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Abstract

Oblivious RAMs (ORAMs) are an important cryptographic primitive that enable outsourcing
data to a potentially untrusted server while hiding patterns of access to the data. ORAMs
provide strong guarantees even in the face of a persistent adversary that views the transcripts
of all operations and resulting memory contents. Unfortunately, the strong guarantees against
persistent adversaries comes at the cost of efficiency as ORAMs are known to require Ω(log n)
overhead.

In an attempt to obtain faster constructions, prior works considered security against snapshot
adversaries that only have limited access to operational transcripts and memory. We consider
(s, ℓ)-snapshot adversaries that perform s data breaches and views the transcripts of ℓ total
queries. Promisingly, Du, Genkin and Grubbs [Crypto’22] presented an ORAM construction
with O(log ℓ) overhead protecting against (1, ℓ)-snapshot adversaries with the transcript of ℓ
consecutive operations from a single breach. For small values of ℓ, this outperforms standard
ORAMs.

In this work, we tackle whether it is possible to further push this construction beyond a
single breach. Unfortunately, we show that protecting against even slightly stronger snapshot
adversaries becomes difficult. As our main result, we present a Ω(log n) lower bound for any
ORAM protecting against a (3, 1)-snapshot adversary that performs three breaches and sees
the transcript of only one query. In other words, our lower bound holds even if an adversary
observes only memory contents during two breaches while managing to view the transcript of
only one query in the other breach. Therefore, we surprisingly show that protecting against
a snapshot adversary with three data breaches is as difficult as protecting against a persistent
adversary.
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1 Introduction

In this work, we study the setting where a client wishes to outsource the storage of some data
to a third-party service provider that we refer to as the server. For example, this is a natural
problem that arises when users rely on cloud computing or cloud storage services. In terms of
privacy, the client desires to keep all the data private even after outsourcing the data to the server.
A straightforward attempt to secure the data is to require the client to encrypt all data before
uploading to the server. This guarantees that the plaintext data may never be observed by anyone
except the client. However, an adversary may still be able to observe patterns of access to the
encrypted data. Prior works [IKK12, CGPR15, ZKP16, KKNO16, LMP18, GLMP19, BKM20,
KPT21] have shown that access patterns may be utilized to reveal parts of the plaintext data in
certain settings. Therefore, it is also important to also hide access patterns to the encrypted data.

Persistent Adversaries. Oblivious RAMs (ORAMs), introduced by Goldreich and Ostrovsky [GO96],
are one cryptographic primitive that may be used to hide access patterns. At a high level, ORAMs
guarantee that any adversary cannot distinguish between the access patterns to encrypted data
incurred by any two equal-length operational sequences. These obliviousness guarantees hold even
if the adversary has persistently compromised the server (for example, this may be the case if the
adversary is the server operator). In this case, the persistent adversary observes server memory con-
tents and all access to server memory (i.e., the operational transcript) during the entire execution
of the ORAM.

A long line of work (such as [GMOT12, KLO12, SvS+13, RFK+15, ZWR+16, BCP16, CLT16,
PPRY18]) has studied the best efficiency that is achievable by an ORAM leading to the best
construction obtaining O(log n) overhead [AKL+20]. Recently, Ω(log n) lower bounds [LN18] were
proven showing the best ORAM constructions are optimal in the presence of persistent adversaries.
Unfortunately, recent works have also shown that Ω(log n) overhead is required to protect against
persistent adversaries even with weaker privacy guarantees including differential privacy [PY19,
PY23], searchable encryption leakage [PPY20], multiple non-colluding servers [LSY20] and hidden
operational boundaries [HKKS19]. The same lower bounds have also been extended to other settings
including small blocks [KL21].

Snapshot Adversaries. In an attempt to obtain faster constructions, prior works have considered
weaker adversaries that model real-world scenarios. In most cases, users trust the service provider
(server) to store data securely. However, attackers may try to breach these services to temporarily
gain access to the system. During this time, adversaries may quickly download all data stored on
the server or potentially even view transcripts of operations while being performed by the server.
Eventually, the server operators will detect the system breach and remedy the situation to revoke
access from the adversary. Recent reports [dbi] show that the above is a common theme in most
real system attacks and remediation typically occurs within a couple of days after the attack starts.

To model the above, we introduce the notion of (s, ℓ)-snapshot adversaries where the adversary
may breach the system at most s times. During each of these s breaches, the adversary receives a
snapshot of the server memory and sees the transcript for a total of at most ℓ operations. When
protecting against weaker snapshot adversaries (with small values of s and ℓ), we can hope to
obtain sub-logarithmic efficiency for ORAMs. Prior works have studied constructions against such
adversaries. Amjad, Kamara and Moataz [AKM19] considered breach-resistant data structures
that were secure against (s, 0)-snapshot adversaries; these are adversary that only observed server
memory contents and no operational transcripts. Unfortunately, their constructions still required
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O(log n) overhead in the worst case (see Section 6.2 for more details).
A recent work of Du, Genkin and Grubbs [DGG22] presented an ORAM construction secure

against (1, ℓ)-snapshot adversaries that required overhead of only O(log ℓ). For small values of
ℓ, this is significantly faster than the O(log n) overhead ORAMs that protect against persistent
adversaries. It was also shown that Ω(log ℓ) overhead is necessary for ORAMs protecting against
(1, ℓ)-snapshot adversaries as such constructions can be used to construct ORAMs against persistent
adversaries by setting ℓ to be an upper bound on the length of the operational sequence such as
ℓ = nO(1).

However, this construction only protects against a single breach of the system (s = 1) leading
to the following natural question that was also posed as an open problem in [DGG22]:

Is it possible to build sub-logarithmic overhead ORAMs that are secure against snapshot
adversaries that may perform multiple breaches?

This is an important question as many real-world systems must run for long periods of time and may
be compromised multiple times due to different attacks. For example, at least six large companies
have been compromised by at least three data breaches in the past two decades (see [bre]). In this
paper, we tackle this open problem to answer whether it is possible to construct efficient ORAMs
to protect against multiple data breaches.

1.1 Our Contributions

As our main result, we answer the open problem in the negative. In particular, we show that there
is a Ω(log n) lower bound for ORAMs protecting against (3, 1)-snapshot adversaries that perform
only three breaches and view the transcript for one operation. Afterwards, we explore various
settings where we can circumvent the lower bound and present sub-logarithmic constructions for
some weaker primitives.

Lower Bounds for (3, 1)-Snapshot Oblivious RAMs. We begin by presenting our lower bound
for ORAMs that protect against (3, 1)-snapshot adversaries. Recall that a (3, 1)-snapshot adversary
is able to gain access to the system three times and view the transcripts for only a single query.
That means, the (3, 1)-snapshot adversary only views the memory contents for two of the three
breaches while observing the memory contents and the access patterns to server memory for only
a single operation in the other breach. We present the following logarithmic lower bound for any
oblivious RAMs that provide protection against (3, 1)-snapshot adversaries:

Theorem 1 (Informal). Any (3, 1)-snapshot oblivious RAM for n b-bit entries with client storage
c must have overhead

Ω(log(nb/c)).

Quite surprisingly, our main result proves that protecting against (3, 1)-snapshot adversaries
with relatively weak access to the system is as challenging as protecting powerful persistent ad-
versaries with unlimited access to the system. We note that our above lower bound asymptoti-
cally matches prior lower bounds for ORAMs with respect to persistent adversaries [LN18, PY19,
HKKS19, KL21]. Our work shows that for any applications where protection of up to three breaches
is required, one may use the logarithmic ORAM constructions [AKL+20] to obtain optimal over-
head.
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Our work is the first to prove a super-constant lower bound even when the adversary observes the
transcript of only a constant number of operations. Previous lower bounds [LN18, PY19, HKKS19,
LMWY20, PPY20, KL21, PY23] with persistent adversaries proved Ω(log n) lower bounds, but re-
quired the adversary to observe the transcript of Θ(n) operations. Du, Genkin and Grubbs [DGG22]
proved a Ω(log ℓ) lower bound for protecting against (1, ℓ)-snapshot adversaries. However, the lower
bound becomes trivial when the adversary views only ℓ = O(1) operational transcripts. Our lower
bound shows that Ω(log n) overhead is necessary even when ℓ = 1 operational transcripts are ob-
served. This is also the first lower bound that does not depend on the number of operational
transcripts, ℓ, viewed by the adversary.

While our lower bound considers (3, 1)-snapshot adversaries, we note it also applies to any
stronger adversaries. Formally, any ORAM requires logarithmic lower bound when consider secu-
rity against a (s, ℓ)-snapshot adversary with s ≥ 3 breaches and viewing the transcript of ℓ ≥ 1
operations. We note that our lower bound also applies to privacy guarantees that are weaker than
obliviousness. Prior works have considered weaker notions including differential privacy [PY19],
leakage functions commonly used in searchable encryption [PPY20] as well as read-only oblivious-
ness. In our work, we show that our logarithmic lower bound may be extended to all three weaker
privacy notions.

Sub-Logarithmic Constructions. Next, we explore various ways to circumvent the above loga-
rithmic lower bound with respect to snapshot adversaries. In particular, we are trying to find con-
structions with sub-logarithmic lower bounds that still provide protections against (3, 1)-snapshot
or stronger adversaries. As we know that this is impossible for RAMs (i.e., arrays), we explore
functionalities that are weaker than RAMs that admit sub-logarithmic overhead.

• No-Write Oblivious RAMs1: Our lower bound for oblivious RAMs with respect to (3, 1)-
snapshot adversaries critically leverages the ability to overwrite RAM entries. A natural
question to study is a no-write ORAM that only enables reading entries. In Section 6.1, we
show there exists a very simple construction for no-write ORAMs with O(1) overhead that is
secure against (s, 1)-snapshot adversaries for every s ≥ 1. We note this is not surprising as
no-write ORAMs never need to modify server memory to overwrite entries. However, no such
separation is known for persistent adversaries as designing a sub-logarithmic no-write ORAM
remains an open problem. Furthermore, prior work showed significant barriers towards non-
trivial lower bounds for no-write ORAMs even against persistent adversaries [WW18].

• Oblivious Stacks and Queues: We also consider stacks and queues that have weaker retrieval
functionalities than a RAM data structure. We show that there exist simple constructions
with O(1) overhead secure against (s, 1)-snapshot adversaries for every s ≥ 1. The constant
overhead implementation of stacks and queues provides a separation with respect to snapshot
adversaries. In contrast, it is known that oblivious RAMs and stacks/queues both require
logarithmic overhead against persistent adversaries [JLN19].

