ i ≤ s and kj mod m for 1 ≤ j ≤ n for some
factor m of q, we proceed to identify every position in the key stream where the
noise added by AGN(·) is 0. In the following, let f be a non-trivial factor of q/m.

Case: f ≤ m. If f ≤ m we can repeat the attack from Section 6.1, this time
running Rubatofm. Similar to the attack described in Section 2, the attacker
can use the knowledge of the correct key values modulo m to speed up the
exhaustive search. For each ki mod fm, the attacker does not guess on all values
0, . . . , fm− 1, but only on the values (ki mod m) + j ·m for 0 ≤ j < f .

Note that there is no lower bound on the size of f . If the attacker is able to
distinguish the Dαq distribution modulo m from the uniform distribution, the
attacker is certainly able to distinguish Dαq from uniform modulo 2m, or any
higher multiple of m. The attacker learns the correct key values modulo fm,
and the correct ei-values modulo fm after doing the exhaustive search modulo
fm, with a complexity that is no higher than the initial step.

22

Case: f = f1 · · · fb where all fi ≤ m In this case, it is possible to repeat the
exhaustive search for each factor fi of q/m where 2 ≤ fi ≤ m. The complexity
of this is at most b ·mn. However, our aim in this step is not to maximize the
modulus fm for which one can recover the correct key modulo fm. Rather, we
are interested in just having a large enough f such that all noise values ei for
i = 1, . . . , s will satisfy the bound |ei| < fm with high probability. In Section 7.1
we determine a threshold t depending on αq such that when fm ≥ t and ei is
drawn from Dαq, then |ei| < fm for all i = 1, . . . , s with probability higher than
99%. So when we find ei ≡ 0 mod fm, we have that ei ≡ 0 mod q with high
probability as well, and not ei = ±fm. In other words, when the attacker finds
ei ≡ 0 mod fm where ei is drawn from Dαq, the attacker knows that, with high
probability, there has been no noise added by AGN(·) for this particular index
i. No added noise will be a rather common occurrence, as the noise value 0 will
be sampled from Dαq at a rate of 1/αq.

We define I to be the set of indices where no noise has been added by AGN(·):

I = {i | ei ≡ 0 mod q}.

So when fm|q, fm > t and all prime factors of f are smaller than or equal to
m, the attacker can recover the correct I with probability higher than 99%.

6.3 Key-Recovery of the full Rubato Key

Assuming the attacker knows I, the set of indices in the Rubato key stream
where no noise has been added, it is fairly straightforward to set up a system
of polynomial equations in the unknown key variables that can be solved by
linearization. As Rubato is designed to have very low multiplicative complexity,
and hence have very few iterations of the round function, we will see that the
size of the polynomial equations in k1, . . . , kn and the complexity for solving
them is small compared to the security parameter.

Treating the unknown k1, . . . , kn as variables, the attacker starts by evalu-
ating all operations for producing the Ru stream in sequence. This yields the
expressions Fi(k1, . . . , kn) = wi for 1 ≤ i ≤ s.

When i ∈ I, the attacker knows that wi = zi, so they can extract exactly
these equations to set up the system

Fi1(k1, . . . , kn) = zi1
Fi2(k1, . . . , kn) = zi2

...
...

Fib(k1, . . . , kn) = zib ,

(5)

for all ij ∈ I. Recall that we assume the attacker knows s elements of key stream

where s =
⌈(

n+2r

2r

)
· αq

⌉
. Since the noise value 0 is sampled at a rate of 1/αq we

expect the size of I to be |I| ≥
(
n+2r

2r

)
.

Each polynomial in Eq. (5) has degree 2r. For instance, since every Rubato
variant with 80-bit security has r = 2, the degree of the polynomials in Eq. (5) is

23

Table 3: The time complexities for solving a linearizied system of equations
modulo one factor of q. To recover the secret Rubato key solving the linearized
systems must be repeated at most 26 times, depending on q.

Rubato variant Degree # of monomials Solving complexity

Rubato-80S 4 4845 234.28

Rubato-80M 4 91390 246.14

Rubato-80L 4 814385 254.98

Rubato-128S 32 241.04 2114.90

Rubato-128M 8 227.40 276.72

Rubato-128L 4 814385 254.98

4. The number of monomials appearing in Fi is given by
(
n+2r

2r

)
. Since we expect

to have more equations than monomials in Eq. (5) we can solve the system by
Gaussian elimination. Here we also keep in mind that we are working with a
composite q, so we need to use the method explained in Section 3.1, and in
particular, we must solve the linearized system once for every prime factor of q.

The complexity of solving Eq. (5) for one prime factor is O(
(
n+2r

2r

)ω
), where

ω ≤ 3 is the linear algebra constant. A conservative (and realistic) choice for ω
is ω = 2.8. Table 3 gives the degrees, number of monomials, and complexities
for solving one linearized system modulo p|q for the six different variants.

As we can see from Table 3, all complexities for breaking noise-less Rubato by
linearization are significantly smaller than the security bounds 280 and 2128, even
when this step has to be repeated a small number of times. Assuming q satisfies
the assumptions necessary for doing steps 1 and 2 of the attack, the attacker can
do a full key recovery attack on Rubato with complexity lower than 2λ. Pseudo-
code for the complete key recovery attack on Rubato is given in Appendix I,
where we also use the notation introduced in the next section.

7 Assumptions and Cost of the Attack on Rubato

7.1 Assumptions on q

The following assumptions on the integer q that defines the ring Zq used in
Rubato must hold in order for the attack in Section 6 to be successful.

Assumption 1 There exists an integer m such that m|q and mmin ≤ m ≤
mmax, where mmin and mmax will be determined below.

For Rubato with claimed λ-bit security, m cannot be too large, as we need mn <
2λ in order to have a valid attack. Moreover, m cannot be too small as this makes
the noise modulo m impossible to distinguish from random, hence the bounds
mmin and mmax.

Assumption 2 There exists an integer f such that all prime factors of f are
at most m, fm|q, and fm > t, where the threshold t will be determined below.

24

This condition is necessary to be able to recover the positions where we know
the noise value is exactly 0.

There exist values of q such that both these assumptions hold. These q-values
give weak instances of Rubato, and must be avoided in an actual use case. Before
looking into the weak choices for q, we compute the bounds mmin,mmax, and
the threshold t mentioned above for a general Rubato variant with claimed λ-bit
security.

Determining t. In order to determine the threshold t, recall that the aim is to
find the smallest value t ∈ Z for each Rubato variant such that

e mod (fm) ≡ 0 ⇒ e mod q ≡ 0

with overwhelming probability when fm > t and fm|q. This reduces to finding
the smallest integer t such that, with high probability, the error values satisfy
|ei| ≤ t for all 1 ≤ i < s. In the analysis below we specify “high probability” to
mean above 99%.

