
NNBits: Bit Profiling with a Deep Learning
Ensemble Based Distinguisher⋆

Anna Hambitzer1[0000−0002−5357−832X], David Gerault1[0000−0001−8583−0668],
Yun Ju Huang1[0000−0002−0820−1005], Najwa Aaraj1[0000−0001−8782−5192], and

Emanuele Bellini1[0000−0002−2349−0247]

Technology Innovation Institute, Cryptography Research Center, 9639 Abu Dhabi,
UAE. name.lastname@tii.ae

Keywords: Cryptanalysis · Evaluation tools · Block cipher · Distinguisher ·
Avalanche dataset · Bit-profiling · Neural networks · Random number generator

Abstract. We introduce a deep learning ensemble (NNBits) as a tool
for bit-profiling and evaluation of cryptographic (pseudo) random bit se-
quences. On the one hand, we show how to use NNBits ensemble to ex-
plain parts of the seminal work of Gohr [16]: Gohr’s depth-1 neural distin-
guisher reaches a test accuracy of 78.3% in round 6 for SPECK32/64 [3].
Using the bit-level information provided by NNBits we can partially ex-
plain the accuracy obtained by Gohr (78.1% vs. 78.3%). This is achieved
by constructing a distinguisher which only uses the information about
correct or incorrect predictions on the single bit level and which achieves
78.1% accuracy. We also generalize two heuristic aspects in the construc-
tion of Gohr’s network: i) the particular input structure, which reflects
expert knowledge of SPECK32/64, as well as ii) the cyclic learning rate.
On the other hand, we extend Gohr’s work as a statistical test on avalanche
datasets of SPECK32/64, SPECK64/128, SPECK96/144, SPECK128/128,
and AES-128. In combination with NNBits ensemble we use the ex-
tended version of Gohr’s neural network to draw a comparison with the
NIST Statistical Test Suite (NIST STS) on the previously mentioned
avalanche datasets. We compare NNBits in conjunction with Gohr’s
generalized network to the NIST STS and conclude that the NNBits en-
semble performs either as good as the NIST STS or better. Furthermore,
we demonstrate cryptanalytic insights that result from bit-level profil-
ing with NNBits, for example, we show how to infer the strong input
difference (0x0040, 0x0000) for SPECK32/64 or infer a signature of the
multiplication in the Galois field of AES-128.

1 Introduction

The security of cryptographic primitives is often expressed in terms of random-
ness: Does the primitive behave like a random function or permutation? While
⋆ Published in Topics in Cryptology CT-RSA 2023: Cryptographers’ Track at the RSA

Conference 2023, San Francisco, CA, USA, April 24–27, 2023, Proceedings (pp.
493–523) https://doi.org/10.1007/978-3-031-30872-7_19
Code available under https://github.com/Crypto-TII/nnbits

https://doi.org/10.1007/978-3-031-30872-7_19
https://github.com/Crypto-TII/nnbits

2 A. Hambitzer et al.

it is difficult to give a satisfactory answer to this question, there are two main
approaches to estimate the answer. The first approach is cryptanalysis: cryp-
tographers scrutinise the primitive, and attempt to break it, through classical
attacks, or sometimes, new ones. On the other side, it is also possible to use
automated randomness testing tools to obtain an assessment [10,25,31]. Such
automated methods are significantly less accurate than cryptanalysis, but they
are significantly faster as well (a few hours, vs. continual scrutiny by academics
for years or even decades). In this work, we investigate how a machine learn-
ing based approach can improve automatic randomness testing, while providing
human cryptanalysts with an intuition on where to look to find more advanced
attacks.

The choice of machine learning is motivated by its ability to detect complex
patterns in many areas, such as image classification, e.g. [23], autonomous vehicle
navigation, mastering games, and, recently, time series forecasting [27]. In the
game of Go, neural networks in combination with Monte Carlo tree search have
achieved superhuman performance without any input of expert knowledge [32].
Deep neural networks are universal in the sense that they can in principle1

represent any function [21].
The idea of applying machine learning techniques to cryptographic tasks has

been gaining traction recently. In particular, in his CRYPTO’19 article, Gohr
showed for the first time that machine learning algorithms could outperform
current state-of-the-art cryptanalysis2, by exhibiting improved attacks on the
block cipher SPECK32/64 using a neural network [16]. Benamira et al. [7] fur-
ther demonstrated that the properties learnt by Gohr’s classifiers are not trivial,
and it is not fully understood why they perform so well. Understanding what
a machine learning algorithm bases its prediction on is a notoriously difficult
problem that the explainable AI research community focuses on, for example in
DARPA’s explainable AI program [18]. However, we believe that more explain-
able techniques are required for machine learning to become part of the standard
toolkit of cryptographers.

We tackle the problem of explainability by creating bit profiles which may
give relevant information to a cryptanalyst. The bit profiles are created through
ensemble learning, a widely used technique in machine learning [17,2]. An en-
semble consists of a diverse set of predictors, such as neural networks. Neural
network ensembles have recently demonstrated impressive results [29] in the pres-
tigious time series forecasting competition “Makrikadis”, which was dominated
by statistical methods until 2020 [27].

In this paper, we propose NNBits ensemble, a machine learning-based black-
box distinguisher that identifies whether a collection of X bit sequences of length
n comes from a random distribution or a function f . In NNBits ensemble, an

1 Note that this statement has limited practical implications: even if enough data,
representational power of the network, as well as sufficient computational resources
to train the network are given, the training itself may be an NP-hard problem [26].

2 This limit has recently been overpassed by human cryptanalysis in [8], giving machine
learning a new threshold to overcome.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 3

Fig. 1: The architecture of our proposed distinguisher NNBits ensemble.

ensemble of N neural networks is trained to predict a certain subset of the
n bits, given the remaining bits as input. If a particular bit can be predicted
with a prediction accuracy significantly higher than that of a random guess,
the bit is identified as a weak bit and the sequences at hand are identified as
not random, i.e., coming from the function f . In particular, we focus on the
block ciphers SPECK and AES, and our bit sequences are avalanche sequences,
built using the difference between ciphertexts corresponding to the encryption of
pairs of plaintexts having a single-bit difference. The bit-level granularity in the
prediction provides information on which bits are easier to predict, as well as a
convenient way for the cryptanalyst to observe dependencies between difference
bits. The whole process is rather fast, due to a highly optimised implementation,
as well as heavy parallelization of the neural network training across multiple
GPUs. This implementation is available under [39], and an overview is given in
Figure 1.

Contributions. Our contributions are the following:

1. We present NNBits ensemble, a deep learning ensemble analysis tool for
bit-profiling of cryptographic (pseudo) random bit sequences that includes
dependencies between different bits (Fig. 1). We provide publicly available
source code for NNBits under [39].

2. Using the bit-level granularity of our tool, we provide a possible explanation
for the accuracy of Gohr’s neural distinguishers for SPECK.

3. We propose and implement a generalization of Gohr’s classifiers (Generalized
network) which can be applied to larger datasets, such as the avalanche
dataset.

4. We compare NNBits ensemble to NIST STS on the avalanche datasets of
SPECK32/64 up to SPECK128/128 and AES-128, and conclude that the
NNBits ensemble performs either as good as the NIST STS or better.

5. We demonstrate cryptanalytic insights that result from bit-level profiling
with NNBits.

4 A. Hambitzer et al.

1.1 Organization

The remainder of this paper is structured as follows. In our preliminaries, we in-
troduce the families of symmetric block ciphers SPECK and AES (Section 2.1),
statistical tests techniques for cryptographic primitives (Section 2.2) and Gohr’s
neural distinguisher (Section 2.3). In our methodology, we detail the generation
of the avalanche dataset (Section 3.1), the setup of the NIST STS (Section 3.2),
and the implementation of NNBits (Section 3.3). Based on the previously pre-
sented material we conduct a set of three experiments (Sections 4.1 to 4.3) and
conclude our findings in Section 5.

2 Preliminaries

2.1 Block ciphers

Fig. 2: Illustration of (a) one round of SPECK and (b) the round elements in
AES.