1Prior works have also referred to this primitive as read-only ORAMs. However, similar names have also been
used for read-only obliviousness where security is only provided against read operations, but write operations may
not be private. To differentiate, we chose to rename this primitive as a no-write ORAM. Throughout our work, we
will refer to read-only and write-only ORAMs as those that provide obliviousness for only read or write operations
respectively.
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1.2 Related Works

Lower Bounds and Barriers. The first lower bounds for oblivious RAMs were proven in
the balls-and-bins model that makes a non-encoding assumption on each entry. Goldreich and
Ostrovsky [GO96] proved the first logarithmic ORAM lower bounds in this model. Boyle and
Naor [BN16] were the first to explicitly point out this non-encoding assumption and defined the
balls-and-bins model. Further works prove lower bounds in this model such as for differentially pri-
vate [PPY19], searchable encryption [BF19] and one-round ORAMs [CDH20]. PIR lower bounds
were studied in models nearly identical to the balls-and-bins model including for public prepro-
cessing [BIM04, PY22] and private preprocessing [CK20, CHK22, Yeo23]. To our knowledge, all
balls-and-bins lower bounds were proven against persistent adversaries.

More general logarithmic lower bounds for ORAMs were proven by Larsen and Nielsen [LN18]
in the cell probe model without any non-encoding assumptions. Follow-up works have considered
lower bounds for other data structures [JLN19] and weaker security guarantees including differen-
tial privacy [PY19], no operational boundary knowledge [HKKS19], searchable encryption leakage
functions [PPY20] and multiple non-colluding servers [LSY20]. The highest lower bounds for obliv-
ious data structures remains Ω(log2 n) for near-neighbor search [LMWY20]. Lower bounds were
also proven for the setting of small block sizes in [KL21]. A recent work presented a framework
for proving lower bounds for a wide range of data structures and security notions [PY23]. To our
knowledge, all cell probe lower bounds were also proven with respect to persistent adversaries.

Finally, several works have presented barriers for proving lower bounds. Boyle and Naor [BN16]
showed that proving non-trivial lower bounds for offline ORAMs that receive all operations at
once would imply unknown circuit lower bounds. A subsequent work by Weiss and Wichs [WW18]
showed non-trivial lower bounds for no-write ORAMs would also imply unknown lower bounds for
either circuits or locally decodable circuits (both of which are long-standing open problems).

Oblivious RAMs. Oblivious RAMs were first introduced by Goldreich and Ostrovsky [GO96]
and have been studied extensively for decades thereafter. For examples, see [GO96, GMOT12,
KLO12, SvS+13, RFK+15, ZWR+16, BCP16, CLT16, PPRY18] and references therein. The best
constructions obtain logarithmic overhead [AKL+20, AKLS21]. Many ORAM constructions have
been considered for various settings such as differential privacy [WCM18, PPY19], multi-party
computation [WHC+14, ZWR+16, Ds17], write-only obliviousness [LD13, BMNO14, RACM17]
and parallel RAM access [BCP16, CLT16, AKL+22] to list some examples. Of these results, write-
only ORAMs are the closest to our notions. For completeness, we discuss their relation to the
notion of snapshot security in Section 6.2.

Encrypted Search and Structured Encryption. Searching over encrypted data was first in-
troduced by Song, Wagner and Perrig [SWP00]. Structured encryption was introduced by Chase
and Kamara [CK10] to generalize the notion beyond encrypted indexes. In both primitives, the
goal is to obtain efficient constructions while ensuring reasonable privacy upper bounded by a “sen-
sible” leakage function. Follow-up works have considered adaptive adversaries [CGKO06], dynamic
variants [KPR12, CJJ+14, HK14], forward and backward privacy [Bos16, BMO17], public-key set-
tings [BDOP04, ACD+22], cache-efficiency [CT14, BBF+21, MR22], Boolean queries [CJJ+13,
KM17, PPSY21], SQL queries [KM18], leakage suppression [KMO18, DPPS20, GKM21], frequency
smoothing [GKL+20], and volume-hiding [KM19, PPYY19, APP+23]. Another line of work has
studied the implications of various leakage profiles through abuse attacks (see [IKK12, CGPR15,
ZKP16, KKNO16, LMP18, GLMP19, BKM20, KPT21] and references therein).
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2 Technical Overview

Reviewing Prior Lower Bounds. We start by reviewing the logarithmic lower bounds for
ORAMs protecting against persistent adversaries, the first of which was proven by Larsen and
Nielsen [LN18]. There are two main proof techniques, both originating from the data structure
community: information transfer [PD06] and chronogram [FS89]. Prior works on lower bound for
data structures guaranteeing different levels of privacy constructed similar persistent adversaries
independent of the employed technique. These persistent adversaries consist of two main parts.
First, the adversary observes the transcripts of a sequence of write ORAM operations where the
transcript consists of all memory probes and whether the corresponding memory cell is overwritten.
The adversary records a list of all memory cells that are updated and the operation responsible
for the modification. Afterwards, the adversary views the transcript for one or more read ORAM
operations and attempts to correlate probed memory cells and the operation that last modified the
probed cell. At a high level, the adversary is attempting to estimate which ORAM write operation
is responsible for the information returned by the ORAM read operation. As a result, this forces
the ORAM to make additional memory probes to hide the real ORAM write operation responsible
for the relevant information that needs to be returned.

The above adversary structure has been used by prior works regardless of whether they rely on
the information transfer or chronogram technique. The main difference in the two techniques is the
arrangement of counting disjoint memory probes that are forced by the adversary. The information
transfer technique (used in [LN18, JLN19, HKKS19, PPY20, LSY20, KL21]) arranges a binary tree
over a sequence of Θ(n) ORAM operations. Each ORAM operation is uniquely assigned to a leaf
of a tree and every memory probe is uniquely assigned to a node in the tree by the adversary as
follows. For any probe to a memory cell during operation i, the persistent adversary finds the last
operation j responsible for modifying the contents of the memory cell. This probe is then assigned
to the lowest common ancestor of leaf nodes associated to operations i and j. By a combination
of correctness and privacy properties, it can be shown that, for sufficiently large m, each internal
node with m leaf nodes must have Ω(m) assigned probes. In total, the entire tree has Ω(n log n)
assigned probes and, thus, an Ω(log n) lower bound may be obtained.

The chronogram technique (used in [PY19, LMWY20, PY23]) takes a different approach by
arranging Θ(n) ORAM write operations into partitions of geometrically decreasing size, for some
constant factor r > 1. The leftmost partition contains Θ(n) operations, the second left most parti-
tion contains Θ(n/r) operations and so forth for a total of p = Θ(log n) partitions. At last, a final
ORAM read operation is performed after all Θ(n) ORAM write operations. If the last operation
was chosen to read one random entry that was overwritten in the i-th partition, correctness implies
that Ω(1) memory cells that were last overwritten by an operation during the i-th partition must
be probed. On the other hand, privacy requires that this must be the case for all other p partitions
thus obtaining an Ω(p) = Ω(logn) lower bound.

In either case, prior lower bounds heavily relied on the persistent nature of the adversary to
view the transcripts for all operations. A weaker (s, ℓ)-snapshot adversary viewing transcripts for
ℓ = O(1) operations will not be able to accumulate a log of all memory cell updates as done in the
past.

New Techniques for Snapshot Adversaries. In our work, we develop new snapshot adversarial
strategies for very weak compromise settings with only a constant s = 3 number of breaches and
observing the transcript of just ℓ = 1 operation. We first note that all prior persistent adversary
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strategies used the transcripts from all Θ(n) operations. In particular, they never utilized the
contents of server memory that are also in the adversary’s view. This is not surprising as a
persistent adversary with transcripts from all operations can easily compute the exact contents of
server memory at any point in time. However, one cannot compute the exact server memory when
only observing the transcripts of a small subset of transcripts as is the case for snapshot adversaries
with ℓ = 1.

Instead, our new snapshot adversarial strategy will heavily utilize the contents of server memory
that may be viewed during the s = 3 data breaches. Consider any pair of breaches where the
adversary is able to view the contents of server memory. We observe that the adversary is able
to compute the memory cells that have changed between the two snapshots of server memory.
Therefore, a snapshot adversary is able to record memory cell updates between each of the s
breaches that occur. The snapshot adversary is able to observe a list of all memory cell updates
with coarser-grained update times where updates are only known to have occurred during operations
between any pair of breaches. For s = 3, the snapshot adversary is able to categorize memory cell
updates into three groups: cells updated before the first breach, cells updated between the first
and second breach and cells updated between the second and third breach.

Next, we adapt the chronogram technique and show that it may still be used when a snapshot
adversary is only able to sample and test a single adversarial event. Recall that the chronogram
technique splits Θ(n) ORAM write operations into p = Θ(log n) partitions. The goal is to prove
that the final ORAM read operation must probe Ω(1) memory cells that were last overwritten from
each of the p partitions. A persistent adversary is able to check whether all p events are satisfied
(as done in prior works). In our proof, we instead show that it suffices for a snapshot adversary to
randomly sample and test only one event. Suppose in fact that we have an ORAM construction that
does not satisfy the conditions for one of the p = Θ(log n) events with non-negligible probability
q. Then, the snapshot adversary will sample this event and detect the violation with probability
q/p = Ω(q/ log n) that is also non-negligible and thus privacy is violated. Therefore, a snapshot
adversary only needs to test one random event. In our full proof, we extend this idea to constant
adversarial advantage using randomization to hide the partitioning structure from the adversary.

Finally, we show that our seemingly weak snapshot adversarial strategy with s = 3 and ℓ = 1
is sufficient to randomly sample and test one of the adversarial events. To do this, the snapshot
adversary first samples one of the p partitions uniformly at random. Afterwards, the snapshot
adversary chooses to perform breaches directly before and after all ORAM write operations of the
sampled partition. In these two breaches, the snapshot adversary only sees server memory contents
and no operational transcripts. Next, the adversary performs the third breach for the final ORAM
read operation and views the transcript for this operation. Using the server memory from all three
breaches, the adversary can determine the set of memory cells W that were updated by ORAM
write operations during the sampled partition, but were not modified until the final ORAM read
operation. As the last step, the adversary can check whether the intersection of the memory cells
probed by the final ORAM read operation and W contains at least Ω(1) memory cells that is
equivalent to testing the adversarial event corresponding to the sampled partition. Therefore, we
show that an ORAM requires Ω(log n) overhead against (3, 1)-snapshot adversaries.

As a side note, we chose to adapt the chronogram technique as it enables smaller values of
ℓ = 1. Our same techniques could be applied to the information transfer proof where the number of
probes assigned to each internal node could be the adversarial event. Unfortunately, testing events
associated to nodes with many leaf nodes would require the adversary to view the transcripts of
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ℓ = Ω(n) operations. Thus the information tree methodology would use a stronger adversary and,
thus, yield a weaker lower bound than what we obtain.