Let G(x) = 1
αq · e

−x2/2σ2

be the Gaussian function describing the discrete

Gaussian distributionDαq the noise in Rubato is drawn from, where σ = αq/
√
2π.

Then G(x) gives the probability that we sample x← Dαq. Thus, the probability
that we sample ei ← Dαq such that |ei| ≤ t can be computed as

Pr(|ei| ≤ t) =

t∑
x=−t

G(x) .

We want to make sure that after sampling s noise values, the probability that
all of them lie in the interval [−t, t] is at least 0.99. This condition translates

into finding the smallest t ∈ Z such that 0.99 ≤
(∑t

x=−t G(x)
)s

. We then get

the desired bounds by finding the smallest t that satisfies this inequality for the
different Rubato variants. These values are listed in Table 4.

Determining mmin and mmax. As already stated, we must have mn < 2λ in
order to have a valid attack. This inequality provides the upper bound mmax:

mmax := ⌊2λ/n⌋ .

The lower bound mmin is the smallest value where it is possible to distinguish
the correct key guess k̃ modulo mmin from all the wrong ones. To find this lower
bound, we first compute the probability that e mod m = x for 0 ≤ x < m when
e is sampled from Dαq:

Prm(x) =

∞∑
i=−∞

G(im+ x) .

25

Secondly, for a given modulus m we split the set {0, . . . ,m−1} into two disjoint
subsets I1 and I2 as

I1 := {x | Prm(x) ≥ 1/m} and I2 := {x | Prm(x) < 1/m} . (6)

For a given stream ẽ = ẽ1, . . . , ẽs of candidate noise values (that may or may not
be sampled from Dαq) and 0 ≤ i < m, let ui(ẽ) be the frequency of observing
the value i in the stream ẽ modulo m, that is,

ui(ẽ) =
|{ẽj ∈ ẽ|ẽj mod m = i}|

s
.

Note that when ẽ is sampled from Dαq, we expect ui(ẽ) ≈ Prm(i) for 0 ≤ i < m.

Score Value for k̃. For a given key guess k̃ = (k̃1, . . . , k̃n) modulo m, we
now define a score value for k̃. First, execute Rum[k̃] producing the stream
w̃1, . . . , w̃s. From the known key stream z1, . . . , zs, compute the candidate noise
value modulo m as ẽi = (zi − w̃i) mod m, for 1 ≤ i ≤ s. We define the score
for the key guess k̃ as

Sc(k̃) =
∑
i∈I1

(ui(ẽ)− 1/m) +
∑
i∈I2

(1/m− ui(ẽ)) .

The score function gives a measure of how much the candidate noise value
produced by k̃ deviates from the uniform distribution in the same way as values
drawn from Dαq modulo m will deviate from uniform. When k̃ is the correct

guess modulo m, we expect Sc(k̃) =
∑m

i=0 |Prm(i) − 1/m|. This value will be

significantly greater than 0, provided m is large enough relative to αq. When k̃
is a wrong key guess, we expect the noise values in ẽ to be distributed uniformly
at random, and hence a score value of Sc(k̃) = 0.

If the assumption that all wrong key guesses give uniformly distributed noise
values modulo m holds, it is possible to compute the probability that the correct
key guess gives the unique highest score value of all guesses for the key modulo
m. However, we have observed that wrong key guesses in 2-round Rubato do
not produce noise values that are distributed uniformly at random (see Fig. 2e
and Fig. 2f). Therefore we have found mmin heuristically, listed in Table 4, by
checking the smallest m that produces a score value for the correct key guess
that clearly stands out among many (at least 14640) wrong key guesses.

Set of Susceptible Values. We list the bounds mmin and mmax and the
threshold t that allow attacks with complexity lower than 2λ for each parameter
set defined for Rubato in Table 4. We performed an exhaustive search on 26-bit
numbers (for Rubato-80S and Rubato-128S) and 25-bit numbers (for the other
variants) to find the percentage of q’s satisfying Assumption 1 and 2. The last
column of Table 4 shows the percentage of vulnerable choices of q. For Rubato-
128L we have mmin > mmax, so we do not have an attack on this Rubato variant.

26

(a) Rubato-80S: distinguishing correct
key guess modulo 11 using 14641 key
samples.

(b) Rubato-128S: distinguishing cor-
rect key guess modulo 11 using 14641
key samples.

(c) Rubato-80M: distinguishing cor-
rect key guess modulo 3 using 59049
key samples.

(d) Rubato-128M: distinguishing cor-
rect key guess modulo 5 using 15625
key samples.

(e) Rubato-80L: distinguishing correct
key guess modulo 2 using 65536 key
samples.

(f) Uniformly random noise: score
values for 65536 noise vectors modulo
2, produced by the random() function
in C. The maximum score value from
Fig. 2e is also inserted in the data set.

Fig. 2: Plots of score values computed for key guesses modulo m. The correct
guess can be distinguished from all the wrong guesses. Comparing Fig. 2e and
2f shows that wrong key guesses in 2-round Rubato do not produce candidate
noise that is uniformly random.

27

Table 4: Lower and upper bounds for the modulus m, threshold t and percentage
of choices of q vulnerable to the attack for the various Rubato variants.

Rubato variant mmin mmax t Fraction of vulnerable q’s

Rubato-80S 11 31 24 42.05%

Rubato-80M 3 4 7 25%

Rubato-80L 2 2 4 25%

Rubato-128S 11 255 35 58.47%

Rubato-128M 5 11 12 37.25%

Rubato-128L - - - 0%

7.2 Practical Verification of the Attack

We have verified the attack described in Section 6 experimentally5. We also re-
port on the experiments determining the smallest m for which we can distinguish
a correct key guess modulo m from the wrong ones.

In all experiments, we selected a 25- or 26-bit q with some small factors, a
key k at random, and produced 10000 elements of Rubato key stream. In an
actual full key recovery attack, we need s to be higher for the relinearization
part, but s = 10000 is sufficient for distinguishing the Dαq distribution from a
(supposedly) uniform distribution modulo m.