SPECK. The block cipher SPECK is an ARX-based design proposed by the
National Security Agency (NSA) [5], parametrised by a block size b and a key
size k, and denoted by SPECKb/k. In this work, we focus on SPECK32/64,
SPECK64/128, SPECK96/144, and SPECK128/128.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 5

One round with the Feistel-like structure of SPECK is illustrated in Fig. 2. In
the first round, inputL and inputR would be the first and last half of the plaintext.
For other rounds, inputL and inputR come from outputL and outputR in the
previous round. The ciphertext is the concatenation of outputL and outputR
of the final round. α and β are the rotation parameters stated in the SPECK
specifications [5]. The round keys are generated by the key schedule from the
input key. This paper focused on the plaintext avalanche dataset, in which the
key is fixed to zero. So we do not describe the cipher’s key schedule here.

AES-128. The AES [13] (Advanced Encryption Standard) is the most widely
used block cipher in the world as of today. It operates on 128 bits blocks, and
128/196/256 bits keys.

The 128 bits input is divided into a 4x4 bytes matrix. The round function
is iterated 10, 12 or 14 times (depending on the key size), and is composed of 4
operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey, as illustrated
in Fig. 2. SubBytes substitutes each byte of the state according to a nonlinear
SBox. ShiftRows shifts the second, third, and fourth row by one, two, and three
positions to the left. MixColumns operates on each column separately, and per-
forms a multiplication with the MixColumns matrix in the the Rijndael Galois
field. AddRoundKey XORs each byte of the state with a byte of the round key
rkij , derived through the key schedule algorithm. This paper focused on AES
with 128-bit key size and 10 rounds. We do not introduce the key schedule of
AES, since, for the same reason as in SPECK, it is not relevant to our work.

2.2 Statistical analysis of cryptographic primitives

During the years preceding the AES standardization process, statistical tests
started being used to measure the security of block ciphers under the black-
box approach [19] and to evaluate their quality when used as random number
generators [34]. The battery of tests used by NIST [34] had the goal to analyze
properties such as the proportion of zeroes and ones within the bitstring being
tested (frequency monobit test), or within sub-blocks of this bit string (frequency
test within a block). Such test suites constitute a distinguisher testing the null
hypothesis H0, which asserts that the bitstring, or a sequence, being tested is
random, against the alternative hypothesis Ha, that the sequence is not random.

Statistical test results are to be interpreted with their significance level α,
i.e., the probability of the test rejecting the null hypothesis, given that the null
hypothesis is true. For a given test result, the P-value is calculated under the
assumption of a certain reference distribution and corresponds to the probability
for test result to be observed if H0 is true. The null hypothesis H0 is accepted
for a sequence, if the P-value is greater than or equal to α.

Our bit-level analysis, shown on Figure 1, studies whether a given bit can
be predicted with an accuracy significantly better than a random guess. More
specifically, we consider α = 0.01; in other words, among 100 random tested se-
quences, we expect at most one to be (falsely) classified as non-random. Figure 3
illustrates the minimum accuracy pi needed for our distinguisher to achieve a

6 A. Hambitzer et al.

significance value of 0.01. Under the assumption H0 of randomness, the number
of successes S (i.e., correct predictions of a bit) over Xtest independent trials
can be studied as a binomial reference distribution, with mean µ = p0 · Xtest

with p0 = 0.5 and standard deviation σ =
√
Xtestp0(1− p0) =

√
0.25 ·Xtest.

Given these parameters, the P-value corresponding to the accuracy of a given
distinguisher can be derived, for instance using SciPy [40]; intuitively, the higher
Xtest is, the more significant a deviation from a 50% accuracy becomes. This is
illustrated in Fig. 3.

Fig. 3: a) Binomial probability mass function (pmf) for p0 = 50% and Xtest.
b) Significance of an observation p in terms of the P-value considering a binomial
reference distribution centered at p0 = 50%.

2.3 Gohr’s neural distinguisher

In our work, we combine avalanche-based techniques with deep learning. For a
thorough introduction to deep learning and neural networks we recommend [17,16].
In the following, we focus in particular on the construction of Gohr’s neural dis-
tinguisher.

In his seminal paper, published at CRYPTO’19, Aron Gohr [16] proposes to
use a deep neural network to distinguish whether pairs of SPECK32/64 cipher-
texts correspond to the encryption of pairs of messages with a fixed difference
(0x0040, 0x0000), labeled as not random (1), or random messages, labeled
as random (0). The resulting Neural Distinguisher, a residual neural network
preceded by a size 1 1D-convolution, results in respectively 92.9, 78.8, 61.6 and
51.4 % accuracy for 5, 6, 7 and 8 rounds of SPECK32/64, and is used to mount
practical key recovery attacks on 11 rounds. Subsequent research work focused
on explaining what features neural distinguishers can learn and on extending
their use to other ciphers, improving on the methodology. In the first category,
at Eurocrypt’21, Benamira et al. propose an in-depth analysis of the distinguish-
ing properties learned by the Gohr network, both through purely cryptanalytical
means and through machine learning techniques [7]. In the second category, Baksi

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 7

et al. [4] focus on applying neural distinguishers to GIMLI, ASCON, KNOT and
CHASKEY, and propose a different classification task, where the neural dis-
tinguisher is asked to predict which of t classes a pair belongs, where a class
is determined by an input difference. Yadav et al. proposed to extend neural
distinguishers for more rounds, by prepending a longer differential trail before
the neural distinguisher [42]. In [22], the authors propose to use an SAT solver
to look for better input differences and apply their results to various ciphers.
At LNNS’21 [6], Bellini and Rossi compare neural and classical distinguishers
for the ciphers TEA and RAIDEN. In a closer investigation of Gohr’s results,
[3] show that an identical neural distinguisher with depth-1, which we will refer
to as Gohr depth-1 network, reaches an almost identical accuracy of 78.3%
(vs. 78.8% accuracy for depth-10) in round 6 of SPECK32/64, despite a much
reduced parameter space and shorter training times.

Fig. 4: Pseudo-code for the construction of Gohr’s neural distinguisher of a cer-
tain depth and f = 32 filters in each convolutional layer. Underlined are design
choices which are either heuristic or demonstrate expert knowledge, i.e., dedi-
cated structures of SPECK.

Figure 4 illustrates the construction of Gohr’s neural distinguisher. We first
discuss the dataset used for neural network training, then provide a discussion
of more conventional elements, and finally discuss the particular design choices
highlighted underlined.
The input to the network has 64-bit length for SPECK32/64 and is given as
a ciphertext pair (C,C ′), which consists of four words: (L,R) = Enck(PL, PR)
and (L′, R′) = Enck((PL, PR)⊕(0x0040, 0x0000)) for the label not random
(network output of 1). If the plaintext pair is randomly generated, the sample is
labelled as random (network output of 0). The dataset consists of 107 training
samples and 106 test samples. Approximately half of the samples are random.
The neural network obtains ciphertext pairs (C,C ′) of the training dataset as
input and is trained to predict the label. The output of the neural network is a
single neuron Dense(1) with a sigmoid activation function. The sigmoid’s 0 (1)
value represents the random (not random) label prediction. The accuracy of

8 A. Hambitzer et al.

the distinguisher corresponds to the percentage of correctly predicted labels in
the test dataset.
The network itself consists of input transformations, the convolutional blocks
themselves, and a prediction head; this structure is reminiscent of the popular
image recognition network ResNet [20], in which residual learning was intro-
duced for deep neural networks. In residual learning, information can “skip” (or
shortcut) several layers. This is implemented by adding the information of the
shortcut to the output of a block. This enabled for the first time the training
of networks with up to 152 layers depth. The residual connections still allow the
information to propagate to subsequent layers to be trained, even if an earlier
layer has stopped its learning progress.
The combination of a convolutional layer Conv with a kernel size of k = 3, fol-
lowed by batch normalization BN and a ReLU activation function is convention-
ally used, for example in ResNet [20] or the batchnorm version of VGG networks
[33,37]. ResNet and VGG are image recognition networks. In contrast to Gohr’s
neural distinguisher, they use Conv2D layers that move the kernel over the input
in two directions 2D to generate their output, called a feature map. In Gohr’s
network Conv1D layers are used, which are often encountered in time-series or
text analysis [2]. Conv1D only moves the kernel of width k in a single direction
(1D) over the input to generate one feature map. The number of filters f of the
convolutional layer defines how many kernel functions, i.e., weights wij and bi-
ases bj are learned and how many feature maps j = 0, . . . , f − 1 are generated.
These kernel functions are linear; nonlinearity is added through the subsequent
activation functions, here ReLU, which is popular due to its simplicity and fast
computation.