Sub-Logarithmic Constructions. We overview the simple constructions of our no-write ORAM
secure against (s, 1)-snapshot adversaries for any s ≥ 1. First, we note that security against an
(s, 0)-snapshot attack is trivial for no-write ORAMs that never need to update server memory. For
example, the server can store an encrypted array and perform reads by simply reading the i-th
entry. To protect against (s, 1)-snapshot attacks, we can simply have the server store a random
permutation π of the encrypted array. For reads to entry i, the client simply downloads the π(i)-
th entry of the encrypted array. This provides a separation for no-write and read-write ORAMs
against (3, 1)-snapshot adversaries that is not known with respect to persistent adversaries.

Next, we show that we can obtain sub-logarithmic overhead for oblivious stacks and queues
with weaker functionality than ORAMs. As stacks and queues may only push or pop entries to a
fixed location, we can ensure that locations of memory updates only depend on the length of the
operational sequence. This immediately obtains an (s, 0)-snapshot oblivious stack/queue for any
s ≥ 1. Using the same trick as done for no-write ORAMs, we can obtain (s, 1)-snapshot security
using a random permutation. Therefore, we give a O(1) overhead implementation of oblivious
stacks/queues providing a separation from ORAMs. This separation is not possible for persistent
adversaries where Ω(log n) lower bounds are known for oblivious stacks/queues [JLN19].

3 Definitions

3.1 Snapshot Security

We start by defining (s, ℓ, ϵ)-snapshot security that guarantees that any PPT (s, ℓ)-snapshot ad-
versary has advantage at most ϵ. Roughly speaking an (s, ℓ)-snapshot adversary is an adversary
that perform a snapshot attack that consists of s snapshot windows for a total span of ℓ operations.
When ϵ is clear from the context, we may drop ϵ and use (s, ℓ)-snapshot security.

More formally, we model an (s, ℓ)-snapshot adversary A as a two-part adversary (A0,A1).
Algorithm A0(1

n) outputs two equal-length operational sequences, O1 and O2, as well as a sequence
of snapshot windows denoted by

S =
(
(t1, ℓ1), (t2, ℓ2), . . . , (ts, ℓ|S|)

)
describing the snapshot attack the adversary intends to mount. Specifically, a pair (ti, ℓi) specifies
a snapshot window of length ℓi starting with operation ti. As a result of this snapshot window,
the adversary will get the memory content before the operation with index ti is executed and the
server memory accesses for the following ℓi operations indexed ti, . . . , ti+ ℓi−1. Note that if ℓi = 0
then the adversary only gets a snapshot of the memory content before operation ti is performed
and no memory access. Without loss of generality, we will also suppose that the snapshot windows
are given in increasing order of the ti and that they do not overlap.

Adversary A1 receives the leakage obtained from the snapshot attack specified by A0 when one
of the two sequences of operations, O1 and O2, is executed. A1 outputs its guess as to which one
has actually been used to produce the leakage. An adversary A is an (s, ℓ)-snapshot adversary if
the following two conditions are satisfied: S contains at most s snapshot windows, that is |S| ≤ s
and the total snapshot time ℓ1 + . . .+ ℓ|S| is at most ℓ.
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Read(x) Write(x, y) LRead(x) LWrite(x, y)

1. Return M [x]. 1. Set M [x]← y. 1. Set L ← L || (read, x). 1. Set L ← L || (write, x, y).
2. Return ⊥. 2. Return M [x]. 2. Set M [x]← y.

3. Return ⊥.

Figure 1: (Leaky) Memory Read and Write Oracles.

We next define an experiment that is parameterized by the data structure DS and by a snapshot
adversaryA and a bit β ∈ {0, 1}. The experiment will execute the data structure DS on the sequence
of operation Oβ output by A0 and records the leakage of DS from the snapshot attacks specified
by A0.

For any data structure DS, we will assume that DS has access to an underlying physical memory
M that is indexed uniquely by integers from [|M |]. Access will be exclusively performed by means
of two oracles: one for reading memory cells and one for writing to memory cells. In the experiment,
DS will be equipped with standard oracles (Read and Write, see Figure 1) except for the snapshot
windows specified by the adversary during which the access to memory will be performed by means
of leaky oracles (LRead and LWrite, see Figure 1) that record the read/write operation performed
for the adversary.

We present the formal definition of our experiment defining snapshot security in Figure 2.
Finally, we present the formal definition of (s, ℓ, ϵ)-snapshot security for data structures using the
above defined experiment.

Definition 1 ((s, ℓ, ϵ)-Snapshot Security). Let s ≥ 1 and ℓ ≥ 0 be fixed integers and let 0 ≤ ϵ < 1.
A data structure DS is (s, ℓ, ϵ)-snapshot secure if for any PPT (s, ℓ)-snapshot adversary A, the
following holds: ∣∣Pr[ExptDS,A(n, 0) = 1]− Pr[ExptDS,A(n, 1) = 1]

∣∣ ≤ ϵ,

for all sufficiently large n.

In our work, we will focus on RAM data structures that maintain an array of length n where the
two supported operations are retrieving and update an entry. Throughout our work, we will denote
a RAM data structure DS satisfying as (s, ℓ)-snapshot security as an (s, ℓ)-snapshot oblivious RAM
or an oblvious RAM secure against (s, ℓ)-snapshot adversaries.

Discussion about Adaptive Adversary. In our above definition, we define the adversary to
be non-adaptive. In particular, the adversary must pick the t snapshot windows at the beginning
of the experiment. A stronger definition would be to enable the adversary to adaptively choose
snapshot times and lengths that may depend on the leakage of previously seen snapshot leakage.
As we are proving lower bounds, a weaker security definition implies a stronger lower bound. In
other words, our lower bounds for non-adaptive adversaries would immediately apply to settings
with more realistic adaptive adversaries.

Discussion about ℓ < s. In our definition, we enable values of ℓ < s. That is, the total snapshot
time may be smaller than the number of snapshots. This is allowed because we allow snapshots of
length 0 that is formally denoted by ℓi = 0. In this case, note that the experiment only adds the
current contents of memory cells M to the snapshot leakage L but not the memory access patterns
for any operations performed by DS. This formalizes the setting where an adversary may perform
a snapshot attack but no operations occur during the attack.
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ExptDS,A(n, β):

1. Execute (O0, O1, S, st)← A0(1
n).

2. Parse S = {(t1, ℓ1), . . . , (t|S|, ℓ|S|)}.

3. Set leakage L ← ∅ and initialize DS with n blocks each consisting of randomly select
blocks of b bits.

4. Set i← 1.

5. While i ≤ |Oβ|:

(a) If i = tj for some j ∈ [|S|]:
i. Set L ← L || (memory,M).

ii. For k = 1, . . . , ℓj :

A. Execute DSLRead,LWrite(Ob[i]).

B. Set i← i+ 1.

(b) Else:

i. Execute DSRead,Write(Ob[i]).

ii. Set i← i+ 1.

6. Execute β′ ← A1(st,L).

7. Return β′.

Figure 2: Experiment for (s, ℓ)-snapshot security.

3.2 Cell Probe Model

In this work, we prove our lower bounds in the oblivious cell probe model introduced by Larsen and
Nielsen [LN18] that adapts the cell probe model of Yao [Yao81]. In this model, there exists a client
and a server with separate storage. The client has c bits of storage. The server’s memory consists
of memory cells that consist of w ≥ 1 bits each. The only operation that is charged any cost is
probing a cell in server memory to retrieve or update its contents. All other operations are free of
cost including computation or accessing client storage. Additionally, we will assume there exists a
long, but finite random string R that is accessible to both the client and the server without any
cost. One can view R as a random oracle. As we consider a weak cost model, our lower bounds
will apply for any reasonable model of computation.

4 Lower Bound

In this section, we prove a logarithmic lower bound for any RAM data structure DS that is (3, 1)-
snapshot private. The adversary is able to employ three snapshot attacks at various time points.
However, the three snapshot attacks are able to observe the memory access pattern of exactly one
operation performed by the DS during one snapshot attack. In the other two snapshot attacks,
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the adversary may only view the current memory contents of DS. Even for such a weak snapshot
adversary, we are able to prove the following lower bound:

Theorem 2. For any 0 ≤ ϵ ≤ 1/16, let DS be a (3, 1, ϵ)-snapshot private RAM data structure for
n entries each of b ≥ 1 bits implemented over w = Ω(log n) bits using client storage of c ≥ 1 bits in
the cell probe model. If DS has amortized write time tw and expected amortized read time tr with
failure probability at most 1/3, then

tr + tw = Ω(b/w · log(nb/c)) .

To do this, we actually prove the following lemma that assumes that the block size b is a
sufficiently large constant (b > 60 is sufficient). Although, we show that this still implies the
desired above theorem for all values of b ≥ 1.

Lemma 1. For any 0 ≤ ϵ ≤ 1/16, let DS be a (3, 1, ϵ)-snapshot private RAM data structure for n
entries each of b > 60 bits implemented over cells of size w = Ω(log n) bits using client storage of
c ≥ 1 bits in the cell probe model. If DS has amortized write time tw and expected amortized read
time tr with failure probability at most 1/3, then

tr + tw = Ω(b/w · log(nb/c)) .

We next show that the lemma above implies the main theorem.

Proof of Theorem 2. Assuming Lemma 1, we know that Theorem 2 holds for any b > 60. Towards
a contradiction, suppose that Theorem 2 is false for some 1 ≤ b ≤ 60. That is, there exists a DS
with overhead that contradicts the lower bound Ω(b/w · log(nb/c)) = Ω(log(n/b)/w) as b = Θ(1).
Note, we can construct DS′ for blocks of size 60 by simply keeping 60/b copies of DS. The resulting
read and write overheads of DS′ are only a constant multiplicative factor higher than DS that would
contradict Lemma 1. Therefore, Lemma 1 implies Theorem 2 for all values of b ≥ 1.

The remainder of this section is dedicated to proving Lemma 1. We prove the lower bound in the
three following steps:

1. First, we will present a snapshot adversarial strategy that uses only three snapshots of which
only one contains the memory access pattern of the operation. The adversarial algorithm
will pick a hard sequence of operations as well as the locations and lengths of snapshots
non-adaptively.

2. Next, we will analyze the adversarial method by relating the snapshot adversary’s advan-
tage to the efficiency of a one-way communication protocol that encapsulates the correctness
guarantees of DS.

3. Finally, we show that we can derive our desired lower bounds using the analysis of the
advantage of the snapshot adversarial strategy.