Next, we fixed a value of m and made between 114 = 14641 and 216 = 65536
guesses on the key modulo m, including the correct guess, and stored their score
values in a file. Finally, we made plots of the score values in each file as a bar
chart and verified that the maximum score value seen indeed corresponds to the
correct key modulo m. The plots of the score values observed for the values mmin

in Table 4 for the different Rubato variants are given in Fig. 2a-2e.
In Fig. 2f we have also included a plot of score values computed from noise

values modulo 2, sampled by the random() function in C, together with the
maximum score value from Fig. 2e. If the noise values produced by wrong key
guesses in Rubato-80L were truly distributed uniformly at random, the plots
of Fig. 2e and 2f should look the same. The fact that there is a significantly
higher variance in Figure 2e shows that 2-round Rubato does not behave like a
random permutation. This makes it somewhat harder to distinguish wrong key
guesses from the correct one, but the attack still works for all values of m given
in Table 4.

7.3 Attack Complexities

Finally, we investigate the lowest possible attack complexities of the Rubato
attack in concrete numbers. For Rubato-80 and Rubato-128M, the lowest attack

5 The code can be found at https://github.com/Simula-UiB/RubatoAttack

28

Table 5: Lowest time complexities of key recovery attack, where q has particular
factors.

Rubato variant Assumption on q Time Data Memory

Rubato-80S 44|q 255.35 215.71 224.48

Rubato-80M 12|q 257.06 217.91 232.96

Rubato-80L 4|q 265 220.31 239.27

Rubato-128S q = 11 · 222 255.35 244.43 244.43

Rubato-128M 20|q 283.59 229.44 239.27

complexities occur when m = mmin and f = 2g for g = ⌈log2(t/m)⌉. The
time complexities are given as the number of times we guess on k̃ and produce
a sufficient amount of key stream to distinguish a correct key guess from the
wrong ones. The total key recovery attack complexity Ckr is then given as

Ckr = mn + g · 2n + Crelin,

where Crelin is the complexity of doing the relinearization step. The complexities
for relinearization in Table 3 are given in terms of number of multiplications and
additions in Zq, and not as computing key stream for a particular key guess.
When recomputing the complexities in Table 3 to make them comparable to the
work done for each guess of k̃, it becomes clear that apart from Rubato-128S,
Crelin is negligibly small compared to doing steps 1 and 2 of the attack.

For Rubato-128S, the relinearization step is the dominant part of the attack.
For m = 11 and the particular value q = 11 · 222 (a 26-bit number) it is much
faster to recover the complete key by guessing modulo 11 in step 1, followed
by 22 successive key guesses modulo 2 in step 2, and skip solving the linearized
system in step 3 altogether. So for this particular value of q the complexity of
recovering the complete key in Rubato-128S is given as Ckr = 1116 + 22 · 216.

Table 5 shows particular conditions on q that give attacks with the smallest
possible time complexities. For completeness, we also list the memory and data
complexities, where both of these are given as the number of Zq-elements the
attacker needs to store.

8 Final Remarks

8.1 Restoring the Security of Rubato

There are several ways Rubato can be made secure against the attack presented
in Section 6. Here we discuss some of them.

Restricting q to Prime Numbers. The easiest way to prevent our attack is
to simply restrict q to be prime. Since our attack is based on the assumption that
q contains small factors, this restriction immediately gives Rubato instances that

29

are immune to any small-factor attack. As already mentioned in Section 5.2,
it is most common to choose the plaintext modulus of FV, the other part q
plays in the RtF framework, to be prime. However, we stress that this choice is
made for efficiency [24] not security in the FV scheme [1,35]. As our attack has
demonstrated, restricting q to be prime is a choice made for security in Rubato,
not convenience.

Increasing the Width of the Noise Distribution. Another way to protect
the scheme against the small-factor attack is to increase the width of the noise
distributions. If the value of αq is sufficiently high so that one cannot distinguish
the correct key modulo m for m ≤ 2λ/n, then one cannot perform the initial
exhaustive key search modulom with a complexity that is lower than the claimed
security level. This approach allows keeping Rubato defined for general values of
q. The drawback of increasing the αq parameter is that there will be more noise
added to the key stream, and hence less accuracy in the decrypted plaintext
values. This loss of precision will also compound when doing further operations
in the CKKS scheme.

Increasing the Number of Rounds. A third alternative is to increase the
number of rounds used in Rubato such that the solving complexity of the relin-
earization step is high enough to make the scheme secure against our attack.
Recall that the total complexity Ckr of the key recovery attack depends on the
complexity Crelin of doing the relinearization step, which in turn depends on
the number of monomials appearing in the polynomials defining the stream pro-
duced by Ru. More rounds will produce more monomials and therefore a higher
solving complexity, as one can see in Table 3. The main disadvantage of this
approach is the loss of efficiency, as applying more rounds would result in a
higher multiplicative depth. This would be detrimental to Rubato’s use case in
a transciphering framework, where a low multiplicative depth of the decryption
function is necessary for efficiency reasons.

Using Non-Polynomial S-boxes. Lastly, avoiding the use of polynomial S-
boxes is yet another way to provide security against our attack, since it requires
that the S-boxes in the scheme admit a polynomial representation. As mentioned
in Section 4.2, this is the case for the stream cipher Elisabeth, whose S-box
functions are defined using look-up tables. A full discussion on how to design
such S-box functions can be found in Section 4. However, using a look-up table
rather than a polynomial function in Rubato would result in a severe efficiency
loss. The Elisabeth ciphers are defined specifically to be combined with the TFHE
scheme, which can very efficiently evaluate a look-up table homomorphically for
free during a bootstrapping operation [68]. The strategy of using a look-up table
as the S-box is therefore very well suited for the TFHE scheme, but not for
stream ciphers designed to be combined with any other FHE scheme, such as
Rubato.

30

8.2 Conclusion

Symmetric primitives over rings is a rapidly growing area of cryptography, in part
spurred on by the development in MPC, ZK, and FHE. Constructing primitives
over rings instead of fields might prove advantageous in certain cases, exemplified
by the efficiency of Elisabeth compared to other FHE-friendly ciphers. However,
as our key recovery attack on Rubato shows, it is important to take care when
choosing the ring the primitive is defined over, since the ring greatly affects how
susceptible the primitive is to attacks. We stress that we do not mean to suggest
that rings should be avoided as a base structure for symmetric primitives, since
several of the proposed schemes have useful properties. Rather, we emphasize
that a more thorough cryptanalysis over rings is needed to ensure that proposed
primitives are secure, and hope to see more work in this direction.

Acknowledgments. Lorenzo Grassi is supported by the German Research
Foundation (DFG) within the framework of the Excellence Strategy of the Fed-
eral Government and the States – EXC 2092 CaSa – 39078197.