ResNet and VGG are winners of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) challenge. We note that Gohr’s training dataset is about
ten times larger in the total number of presented samples than, for example,
ImageNet which has 1.3 million training images. Large training datasets can be
necessary to avoid overfitting –learning the dataset by heart– for neural net-
works, which might also explain the heavy use of L2 regularization parameters
in Gohr’s network.
We identify that expert knowledge of SPECK or heuristic choices in the con-
struction of Gohr depth-1 network are reflected in: i) the input alterations of
Reshape and Permute, since the “...choice of the input channels is motivated by a
desire to make the word-oriented structure of the cipher known to the network.”
[16] and the Conv1D(...k=1...) for “...learning of bit-sliced functions such as
bitwise addition...”[16], ii) a particular choice of the L2 regularization parame-
ter of 10−5 used throughout the network and iii) a cyclic learning rate for the
Adam optimizer which we will discuss in more detail in our experimental section.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 9

3 Methodology

3.1 The plaintext avalanche dataset generation

There are several types of datasets to perform a randomness test on a cipher. We
focus on the task of distinguishing a given cipher from a random permutation,
in particular, by observing a dataset that incorporates the avalanche effect of
the cipher.

The avalanche effect, coined by Feistel [14], describes a desirable property of
cryptographic encryption algorithms: that a slight change in the input (plaintext
or key) creates a significant difference in the resulting ciphertext. The avalanche
effect can be studied through avalanche datasets, in which the impact of a mini-
mum input perturbation (flipping a single plaintext bit) on the encrypted output
is investigated (e.g. [11,5]). Plaintext avalanche dataset was one of nine datasets
to assess the candidates for AES competition [34], as well as the five finalist can-
didates [35], and their randomness was assessed using statistical tests similar to
NIST STS [34]. The effect of small perturbations can also be studied through the
Strict Avalanche Criterion (SAC) randomness test [11], which states that flip-
ping a single bit in the input should result in a 50% probability of each output
bit to be flipped.

Fig. 5: Illustration of the avalanche dataset generation.

A plaintext avalanche dataset is generated with the following steps as illus-
trated in Fig. 5. Let EncK be an encryption black box with key K: 1) Let K
be the key with all zeros and P a random plaintext. Let C be the ciphertext
corresponding to P , that is, C = EncK(P). We call one output of the encryp-
tion a block with n bits. 2) Define maski as the bitstring with 1 at position i
and zeros otherwise. Let Pi = P ⊕ maski, and Ci = EncK(Pi) be the corre-
sponding ciphertext. 3) An avalanche unit from plaintext P is the concatenated
bit string C ⊕ C1||...||C ⊕ Cn of a total of n blocks. The total bit length of an
avalanche unit is n2. 4) An avalanche sequence is the concatenation of several
avalanche units, one for each mask. The total bit length is ℓ. 5) In this work, we
use avalanche datasets composed 300 avalanche sequences, each sequence being

10 A. Hambitzer et al.

around 1M bits. This is in line with the parameters of NIST STS. The plaintext
avalanche dataset generation was implemented using the NumPy library and a
Python implementation of each cipher, which is available in our repository [39].

For example, in SPECK32/64, an avalanche unit contains 1,024 bits, corre-
sponding to 32 blocks, with each block of bit length 32. We concatenate 1000
avalanche units into one avalanche sequence. That is, there are 1,024,000 bits
in one avalanche sequence and 307,200,000 bits in this avalanche dataset. The
parameters of the avalanche dataset of each cipher are shown in Table 1.

cipher rounds block
size

key
size

avalanche
unit size

avalanche units per
avalanche sequence

avalanche
sequence size

SPECK32/64 22 32 64 1024 1000 1024000
SPECK64/128 27 64 128 4096 250 1024000
SPECK96/144 29 96 144 9216 110 1013750
SPECK128/128 32 128 128 16384 64 1048576
AES-128 10 128 128 16384 64 1048576

Table 1: Avalanche dataset parameters of different ciphers. All sizes are in bits.

3.2 The NIST Statistical Test Suite

We use the current standard NIST SP 800-22 [31], also known as the NIST
Statistical Test Suite (NIST STS), to perform the cryptographic randomness
tests. In addition to this collection, other similar test suites are available, such
as DieHarder [10], TestU01 [25] or ENT [41]. In fact, there are “an infinite num-
ber of possible statistical tests, each assessing the presence or absence of a pattern
which, if detected, would indicate that the sequence is nonrandom” [31]; Such sta-
tistical tests can be generated automatically, for example through evolutionary
algorithms [36]. The abundance of existing tests leads us to focus, in this work,
on the widely accepted standard NIST STS. It is a collection of 15 core statistical
tests as listed in Table 2, and with different parameters, a total of 188 statistical
tests are conducted. To be noted, although the Lempel-Ziv Compression test is
stated in [34], it is not implemented in NIST STS. Referring to the parameters
used in [34,35], we generated 300 plaintext avalanche sequences with each ≈1M
bits in the dataset, and used an α value of 0.01. The results are discussed in
Section 4.3.

3.3 Technical implementation of NNBits

NNBits ensemble is a deep learning ensemble analysis tool for bit-profiling
of cryptographic (pseudo) random bit sequences that includes dependencies be-
tween different bits (Fig. 1). Here, we first give a quick introduction to ensembling
methods in machine learning and then present the technical implementation of
NNBits ensemble.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 11

statistical test test ID statistical test test ID statistical test test ID

Monobit 1 Rank 7 Approximate Entropy 159
Block Frequency 2 Spectral DFT 8 Random Excursions 160-167
Cusum 3-4 Aperiodic Templates 9-156 Random Excursions Variant 168-185
Runs 5 Periodic Template 157 Serial 186-187
Long Runs of Ones 6 Universal Statistical 158 Linear Complexity 188

Table 2: The 188 statistical tests in the NIST STS

Ensembling or ensemble learning is a widely used technique in machine learn-
ing [17,2]. An ensemble is a “group of predictors” [2]. The core idea of ensemble
methods is that this group of predictors is diverse. Diversity is achieved when
single predictors make different kinds of errors. There are many methods to cre-
ate diversity, for example on the data level : here, the same algorithm is used
for every predictor, however they are trained on different random subsets of the
training data. The best-known method is “bagging” (or bootstrap aggregating)
by Breimann [9]; the model level : here, completely different prediction algorithms
are used in combination, e.g. a neural network, a random forest classifier and
a logistic regression model in combination; or the hyperparameter level : if, for
example, different loss functions are chosen during training. This approach is
also taken in [29].

Fig. 6: Technical implementation of the deep learning ensemble distinguisher
using the Python packages Ray and TensorFlow on a multi-GPU server.

Figure 6 illustrates the creation of our NNBits ensemble, consisting of a
group of N neural networks which are diversified on the data level. Each member
NNi of the group predicts a certain subset i of the n bits in the dataset. At the
input side of the network, this subset of bits will be set to zero (Fig. 6b)). The
technical implementation uses state-of-the-art parallelization modules that allow
for high performance. This allows us to tackle a demanding scenario in Section 4:
for example, we identify weak bits in the avalanche dataset of AES-128 for which

12 A. Hambitzer et al.

a single avalanche unit contains n = 16384 bits. The work we present in this
manuscript uses Gohr’s neural distinguisher (Section 2.3) and extended versions
of it. However, NNBits in general allows the user to include any TensorFlow
network of their choice.

Figure 6c) shows the technical implementation of our NNBits ensemble.
NNBits ensemble uses the Python packages Ray [38,28] and TensorFlow [1] on
a multi-GPU server. Ray relies on stateful actors to parallelize machine learning
tasks. These actors share access to the data, which only needs to be read from
the disk once; this is significant, as loading millions of avalanche units for ci-
phers larger than SPECK32/64 can take several minutes. Since the initialization
of neural networks and the manipulation of the data sets are computationally
expensive, a reasonable total number N of neural networks in the ensemble is
N ≈ 100.

The source code of NNBits ensemble, as well as a demonstration and in-
structions to adjust the parameters for different GPU settings, are available in
our repository [39].

4 Experimental results and analysis

We have conducted three experiments using the previously introduced method-
ologies.

1 Explanation
of Gohr’s accuracy

2 Generalization of
Gohr’s distinguisher

3 Comparison
of NNBits and NIST STS

(Section 4.1) (Section 4.2) (Section 4.3)

cipher SPECK32/64 SPECK32/64

SPECK32/64
SPECK64/128
SPECK96/144
SPECK128/128
AES-128

inputs ciphertext pairs ciphertext pairs avalanche units
labels random/not random random/not random S1 None

S2 random/not random
samples 107 training

106 validation
107 training
106 validation

S1 ≤ 300× 103 in total
S2 ≤ 3.65× 106 in total

Table 3: Overview over our experimental settings.