Discussion about Other Models. We note that prior works have considered lower bounds in
other models including small blocks when w is small [KL21, PY23] and when operational boundaries
are hidden from the adversary [HKKS19]. We believe that adapting prior techniques would enable
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extending our lower bound to these models, but we leave it as future work to not distract the
readers from our main goal of studying snapshot security.

We do extend our lower bounds for weaker notions of snapshot security that may be eas-
ily adapted to our proof techniques. These weaker snapshot security notions include read-only
obliviousness, differential private guarantees and encrypted search leakage (see Section 5 for more
details).

In our lower bound, if we restrict the adversary to only choose snapshots within a consecutive
subset of Z operations, then our lower bound would be Ω(b/w·log(Zb/c)) matching the construction
in [DGG22].

4.1 Constructing a Snapshot Adversary

We start by presenting our (3, 1)-snapshot adversary that will be used to prove our lower bound.
Recall that our snapshot adversary must submit two operational sequences O0 and O1 of equal
length as well as a description of the times and lengths of the three snapshot attacks S =
{(t1, ℓ1), (t2, ℓ2), (t3, ℓ3)} such that ℓ1 + ℓ2 + ℓ3 = 1 representing that only one snapshot can view
the access patterns to memory for exactly one operation. Afterwards, the adversary receives the
leakage from the s snapshot attacks and must output a bit b′ that aims to distinguish whether O0

or O1 was executed.
Our adversary is inspired by the chronogram lower bound proof technique introduced by

Fredman and Saks [FS89] and it outputs two sequences each consisting of m writes, for some
n/2 < m ≤ n, followed by a single read, for a total of m+ 1 operations. To describe the snapshot
windows output by the adversary, we introduce the notion of a partition of the sequence of the m
write operations The partitions are disjoint consecutive subsequences, whose sizes are geometrically
increasing by some ratio r > 1 to be fixed. The write operations are naturally indexed 1, . . . ,m with
1 being the index of the first write to be executed and m the index of the last operations. Partitions
are instead indexed in reverse order; that is, partition 0 is the rightmost partition and consists of
the write operation of index m that is executed immediately before the read operation. The second
partition consists of the r write operations that occur exactly before the last write operation; that
is, it consists of the write operations indexed m − r, . . . ,m − 1. Generally, the i-th partition will
consist of ri consecutive write operations and there will be a total of p = O(log n/ log r) partitions.
The (p− 1)-th partition will be the leftmost and largest partition and the 0-th partition will be the
rightmost and smallest partition. Finally, we will denote the index of the operation at the start of
the i-th partition by pi and we can see that pi + ri − 1 is the last operation of the i-th partition.

Now, we are ready to define the adversary’s algorithm for generating the sequence of operations
O0, O1 and the snapshot windows in S. The adversary Ar,i = (Ar,i

0 ,Ar,i
1 ) is parameterized by

rate r > 1 and an index i for a partition and proceeds as follows. Ar,i
0 picks a random number

m uniformly at random integer from the interval [n/2 + 1, n]. As already described above, O0

and O1 will consist of the same m write operations followed by a read operation that will differ
between the two sequences. The first m operations will be write operations to indices 1, 2, . . . ,m of
a uniformly random b-bit string. For O0, the final operation will be a read to the index 1. For O1,
a read operation will be performed on a uniformly random index that was overwritten in the i-th
partition. This can be done by picking an uniformly random index from the interval [pi, pi+ ri− 1]
to be used as input to the read. Finally, the snapshot windows outputs by the adversary are (pi, 0),
(pi + ri, 0) and (m+ 1, 1). In other words, the adversary elects to see the memory before partition
i starts, just after it is completed, and before the read operation. In addition the adversary also
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sees the memory access performed by the read operation. A formal description of Ar,i
0 is provided

below:

Ar,i
0 (1n):

1. Pick integer m uniformly at random from interval [n/2, n].

2. Generate m uniformly random b-bit strings B1, . . . ,Bm.

3. Set O0 = (write(1,B1), . . . ,write(m,Bm), read(1)).

4. Pick a uniformly index j ∈ [pi, pi + ri − 1], where pi is the index of the first operation
in the i-th partition.

5. Construct O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

6. Set S = ((pi, 0), (pi + ri, 0), (m+ 1, 1)).

7. Return (O0, O1, S).

The leakage L associated with the snapshot attack output byAr,i
0 (1n) consists of ((memory,Mpi),

(memory,Mpi+ri), (memory,Mm), Tm+1) where (memory,Mx) denotes the contents of all memory
cells before the x-th operation in Oβ and Tx ⊆ [|M |] is the access pattern to memory cells performed
by the x-th operation.

The leakage L is passed as input to Ar,i
1 that, roughly speaking, proceeds as follows. First it

computes the set of memory locations that were last overwritten in the i-th partition and never
overwritten until the final read operation. To do this, Ar,i

1 computes the set of memory cell locations
whose contents were changed in between the first and second snapshots, U = {j ∈ [|M |] |Mpi [j] ̸=
Mpi+ri [j]}. Afterwards, the adversary computes a similar set of locations that changed between
the second and third snapshot, V = {j ∈ [|M |] | Mpi+ri [j] ̸= Mm+1[j]}. Lastly, the adversary
computes the set difference U \ V to obtain the desired set of memory cell locations that were last
overwritten in the i-th partition. Finally, the adversary checks whether there exists any memory
location in the intersection of U \ V and Tm+1. If the intersection is strictly less than ρ · b/w for
some constant ρ > 0 that we will choose later, Ar,i

1 outputs 0. Otherwise, Ar,i
1 (L) returns 1 when

the intersection is contains at least ρ ·b/w locations. We formalize this adversarial algorithm below:
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Ar,i
1 (L):

1. Parse L = {(memory,Mpi), (memory,Mpi+ri), (memory,Mm+1), Tm+1}.

2. Compute Ui = {j ∈ [|M |] |Mpi [j] ̸= Mpi+ri [j]}.

3. Compute Vi = {j ∈ [|M |] |Mpi+ri [j] ̸= Mm+1[j]}.

4. Compute Wi = Ui \ Vi.

5. If |Wi ∩ Tm+1| < ρ · b/w, return 0.

6. Else if |Wi ∩ Tm+1| ≥ ρ · b/w, return 1.

Extension to Differential Privacy. We note that our adversary only submits two operational
sequences that differ in exactly one operation (that is, the final read operation). Therefore, this
adversary could also be applied to snapshot private data structures that are differentially private
(following prior works such as [PY19]) where the adversarial advantage is a function of the number
of differing operations in the two adversarially chosen sequences. As a result, our adversarial
algorithm may be used to prove lower bounds snapshot private RAMs that are only differentially
private. We point readers to Section 5.1 for more details.

Extension to Read-Only Obliviousness. Another property that is enjoyed by our adversarial
algorithm is that the adversary only views memory access patterns for read operations. Therefore,
we could also extend use the same adversary to extend our lower bound for snapshot private RAMs
that only provide privacy for read operations while write operations may be completely public.
Read-only obliviousness may be natural in certain settings where the underlying data is public
while the sensitive information is the portion of the information that is of interest for the querier.
See Section 5.2 for more information.

Extension to Structured Encryption Leakage. Most structured encryption schemes have some
leakage functions known as key-equality revealing whether two operations are for the same index.
Extending prior work [PPY20], we show that any ORAMs providing even slightly more security
beyond key-equality also require Ω(logn) overhead. See definitions and proofs in Section 5.3.

Barriers for (2, 1)-Snapshot Security. Finally, we quickly discuss barriers towards extending our
proof towards (2, 1)-snapshot security. In the above strategy, the adversary divides server memory
updates into p = Θ(log n) disjoint partitions. Afterwards, the adversary samples one partition and
checks whether the final ORAM read operation accesses any memory in the sampled partition. To
our knowledge, the most intelligent adversary requires three data breaches to perform this action:
two data breaches for the beginning and end of the partition and one for the final ORAM read
operation. Furthermore, all three data breaches seem necessary to perform this check.

4.2 Analyzing Adversarial Strategy

Next, we analyze the snapshot attack described in the previous section. In particular, we will use
this specific snapshot adversary to prove certain properties about any RAM data structure that is
(3, 1)-snapshot private. To do this, we will specifically analyze the set of operational sequences that
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the snapshot adversary will output as O1. Recall that these are the sequences that picks a random
index j to read from the set of ri indices that are overwritten in the i-th partition. We show that
for these sequences, the snapshot adversary is likely to output 1 with at least constant probability
for many choices of partitions.

Formally, we define P to be the set of all partitions containing at least max(100c/b, 200 log n/b)
write operations. By our choice of m = Θ(n), we get

|P | = logr m−max(logr(100c/b), logr(200 log n/b)) = Θ(log(nb/c))

since r ≥ 2 is a constant. First, we show that (99/100)-fraction of the partitions in P satisfy
a certain property of distributions of memory accesses performed during the writes of the i-th
partition. To do this, we define the following sets of memory cell accesses with respect to the i-th
partition. Recall that we denote Mx to be the contents of memory before the x-th operation and
Tx to be the set of memory locations that are accessed (either read or overwritten) during the x-th
operation. Then, we define the following sets that are computed when executing the experiment
ExptDS,Ar,i,3,1(n, 1). Recall that is executing DS on the random operational sequence O1 produced
by the adversary Ar,i.

• Denote Ui to be the set of memory locations that are overwritten by write operations in the
i-th partition as defined in the description of Ar,i

1 . Formally,

Ui = {j ∈ [|M |] |Mpi [j] ̸= Mpi+ri [j]}.

• Denote Yi to be the set of memory locations that are overwritten in the i-th partition and
accessed by write operations after the i-th partition. Formally,

Yi = Ui ∩ (Tpi+ri ∪ Tpi+ri+1 ∪ . . . ∪ Tm).

Now, we show that for a large number of partitions i ∈ P , the size of Yi cannot be too large
assuming that the write overhead of the data structure DS beats the lower bound. We call these
partitions the critical partitions.

Lemma 2. Let DS be a (3, 1)-snapshot private RAM data structure for n b-bit entries run over
a memory of w-bit cells using c bits of client storage and suppose that the amortized write time
is tw = o(b/w · log(nb/c)). For any r ≥ 2 and sufficiently large n, there exists a set of critical
partitions that contains at least (99/100)-fraction of the partitions i ∈ P such that

E[|Yi|] ≤ ri−1 · b/w.