References

1. Lattigo v4. Online: https://github.com/tuneinsight/lattigo, Aug. 2022.
EPFL-LDS, Tune Insight SA.

2. W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases, volume 3.
American Mathematical Society, 1994.

3. M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger,
and M. Schofnegger. Algebraic Cryptanalysis of STARK-Friendly Designs: Appli-
cation to MARVELlous and MiMC. In Advances in Cryptology - ASIACRYPT
2019, volume 11923 of LNCS, pages 371–397. Springer, 2019.

4. M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In Advances in Cryptology - ASIACRYPT 2016, volume 10031 of LNCS, pages
191–219, 2016.

5. J. Allsop and I. M. Wanless. Degree of orthomorphism polynomials over finite
fields. Finite Fields and Their Applications, 75(101893).

6. A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans.
Symmetric Cryptol., 2020(3):1–45, 2020.

7. T. Ashur, M. Mahzoun, and D. Toprakhisar. Chaghri - A FHE-friendly Block
Cipher. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, pages 139–150. ACM, 2022.

8. M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Gröbner basis
computation of semi-regular overdetermined algebraic equations. In Proceedings
of the International Conference on Polynomial System Solving, pages 71–74, 2004.

9. C. Baum, L. Braun, A. Munch-Hansen, B. Razet, and P. Scholl. Appenzeller to
Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k . In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 192–211, 2021.

31

https://github.com/tuneinsight/lattigo

10. C. Baum, L. Braun, A. Munch-Hansen, and P. Scholl. MozZ2karella: Efficient
Vector-OLE and Zero-Knowledge Proofs over Z2k . In Advances in Cryptology–
CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part IV, pages
329–358. Springer, 2022.

11. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK lightweight block ciphers. In Proceedings of the 52nd
Annual Design Automation Conference, 2015, pages 175:1–175:6. ACM, 2015.

12. C. Beierle, A. Biryukov, L. C. dos Santos, J. Großschädl, L. Perrin, A. Udovenko,
V. Velichkov, and Q. Wang. Lightweight AEAD and hashing using the SPARKLE
permutation family. Submission to the NIST lightweight cryptographic standard-
ization process (Finalist).

13. D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In New Stream Cipher
Designs - The eSTREAM Finalists, volume 4986 of LNCS, pages 84–97. Springer,
2008.

14. T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M. Naya-
Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. Out of Oddity - New
Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity
Proof Systems. In Advances in Cryptology - CRYPTO 2020, volume 12172 of
LNCS, pages 299–328. Springer, 2020.

15. E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In Advances in Cryptology - EUROCRYPT
1999, volume 1592 of LNCS, pages 12–23. Springer, 1999.

16. E. Biham, O. Dunkelman, and N. Keller. The Rectangle Attack - Rectangling the
Serpent. In Advances in Cryptology - EUROCRYPT 2001, volume 2045 of LNCS,
pages 340–357. Springer, 2001.

17. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
J. Cryptol., 4(1):3–72, 1991.

18. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer, 1993.

19. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the
Full AES. In Advances in Cryptology - ASIACRYPT 2011, volume 7073 of LNCS,
pages 344–371. Springer, 2011.

20. N. Bordes, J. Daemen, D. Kuijsters, and G. V. Assche. Thinking Outside the
Superbox. In Advances in Cryptology - CRYPTO 2021, volume 12827 of LNCS,
pages 337–367. Springer, 2021.

21. W. Bosma, J. J. Cannon, C. Fieker, and A. Steel (eds.). Gröbner Bases over Eu-
clidean Rings. In Magma Handbook v.2.27. Computational Algebra Group, School
of Mathematics and Statistics, University of Sydney. https://magma.maths.usyd.
edu.au/magma/handbook/text/1259#14396.

22. C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov, and
D. Willems. New Design Techniques for Efficient Arithmetization-Oriented Hash
Functions:Anemoi Permutations and Jive Compression Mode. Cryptology ePrint
Archive, Paper 2022/840, 2022. https://eprint.iacr.org/2022/840.

23. A. Caminata and E. Gorla. Solving multivariate polynomial systems and an invari-
ant from commutative algebra. In Arithmetic of Finite Fields: 8th International
Workshop, WAIFI 2020, Rennes, France, July 6–8, 2020, Revised Selected and
Invited Papers 8, pages 3–36. Springer, 2021.

24. H. Chen, K. Laine, and R. Player. Simple encrypted arithmetic library - seal v2.1.
Cryptology ePrint Archive, Paper 2017/224, 2017. https://eprint.iacr.org/

2017/224.

32

https://magma.maths.usyd.edu.au/magma/handbook/text/1259#14396
https://magma.maths.usyd.edu.au/magma/handbook/text/1259#14396
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2017/224
https://eprint.iacr.org/2017/224

25. J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon. Transci-
phering framework for approximate homomorphic encryption. In M. Tibouchi and
H. Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6-10, 2021, Proceedings, Part III, pages 640–669.
Springer, 2021.

26. C. Cid, L. Grassi, A. Gunsing, R. Lüftenegger, C. Rechberger, and M. Schofnegger.
Influence of the Linear Layer on the Algebraic Degree in SP-Networks. IACR
Trans. Symmetric Cryptol., 2022(1):110–137, 2022.

27. O. Cosseron, C. Hoffmann, P. Méaux, and F.-X. Standaert. Towards Globally Opti-
mized Hybrid Homomorphic Encryption - Featuring the Elisabeth Stream Cipher.
In Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on
the Theory and Application of Cryptology and Information Security, Taipei, Tai-
wan, December 5–9, 2022, Proceedings, Part III, pages 487–516. Springer, 2023.

28. R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPDZ2k : Efficient
MPC mod 2k for Dishonest Majority. In Advances in Cryptology–CRYPTO 2018:
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19–23, 2018, Proceedings, Part II, pages 769–798. Springer, 2018.

29. J. Daemen and V. Rijmen. The Wide Trail Design Strategy. In Cryptography and
Coding - IMACC 2001, volume 2260 of LNCS, pages 222–238. Springer, 2001.

30. A. P. Dalskov, D. Escudero, and M. Keller. Fantastic Four: Honest-Majority Four-
Party Secure Computation With Malicious Security. In USENIX Security Sympo-
sium, pages 2183–2200, 2021.

31. J. D. Dixon. Exact Solution of Linear Equations Using P-Adic Expansions. Nu-
merische Mathematik, 40(1):137–141, 1982.

32. C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander, E. List,
F. Mendel, and C. Rechberger. Rasta: A Cipher with Low ANDdepth and Few
ANDs per Bit. In Advances in Cryptology - CRYPTO 2018, volume 10991 of
LNCS, pages 662–692. Springer, 2018.

33. C. Dobraunig, L. Grassi, A. Guinet, and D. Kuijsters. Ciminion: Symmetric en-
cryption based on toffoli-gates over large finite fields. In Advances in Cryptology -
EUROCRYPT 2021, volume 12697 of LNCS, pages 3–34. Springer, 2021.

