
Generic-Group Lower Bounds via Reductions

Between Geometric-Search Problems:

With and Without Preprocessing∗

Benedikt Auerbach , Charlotte Hoffmann , and Guillermo Pascual-Perez

Institute of Science and Technology Austria
{bauerbac, choffman, gpascual}@ista.ac.at

Abstract

The generic-group model (GGM) aims to capture algorithms working over groups of prime order that
only rely on the group operation, but do not exploit any additional structure given by the concrete imple-
mentation of the group. In it, it is possible to prove information-theoretic lower bounds on the hardness
of problems like the discrete logarithm (DL) or computational Diffie-Hellman (CDH). Thus, since its
introduction, it has served as a valuable tool to assess the concrete security provided by cryptographic
schemes based on such problems. A work on the related algebraic-group model (AGM) introduced a
method, used by many subsequent works, to adapt GGM lower bounds for one problem to another, by
means of conceptually simple reductions.

In this work, we propose an alternative approach to extend GGM bounds from one problem to
another. Following an idea by Yun (Eurocrypt ’15), we show that, in the GGM, the security of a large
class of problems can be reduced to that of geometric search-problems. By reducing the security of
the resulting geometric-search problems to variants of the search-by-hypersurface problem, for which
information theoretic lower bounds exist, we give alternative proofs of several results that used the AGM
approach.

The main advantage of our approach is that our reduction from geometric search-problems works, as
well, for the GGM with preprocessing (more precisely the bit-fixing GGM introduced by Coretti, Dodis
and Guo (Crypto ’18)). As a consequence, this opens up the possibility of transferring preprocessing
GGM bounds from one problem to another, also by means of simple reductions. Concretely, we prove
novel preprocessing bounds on the hardness of the d-strong discrete logarithm, the d-strong Diffie-Hellman
inversion, and multi-instance CDH problems, as well as a large class of Uber assumptions. Additionally,
our approach applies to Shoup’s GGM without additional restrictions on the query behavior of the
adversary, while the recent works of Zhang, Zhou, and Katz (Asiacrypt ’22) and Zhandry (Crypto ’22)
highlight that this is not the case for the AGM approach.

∗A preliminary version of this paper appeared in the proceedings of TCC 2023. Refer to the published version via 10.1007/978-
3-031-48621-0 11. This is the full version.

1

https://orcid.org/0000-0002-7553-6606
https://orcid.org/0000-0003-2027-5549
https://orcid.org/0000-0001-8630-415X
https://doi.org/10.1007/978-3-031-48621-0_11
https://doi.org/10.1007/978-3-031-48621-0_11


Contents

1 Introduction 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 8
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Generic-Group Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Search-by-Hypersurface Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 From Generic Group Problems to Geometric Search-Problems 10
3.1 From GGM to Geometric Search-Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Extension to the Bit-Fixing Generic-Group Model . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Extension to the GGM for Bilinear Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Reductions Between Geometric Search-Problems 18
4.1 Reductions between geometric search-problems in the GGM and AI-GGM . . . . . . . . . 18
4.2 Reductions between geometric search-problems corresponding to the bilinear GGM . . . . . 23

A Omitted Proofs of Section 3 31
A.1 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



1 Introduction

The generic group model. The concrete security provided by a cryptographic scheme is typically assessed
following the reductionist approach: one first shows that its security is implied by the hardness of a problem,
and then analyzes the best running times of algorithms solving said problem. Regarding the second step, for
schemes defined over a group G = 〈g〉 of prime order p, the generic-group model (GGM) has proven itself a
valuable tool. It is an idealized model that, on the one hand, is assumed to be meaningful for elliptic-curve
groups, which are heavily relied on in practice. On the other hand, it allows to derive information-theoretic
lower bounds on the number of group operations required to solve problems, like the discrete logarithm and
Diffie-Hellman problems (as well as many of their variants).

The model aims to capture algorithms that are generic in the sense of being applicable to any group G
of prime order p. Algorithms of this type only make use of the group operation, but do not not exploit any
additional structure given by the concrete implementation of the group. There have been several efforts of
formalize this requirement. In Shoup’s definition [Sho97] of the model, the adversary gets access to group
elements via abstract labels, i.e., uniformly random bitstrings, and to the group operation via an oracle.
The variant by Maurer [Mau05], on the other hand, gives access to group elements using abstract handles.
All problems that are definable in Maurer’s GGM are also definable in Shoup’s, but the other direction does
not hold. In fact, Zhandry [Zha22] recently showed that Maurer’s GGM (and the more commonly used
extension thereof, which Zhandry calls type-safe model) fails to capture many textbook techniques that are
captured by Shoup’s GGM. An additional difference is that Maurer’s model does not capture preprocessing
algorithms. For more details on the differences between the models we refer to [Zha22].