Proof. We start by bounding the probability (taken over the choices of m) that a fix memory access
belongs to Yi, for a fixed partition i. We denote by β the index of the operation that performs the
memory access and by α < β the index of the operation that last overwrote the cell before it is
accessed by operation β. Observe that for the memory access to belong to Yi it must be the case
that operation α falls into partition i and that operation β falls into partition j < i. Let y denote
the integer such that zy−1 ≤ β − α < zy, where zy = 1+ r + . . .+ ry is the number of operation in
partitions 0 to y. Note that such a y is uniquely determined since zy increases with y. Let us now
distinguish two cases.
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In the first case it holds that i ≤ y − 1. Suppose that β is the last write operation (that is,
it is executed just before the read operation). Since β − α ≥ zy−1, operation α is executed before
partition y − 1 is started and, since i ≤ y − 1, before partition i is started. Therefore α cannot
be one of the operation of partition i. If β is not the last operation then α will be executed even
earlier and then will not be part of partition i for the same reason.

Let us now consider the case i ≥ y. Observe that if β belongs to partition j ≤ i − 1 then it
must occur between the start of partition i− 1 and the last write operation. Therefore epoch i− 1
cannot start before operation β − zi−1 + 1. On the other hand, if α is in partition i then partition
i−1 cannot start after β for otherwise α and β are both in partition i. Therefore there at most zi−1

good choices for the start of epoch i− 1 each corresponding to a different choice of m. Moreover,
epoch i − 1 must start between α and β and thus there are at most β − α < xy good choices. As
a result, the probe contributes to Yi with probability at most min{zi−1, zy} · 2/n for any i ≥ y, as
there are n/2 possible choices of m and each completely defines the partitioning.

By the two cases above, for every partition i, the contribution of a memory access to |Yi|/ri is
at most

∑
y≤i

2

rin
·min{zi−1, zy} ≤

∑
y≤i

4

rin
·min{ri−1, ry} ≤ 4

n

1

r
+

∑
y≤i−1

ry−i

 ≤ 12

rn
.

since zi−1 ≤ 2ri−1 assuming r ≥ 2. Each memory access can contribute to a single Yi and thus, for
a random partition i, the expected contribution of a memory access to |Yi|/ri is at most 12/(rn|P |).
Since there are at most n · tw memory accesses, we can conclude that for a random partition i

E[|Yi|/ri] ≤
12

r
· tw
|P |
≤ 1

100 · r
· b
w

since, for some δ > 0 and sufficiently large n, |P | ≥ δ log(nb/c) and tw ≤ δ/1200 · b/w · log(nb/c).
The lemma follows by Markov’s inequality.

Using the above lemma, we can now derive properties about the advantage achieved by our
snapshot adversary. We say that, for any partition i such that the above lemma applies, this
partition i is critical. For any critical partition i, we show that Ar,i outputs 1 with constant
probability when run for β = 1 (that is, it receives the leakage obtained from executing the sequence
of operations O1). The proof uses the correctness property of the data structure DS and shows that
it is possible to derive a too-good-to-be-true, prefix-free compression scheme that will contradict
Shannon’s source coding theorem if the adversary does not output 1 with high enough probability.
In other words, the DS provides an impossible method of storing and retrieving randomness without
even requiring looking up the randomness in memory.

Lemma 3. Let b > 60 and let DS be a (3, 1)-snapshot private RAM data structure for n b-bit
entries run over a memory of w-bit cells using c bits of client storage. Suppose that the amortized
write time of DS is tw = o(b/w · log(nb/c)). For r ≥ 32, w = Ω(log n), and a sufficiently small but
constant ρ > 0, the following holds for every critical partition i ∈ P ,

Pr[ExptDS,Ar,i(n, 1) = 1] ≥ 1/8.

Proof. Towards a contradiction, suppose that the above probability statement is false and let us
unpack the implications of this assumption. Note, that Ar,i outputs 1 if and only if the final read
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operation accesses at least ρ · b/w memory locations whose contents were last changed by one of
the ri write operations in the i-th partition. The above assumption essentially means that the
underlying DS will most likely only access a small number of memory locations that were changed
by write operations in the i-th partition. Using this property, we will construct an impossibly
efficient compression algorithm for random coin tosses. We show that we can use the i-th partition
to compress random coin tosses in an efficient manner that will contradict Shannon’s source coding
theorem. At a high level, the idea is to execute DS where the encoding algorithm will embed
the random coin tosses as blocks into the write operations of the i-th partition. Afterwards, the
encoding algorithm will send enough information for the decoder to execute DS in an identical
manner to retrieve the written random coin tosses.

Formally, both the encoder and the decoder will receive shared random public coins denoting
the random blocks that will be inputs to write operations outside of the i-th partition. Only the
encoding algorithm will receive the random blocks of write operations in the i-th partition. We
denote B−i = (B1, . . . ,Bpi−1,Bpi+ri , . . . ,Bm) as the set of blocks that in write operations outside
of the i-th partition. Furthermore, let Bi = (Bpi ,Bpi+1, . . . ,Bpi+ri−1) be the blocks in write
operations inside the i-th partition. Finally, both algorithms will receive random coin tosses R
that will be used as the internal randomness when executing DS. We will assume that R contains
enough randomness to execute m+ 1 operations on DS.

Encoding Algorithm: Receives B−i,Bi and R as input.

1. Set encoding X = ∅.

2. Execute the operations write(1,B1), . . . ,write(pi − 1,Bpi−1) using DS and randomness R.
That is, execute all write operations occurring before the i-th partition.

3. Record the memory contents Mpi before the first operation in the i-th partition.

4. Execute the operational sequence write(pi,Bpi), . . . ,write(pi + ri − 1,Bpi+ri−1) using DS and
unused randomness from R. That is, execute all write operations in the i-th partition.

5. Record the memory contents Mpi+ri after the last operation in the i-th partition.

6. Append the c-bit content of client memory after the last operation in the i-th partition to
encoding X.

7. Compute the set Ui = {j ∈ [|M |] | Mpi [j] ̸= Mpi+ri [j]} that are the memory cells whose
contents were changed during the i-th partition.

8. Execute the operations write(pi+ ri,Bpi+ri), . . . ,write(m,Bm) using DS and unused random-
ness from R. That is, execute all write operations after the i-th partition. During the
execution, record the transcripts Tpi+ri , . . . , Tm as the memory locations that are accessed
during each of the write operations.

9. Record the memory contents Mm+1 before the (m+ 1)-st and final read operation.

10. Compute the set Vi = {j ∈ [|M |] | Mpi+ri [j] ̸= Mm+1[j]} that are the memory cells whose
contents were changed after the i-th partition.

11. Compute the set Wi = Ui \ Vi that are the memory cells whose contents were last changed
during the i-th partition and not by any operations after the i-th partition.
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12. Compute Yi = Ui∩(Tpi+ri∩ . . .∩Tm) that are the set of memory cells that were overwritten in
the i-th partition and accessed by a write operation after the i-th partition. We will assume
Yi consists of both the memory cell locations and contents when they were accessed.

13. Append |Yi| and Yi to encoding X.

14. Set Q = ∅,

15. For each j = pi, . . . , pi + ri − 1:

(a) Execute read(j) using DS and unused randomness from R and keep track in T j
m+1 of the

memory cells accessed during the read operation along with their content.

(b) Compute Qj
i = T

j
m+1 ∩Wi consisting of the locations and contents of memory cells that

were last overwritten in the i-th partition and accessed by read(j).

(c) If |Qj
i | ≤ ρ · b/w and the output of operation read(j) is correct, append (0, Qj

i ) to X and

add j to Q. We pad Qj
i with dummy values up to exactly ρ · b/w memory cells.

(d) Otherwise when |Qj
i | > ρ · b/w or the answer to read(j) is incorrect (that is, the read

returns something different from Bj), append (1,Bj) to X.

(e) Rewind DS to its state before executing the read(j).

16. If |Q| ≥ ri/4, return 0 || X.

17. Otherwise when |Q| < ri/4, return 1 || Bi where Bi = (Bpi , . . . ,Bpi+ri−1).

Decoding Algorithm: Receives B−i,R and the encoding X as input.

1. If the first bit of the encoding X is 1, then simply decode and return the next ri · b bits as
Bi = (Bpi , . . . ,Bpi+ri−1).

2. Otherwise, parse X = 0 ||M c || |Yi| || Yi || (bpi , Xpi) || . . . || (bpi+ri−1, Xpi+ri−1).

3. Repeat Steps 15c-15d of the encoding algorithm using shared randomness R and inputs B−i.

4. Skip the operations in the i-th partition and update the client storage of DS to be M c.

5. Execute the operational sequence write(pi + ri,Bpi+ri), . . . ,write(m,Bm) using DS and ran-
domness R. That is, execute all write operations after the i-th partition. When executing
operations, if any memory location encoded in Yi is accessed, then use the contents of Yi to
continue execution. For all memory accesses outside of Yi use the current memory contents
of DS to continue execution.

6. For each j = pi, . . . , pi + ri − 1:

(a) If bj = 1, then parse Bj as Xj and continue to the next iteration of the loop.

(b) If bj = 0, then parse the next Xj as the locations and contents of ρ · b/w memory cells

in Qj
i .
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(c) Execute read(j) using DS and randomness R. When executing the read operation, if
any memory location encoded in Qj

i is accessed, then use the encoded contents in Qj
i .

Otherwise, if any other memory location is accessed, use the current memory contents
of DS.

(d) Parse Bj as the answer of read(j).

(e) Rewind DS to its state before executing the read(j).

7. Return (Bpi , . . . ,Bpi+ri−1).

Correctness. To show that encoding and decoding of Bi is successful, it suffices to show that both
algorithms execute the operations for DS identically. Note, the execution of all write operations
before the i-th partition are identical as both algorithms execute the same operations with the
same randomness. Note that the encoder executes the write operations in the i-th partition while
the decoder skips this subsequence of write operations. Both the encoder and decoder execute all
operations after the i-th partition. We show that the decoder is able to execute identically to the
encoder even though it is missing the write operations in the i-th partition. Consider the execution
of any operation after the i-th partition by the decoder and any specific memory access. If the
accessed memory location was not updated by any write operation in the i-th partition, then the
decoder may simply use the current memory contents of DS to continue execution. If the memory
location was modified during the i-th partition, we note that the contents are encoded by the
encoder and used by the decoder. As a result, we can see that all operations after the i-th partition
are executed identically by both the encoder and decoder. Therefore, we can see that the decoder
always outputs the correct answer.

Length of Encoding. For the case that the encoding starts with a 1, we know that the encoding will
always have bit length 1 + ri · b. It remains us to upper bound the probability that the encoding
starts with a 1 and the expected length of the encoding conditioned on it starting with a 0.

In this case, an encoding starts with c bits for client storage, 2 log n bits for |Yi| and 2|Yi| ·w bits
for Yi. Note that |Yi| ≤ tw ·n and thus at most 2 log n are needed to represent |Yi|. Moreover, since
i is a critical partition, E[|Yi|] ≤ ri−1 · b/w meaning the encoding of Yi has expected size 2 · ri−1 · b
as each memory cell location and contents can be encoded using 2w bits.