34. M. Eichlseder, L. Grassi, R. Lüftenegger, M. Øygarden, C. Rechberger,
M. Schofnegger, and Q. Wang. An Algebraic Attack on Ciphers with Low-Degree
Round Functions: Application to Full MiMC. In Advances in Cryptology - ASI-
ACRYPT 2020, volume 12491 of LNCS, pages 477–506. Springer, 2020.

35. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Paper 2012/144, 2012. https://eprint.iacr.org/

2012/144.
36. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal

of pure and applied algebra, 139(1-3):61–88, 1999.
37. J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of Zero-

Dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Compu-
tation, 16(4):329–344, 1993.

38. C. Ganesh, A. Nitulescu, and E. Soria-Vazquez. Rinocchio: SNARKs for Ring
Arithmetic. Cryptology ePrint Archive, Paper 2021/322, 2021. https://eprint.
iacr.org/2021/322.

39. R. Geelen, I. Iliashenko, J. Kang, and F. Vercauteren. On Polynomial Functions
Modulo pe and Faster Bootstrapping for Homomorphic Encryption. Cryptology
ePrint Archive, Paper 2022/1364, 2022. https://eprint.iacr.org/2022/1364.

33

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2022/1364

40. P. Gopalan. Query-Efficient Algorithms for Polynomial Interpolation over Com-
posites. SIAM Journal on Computing, 38(3):1033–1057, 2008.

41. L. Grassi. Bounded Surjective Quadratic Functions over Fn
p for MPC-/ZK-/HE-

Friendly Symmetric Primitives. Cryptology ePrint Archive, Paper 2022/1313, 2022.
https://eprint.iacr.org/2022/1313.

42. L. Grassi, Y. Hao, C. Rechberger, M. Schofnegger, R. Walch, and Q. Wang. Horst
Meets Fluid-SPN: Griffin for Zero-Knowledge Applications. Cryptology ePrint
Archive, Paper 2022/403, 2022. https://eprint.iacr.org/2022/403.

43. L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger, and
R. Walch. Reinforced Concrete: A Fast Hash Function for Verifiable Computation.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 202, pages 1323–1335. ACM, 2022.

44. L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon:
A New Hash Function for Zero-Knowledge Proof Systems. In 30th USENIX Se-
curity Symposium, USENIX Security 2021, pages 519–535. USENIX Association,
2021.

45. L. Grassi, D. Khovratovich, S. Rønjom, and M. Schofnegger. The Legendre Symbol
and the Modulo-2 Operator in Symmetric Schemes over Fn

p Preimage Attack on
Full Grendel. IACR Trans. Symmetric Cryptol., 2022(1):5–37, 2022.

46. L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger. On a
Generalization of Substitution-Permutation Networks: The HADES Design Strat-
egy. In Advances in Cryptology - EUROCRYPT 2020, volume 12106 of LNCS,
pages 674–704. Springer, 2020.

47. L. Grassi, S. Onofri, M. Pedicini, and L. Sozzi. Invertible Quadratic Non-Linear
Layers for MPC-/FHE-/ZK-Friendly Schemes over Fn

p Application to Poseidon.
IACR Trans. Symmetric Cryptol., 2022(3):20–72, 2022.

48. L. Grassi, M. Øygarden, M. Schofnegger, and R. Walch. From Farfalle to Megafono
via Ciminion: The PRF Hydra for MPC Applications. Cryptology ePrint Archive,
Paper 2022/342, 2022. https://eprint.iacr.org/2022/342.

49. J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy Ciphers for Approxi-
mate Homomorphic Encryption. In Advances in Cryptology - EUROCRYPT 2022,
volume 13275 of LNCS, pages 581–610. Springer, 2022.

50. T. Jakobsen and L. R. Knudsen. The Interpolation Attack on Block Ciphers.
In Fast Software Encryption – FSE 1997, volume 1267 of LNCS, pages 28–40.
Springer, 1997.

51. N. Keller and A. Rosemarin. Mind the Middle Layer: The HADES Design Strategy
Revisited. In Advances in Cryptology - EUROCRYPT 2021, volume 12697 of
LNCS, pages 35–63. Springer, 2021.

52. A. J. Kempner. Polynomials and their residue systems. Transactions of the Amer-
ican Mathematical Society, 22(2):240–266, 1921.

53. A. Kesarwani, S. K. Pandey, S. Sarkar, and A. Venkateswarlu. Recursive MDS
matrices over finite commutative rings. Discrete Applied Mathematics, 304:384–
396, 2021.

54. A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public Key Cryptosystem
by Relinearization. In Advances in Cryptology - CRYPTO 1999, volume 1666 of
LNCS, pages 19–30. Springer, 1999.

55. L. R. Knudsen. Truncated and Higher Order Differentials. In Fast Software En-
cryption - FSE 1994, volume 1008 of LNCS, pages 196–211. Springer, 1994.

56. L. R. Knudsen and D. A. Wagner. Integral Cryptanalysis. In Fast Software En-
cryption – FSE 2002, volume 2365 of LNCS, pages 112–127. Springer, 2002.

34

https://eprint.iacr.org/2022/1313
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/342

57. N. Koti, M. Pancholi, A. Patra, and A. Suresh. SWIFT: Super-fast and Robust
Privacy-Preserving Machine Learning. In USENIX Security Symposium, pages
2651–2668, 2021.

58. X. Lai. Higher Order Derivatives and Differential Cryptanalysis. Springer US,
1994.

59. G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. A Cryptanalysis
of PRINTcipher: The Invariant Subspace Attack. In Advances in Cryptology -
CRYPTO 2011, volume 6841 of LNCS, pages 206–221. Springer, 2011.

60. G. Leander, B. Minaud, and S. Rønjom. A Generic Approach to Invariant Subspace
Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In Advances in Cryptology
- EUROCRYPT 2015, volume 9056 of LNCS, pages 254–283. Springer, 2015.

61. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryp-
tology - EUROCRYPT 1993, volume 765 of LNCS, pages 386–397. Springer, 1993.

62. P. Mohassel and P. Rindal. ABY3: A Mixed Protocol Framework for Machine
Learning. In Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 35–52, 2018.

63. National Institute of Standards and Technology. FIPS-46: Data Encryption Stan-
dard (DES), 1999. https://csrc.nist.gov/csrc/media/publications/fips/46/
3/archive/1999-10-25/documents/fips46-3.pdf.