In this work we focus on Shoup’s model, which we will simply refer to as the generic-group model, or
GGM, from here on. In it, group elements gx are represented by labels σ ∈ {0, 1}`. A generic algorithm
receives as input some labels and, typically, either has to compute a discrete logarithm or the label of a
certain group element. To do so, it has access to a group operation oracle GrpOp. This takes as input two
labels and returns the label of the product of the corresponding group elements.

As an example of how one typically argues hardness of problems in the GGM, we briefly sketch the bound
on the discrete logarithm (DL) problem, as proven in [Sho97]. Here, a secret exponent x←$ Zp is sampled
and the adversary receives as input labels σg, σgx corresponding to g and gx. In the proof, each label σ
is associated to a linear function Fσ ∈ Zp[X] as follows. The adversary’s inputs σg, σgx are associated to
1 and X, and whenever the group-operation oracle is queried on labels σ, σ′, their product GrpOp(σ, σ′)
is associated to the function Fσ′′ = Fσ + Fσ′ . Then, one checks whether Fσ′′ equals any of the functions
defined previously. If so, the corresponding label is used; if not, a fresh label σ′′ is sampled. The idea being
that, in this way, group elements which are equal can be identified, as every label σ corresponds to a group
element of the form gFσ(x). However, this simulation of the GGM works only as long as there exists no
Fσ 6= Fσ′ with Fσ(x) = Fσ′(x), in which case the adversary would receive two different labels for the same
group element. Accordingly, the proof bounds the probability of this event happening, and, in case that it
does not, the probability of the adversary winning.

In [Yun15], Yun considers a natural generalization of the discrete-logarithm problem, namely the task
to solve several DL instances. In the proof of his bound, he shows that one can perfectly simulate the
GGM group-operation oracle in a reduction from the so-called search-by-hyperplane problem (SHP). In this
problem, the adversary has to find a hidden value ~x ∈ Zmp (here m is the number of discrete logarithm
instances that have to be solved) by using hyperplane queries that, on input an affine function F , return
whether F (~x) = 0 or not; exactly what is needed in the GGM to check whether a group operation query
should be answered with an already defined label. By proving an information-theoretic lower bound on
the hardness of SHP, one then is able to obtain bounds on the hardness of the original problem in the
GGM. This approach was later generalized by Auerbach, Giacon, and Kiltz [AGK20] to allow the function F
to be a multivariate polynomial of bounded degree. This is needed, for example, if one wants to argue
about problems involving decisional Diffie-Hellman oracles, or “higher-degree” problems like the d-strong
discrete-logarithm problem.

3



The GGM and preprocessing. In practice most cryptosystems rely only on a few standardized groups,
which makes preprocessing attacks particularly viable. The power of those attacks was demonstrated by
Mihalcik [Mih10]; Lee, Cheon, and Hong [LCH11]; and Bernstein and Lange [BL13], who construct generic
algorithms with preprocessing that solve the DL problem in a group of order p in time p1/3. The authors
thereby circumvented the lower bound in the GGM of p1/2 without preprocessing established by Shoup
[Sho97].

Two recent works extend the GGM to adversaries allowed to perform unbounded preprocessing before the
problem instance is sampled. Both derive lower bounds on the hardness of variants of the discrete logarithm
and Diffie-Hellman problems. Corrigan-Gibbs and Kogan [CK18] leverage compression arguments, Coretti,
Dodis and Guo [CDG18] a pre-sampling technique by Unruh [Unr07]. The latter work defines two variants
of the GGM allowing for preprocessing: the auxiliary input (AI-GGM) and bit-fixing (BF-GGM) generic-
group models. In the AI-GGM, the adversary is able to perform unbounded preprocessing on the whole
labeling function to generate an advice string of bounded size before receiving the problem instance. In the
preprocessing phase of the BF-GGM, on the other hand, it is able to choose labels of a bounded number of
group elements, but does not have access to the remainder of the labeling function. The authors show that,
under certain conditions, bounds in the BF-GGM, which is typically easier to work with, also hold in the
AI-GGM. To derive a preprocessing bound on the hardness of computing multiple discrete logarithms, the
latter work also uses a reduction from SHP.

Generic group lower bounds via algebraic reductions. A related restricted class of algorithms work-
ing over G consists of so called algebraic algorithms, first considered by Boneh and Venkatesan [BV98], and
later further formalized by Pallier and Vergnaud [PV05]. Fuchsbauer, Kiltz, and Loss [FKL18] abstract such
algorithms in their algebraic-group model (AGM) as follows. While an algorithm with input g0, . . . , gk ∈ G
in the AGM gets explicit access to the group G, it has to provide an algebraic justification for every el-
ement h ∈ G that it outputs. More precisely, together with h, it has to produce a0, . . . , ak ∈ Zp such

that h =
∏k
i=0 g

ai
i .