The length of the part of the encoding produced at the for loop of Step 15, conditioned on the
encoding starting with 0, is upper bounded by ri + (ri · 2ρ · b) + 3ri·b

4 . To see this, note that we
use 1 bit to distinguish encoding output at Step 15c from those output at Step 15d. Moreover at
most (3/4)-fraction of operations will encode the b-bit block and the remainder will encode ρ ·(b/w)
memory locations using 2w bits each. By choosing ρ < 1/32 and b ≥ 16 we have

ri + (ri · 2ρ · b) + 3ri · b
4
≤ 7ri · b

8
.

Altogether, the expected length of encoding is upper bounded by

c+ 2 log n+ 2ri−1 · b+ 7ri · b
8
≤ 19ri · b

20

by choosing r ≥ 32 and noticing critical partition i belongs to P and therefore ri ≥ max(100c/b, 200 log n/b)
meaning that c ≤ (1/100) · ri · b and 2 log n ≤ (1/100) · ri · b.
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Finally, we lower bound the probability that the encoding starts with a 0. By our assumption
towards a contradiction, we know that Ar,i outputs 1 with probability at most 1/8 meaning that
Qj

i contains ρ · b/w locations with probability at least 7/8. As the error probability of DS is at
most 1/3, both conditions are satisfied with probability at least 7/8 − 1/3 > 1/2. By Markov’s
inequality, get that at least 1/4 of these queries will encode ρ · b/w locations with probability at
least z ≥ 1/3. Using this bound, we get the expected encoding length is at most

1 + (1− z) · ri · b+ z · 19r
i · b

20
≤ 1 +

59ri · b
60

< ri · b

assuming b > 60.

Applying Shannon’s Source Coding Theorem. Finally, we can use the expected length of the encod-
ing to derive our contradiction. From the above, we already know that the expected length of the
encoding for the i-th partition is strictly smaller than ri ·b. Note that the protocol enables successful
encoding and decoding of Bi that is independent of all other shared randomness. Therefore,

H(Bi | B−i,R) = H(Bi) = ri · b

as Bi consists of ri uniformly random b-bit strings. This contradicts Shannon’s source coding
theorem stating that the expected length of any encoding scheme must be at least ri · b completing
the proof.

Comparison with Prior Works. We note that our compression protocol differs from prior
lower bound works [LN18, PY19, PY23, PPY20, KL21, LSY20] to handle the weaker nature of
a snapshot adversary. In our scheme, we have to handle the case that the snapshot adversary is
unable to observe the majority of memory accesses. Instead, the snapshot adversary can only view
the differences in memory contents between snapshot attacks and the memory accesses of the final
read operation. To accommodate this restriction, our communication protocol only sends locations
and contents of memory cells whose contents have changed. In contrast, prior works would send
the locations and contents of memory cells that are accessed even if their contents were unchanged,
which was wasteful.

4.3 Completing the proof

To complete the proof, we will utilize Lemma 3 from the prior section that says that Ar,i is
likely to output 1 with high probability when running experiment ExptDS,Ar,i(n, 1) for at least
(99/100)-fraction of partitions with at least 100c/b operations. By the snapshot privacy of DS, this
immediately implies that Ar,i should also output 1 when running ExptDS,Ar,i(n, 0). Note that for
all partitions i, the operational sequence O0 that is executed is identical. As a result, we show that
this operational sequence is the hard distribution for which we can prove our desired lower bound.
We formalize this argument to complete the proof of our lower bound below.

Proof of Lemma 1. To prove the condition of the theorem, we will first assume that tr = o(b/w ·
log(nb/c)) and show that tw = Ω(b/w · log(nb/c)).

First, we utilize Lemma 3 that states that our adversary outputs 1 with high probability when
running the experiment with bit β = 1, we know that

Pr[ExptDS,Ar,i,3,1(n, 1) = 1] ≥ 1/8
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for the critical partitions that constitute a (99/100)-fraction of the partitions from the set P of all
partitions with at least 100c/b operations. For convenience, denote I ⊆ P to be the set of critical
partitions.

Next, we apply the fact that DS is (3, 1, ϵ)-snapshot private with ϵ ≤ 1/16. Note, this immedi-
ately implies that Ar,i must also output 1 when running the experiment with bit β = 0. Formally,

Pr[ExptDS,Ar,i(n, 0) = 1] ≥ 1/8− ϵ ≥ 1/16 (1)

for all critical partitions i.
Finally, we translate the above probabilities into the overhead of the final read operation. Note

that ExptDS,Ar,i(n, 0) = 1 means that Ar,i output 1. This only occurs when the final read operation
of O0 accesses at least ρ · b/w memory locations that were last overwritten in the i-th partition.
Furthermore, note that the randomized operational sequence O0 produced by Ar,i is the same
regardless of the choice of the partition i. Formally, recall that Ar,i defines the following:

• Ui = {j ∈ [|M |] |Mpi [j] ̸= Mpi+ri [j]}.

• Vi = {j ∈ [|M |] |Mpi+ri [j] ̸= Mm+1[j]}.

• Wi = Ui \ Vi.

where Wi ends up being the set of memory locations that were last updated by write operations
in the i-th partition. Ar,i only outputs 1 if the intersection of memory accesses by the final read
operation Tm and Wi is at least ρ · b/w. That is, |Tm+1 ∩Wi| ≥ ρ · b/w. Note that one way to
compute the overhead of the final read operation is to lower bound the expected size of the set⋃

i∈P
(Tm+1 ∩Wi) .

The main observation is that each of Wi are disjoints. Therefore, we can lower bound the number
of memory accesses by the final read operation as

tr ≥ E

[∣∣∣∣∣⋃
i∈P

(Tm+1 ∩Wi)

∣∣∣∣∣
]

≥
∑
i∈I

E [|Tm+1 ∩Wi|]

≥
∑
i∈I

E
[
|Tm+1 ∩Wi| | ExptDS,Ar,i(n, 0) = 1

]
≥ 99

100
· |P | · Pr[ExptDS,Ar,i(n, 0) = 1] · ρ · b/w

= Ω(b/w · log(nb/c))

as we know that |I| ≥ (99/100) · |P |, |P | = Θ(log(nb/c)) and ρ = Θ(1).

5 Extensions of Our Lower Bound

In this section, we strengthen our lower bound for various weaker notions of snapshot security. We
present definitions of these weaker notions and the modifications to our proof necessary for proving
the lower bound.
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5.1 Differential Privacy

We start by defining differential privacy with respect to (s, ℓ)-snapshot adversaries A = (A0,A1).
For this notion, we force the adversary to output challenge operational sequences that differ in only
one position.

Definition 2 (Differentially Private (s, ℓ, ϵ, δ)-Snapshot Security). Let s ≥ 1 and ℓ ≥ 0 be fixed
integers and let 0 ≤ ϵ, δ < 1. A data structure DS is (s, ℓ, ϵ, δ)-snapshot secure if for any PPT
(s, ℓ)-snapshot adversary A = (A0,A1) such that A0 outputs two challenge sequences that differ in
only one operation, the following holds for all b ∈ {0, 1}:

Pr[ExptDS,A(n, b) = 1] ≤ eϵ Pr[ExptDS,A(n, 1− b) = 1] + δ,

for all sufficiently large n.

The above is a weaker notion of the snapshot security that was defined in Definition 1. For
example, if we set ϵ = 0 and δ = negl(n), then we obtain a notion that is equivalent to standard
snapshot security with negligible adversarial advantage. For any constant ϵ > 0 and δ > 0, the
above definition seems weaker. However, we show that ORAMs satisfying this definition still
requires logarithmic overhead.

Theorem 3. For any 0 ≤ ϵ ≤ 1 and any 0 ≤ δ ≤ 1/16, let DS be a differentially private (3, 1, ϵ, δ)-
snapshot secure RAM data structure for n entries each of b ≥ 1 bits implemented over w = Ω(log n)
bits using client storage of c ≥ 1 bits in the cell probe model. If DS has amortized write time tw
and expected amortized read time tr with failure probability at most 1/3, then

tr + tw = Ω(b/w · log(nb/c)) .

Proof. The proof proceeds identically to Theorem 1 with the only difference being the snapshot
security guarantees. The only modification occurs when when we lower bound the advantage of
the adversary in Equation 1. We can replace this with the following series of inequalities:

eϵ · Pr[ExptDS,Ar,i(n, 0) = 1] + δ ≥ Pr[ExptDS,Ar,i(n, 1) = 1]

Pr[ExptDS,Ar,i(n, 0) = 1] ≥ (1/8− δ)/eϵ

Pr[ExptDS,Ar,i(n, 0) = 1] ≥ 1/(16e).

In other words, we can also lower bound the adversarial advantage by some constant factor that is
sufficient for completing the proof.

5.2 Read-Only Obliviousness

Next, we consider a weaker privacy notion where obliviousness is only to be provided for ORAM
read operations. In particular, the adversary is not allowed to see the transcripts for any ORAM
write operations. This may make sense when write operations are public information, but read
operations are sensitive (e.g., a medical research database).

To define read-only ORAMs, we simply modify the experiment to only return memory access
leakage for ORAM write operations. We present the experiment in Figure 3.
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ROExptDS,A(n, β):

1. Execute (O0, O1, S, st)← A0(1
n).

2. Parse S = {(t1, ℓ1), . . . , (t|S|, ℓ|S|)}.

3. Set leakage L ← ∅ and initialize DS with n blocks each consisting of randomly select
blocks of b bits.

4. Set i← 1.

5. While i ≤ |Oβ|:

(a) If i = tj for some j ∈ [|S|]:
i. Set L ← L || (memory,M).

ii. For k = 1, . . . , ℓj :

A. If Ob[i] is a read operation, execute DSLRead,LWrite(Ob[i]).

B. If Ob[i] is a write operation, execute DSRead,Write(Ob[i]).

C. Set i← i+ 1.

(b) Else:

i. Execute DSRead,Write(Ob[i]).

ii. Set i← i+ 1.

6. Execute β′ ← A1(st,L).

7. Return β′.

Figure 3: Experiment for read-only (s, ℓ)-snapshot security. Bolded parts denote differences between
prior snapshot security.

Definition 3 (Read-Only (s, ℓ, ϵ)-Snapshot Security). Let s ≥ 1 and ℓ ≥ 0 be fixed integers and
let 0 ≤ ϵ < 1. A data structure DS is (s, ℓ, ϵ)-snapshot private if for any PPT (s, ℓ)-snapshot
adversary A = (A0,A1) such that A0 outputs two challenge sequences with the same number of
read operations and the following holds:∣∣Pr[ROExptDS,A(n, 0) = 1]− Pr[ROExptDS,A(n, 1) = 1]

∣∣ ≤ ϵ,

for all sufficiently large n.