64. R. L. Rivest. Permutation Polynomials Modulo 2w. Finite Fields and Their Ap-
plications, 2001(7):287–292, 2001.

65. C. J. Shallue and I. M. Wanless. Permutation polynomials and orthomorphism
polynomials of degree six. Finite Fields Their Appl., 20:84–92, 2013.

66. R. P. Singh and S. Maity. Permutation Polynomials modulo pn. Cryptology ePrint
Archive, Paper 2009/393, 2009. https://eprint.iacr.org/2009/393.

67. D. Singmaster. On Polynomial Functions (mod m). Journal of Number Theory,
6(5):345–352, 1974.

68. N. Smart. Bootstrapping for dummies. Zama Research Blog, 2022. https://www.
zama.ai/post/what-is-bootstrapping-homomorphic-encryption.

69. V. Strassen. Gaussian Elimination is not Optimal. Numerische mathematik,
13(4):354–356, 1969.

70. N. N. Vasiliev and O. Kanzheleva. Polynomial Interpolation over the Residue Rings
Zn. Journal of Mathematical Sciences, 209(6):845 – 850, 2015.

71. J. von zur Gathen and S. Hartlieb. Factoring Modular Polynomials. Journal of
Symbolic Computation, 26:583–606, 1998.

72. S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin. Falcon:
Honest-majority maliciously secure framework for private deep learning. Proceed-
ings on Privacy Enhancing Technologies, 2021(1):188–208, 2021.

73. D. A. Wagner. The Boomerang Attack. In Fast Software Encryption – FSE 1999,
volume 1636 of LNCS, pages 156–170. Springer, 1999.

74. Y. Yu and M. Wang. Permutation Polynomials and Their Differential Proper-
ties over Residue Class Rings. Cryptology ePrint Archive, Paper 2013/251, 2013.
https://eprint.iacr.org/2013/251.

75. Y. Zheng, T. Matsumoto, and H. Imai. On the Construction of Block Ciphers
Provably Secure and Not Relying on Any Unproved Hypotheses. In Advances in
Cryptology - CRYPTO 1989, volume 435 of LNCS, pages 461–480. Springer, 1989.

35

https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://eprint.iacr.org/2009/393
https://www.zama.ai/post/what-is-bootstrapping-homomorphic-encryption
https://www.zama.ai/post/what-is-bootstrapping-homomorphic-encryption
https://eprint.iacr.org/2013/251

SUPPLEMENTARY MATERIAL

A Notations

Table 6: Notations
q = py11 · · · pyaa the prime factorization of an integer q

Dαq Gaussian distribution with squared variance αq
m a factor of q sufficient to distinguish Dαq from random
d degree of a polynomial
n the number of elements in a Rubato state
k Rubato secret key
nc Rubato nonce
Mv fixed matrix in Rubato
r number of Rubato rounds
ℓ number of key stream elements output from one application of Rubato
λ security parameter for Rubato

e, ei noise sampled from Dαq

z, zi Rubato key stream
w, wi output of Trn,ℓ, before adding noise
f a factor of q/m
µ Rubato plaintext
∆ scaling factor for FHE scheme
s number of known key stream elements used by attacker in Rubato attack
ω linear algebra constant
t threshold for identifying indices where ei mod q = 0

G(x) the function G(x) = 1
αq
· e−x2/2σ2

C· complexity for doing ·
ρ = ρ(q) The smallest integer such that ρ! ≡ 0 mod q

B Proof of Lemma 1

Proof of Lemma 1. i) Let u be a divisor of q and write xi = x̂i + x′
iu. Any

univariate monomial can then be written as xd
i = (x̂i+x′

iu)
d ≡ x̂d

i mod u. More
generally, any multivariate monomial can then be written as xd1

1 xd2
2 . . . xdn

n ≡
x̂d1
1 x̂d2

2 . . . x̂dn
n mod u. The result now follows from the linearity of monomials.

Statement ii) is a direct consequence of i). ⊓⊔

C Comparison of Gröbner Basis Computation

This appendix presents a qualitative comparison of the running time and memory
usage of Gröbner basis computations over Zpy and Fpy . In each experiment we

36

randomly generate m quadratic polynomials in n variables, i.e., the coefficients
of all monomials of degree ≤ 2 are sampled using the in-built random function
over Zpy or Fpy . A random n-tuple a is picked as a common solution to the
polynomials f1(x), . . . , fm(x) by considering the system fi(x) − fi(a) = 0, 1 ≤
i ≤ m. All systems are overdetermined with a as a unique solution, and the
resulting Gröbner basis is always {x1 − a1, . . . , xn − an}. The time and memory
usage given in Table 7 are from running the built-in F4 routine with the computer
algebra system Magma V2.27-1 [21].

Table 7: Time and Memory Consumption of Gröbner Basis Computation over
Zpy and Fpy .

py m n Time Fpy (s) Memory Fpy (MB) Time Zpy (s) Memory Zpy (MB)

32 40 20 30.6 202 1107.4 974

22 40 20 4.0 302 196.6 470

53 60 20 2.1 67 42.2 101

972 120 30 611.2 317 3784.7 1291

215 120 30 150.7 702 4102.2 1376

D Details on Higher-Order Differential over Zq

Recall from Section 3.4 that we are interested in characterizing the sums
∑

x∈Zq
xi

mod q. To this end, we introduce some notation. Let p1, p2, . . . , pa be distinct
primes, and µ1, µ

′
1, µ2, µ

′
2, . . . , µa, µ

′
a ∈ Z integers that satisfy the Bézout iden-

tities:
∀j ∈ {1, 2, . . . , a} : µj ·

q

pj
+ µ′

j · pj = 1 . (7)

For all j ∈ {1, 2, . . . , a}, we define αj ∈ Fpj
as

αj := −
q

pj
mod pj .

Finally, for each i > 0 and for each j ∈ {1, 2, . . . , a}, we denote

δi,j :=

{
0 if i ̸≡ 0 mod (pj − 1)

1 otherwise
,

and define δ0,j = 0.

Proposition 2. Consider q = p1p2 · · · pa, with p1, p2, . . . , pa distinct primes,
and let µi, αi, δi,j be as defined above. Then, for all i ≥ 0, we have∑

x∈Zq

xi mod q =

a∑
j=1

(
αj · δi,j · µj ·

q

pj

)
mod q .

37

Proof. If i = 0, the result holds since
∑

x∈Zq
x0 = q ≡ 0 mod q.