First, we provide a possible explanation for the accuracy of Gohr depth-1
network using a bit-by-bit analysis with our NNBits ensemble (Section 4.1).
Then, we generalize aspects of Gohr depth-1 network to extend the range
of applications and obtain the Generalized network (Section 4.2). We can
then use Generalized network in combination with NNBits to analyze the

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 13

avalanche datasets of SPECK32/64 up to SPECK128/128, as well as AES-128
in Section 4.3 and present bit profiles of SPECK32/64 up to round 7 (of 22) and
of AES-128 up to round 2 (of 10) (Section 4.3).
Table 3 summarizes the experimental scenarios and highlights that the datasets
of experiment 1 and 2 are similar to Gohr’s original dataset (millions of avail-
able training inputs with labels), while the setting of the NIST STS comparison
in 3-S1 is different and difficult from a machine learning perspective, due to
the absence of a labeled dataset and a restricted number of samples.

Our neural network experiments are performed on an Nvidia DGX-A100
server equipped with four A100 Ampere microarchitecture GPUs. Each A100
GPU provides 40536MiB computational memory.

4.1 Explanation of the accuracy of Gohr’s neural distinguisher

In the following experiment, we show that 78.1% of the 78.3% [3, table 3] ac-
curacy obtained by Gohr depth-1 network can be understood in terms of
correct predictions of individual bits. We show this by first training one neural
network per bit using an NNBits and then constructing a distinguisher from
these single bit predictors. Based on the findings, we propose a strategy for future
improvements of Gohr depth-1 network.

Fig. 7: Bit-by-bit accuracy for ciphertext pairs (C,C ′) with chosen plaintext dif-
ference (0x0040, 0x0000) of SPECK32/64. a) The neural network NNi is trained
to predict bit i of (C,C ′). The dataset is generated by setting bit i of (C,C ′)
to zero at the input. b) The test accuracies of NN0 . . .NN63 on 106 previously
unseen ciphertext pairs (C,C ′).

Training procedure. We use NNBits to train N = 64 neural networks, one to
predict each bit of (C,C ′) of Gohr’s original dataset in round 6 of SPECK32/64.
Owing to the parallelization provided by NNBits we can train 16 neural net-
works in parallel on our server, resulting in a total experimental runtime of
4.5 hours. Figure 7a) illustrates that for the training of our neural network NNi,
bit i is set to zero at the input. The task of the particular neural network NNi is

14 A. Hambitzer et al.

to predict bit i. Therefore, the networks are trained on the not random cipher-
text pairs (C,C ′) subset of Gohr’s original dataset (presented in Section 2.3).
We use Xtrain = 5× 106 not random training samples and train each network
for 200 epochs. The neural networks NNi are Gohr depth-1 network with
depth of 1 and 32 filters in each convolutional layer as provided in Gohr’s GitHub
repository [15].

Single bit results. Figure 7b) shows the test accuracies of each network NNi. We
use Xtest = 5× 105 not random samples for testing. A higher test accuracy of
NNi means that Gohr’s network is able to predict the value of bit i, given the
values of the remaining 63 bits. Accuracies around 50% mean that the network is
not better at predicting bit i than a random guess. We observe a pattern of the
test accuracies in the first 32 bits which repeats itself over the next 32 bits (small
variations in the resulting accuracies are expected in neural network training).
Within the first 32 bits, ten bits (0, 1, 2, 9, 11, 16, 17, 18, 24, 25) cannot be
predicted by Gohr’s network. The highest test accuracy is achieved on bit 4 with
86.6%.

In the following we address two questions: 1) Can we understand the over-
all distinguishing accuracy, that is 78.3%, of Gohr’s network in terms of such
single-bit predictions? In other words: Can we construct a distinguisher using
the outcome of these single-bit predictions? 2) Given we could construct a dis-
tinguisher from single-bit predictions, what is a good strategy to improve the
accuracy achieved by Gohr even further?

Construct a distinguisher E . First, we address question 1) by constructing a
distinguisher from our already trained networks as follows: Our dataset is now
identical to Gohr’s original dataset, i.e., it contains ciphertext pairs (C,C ′) with
both labels, random and not random. As in the previous experiment each
of our already trained 64 neural networks NNi predicts one bit. The respective
bit is set to zero at the input. Each bit prediction is evaluated in terms of its
correctness: If the bit was correctly predicted, we save a 1, otherwise a 0. The
information about the correctness of the predictions is then passed to an MLP
–identical to Gohr’s neural prediction head. This MLP is then trained to output
the label random or not random for (C,C ′).

classical
[16, Table 2]

ensemble distinguisher
E

Depth-1
[3, Table 2]

Depth-10
[16, Table 2]

accuracy 75.8% 78.1% 78.3% 78.8%

Table 4: Comparison of the distinguisher accuracies for round 6 for SPECK32/64.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 15

Interpretation. Table 4 shows the resulting accuracies for the ensemble distin-
guisher E compared to Gohr networks and a classical differential distinguisher.
E reaches 78.1% accuracy, only 0.3% below the accuracy of Gohr’s original

depth-1 network [3]. Note that E does not even make use of the values of the
bits, but only of the information about prediction correctness. This experiment
shows that the largest part of the accuracy of Gohr’s network can be under-
stood in terms of the correctness of single bit predictions and combining them
to a random/not random decision with an MLP prediction head (identical to
the prediction head used in Gohr’s distinguisher). This means that one possible
way Gohr’s network can be understood is as essentially learning the underly-
ing Boolean functions to predict single bits, and then evaluating the number
of correct predictions. While we have here discussed the results for round 6 of
SPECK32/64 in detail, similar results are obtained when comparing the ensem-
ble distinguisher E with Gohr’s depth-1 network in [3, Table 2] for round 5
(92.2% vs 92.7%) and round 7 (60.1% vs 60.8%).

Improvement strategies for Gohr’s distinguisher. Now, we address question 2).
We formulate an improvement strategy for Gohr’s distinguisher, given that we
can understand the largest part of the accuracy of Gohr’s distinguisher in terms
of the correctness of single-bit predictions. Using Fig. 7b) we can focus on im-
proving the bits with low accuracy, highlighted in grey.
As noted by [7], differential-linear cryptanalysis [24] seems to be a good expla-
nation for Gohr’s classifiers’ accuracy. It consists in studying linear relations
between bits of the difference δt and δr, respectively at round t and final round
round r. This is more formally expressed in terms of linear masks mt,mr: the
bias of the bit bmt,mr

=
⊕n−1

i=0 (δt ∧mt)i ⊕ (δr ∧mr)i is studied. With the input
difference chosen by Gohr, the difference bits at rounds 1 to 5 are very biased,
so it is expected that

⊕n−1
i=0 (δr ∧mr)i would be biased as well for small values

of r, allowing better predictions of the bits involved. To improve the accuracies
on the bits in grey, two challenges must be overcome: finding potential relevant
output masks mr which are not already used by the classifier, and injecting this
additional information into our classifiers.
Note that it is not sufficient to generally improve the accuracy of single bit pre-
dictions, but the improvements need to be aimed at the particular cases where
the distinguisher decides wrongly.

4.2 Generalization of Gohr’s neural distinguisher for avalanche
datasets

The experiment in the previous section was aimed at gaining more understanding
about Gohr depth-1 network. In the following experiments, we aim to extend
the range of application of Gohr depth-1 network. Here, we eliminate two
specific design choices in Gohr depth-1 network which either relate directly
to SPECK or may only work for a specific dataset. The result is a Generalized
network, which we apply to larger datasets in the following sections.

16 A. Hambitzer et al.

A neural network may perform extremely well in a given problem but com-
pletely fail at a seemingly similar one. To generalize a machine learning model it
is essential to remove application specific choices. In Gohr depth-1 network
we can identify the following application-specific neural network design choices,
as discussed in more detail in Section 2.3: 1) input alterations, 2) cyclic learning
rate– [16] uses the Adam optimizer in combination with a cyclic learning rate
that varies between 0.002 and 0.0001 over 10 epochs, and 3) kernel regulariza-
tion– with a particular L2-regularization parameter.