We show that Ω(log n) overhead is required ORAMs that are persistent even against (3, 1)-
snapshot adversaries with read-only operational transcripts.

Theorem 4. For any 0 ≤ ϵ ≤ 1/16, let DS be a read-only (3, 1, ϵ)-snapshot secure RAM data
structure for n entries each of b ≥ 1 bits implemented over w = Ω(log n) bits using client storage of
c ≥ 1 bits in the cell probe model. If DS has amortized write time tw and expected amortized read
time tr with failure probability at most 1/3, then

tr + tw = Ω(b/w · log(nb/c)) .
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Proof. The only difference is that we must apply read-only snapshot security as opposed to standard
snapshot security from Definition 1. Note that our choice of snapshot adversary from Section 4.1
outputs two operational sequences with exactly one ORAM read operation. Furthermore, the
transcript viewed by the snapshot adversary is always the single ORAM read operation. Therefore,
our snapshot adversary from Section 4.1 is also a read-only snapshot adversary and the lower bound
holds without modification.

5.3 Structured Encryption Leakage

Finally, we show the last extension using leakage functions that are common in structured encryp-
tion and encrypted search. First, we define snapshot security with respect to a leakage function
L.

Definition 4 (L-Leakage (s, ℓ, ϵ)-Snapshot Security). Let s ≥ 1 and ℓ ≥ 0 be fixed integers and
let 0 ≤ ϵ < 1. A data structure DS is L-leakage (s, ℓ, ϵ,L)-snapshot secure if for any PPT (s, ℓ)-
snapshot adversary A = (A0,A1) such that A0 outputs two challenge sequences O0 and O1 satisfying
L(O0) = L(O1) and the following holds:∣∣Pr[ExptDS,A(n, 0) = 1]− Pr[ExptDS,A(n, 1) = 1]

∣∣ ≤ ϵ,

for all sufficiently large n.

In other words, standard snapshot security applies but only for pairs of operational sequences
O0 and O1 with the same leakage according to L, that is, L(O0) = L(O1). By setting the leakage to
be the length of the operational sequence L(O) = |O|, we obtain standard snapshot security from
Definition 1.

Next, we present two leakage functions: key-equality and decoupled key-equality. At a high
level, key-equality returns whether any pair of operations in a sequence are operating on the same
index of the ORAM. On the other hand, decoupled key-equality leaks whether any pair of operation
of the same type (i.e., read or write operations) are operating on the same index of the ORAM.
We define both below:

Definition 5 (Key-Equality Leakage). Key-equality leakage LKE for any operational sequence O
outputs a |O| × |O| matrix M with the following properties:

M [i][j] =

{
0, if the i-th and j-th operation are for different keys;

1, if the i-th and j-th operation are for the same key.

There are straightforward O(1) constructions that L-leakage security against even persistent
adversaries that may be adapted from structured encryption and encrypted search literature (such
as [CGKO06, CJJ+14]). We can also consider a slightly smaller leakage function denoted as
decoupled-key equality introduced in [PPY20].

Definition 6 (Decoupled Key-Equality Leakage [PPY20]). Decoupled key-equality leakage LDKE

for any operational sequence O outputs two |O| × |O| matrices MR and MW with the following
properties:

MR[i][j] =


⊥, if one of the i-th and j-th operation is an ORAM write;

0, if the i-th and j-th operation are ORAM reads for different keys;

1, if the i-th and j-th operation are ORAM reads for the same key;
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MW [i][j] =


⊥, if one of the i-th and j-th operation is an ORAM read;

0, if the i-th and j-th operation are writes for different keys;

1, if the i-th and j-th operation are writes for the same key;

We show that satisfying decoupled key-equality leakage against even (3, 1)-snapshot adversaries
requires Ω(log n) overhead for ORAMs.

Theorem 5. For any 0 ≤ ϵ ≤ 1/16, let DS be a LDKE-leakage (3, 1, ϵ)-snapshot secure RAM data
structure for n entries each of b ≥ 1 bits implemented over w = Ω(log n) bits using client storage of
c ≥ 1 bits in the cell probe model. If DS has amortized write time tw and expected amortized read
time tr with failure probability at most 1/3, then

tr + tw = Ω(b/w · log(nb/c)) .

Proof. Similar to the read-only proof, we will show that the snapshot adversary from Section 4.1
always outputs pairs of operational sequences whose leakage is identical with respect to the de-
coupled key-equality leakage function LDKE . Recall that the first Θ(n) ORAM write operations
are the same for both sequences and only the last ORAM read operation differs. As there is only
ORAM read operation, the decoupled key-equality leakage for read operations is trivial. For the
write operations, we note that there is no repeated indices. Therefore, the entire matrix for write
operations will consist of 0. As a result, we see that the snapshot adversary from Section 4.1 always
outputs operations with identical decoupled key-equality leakage. As a result, we can proceed with
the proof identically to Theorem 1.

6 Snapshot Oblivious RAMs

In this section, we study no-write snapshot ORAMs that only enable clients to read entries. We
present a very simple O(1) construction secure against (s, 1)-snapshot adversaries for any s ≥ 1
providing a separation with our lower bound for read-write ORAMs. Such a separation is not
known between no-write and read-write ORAMs with respect to persistent adversaries. We also
survey prior works with slightly different security notions and show that they also provide security
against (s, 0)-snapshot adversaries.

6.1 No-Write Snapshot ORAMs

In a no-write ORAM, the client can only access the data but cannot overwrite any entries. Con-
structing a no-write ORAM secure against (s, 0)-snapshot attacks for every s ≥ 1 is straightforward.
The client uploads all n entries in encrypted form to the server with an encryption key stored by
the client. To query for the i-th entry, the client simply downloads the i-th encrypted entry and
decrypts to retrieve the i-th entry. Since no block is overwritten, the snapshot adversary receives
the same server memory for any sequence of operations. This construction can be upgraded to
security against (s, 1)-snapshot adversary, for every s ≥ 1. To do this, the client simply samples
a random key for a pseudorandom permutation (PRP) and uploads the encrypted n entries in a
permuted manner. Retrieving the i-th entry becomes retrieving the i-th entry according to the
PRP. Even though the adversary observes the transcript of a single ORAM read operation, we note
that the transcript simply contains a memory read to a random entry.

26



Theorem 6. Assuming the existence of one-way functions, there exists a no-write ORAM with
O(1) overhead that is secure against (s, 1)-snapshot attacks for any s ≥ 1.

The theorem above must be contrasted with the our current understanding of the overhead
needed for no-write ORAMs secure against persistent adversaries. Specifically, the current best
construction for no-write ORAMs is the generic O(log n) overhead construction for ORAMs sup-
porting both read and write operations. On the lower bound front, Weiss and Wichs [WW18]
proved that showing lower bounds for no-write ORAMs even against persistent adversaries will
give corresponding lower bounds on sorting circuit size or on the query complexity and size of
locally decodable codes. Both are long-standing, important open problems in the area of compu-
tational complexity.

6.2 Snapshot ORAMs from Prior Works

Next, we show that prior works have studied slightly different privacy notions that may be reinter-
preted as snapshot security.

Breach-Resistant Structured Encryption. Amjad, Kamara, and Moataz [AKM19] introduced
the notion of a breach-resistant structured encryption. A structured encryption scheme (STE) en-
crypts a data structures so that it can be privately queried. Special cases of STE include graphs,
dictionaries, multi-maps and RAMs that are the primary focus of this paper. They consider ad-
versaries that only perform breaches to see the contents of server memory. Their goal is to design
breach breach-resistant multi-maps where only the size of the underlying data is revealed to the
adversary. If we restrict the multi-map to be an array, we can view their work as constructing
ORAMs that are secure against (s, 0)-snapshot adversaries for some s ≥ 1. However, the snapshot
adversary considered in [AKM19] is stronger2 than ours as it is allowed to adaptively decide on the
next batch of operations after having seen the leakage from the previous batch. More precisely,
the snapshot adversary considered in [AKM19] works in rounds. At the start of each round, the
adversary receives a snapshot of the memory and decides for the next round of operations to be
executed. The following result is implicit in [AKM19]:

Theorem 7 ([AKM19]). If one-way functions exist, then there exists an ORAM with O(log n)
overhead that is secure against (s, 0)-snapshot adversary for any s ≥ 0.

For completeness, we will present the construction of [AKM19] adapted to our terminology in
Appendix A.

Write-Only ORAMs. The concept of a write-only ORAM (see [LD13, BMNO14, RACM17])
is closely related to that of snapshot security. A write-only ORAM relaxes the security notion
of an ORAM by requiring only the write operations to be oblivious with respect to a persistent
adversary. In other words, the adversary receives the access pattern to server memory for all write
operations. This is somewhat similar to security with respect to (s, 0)-snapshot adversary. In
write-only ORAMs, the view of the adversary is filtered based upon the type of the logical ORAM
operation type whereas in (s, 0)-snapshot attack the filtering occurs at the physical level (whether
a server memory location is updated or not).

2As the main goal of our paper was the lower bound, we only considered weaker non-adaptive snapshot adversaries
since weaker adveraries imply stronger lower bounds. Although, we note that all the constructions presented in our
paper can also be proven secure against adaptive snapshot adversaries.
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The work of Amjad, Kamara and Moataz [AKM19] proved that breach-resistant arrays implied
write-only obliviousness. In this work, we show that write-only obliviousness under certain restric-
tions also implies (s, 0)-snapshot security for any s ≥ 1. Specifically, we assume that ORAM read
operations perform no physical writes to server memory. We view this as a mild assumption as the
most efficient write-only ORAMs satisfy this property (see [RACM17]).

Theorem 8. Any write-only ORAM that implements logical ORAM read operations with no phys-
ical writes to server memory during read operations is secure against (s, 0)-snapshot adversaries
for any s ≥ 1.

Proof. As any logical ORAM read operations do not modify server memory, the leakage viewed
by a (s, 0)-snapshot adversary after ORAM read operations is trivial. Furthermore, by definition,
write-only ORAMs are oblivious for any logical write operations. Therefore, any write-only ORAM
with the condition that ORAM read operations perform no server memory overwrites is also (s, 0)-
snapshot secure.

Using the above, we can see that prior write-only ORAM constructions are also secure against
(s, 0)-snapshot adversaries. To our knowledge, the DetWoORAM construction [RACM17] satisfies
the conditions of the above theorem and is the most efficient write-only ORAM to date. Therefore,
we get that:

Theorem 9 ([RACM17]). If one-way functions exist, then there exists an ORAM with O(log n)
overhead that is secure against (s, 0)-snapshot adversary for any s ≥ 0.