Next, we consider i ≥ 1, and compute
∑

x∈Zq
xi mod p, where p is any of

the prime divisor of q. Using Lemma 1, we have:

∑
x∈Zq

xi mod p ≡

∑
x∈Zq

(x mod p)i

 mod p ≡ (q/p) ·
∑
x∈Zp

xi mod p

≡

{
0 if i ̸≡ 0 mod (p− 1)

−q/p mod p otherwise
,

where in the last equality we have used that
∑

x∈Zp
xi ≡ 0 mod p if i ̸≡ 0

mod (p − 1) by [14, Proposition 1], and
∑

x∈Zp
xp−1 ≡ −1 mod p by Fermat’s

little theorem. We therefore have∑
x∈Zq

xi ≡ αj · δi,j mod pj ,

for any 1 ≤ j ≤ a and i ≥ 0. Since p1, p2, . . . , pa are coprime, we can apply the
Chinese Remainder Theorem 1 and derive the result:∑

x∈Zq

xi mod q =

a∑
j=1

(
αj · δi,j · µj ·

q

pj

)
mod q

⊓⊔

Based on this proposition, the following result follows immediately:

Corollary 1. Consider q = p1p2 · · · pa, with p1, p2, . . . , pa distinct primes, and
let F : Zq → Zq be given by F (x) =

∑d
i=0 φi · xi. Then

∑
x∈Zq

F (x) mod q ≡
d∑

i=0

φi ·
a∑

j=1

(
αj · δi,j · µj ·

q

pj

)
mod q

where αj, δi,j, and µj are defined as for Proposition 2.

Depending on the composition of q, we note that δi,j can be zero for most
values of i, and the sum

∑
x∈Zq

F (x) mod q will only depend on relatively few
coefficients φi. Still, the sum is generally non-zero and cannot be readily used in
a higher-order differential attack unless the relevant coefficients φi are known.
Since these coefficients typically depend on a secret key, we conclude that it is
unlikely that the sum

∑
x∈Zq

F (x) mod q can be exploited.

While we do not have an exact characterization of
∑

x∈Zq
F (x) when q has

prime power divisors, we recall that the small-scale experiments mentioned in
Section 3.4 over Z2y suggest that we do not get a zero-sum in this case either.

Remark 1. For completeness, we point out that the integral/square attack [56]
(also based on the zero-sum property) works over rings in the same way as it
works over field. However, we remark that it is based on a completely differ-
ent property (related to the invertibility of the rounds functions) than the one
exploited in a higher-order differential attack.

38

E Designing the Linear Layer for Symmetric Primitives
over Zq

Here we briefly discuss the design approach for the linear layer in symmetric
primitives over Zq. As in the field case, the simplest and most obvious idea is to
define the linear layer as a multiplication by a matrix over Zn

q . We remark that,
even if the majority of the works in the literature focus on the construction of
matrices with particular statistical properties (e.g., a given branch number) over
fields, some works have faced the problem of finding matrices with particular
properties for the ring case. We refer to [53] for a concrete example.

Now we discuss the special case q = py. In this case, a possible idea is to
define the linear transformation as a matrix multiplication over Fy·n

p . That is,
given an element x over Zn

py :

1. first, rewrite x as an element over Fy·n
p ;

2. then, apply the matrix multiplication with a matrix in F(y·n)×(y·n)
p ;

3. finally, rewrite the result as an element of Zn
py .

The main advantage of this approach is the possibility to work with matrices
over fields. In such a case, the resulting scheme would be unaligned or weak-
arranged following [20,26], in the sense that the linear layer and the S-box layer
are defined over two different fields/rings. We refer to [20,26] for a complete
discussion of the advantages and disadvantages of such schemes with respect to
the ones of aligned or strong-arranged schemes, which is out the scope of this
paper.

F Details of the “Cut and Sew” Design Strategy

We present a possible concrete construction of an S-box that does not admit a
polynomial representation modulo p1 ·p2. From the setup in Section 4.3 we need
to show that Eq. (4) does not hold modulo p1 for some choice of (x, y, z). This
corresponds to(

S2

(⌊
x · p1 + y

p2

⌋)
· p2 + S1

(
(x · p1 + y) mod p2

))
mod p1 =(

S2

(⌊
z · p1 + y

p2

⌋)
· p2 + S1

(
(z · p1 + y) mod p2

))
mod p1 .

If there exists at least one tuple x, z ∈ {0, 1, . . . , p2−1} and y ∈ {0, 1, . . . , p1−1}
for which such equality does not hold, then one can conclude that S does not
admit a polynomial representation.

A possible way to construct S is given in the following Lemma.

Lemma 3. Let p1 and p2 be two distinct primes such that p1 > p2, and let q =
p1 · p2. Let S2 be the identity function over Fp1

, and let S1 be an orthomorphism
over Fp2

, that is, both x 7→ S1(x) and x 7→ S1(x) − x are invertible. Then

39

the function S over Zq defined as S(x ≡ x2 · p2 + x1) = x2 · p2 + S1(x1) for
x1 ∈ {0, 1, . . . , p2 − 1} and x2 ∈ {0, 1, . . . , p1 − 1} does not admit a polynomial
representation.

Proof. As we saw in Section 4.3, it is sufficient to prove that there exists a tuple
x, z ∈ {0, 1, . . . , p2 − 1} and y ∈ {0, 1, . . . , p1 − 1} such that Eq. (4) for i = 1 is
not verified. By simple computation, note that:⌊

x · p1 + y

p2

⌋
· p2 = x · p1 + y − ((x · p1 + y) mod p2)

= (y − ((x · p1 + y) mod p2)) mod p1 ,

and similar for
⌊
z·p1+y

p2

⌋
· p2. Based on the previous considerations, it follows

that Eq. (4) reduces to

(−x′ + S1(x
′)) mod p1 = (−z′ + S1(z

′)) mod p1

where x′ := (x ·p1+y) mod p2 and z′ := (z ·p1+y) mod p2. Since the function
x 7→ −x + S1(x) is invertible (by definition of orthomorphism), then such an
equality is never satisfied for x′ ̸= z′ (remember that p1 > p2, so the final
modulo reduction does not have any effect), which implies that S does not admit
a polynomial representation. ⊓⊔

In particular, we point out that

– the identity map is the best choice from the implementation point of view,
since it costs nothing;

– no condition is imposed on the orthomorphism. We refer to [5,65] for an
analysis of orthomorphisms over Fp.

G Equivalent Representation of Rubato

For completeness, we point out that – in the case in which the linear layers are
invertible – an equivalent and simplified representation of Rubato is possible.
In particular, recall that the final round of Rubato is slightly different from the
rest, as a second final linear layer is applied. Here we show that it is possible to
modify the description of Rubato such that a unique round function is used.