Fig. 8: a) Instead of a reshaping into a 4× 16 structure, the generalized network
shapes the input-bit sequence into a square shape. b) Training curve compar-
ison of Gohr depth-1 network (4 × 16 reshape; cyclic learning rate) and
Generalized network (square-shaped input; AMSGrad optimizer). c) Rep-
resentation of the reshaping of different input bit sequences. E.g. the avalanche
dataset of SPECK128/128 has 128×128 = 16384 input bits, which are reshaped
into a 128× 128-image by the generalized network.

Figure 8a) and b) illustrate the Generalized network which addresses 1)
and 2) as follows: 1) input reshaping– We shape the input into a more generic
square form, which allows i) an easy extension of the distinguisher onto e.g. the
avalanche datasets (see Fig. 8c)) and ii) a fairer potential comparison with state-
of-the-art visual recognition neural networks. The reshaping of the input into a
word-like 4x16 bit in Gohr depth-1 network corresponds to an information
gain, so that it can start training with a lower number of possible filters. To learn
the same information as Gohr depth-1 network the number of filters for the
convolutional layers is increased by a factor of four in Generalized network

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 17

(32 vs 128). The increased number of filters leads to longer training time per
epoch (9 s vs 13 s).
2) AMSGrad algorithm instead of cyclic learning rate– while Adam is one of the
most advanced optimizers, it has been observed that it fails to converge to an
optimal solution [30]. This can make it necessary to manually find an optimal
learning rate setting to train the neural network. Such a manual choice has a
higher likelihood to fail in a new setting. To mitigate the convergence issue, Reddi
et al. introduce the AMSGrad algorithm in “On the Convergence of Adam and
Beyond” [30] at ICLR 2018.

We have trained both, Gohr depth-1 network and the Generalized
network on Gohr’s original dataset (Section 2.3) for round 6 of SPECK32/64
(Fig. 8b)). The cyclic learning rate leads to the “dents” in the original graph
of Gohr depth-1 network. If the cyclic learning rate is removed from the
training of the Gohr depth-1 network (w/o cyclic in Fig. 8b)) the training
results in lower final accuracy. The Generalized network uses the Adam op-
timizer with its standard settings together with AMSGrad instead of the cyclic
learning rate. After 200 epochs both networks converge to the same accuracy.
Also in round 5 and round 7 the Generalized network reaches comparable
accuracy to the Gohr depth-1 network one [3, Table 2] with 92.8% vs 92.7%,
respectively 61.0% vs 60.8%.
The shaping into a more generic square form, as well as the removal of the spe-
cific cyclic learning rate allow us to easily apply the Generalized network
to avalanche datasets. For example, the avalanche unit of AES-128 contains
16,384 bits, which are now reshaped into a 128 × 128 “image”, as illustrated in
Fig. 8c).

4.3 Comparison of NNBits with the NIST STS

Here, we compare the NNBits ensemble with the NIST STS. We further show
that the NNBits ensemble analysis can provide additional insights: for exam-
ple, Gohr’s input difference (0x0040, 0x0000) is inferred from the bit-analysis of
SPECK32/64, and the round 2 bit-analysis of the AES-128 avalanche dataset is
explained by multiplication in the Galois field of AES.
Settings S1 . The NIST STS operates in a setting which is difficult from a ma-
chine learning perspective: We are only given access to a limited number of bits
and based on this bit-sequence only, we have to decide if it is generated from
an RNG or not. Here, we assume that we may not use any information on the
cipher which has potentially generated the sequence, therefore we have to train
and test our neural network ensemble on this limited size dataset and without a
labelled dataset. Even for the cipher SPECK32/64 with the smallest avalanche
units of 1024 bits each, we only have around 300k avalanche units available for
testing and training.
Settings S2 . Gohr’s original training dataset contains millions of training se-
quences. For completeness, we also train Generalized network in a setting
which is simpler for machine learning, in short: On a labelled dataset and with

18 A. Hambitzer et al.

a larger amount of data. The details are given in Appendix A.
Here, we first provide a short overview over the results in the different settings,
and then provide the detailed results of NIST STS with NNBits, as well as the
bit-profiles obtained with NNBits.

random from round time spent per round dataset size

cipher NIST STS S1 S2 NIST STS S1 S2 NIST STS & S1 S2

SPECK32/64 6 8 8 ≤30min ≤5 min ≤4min ≈300Mbits ≈4 Gbits
SPECK64/128 7 8 8 ≤30min ≤7 min ≤12 min ≈300Mbits ≈15Gbits
SPECK96/144 8 8 9 ≤30 min ≤10min ≤24min ≈300Mbits ≈34 Gbits
SPECK128/128 9 10 10 ≤30min ≤20 min ≤17 min ≈300 Mbits ≈27Gbits
AES-128 3 3 3 ≤30 min ≤20min ≤17min ≈300Mbits ≈27 Gbits
∗: See Table 8 for details. Please note that NIST STS and S1 use a limited, unlabeled dataset, whereas S2 uses
an –in comparison– unlimited, labeled dataset. S1 provides bit-profiling while NIST STS and S2 do not. As
described in Section 3.3 the NNBits ensemble relies on GPU parallelization on a server and the runtime will
depend on the available resources. This runtimes apply to our particular server.

Table 5: Comparison of the NIST STS and our works.

Discussion. Table 5 shows a summary of the randomness tests performed with
the NIST STS and our NNBits S1 . The runtimes are given as an indication,
even though they are not directly comparable, since NNBits and Generalized
network use highly parallelized GPU implementations. The comparison Ran-
dom from round shows that the deep learning based tests can gain advantages
over the NIST STS in most SPECK-cases for S1 and all SPECK-cases for S2 .
We conclude that even in a low data setting and without label, S1 , the NNBits
ensemble can perform well, either as good as the NIST STS or better.
To gain an additional distinguisher comparison to the NIST STS, we have
implemented the avalanche tests that were used to analyze Xoodoo [12] for
SPECK32/64. The avalanche dependence goes to 32, avalanche weight goes to
≈16, and avalanche entropy goes to ≈32 at round 6, which means all three
avalanche criteria are met at round 6 and aligns with our NIST STS results.

In the following sections we will give details on the results obtained with
the NIST STS (Section 4.3) and NNBits (Section 4.3). In particular, we will
show the bit-profiles generated by the NNBits ensemble and provide a detailed
analysis of the same.

Details for the NIST STS experiment To make a fair comparison between
NNBits and NIST STS, we use the same plaintext avalanche dataset as intro-
duced in Section 3.1. For the target significance level of α = 0.01, at least 292
sequences among all the 300 sequences should successfully pass the examination
to pass a particular test. We present a summary of the results of the tests in
Table 5. In the table, when we say that an underlying primitive is random at
round r, we mean the underlying primitive passes more than 186 of the 188 tests
introduced in Section 3.2 and has no more significant variation when increasing

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 19

the round number. Figure 12 shows the randomness evaluation in each round by
NIST STS tools corresponding to SPECK32/64, SPECK64/128, SPECK96/144,
SPECK128/128, and AES-128 respectively.
The total time to execute all tests was approximately three days. All NIST STS
experiments were carried out on a server with 112 Intel(R) Xeon(R) Platinum
8280 CPUs, each with 28-cores, 2.70GHz, 1152G RAM.

Details for the NNBits experiment Here, we first describe the experiment
to produce the results shown in Table 5. Then we analyze the underlying data of
SPECK32/64 and AES-128 in more detail and show that the NNBits ensemble
experiments can provide useful cryptanalytic insights.
The NIST STS uses a dataset of 300Mbits. To make a fair comparison between
NNBits and NIST STS, we use here the same plaintext avalanche dataset as
introduced in Section 3.1. Therefore, there is only a very limited number of
avalanche units for training and testing of the neural network ensemble. Also,
we don’t assume that we have access to any kind of random/not random
labeled dataset. This results in the settings S1 , which are disadvantageous for
machine learning.
About half of the avalanche units contained in the 300 Mbits-long dataset are
used for training. The detailed settings for the training as well as the detailed
test results are shown in the appendix in Table 7. An NNBits ensemble with
N = 100 neural networks of type Generalized network is constructed as
explained in Section 3.3. To cover the whole range of bits in the avalanche units
(see Table 7) each neural network predicts around 6% of the bits in an avalanche
unit. For example, for SPECK32/64 the avalanche unit contains 1024 bits and
a single neural network predicts 63 randomly chosen bits. In the following we
present the detailed bit profiles of SPECK32/64, while we discuss the details of
AES-128 in the appendix (Appendix D).