State-of-the-Art for (s, 0)-Snapshot Security. To our knowledge, the above constructions for
breach-resistance and write-only ORAMs achieve the best concrete overhead for (s, 0)-snapshot
ORAMs. One could also use standard ORAMs secure against persistent adversaries [AKL+20] to
also obtain O(log n) overhead. As our lower bounds do not apply for (s, 0)-snapshot security, we
leave it as an open to resolve the optimal overhead for (s, 0)-snapshot security.

7 Snapshot Oblivious Stacks and Queues

In this section, we show that we can also construct stacks and queues with constant overhead that
is secure against (s, 1)-snapshot adversaries for any s ≥ 1. This provides a separation between
snapshot oblivious RAMs and stacks/queues. In contrast, oblivious RAMs and stacks/queues re-
quire Ω(log n) overhead against persistent adversaries [LN18, JLN19]. Throughout, we will describe
constructions only for stacks, but it is trivial to derive queue (or even deque) constructions.

First, we will show a simple construction that obtains (s, 0)-snapshot security for any s ≥ 1.
Afterwards, we show that a simple trick using permutations would enable (s, 1)-snapshot security.
We chose to present our construction this way to showcase that it seems easy to upgrade (s, 0)-
snapshot security to (s, 1)-snapshot security. This is a similar approach that was taken for no-write
ORAMs in Section 6.1 as well.

7.1 (s, 0)-Snapshot Secure Oblivious Stack

We start by describing an implementation of the stack data structure that is secure with respect to
an (s, 0)-snapshot adversary for any s ≥ 1. That is, an adversary that receives an initial snapshot
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of the server memory and the snapshot of the memory after each operation. The server memory
consists of n locations indexed 0, . . . , n−1. All memory is initialized to contain the all 0-bit string.
The client memory will consists of two components: an IND-CPA encryption key, cnt to track the
number of operations and top to track the current server index of the top of the stack. Next, we
formally describe the stack algorithms for initialization Init, pushing an item Push and popping
an item Pop.

• Init(1λ): Initialization sets the two variables cnt and top to 0 and −1 respectively and also
randomly generates a λ-bit encryption key K ← {0, 1}λ for an IND-CPA encryption scheme.
All three are stored in client memory.

• Push(v): To push the value v, the clients encrypts Enc(K, (v, top)) and uploads it to the
location with index cnt. This pair consists of the value v and a pointer to the previous top
of the stack. Finally, top is set equal to cnt and cnt is incremented.

• Pop(): To pop the top of the stack, the client downloads and decrypts the pair at the server
location top to obtain (v, pTop) consisting of the value at the top of the stack and a pointer to
the previous top of the stack. Next, a dummy pair is encrypted Enc(K, (⊥,⊥)) and uploaded
to server memory at location cnt. Finally, top is set equal to pTop and cnt is incremented.
The value v is returned.

We show that the above construction is secure against any (s, 0)-snapshot adversary for any
choice of s ≥ 1.

Theorem 10. Assuming one-way functions exist, there exists an oblivious stack with O(1) overhead
that is secure against (s, 0)-snapshot adversaries for any s ≥ 1.

Proof. The above stack construction clearly has O(1) overhead as it only downloads and updates
O(1) entries.

To argue security, we simply need to focus on the server locations that are updated as the (s, 0)-
snapshot adversary does not observe operational transcripts. For each operation (regardless of Push
or Pop), the stack will always encrypt and upload a pair to the server memory location indexed by
cnt. By IND-CPA security, we know that the encryption is indistinguishable from random. Recall
that cnt is the number of operations that have been executed. Therefore, all operational sequences
of the same length will result in the same view for a (s, 0)-snapshot adversary for any s ≥ 1.

As a final remark, we observe that the Pop operation downloads the encrypted pair stored
at index top whereas Push do not. However, the location is not re-written and this different
behavior between operations goes undetected to an (s, 0)-snapshot adversary that does not observe
operational transcripts.

7.2 Upgrading to (s, 1)-Snapshot Security

Next, we upgrade the construction from the previous section to (s, 1)-snapshot security that in-
cludes adversaries that also obtain the transcript of one operation of their choice. The previous
construction is not (s, 1)-snapshot secure because the memory accesses in the Pop operation reveals
the size of the real stack (and, thus, reveals the number of Push and Pop operations total).

To remedy this, we simply permute memory contents according to a pseudorandom permutation
F generated using a randomly selected λ-bit seed Kπ. We modify the stack so that it accesses
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locations F (Kπ, top) and F (Kπ, cnt) instead of top and cnt. Even if an adversary views the
memory access of a Pop operation, the resulting read memory is essentially uniformly random
enabling (s, 1)-snapshot security. More precisely, we have the following modifications:

• Init(1λ) proceeds identically as before, but also randomly selects a λ-bit seed Kπ ← {0, 1}λ
for a PRP family of functions F . The key Kπ is stored in client memory.

• Push(v) must be modified in two ways. First, the client must also read a memory location to be
indistinguishable from Pop operations. To do this, the client will download the encrypted pair
currently stored at F (Kπ, top). The downloaded result is discarded immediately. Secondly,
the encrypted Enc(K, (v, top) is stored at server location F (Kπ, cnt) as opposed to cnt.

• Pop() must be modified in two ways as well. First, the top of the stack is downloaded from
server location F (Kπ, top) as opposed to just top. Additionally, the encrypted dummy pair
Enc(K, (⊥,⊥)) is stored at location F (Kπ, cnt) as opposed to cnt.

Theorem 11. Assuming one-way functions exist, there exists an oblivious stack with O(1) overhead
that is secure against (s, 1)-snapshot adversaries for any s ≥ 1.

Proof. The proof follows from Theorem 10 for (s, 0)-snapshot security. To see security against
(s, 1)-snapshot security, we observe that the operational transcript for any Push or Pop operation
involves reading a random location and updating a random location with a random entry due to
the security of the underlying PRP and IND-CPA encryption schemes.

Remark about (2, 2)-snapshot attacks. We note that the construction above ceases to be
snapshot-secure if the adversary is allowed to see the transcript of two operations. The attack
relies on the fact that both Push and Pop download the current top of the stack. More precisely,
consider sequences O1 = (Push, Push, Pop, Push) and O2 = (Push, Push, Push, Push). Note that in
O1, but not in O2, the top of the stack is at the same location before the second operation and
before the fourth operation. This is so because the third operation in O1 is a Pop and “undoes” the
previous push. The third operation in O2 instead is a push and the top does not go back. In other
words, even though for any single operation the accessed memory location is random, the memory
locations accessed by two operations might not be independent.3

8 Conclusions and Open Problems

In this work, we present a negative answer to the open problem posed in [DGG22] of whether it is
possible to build sub-logarithmic ORAM constructions secure against multiple breaches. We present
a Ω(log n) lower bound for ORAMs secure against (3, 1)-snapshot adversaries. In other words, we
show that protecting against three breaches is as challenging as protecting against a persistent
adversary. Furthermore, we prove some separations by presenting O(1) overhead constructions for
no-write ORAMs and oblivious stacks/queues secure against (s, 1)-snapshot adversaries for any
s ≥ 1. We leave the following open problems:

3A prior version discussed potential obstacles of obtaining (s, 1)-snapshot security and contained informal claims
about compiling a (s, 0)-snapshot ORAMs into a (s, 1)-snapshot ORAMs under some conditions. To the best of our
knowledge, none of the (s, 0)-snapshot ORAMs from the literature satisfy these conditions. We thank Wei-Kai Lin
for raising this point.
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• Our work rules out sub-logarithmic overhead against (3, 1)-snapshot adversaries with three
data breaches. However, it remains open to resolve the correct overhead for snapshot ad-
versaries with two data breaches. Is it possible to construct a o(log n) overhead ORAM
construction to protect against (2, ℓ)-snapshot adversaries for any ℓ ≥ 0?

• The lower bound presented in our work shows that snapshot adversaries are as powerful as
persistent adversaries if they can see the transcript of one operation. It is also natural to
consider adversaries that never see the transcript of any operation. Unfortunately, current
constructions from prior works [RACM17, AKM19] still require O(log n) overhead to protect
against (s, 0)-snapshot adversaries. Is it possible to construct a o(log n) ORAM that is secure
against (s, 0)-snapshot adversaries for any s ≥ 2?

• Are there any other meaningful weakenings of security for ORAMs that admit sub-logarithmic
constructions while still enabling wide applicability in practical applications?

Acknowledgements. The authors would like to thank Yang Du and Paul Grubbs for posing the
question of multiple data breaches and Wei-Kai Lin and Daniel Wichs for initial discussions about
the problem.
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A Breach-Resistant Structured Encryption

In this section we present the proof of the following result that is implicit in [AKM19]. See the
discussion in Section 6.2.

Proof of Theorem 7. The server memory is initialized by filling each location with a block of 0’s.
The client’s initialization consists in the selection of an encryption key K and of a seed s for a
family F = {Fs} of pseudo-random functions. Both are kept in client memory along with the
current version of the dummy index idx initialized to 0. Each new version of a block is stored
in a fresh location and the j-th version of the i-block is stored in location Fs(i || j) of the server
memory. In addition to the n real blocks, we consider one extra dummy block with index n + 1
whose current version number is kept in client memory as the dummy index idx.

To perform a read or a write of block i, the client first finds out the current version of the block.
This is achieved by probing location Fs(i || j), from j = 1 and doubling the index until the first
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index j⋆ that does not contain a version of block i is found. Then the current block i has version
index j for some j j⋆/2 ≤ j < j⋆ and it can be found by performing binary search in the interval.

Once the current version j of block i is found, a read is completed by returning the block at
location Fs(i || j), by incrementing idx, and by writing a dummy encrypted block at memory
location Fs(n + 1 || idx). A write operation instead is completed by writing an encryption of the
block received as input at memory location Fs(i || j+1). For the running time we observe that the
current version j of a block can be found in time O(log j). Indeed j⋆ ≤ 2 · j and it is reached in
O(log j) steps and the subsequent binary search is performed in an interval of length j⋆/2 ≤ j and
thus it takes time O(log(j⋆/2)) = O(log j).

In the above description, the server’s memory grows unboundedly. However, the original
work [AKM19] also presented a way to rebuild in time linear in the total number of operations
while still remaining breach-resistant. To ensure maintain optimal server storage, this rebuilding
algorithm may be executed every O(n) operations to remove any useless information and maintain
O(n) storage.

For the security, we note that, for each operation, exactly one memory location at a pseudoran-
dom location is overwritten. Therefore, the construction described above is (s, 0)-snapshot secure
for every s. We stress that we have one construction for all values of s.
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