In the original description, the round function is defined by first applying a
linear layer. However, since the linear layers are fixed (and invertible by assump-
tion), and since no constraint is imposed on the inputs, it is possible to remove
the initial linear layers of the stream cipher (in other words, it does not provide
any additional security). Each round function (including the final one) can then
be simply re-defined as

RF′[k, i] = ARK′[k, i] ◦MixRows ◦MixColumns ◦ Feistel,

40

where for each j ∈ {0, 1, . . . , r}:

ARK′[k, i+ j](x) =

{
x+MixRows ◦MixColumns(k • rci+j) if j ∈ {0, 1, . . . , r − 1} ,
ARK[k, i+ r] if j = r .

Then, the r-round stream cipher Rubato can be equivalently described as

Rubato[k,nc, i] = AGN ◦ Trn,ℓ ◦ RF′[k, i+ r] ◦ · · · ◦ RF′[k, i+ 1] ◦ARK′[k, i].

H Invertible and MDS Linear Layers for Rubato

As we have seen in Section 5, there are 985, 818 ≈ 219.91 prime q values with bit-
length 25 and 1, 893, 374 ≈ 220.85 with bit-length 26 (in total 2, 879, 192 ≈ 221.46,
which is a fraction 5.72% of all q’s of 25 and 26 bits) such that Mv (v = 4, 6, 8)
are always invertible and MDS.

In the following, we further identify the conditions for q’s such that Mv

matrices are non-invertible and non-MDS.

Non-invertible conditions for q. According to the determinant of the matrix Mv

for v = 4, 6, 8:

det(M4) = −35, det(M6) = 6480 = 24 · 34 · 5, det(M8) = 161875 = 54 · 7 · 37,

we prepare the set of small prime factors for each of them as:

Sinv
4 = {−35}, Sinv

6 = {2, 3, 5}, Sinv
8 = {5, 7, 37}.

Note that depending on the q values, there might be several small prime factors
in Sinv

4 . If any of the elements s ∈ Sinv
v are such that gcd(s, q) > 1, then the

matrix Mv is not invertible.

Non-MDS conditions for q. We compute the determinants of submatrices of Mv

and get the corresponding set of small prime factors as follows:

Smds
4 = {2, 3, 5, 7, 11, 17,−35}

Smds
6 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 61, 67, 89, 97, 107, 109, 157}

Smds
8 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,

97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,

193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 269, 271, 281, 293, 311, 313, 317, 331,

337, 347, 349, 359, 367, 373, 383, 401, 409, 421, 431, 433, 439, 443, 449, 457, 463, 491, 523,

541, 571, 607, 613, 631, 641, 647, 659, 673, 677, 683, 733, 743, 751, 773, 821, 839, 853, 857,

881, 883, 887, 907, 937, 967, 983, 1009, 1051, 1117, 1151, 1259, 1367, 1493, 1511, 1523, 1567,

1999, 2099, 2719, 2789, 3319, 3457, 3461}.

Similarly, depending on the q’s, the element −35 ∈ Smds
4 might lead to several

small prime factors, which makes the size of Smds
4 a variable. On the contrary,

the size of Smds
6 and Smds

8 is deterministic: 22 and 124 respectively. If any of the
elements s ∈ Smds

v are such that gcd(s, q) > 1, then the matrix Mv is not an
MDS matrix.

41

I Pseudo-Code of Rubato Attack

Algorithm 1 gives a pseudo-code for the complete key recovery attack on Rubato
presented in Section 6. The notation introduced earlier applies here as well.

42

Algorithm 1 Key-Recovery Attack on Rubato

Require: Key stream z ∈ Zs
q generated by Rubato, where

mmin ≤ m ≤ mmax,
f =

∏b
i=1 fi,

fi ≤ m for i = 1, . . . , b,
mf |q, and
mf ≥ t.

Ensure: The secret key k used to generate z.
maxSc← 0
for each k̃ ∈ Zn

m do
w̃← Rum[k̃]
if Sc(k̃) > maxSc then

maxSc← Sc(k̃)
k(0) ← k̃
ẽ← (z̃− w̃) mod m

end if
end for

▷ k(0) = k mod m
for i = 1, . . . , b do

maxSc← 0
for v ∈ Zn

fi
do

k̃← k(i−1) + (m
∏i−1

a=1 fa) · v
w̃← Rum∏i

a=1 fa
[k̃]

if Sc(k̃) > maxSc then
maxSc← Sc(k̃)
k(i) ← k̃
ẽ← (z̃− w̃) mod m

∏i
a=1 fa

end if
end for

end for
▷ mf sufficiently large that all |ẽi| < mf for ẽ = (ẽ1, . . . , ẽs) with probability at

least 99%
I ← {i|ẽi = 0}
j ← 1
for i ∈ I do

Fi(k1, . . . , kn)← polynomial expressing wi generated by Ruq[k]
A[j]← coefficient vector of Fi

u[j]← zi
j ← j + 1

end for
x← solution of Ax = u mod q
k← values in x for the monomials k1, . . . , kn.

43

	Cryptanalysis of Symmetric Primitives over Rings and a Key Recovery Attack on Rubato
	Introduction
	From Traditional Symmetric Primitives to Symmetric Primitives over Integer Rings Modulo Composites
	Our Contributions

	General Security of Symmetric Primitives: Fields Versus Integers Modulo q
	Notation and Preliminaries
	Solving Polynomial Systems Modulo q
	Impact on Security

	Algebraic Methods over Zq for Composite q
	Linearization Attacks
	Gröbner Basis Attack
	Interpolation Attack
	Higher-Order Differential Attack

	Designing a Non-Linear (S-box) Function over Zq
	Polynomial Non-Linear Function over Zq
	Learning from Elisabeth: Look-up Tables
	``Cut and Sew" Approach

	Rubato
	Description of Rubato
	About the Value of q: Rubato in the RtF Framework
	Non-Invertible and/or Non-MDS Matrices for Rubato

	Key Recovery Attack on Rubato
	Recovering Key and Noise Modulo a Small Factor of q
	Recovering the Key Modulo a Larger Factor of q and Positions in the Key Stream with no Noise
	Key-Recovery of the full Rubato Key

	Assumptions and Cost of the Attack on Rubato
	Assumptions on q
	Practical Verification of the Attack
	Attack Complexities

	Final Remarks
	Restoring the Security of Rubato
	Conclusion

	Notations
	Proof of lemma1
	Comparison of Gröbner Basis Computation
	Details on Higher-Order Differential over Zq
	Designing the Linear Layer for Symmetric Primitives over Zq
	Details of the ``Cut and Sew" Design Strategy
	Equivalent Representation of Rubato
	Invertible and MDS Linear Layers for Rubato
	Pseudo-Code of Rubato Attack