Bit profiles of SPECK32/64. Table 5 shows that our NNBits ensemble can
distinguish SPECK32/64 avalanche data up to round seven from randomly gen-
erated data. In the following we gain more insights from the analysis used for
Table 5.

Figure 9 shows the bit-by-bit test accuracy for round 1 to round 7 of the
avalanche dataset of SPECK32/64. We observe a region of weak bits around
bit 715 through all rounds. This region is related to plaintext differences of
(0x0040, 0x0000): in the avalanche sequence, bits 32i . . . 32(i+1)−1 correspond
to the XOR of the original ciphertext with the ciphertext where bit i has been
perturbed. Consequently, the perturbation of bit i = 22 corresponds to bits
704 . . . 735 in the avalanche sequence. The perturbation of this bit in terms of a
plaintext difference is (1 ≪ 22) = (0x0040, 0x0000). Note that (0x0040, 0x0000)
is the chosen plaintext input difference used in Gohr [16] for SPECK32/64.

Figure 10 provides a more detailed view for round 7 of SPECK32/64 from
Fig. 9. We observe that in round 7 two bits (716 and 732) remain weak, i.e., can
be predicted with an accuracy significantly above a random guess.

20 A. Hambitzer et al.

0 1000

50%

60%

70%

80%

90%

100%

te
st

 a
cc

ur
ac

y

Round 1

0 1000

Round 2

0 1000

Round 3

0 1000

Round 4

0 1000

Round 5

0 1000

Round 6

0 1000

Round 7

bit index 0. . . 1023

Fig. 9: Mean ensemble prediction accuracy for each bit in SPECK32/64 round 1
to round 7. A zoom into round 7 is provided in Fig. 10.

Fig. 10: Detailed view of round 7 of Fig. 9, which demonstrates that bit 716 and
732 are weak and have accuracies significantly above the random guess limit.

To gain further understanding, we used NNBits to perform a targeted anal-
ysis on these two bits. In the targeted analysis, we force one or both of these
bits to be predicted (instead of randomly choosing the predicted bits among the
1024 avalanche bits). To do so, we use an ensemble of N = 500 neural networks,
each predicting bit 732; trained on ntrain = 20 × 1024 sequences and tested on
ntest = 500×1024 sequences. Then we analyze the Pearson correlation coefficient
of the obtained accuracies with the presence of the remaining bits at the network
input. This analysis shows a strong correlation of a high accuracy A732 ≫ 50%
with the presence of bit 716 at the input of the neural network. Doing the same
analysis for bit 716 shows that bit 732 needs to be present at the input to predict
bit 732 with an accuracy A732 ≫ 50%. In conclusion, we find that bit 716 needs
to be present at the input to predict bit 732 and vice versa. We can explain this
strong correlation as follows.

Bits 704 to 735 correspond to Gohr’s input difference (0x0040, 0x0000). With
this input difference, we can observe empirically that in round 7, bits 12 and 28
of the output difference (i.e., bits 716 and 732 of the avalanche dataset) are

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 21

Fig. 11: Correlation analysis of bit 732. Left hand side: Histogram of the predic-
tion accuracies of the single ensemble members. Right hand side: Same under-
lying data as on the left hand side, however, divided into two histograms. Grey
- bit 716 is not present at the input of these neural networks. Green - bit 716 is
present at the input of these neural networks.

balanced (i.e., they follow a uniform distribution). On the other hand, at round
6, bit 30 of the output difference (i.e., bit 733 of the 6 rounds avalanche dataset)
is biased: it is set to 1 with probability 0.544. By construction, this bit is the
XOR of bits 716 and 732 of the 7 rounds avalanche dataset; it follows that the
probability for bits 716 and 732 to be different is 0.544. Therefore, losing the
information provided by either of these bits harms the ability to predict the
other one, in agreement with our finding with the NNBits ensemble.

5 Conclusion

In conclusion, in this work, we introduce a deep learning ensemble (NNBits) for
bit-profiling of cryptographic (pseudo) random bit sequences with the following
main results.

Neural network explainability (Section 4.1). Improvements of the explainabil-
ity of neural networks are fundamental not only to understand the additional
knowledge which has been learned by the neural networks, but also for their
future improvement. We demonstrate how to use NNBits to explain parts of
the seminal work of Gohr [16]: Gohr’s depth-1 neural distinguisher reaches a
test accuracy of 78.3% in round 6 for SPECK32/64 [3]. Using the bit-level infor-
mation provided by NNBits we can partially explain the accuracy obtained by
Gohr (78.1% vs 78.3%). This is achieved by constructing a distinguisher which
only uses the information about correct or incorrect predictions on the single bit
level.

Deep-learning based statistical test (Sections 4.2 and 4.3). We also general-
ize two heuristic aspects in the construction of Gohr’s network: i) the partic-
ular input structure, which reflects expert knowledge of SPECK32/64, as well

22 A. Hambitzer et al.

Explanation of
Gohr’s accuracy

Generalization of
Gohr’s distinguisher

Comparison of
NNBits and NIST STS

(Section 4.1) (Section 4.2) (Section 4.3)

Explained
78.1% vs. 78.3%
accuracy

Generalized
input reshaping
and
cyclic learning rate

Random from round for NIST STS
and NNBits (S1 , S2):

cipher NIST STS S1 S2

SPECK32/64 6 8 8
SPECK64/128 7 8 8
SPECK96/144 8 8 9
SPECK128/128 9 10 10
AES-128 3 3 3
and provided NNBits bit-profiling of
SPECK32/64 and AES-128.

as ii) the cyclic learning rate (Section 4.2). In combination with NNBits the
resulting Generalized network can be applied as a statistical test on the
plaintext avalanche datasets of SPECK32/64, SPECK64/128, SPECK96/144,
SPECK128/128, and AES-128. We conclude that the NNBits ensemble per-
forms as well as the NIST STS or better (Section 4.3).

Bit-by-bit profiling (Section 4.3) . We demonstrate cryptanalytic insights that
result from bit-level profiling with NNBits, for example, we show how to in-
fer the strong input difference (0x0040, 0x0000) for SPECK32/64 (Section 4.3)
or infer a signature of the multiplication in the Galois field of AES-128 (Ap-
pendix D).

NNBits is available under [39] and while we mainly focused on Gohr-like
networks, it can be used with any TensorFlow network of interest. NNBits is
mainly aimed at a server environment with GPU availability.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 23

A Details for the Generalized network experiment
S2

We apply Generalized network as a distinguisher to the avalanche datasets
of SPECK32/64, SPECK64/128, SPECK96/144, SPECK128/128 and AES-128
in the settings S2 , which are advantageous for machine learning. Table 6 sum-
marizes the experimental settings for each cipher. We generate X bit sequences
of the length of avalanche units for the respective cipher. A randomly chosen
half of the inputs X have the label Y = 0 and contains random data. The
other half of the inputs has the label Y = 1 and contains avalanche units of a
cipher, that is, not random data. A Generalized network, as presented in
Section 4.2 is trained on a subset Xtrain to predict the labels Ytrain for 10 epochs.
Subsequently, previously unseen data Xtest is used to evaluate the accuracy A
of the distinguisher.
Table 6 summarizes the avalanche unit bit sizes, the number of avalanche units
for training Xtrain and testing Xtest, as well as the distinguisher’s accuracy A
for relevant rounds. The accuracy is given as the mean and standard deviation
over four runs of the previously described experiment.

cipher unit length Xtrain Xtest round accuracy A

SPECK32/64 1024 3.5× 106 150× 103 1/22 (100.00±0.00)%
.
6/22 (82.70±0.22)%
7/22 (51.38±0.02)%
8/22 (50.01±0.16)%

SPECK64/128 4096 3.5× 106 150× 103 1/27 (100.00±0.00)%
.
7/27 (61.27±0.18)%
8/27 (50.06±0.15)%

SPECK96/144 9216 3.5× 106 150× 103 1/29 (100.00±0.00)%
.
8/29 (55.29±1.25)%
9/29 (49.99±0.03)%

SPECK128/128 16384 1.5× 106 150× 103 1/32 (100.00±0.00)%
.
9/32 (84.20±0.39)%
10/32 (50.05±0.09)%

AES-128 16384 1.5× 106 150× 103 1/10 (100.00±0.00)%
2/10 (99.99±0.01)%
3/10 (49.98±0.07)%

Table 6: Accuracies A for distinguishing avalanche units of the respective cipher
from random data. Bold is the first round for which the distinguisher offers no
advantage over a random-guess.

24 A. Hambitzer et al.

B Details of NIST results

0 5 10 15
rounds

0

50

100

150

186

am
ou

nt
s

of
 t

es
ts

 p
as

se
d

SPECK family: plaintext avalanche

SPECK32/64
SPECK64/128
SPECK96/144
SPECK128/128

0 2 4 6 8 10
rounds

AES-128: plaintext avalanche

Fig. 12: Randomness evaluation of rounds by NIST STS.

C Details of NNBits results

cipher single aval.
unit (bits)

aval. units
in 300 Mbits

aval. units
for training

aval. units
for testing

SPECK32/64 1024 292968 147456 145512
SPECK64/128 4096 73242 36864 36378
SPECK96/144 9216 32552 16384 16168
SPECK128/128 16384 18310 12288 6022
AES-128 16384 18310 12288 6022

Table 7: Summary of the number of training and testing avalanche units pre-
sented to the neural network ensemble for each cipher. The detailed training
outcomes for each round are shown in Table 8.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 25

epochs #(training) #(testing) runtime acc (%) p value random
cipher r

speck32 1 10 147456 145512 1.0 100.0 0 not random
2 10 147456 145512 1.0 100.0 0 not random
3 10 147456 145512 1.3 100.0 0 not random
4 10 147456 145512 1.3 99.15 0 not random
5 10 147456 145512 1.3 95.01 0 not random
6 10 147456 145512 1.3 79.17 0 not random
7 10 147456 145512 1.3 51.35 9.7e-25 not random
8 10 147456 145512 3.8 50.17 0.19 random
9 10 147456 145512 4.2 50.23 0.087 random
22 10 147456 145512 2.7 50.27 0.039 random

speck64 1 40 36864 145512 1.5 100.0 0 not random
2 40 36864 145512 1.5 100.0 0 not random
3 40 36864 145512 1.5 100.0 0 not random
4 40 36864 145512 1.4 99.57 0 not random
5 40 36864 145512 1.1 95.54 0 not random
6 40 36864 145512 1.1 77.33 0 not random
7 40 36864 145512 3.8 50.96 3e-13 not random
8 40 36864 145512 6.4 50.2 0.12 random
9 40 36864 145512 6.2 50.18 0.17 random
10 40 36864 145512 6.2 50.18 0.17 random
27 40 36864 145512 6.0 50.26 0.051 random

speck96 1 90 16384 145512 1.8 100.0 0 not random
2 90 16384 145512 1.8 100.0 0 not random
3 90 16384 145512 1.2 100.0 0 not random
4 90 16384 145512 1.2 100.0 0 not random
5 90 16384 145512 1.8 99.62 0 not random
6 90 16384 145512 1.2 94.82 0 not random
7 90 16384 145512 1.7 73.47 0 not random
8 90 16384 145512 3.9 50.71 6e-08 not random
9 90 16384 145512 9.3 50.22 0.097 random
10 90 16384 145512 9.7 50.21 0.11 random
11 90 16384 145512 9.6 50.22 0.092 random
29 90 16384 145512 9.8 50.2 0.13 random

speck128 1 120 12288 145512 1.3 100.0 0 not random
2 120 12288 145512 2.1 100.0 0 not random
3 120 12288 145512 2.2 100.0 0 not random
4 120 12288 145512 1.2 100.0 0 not random
5 120 12288 145512 1.5 100.0 0 not random
6 120 12288 145512 1.3 99.91 0 not random
7 120 12288 145512 2.4 99.21 0 not random
8 120 12288 145512 2.2 90.43 0 not random
9 120 12288 145512 2.2 63.58 0 not random
10 120 12288 145512 16.3 50.25 0.057 random
11 120 12288 145512 16.3 50.25 0.055 random
32 120 12288 145512 16.0 50.28 0.033 random

Table 8: Detailed results for the NNBits analysis presented in Table 5. For each
round r the training settings (number of epochs, number of training avalanche
sequences, number of testing avalanche sequences, as well as the runtime in
minutes), as well as the resulting test accuracy, p-value and randomness result
is shown.

26 A. Hambitzer et al.

D Bit profiles of AES-128.

D.1 AES round 1/10 bit pattern

The previous analysis of SPECK32/64 has shown a particular region of weak
bits. In AES-128, however, we find repeating patterns of weak and strong bits
in rounds 1 and 2 in the 128 bit sub-blocks of the avalanche unit.

Figure 13 shows details of the patterns observed after one round of AES-128.
The complete avalanche unit of AES-128 consists of 128 × 128 = 16, 384 bits.
We analyze the complete avalanche unit in blocks of 128 bits (Fig. 13a)) and can
identify four recurring patterns P1 ... P4 of weak and strong bits that occur
throughout the avalanche unit. For example, pattern P1 occurs in the avalanche
blocks s = 0 to s = 7 (Fig. 13b)). Exemplary sections for the distributions of
weak and strong bit patterns are shown in Fig. 13c).

After one round of AES-128 96 consecutive bits of the 128 bits in each sub-
block can be predicted with 100% accuracy. The remaining 32 bits (4 bytes)
can be predicted with less than 100% accuracy, which can be understood as
follows. The round function of the AES is such that changing one byte in the
input results in differences in one column of the output after one round (with
the other columns remaining undisturbed). This is a well-known fact about the
AES, due in particular to the MDS property of the mixcolumns operation. For
the avalanche dataset, this implies that for each subblock of 128 bits (corre-
sponding to one input difference bit), 4 bytes (one column) are nonzero, while
the rest of the bytes are all zeroes.

The distribution of patterns of Fig. 13a) and Fig. 13b) is still observable after
two rounds of AES (we show the equivalent 2-round patterns in the appendix
Fig. 14c)). When encrypting for two rounds, each of the nonzero bytes of round
1 is sent to a different column through the shiftrows operation, and then propa-
gated to a whole column through mixcolumns, so that after two rounds, all the
bytes of the dataset are non-zero. Furthermore, there are relations between the
bytes of each column: mixcolumns applies a linear transformation to a 4-byte
column, and by construction, only one byte is non-zero in each column. There-
fore, the resulting values are multiples (in the Galois field of AES) of a single
variable, with the coefficients (2,3,1,1), in an order that depends on the position
of the 128-bit block in the avalanche dataset. The bytes with coefficient 1 are
consistently predicted, whereas only some bits of the bytes with coefficients 2
and 3 are reliably predicted. This explains the peculiar pattern observed in the
prediction, where for each group of 4 bytes, there are peaks for 2 bytes, and for
some of the bits among the remaining 2 bytes.

D.2 AES round 2/10 bit pattern

Please see Appendix D for the context of the analysis shown in Fig. 14.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 27

Fig. 13: NNBits ensemble analysis of the avalanche sequence of AES-128. a) The
avalanche block s corresponds to bits 128× s . . . 128× (s+ 1). b) Four patterns
P1 ... P4 occur over the total of 16, 384 bits in one avalanche unit. c) Examples

of the recurring byte patterns of weak and strong bits observed in round 1/10.

28 A. Hambitzer et al.

Fig. 14: NNBits ensemble analysis of the avalanche sequence of AES-128. a) The
avalanche block s corresponds to bits 128× s . . . 128× (s+ 1). b) Four patterns
P1 ... P4 occur over the total of 16, 384 bits in one avalanche unit. c) Examples

of the recurring patterns of weak (green) and strong (orange) bits. The pattern
is actually the same, but shifted with a starting point indicated by the black
arrow.

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 29

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: 12th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16). pp. 265–283 (2016)

2. Aurélien Géron: Hands-on machine learning with Scikit-Learn, Keras and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems. O’Reilly Media
(2019), https://www.oreilly.com/library/view/hands-on-machine-learning/
9781492032632/

3. Bacuieti, N.N., Batina, L., Picek, S.: Deep neural networks aiding cryptanalysis :
A case study of the Speck distinguisher. ePrint pp. 1–24 (2022), https://eprint.
iacr.org/2022/341

4. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential
distinguishers for lightweight ciphers. In: 2021 Design, Automation Test in Europe
Conference Exhibition (DATE). pp. 176–181 (2021). https://doi.org/10.23919/
DATE51398.2021.9474092

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. National Security
Agency (NSA), 9800 Savage Road, Fort Meade, MD 20755, USA (2013)

6. Bellini, E., Rossi, M.: Performance comparison between deep learning-based and
conventional cryptographic distinguishers. In: Intelligent Computing, pp. 681–701.
Springer (2021)

7. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 805–835. Springer (2021)

8. Biryukov, A., dos Santos, L.C., Teh, J.S., Udovenko, A., Velichkov, V.: Meet-in-the-
filter and dynamic counting with applications to speck. Cryptology ePrint Archive
(2022)

9. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996). https:
//doi.org/10.1023/A:1018054314350

10. Brown, R.G.: DieHarder: A Gnu Public License Random Number Tester. Duke
University Physics Department, Durham, NC 27708-0305 (2006), http://www.phy.
duke.edu/\simrgb/General/dieharder.php

11. Castro, J.C.H., Sierra, J.M., Seznec, A., Izquierdo, A., Ribagorda, A.: The strict
avalanche criterion randomness test. Mathematics and Computers in Simulation
68(1), 1–7 (2005). https://doi.org/10.1016/j.matcom.2004.09.001

12. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of xoodoo
and xoofff. IACR Transactions on Symmetric Cryptology 2018(4), 1–38 (Dec
2018). https://doi.org/10.13154/tosc.v2018.i4.1-38, https://tosc.iacr.
org/index.php/ToSC/article/view/7359

13. Daor, J., Daemen, J., Rijmen, V.: AES proposal: Rijndael (10 1999), available
at: https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/
rijndael_doc_V2.pdf

14. Feistel, H.: Cryptography and computer privacy. Scientific american 228(5), 15–23
(1973)

15. Gohr, A.: Deep speck. https://github.com/agohr/deep_speck (2019)
16. Gohr, A.: Improving Attacks on Round-Reduced Speck32/64 Using Deep Learn-

ing. Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics) 11693 LNCS, 150–179

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://eprint.iacr.org/2022/341
https://eprint.iacr.org/2022/341
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
http://www.phy.duke.edu/$\sim $rgb/General/dieharder.php
http://www.phy.duke.edu/$\sim $rgb/General/dieharder.php
https://doi.org/10.1016/j.matcom.2004.09.001
https://doi.org/10.1016/j.matcom.2004.09.001
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
https://github.com/agohr/deep_speck

30 A. Hambitzer et al.

(2019). https://doi.org/10.1007/978-3-030-26951-7_6, https://doi.org/10.
1007/978-3-030-26951-7_6.

17. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning: The MIT Press, vol. 19.
The MIT Press (2017), https://mitpress.mit.edu/books/deep-learning

18. Gunning, D., Vorm, E., Wang, J.Y., Turek, M.: Darpa’s explainable ai (xai) pro-
gram: A retrospective. Applied AI Letters 2, e61 (12 2021). https://doi.org/
10.1002/AIL2.61

19. Gustafson, H., Dawson, E., Golić, J.D.: Automated statistical methods for measur-
ing the strength of block ciphers. Statistics and Computing 7(2), 125–135 (1997)

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. vol. 2016-Decem, pp. 770–778 (2016). https://doi.org/
10.1109/CVPR.2016.90, http://image-net.org/challenges/LSVRC/2015/

21. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
Networks (1991). https://doi.org/10.1016/0893-6080(91)90009-T

22. Hou, Z., Ren, J., Chen, S., Fu, A.: Improve neural distinguishers of simon and
speck. Sec. and Commun. Netw. 2021 (jan 2021). https://doi.org/10.1155/
2021/9288229

23. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7132–7141 (2018).
https://doi.org/10.1109/CVPR.2018.00745

24. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) Advances in Cryptology — CRYPTO ’94. pp. 17–25. Springer Berlin Heidel-
berg, Berlin, Heidelberg (1994)

25. L’Ecuyer, P., Simard, R.: TestU01: a Software Library in ANSI C for Empiri-
cal Testing of Random Number Generators, Software User’s Guide. Département
d’Informatique et Recherche opérationnelle, Université de Montréal, Montréal,
Québec, Canada (2001), http://www.iro.umontreal.ca/~simardr/TestU01.zip

26. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency
of symmetric neural networks. Advances in neural information process-
ing systems 27, 855—-863 (2014), https://papers.nips.cc/paper/2014/hash/
3a0772443a0739141292a5429b952fe6-Abstract.html

27. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 Competition: 100,000
time series and 61 forecasting methods. International Journal of Forecasting 36(1),
54–74 (2020). https://doi.org/10.1016/j.ijforecast.2019.04.014

28. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M.,
Yang, Z., Paul, W., Jordan, M.I., et al.: Ray: A distributed framework for emerging
{AI} applications. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). pp. 561–577 (2018)

29. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis
expansion analysis for interpretable time series forecasting. In: 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net (2020), https://openreview.net/forum?id=
r1ecqn4YwB

30. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237 (2019)

31. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications. NIST (2010)

https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6.
https://doi.org/10.1007/978-3-030-26951-7_6.
https://mitpress.mit.edu/books/deep-learning
https://doi.org/10.1002/AIL2.61
https://doi.org/10.1002/AIL2.61
https://doi.org/10.1002/AIL2.61
https://doi.org/10.1002/AIL2.61
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://image-net.org/challenges/LSVRC/2015/
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1155/2021/9288229
https://doi.org/10.1155/2021/9288229
https://doi.org/10.1155/2021/9288229
https://doi.org/10.1155/2021/9288229
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
http://www.iro.umontreal.ca/~simardr/TestU01.zip
https://papers.nips.cc/paper/2014/hash/3a0772443a0739141292a5429b952fe6-Abstract.html
https://papers.nips.cc/paper/2014/hash/3a0772443a0739141292a5429b952fe6-Abstract.html
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://openreview.net/forum?id=r1ecqn4YwB
https://openreview.net/forum?id=r1ecqn4YwB

NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher 31

32. Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt,
S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., Silver, D.:
Mastering Atari, Go, chess and shogi by planning with a learned model. Nature
588(7839), 604–609 (2020). https://doi.org/10.1038/s41586-020-03051-4

33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings (2015), http://www.robots.ox.ac.uk/

34. Soto, J.: Randomness testing of the advanced encryption standard candidate al-
gorithms. NIST Interagency/Internal Report (NISTIR) (1999), http://www.nist.
gov/customcf/get_pdf.cfm?pub_id=151193

35. Soto, J., Bassham, L.: Randomness Testing of the Advanced Encryption Standard
Finalist Candidates . NIST Interagency/Internal Report (NISTIR) (2000), https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151216

36. Švenda, P., Ukrop, M., Matyáš, V.: Determining cryptographic distinguishers for
estream and sha-3 candidate functions with evolutionary circuits. Communications
in Computer and Information Science 456, 290–305 (2014). https://doi.org/10.
1007/978-3-662-44788-8_17

37. Team, P.: PyTorch ResNet Implementation. https://pytorch.org/hub/pytorch_
vision_resnet/ (2022)

38. Team, R.: Ray. https://github.com/ray-project/ray (2022)
39. (TII), T.I.I.: Crypto-tii nnbits. https://github.com/Crypto-TII/nnbits (2022)
40. Virtanen, P.e.a.: SciPy 1.0: Fundamental Algorithms for Scientific Computing

in Python. Nature Methods 17, 261–272 (2020). https://doi.org/10.1038/
s41592-019-0686-2

41. Walker, J.: ENT: A pseudorandom number sequence test program. Web site (Jan
2008), http://www.fourmilab.ch/random/

42. Yadav, T., Kumar, M.: Differential-ml distinguisher: Machine learning based
generic extension for differential cryptanalysis. In: Progress in Cryptology – LAT-
INCRYPT 2021: 7th International Conference on Cryptology and Information Se-
curity in Latin America, Bogotá, Colombia, October 6–8, 2021, Proceedings. p.
191–212. Springer-Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/
978-3-030-88238-9_10

https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
http://www.robots.ox.ac.uk/
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=151193
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=151193
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151216
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=151216
https://doi.org/10.1007/978-3-662-44788-8_17
https://doi.org/10.1007/978-3-662-44788-8_17
https://doi.org/10.1007/978-3-662-44788-8_17
https://doi.org/10.1007/978-3-662-44788-8_17
https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/ray-project/ray
https://github.com/Crypto-TII/nnbits
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.fourmilab.ch/random/
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10

	NNBits: Bit Profiling with a Deep Learning Ensemble Based Distinguisher