In the paper, the authors introduce an approach that, assuming existing generic-group lower bounds
for problem P1, allows to extend the bound to a different problem P2 by means of a conceptually simple
reduction, which they describe as follows.

(i) If adversary A against P2 is generic, we may assume w.l.o.g. that it is algebraic.

(ii) Construct a generic reduction from P1 to P2 that exploits the algebraic justifications that A has to
provide for all group elements it computes.

(iii) Now, since the existence of generic solver for P2 implies a generic solver for P1, and since P1 is hard,
P2 must be as well.

As this approach is conceptually simpler than establishing GGM bounds for P2 from scratch, and typically
leads to cleaner proofs, the idea of analyzing problems and schemes in the algebraic group model was picked
up by many subsequent works [ABB+20, AGK20, BFL20, FPS20, GT21, KLX22, MTT19].

As it is relevant to our discussion on preprocessing below, we provide some intuition on point (i). Here,
the idea is that a generic reduction interacting with generic adversary A is able to compute the required
algebraic justification by itself, as long as A queries the group-operation oracle only on labels it previously
received as input. Indeed, in this case the justification can be computed inductively as follows. If σ1 and σ2
are the labels, and the reduction already recorded their algebraic justifications ~a1 and ~a2 in a previous step,
then a justification of the product of the two group elements is given by ~a1 + ~a2.

The AGM and preprocessing. Despite the fact that both the work on the algebraic-group model [FKL18]
and the one on the GGM with preprocessing [CDG18] have been taken up in many subsequent works, the
approach of transferring preprocessing bounds from one problem to ones for another with simple reductions
has stayed elusive so far. One presumed reason for this is that, in this setting, one cannot argue that the
reduction is able to compute an algebraic justification from the generic adversary’s queries. Indeed, the

4



argument outlined above crucially relies on the adversary only querying labels of group elements it previ-
ously received as input. However, in the preprocessing setting, the adversary receives as input an advice
string, computed during an unbounded precomputation phase. And, as the advice might contain labels not
accessible to the reduction, e.g. encryptions of labels under a key hard coded into the adversary’s code, this
poses an obstacle to the reduction’s ability to compute algebraic justifications for group elements computed
by the adversary. Maurer’s GGM does not allow for preprocessing (see e.g. [Zha22]).

The AGM and Shoup’s GGM A recent work by Zhang, Zhou, and Katz [ZZK22] showed that the AGM
approach of transferring lower bounds in Shoups’s GGM outlined above requires caution. Concretely, they
construct a problem, the so called bit-encoding problem, that is at least as hard as the discrete logarithm
problem in the AGM, but can be trivially solved in the GGM. This shows that point (i) in the approach
outlined above does not hold in general. As discussed above, one would like to argue that the reduction is
able to compute the required justification of group elements produced by the adversary A by itself, which
is possible if A never queries for group operations on labels it did not previously receive as input. However,
this cannot be guaranteed in general, a fact that is exploited in the bit-encoding problem of [ZZK22], which
can be won by returning such a label.

Note that the bit-encoding problem is definable in Shoup’s GGM but not in Maurer’s GGM. In fact,
Zhandry [Zha22] formally proved that the AGM approach is valid for all problems that are definable in
Maurer’s GGM, so the AGM approach is valid for most “natural” problems. However, we point out that
several results in prior work [ABB+20, AGK20, FKL18, FPS20, GT21, KLX22] argue about the generic-
group model in the presence of a random oracle, as is often the case when analyzing cryptographic schemes,
instead of problems purely defined over groups. Opposed to Shoup’s model, random oracles have to be
explicitly modeled in Maurer’s model. However, it is unclear, as far as we know, whether one may assume
generic algorithms to be algebraic given this additional oracle.

1.1 Our Contributions

In this work we present a new proof technique to derive lower bounds in the GGM that improves over the
AGM approach in the following ways:

• It also applies to the bit-fixing generic-group model of [CDG18]. Since bounds in the BF-GGM can
be carried over to the AI-GGM, this opens up the possibility of extending preprocessing bounds from
one problem to another by means of a reduction between the problems;

• It applies to Shoup’s GGM in its full generality.

Generalizing the idea introduced in [Yun15], we show that, in the GGM, the security of a large class of
computational problems can be reduced to that of analogous geometric search-problems. We then propose to
construct reductions between the obtained geometric search-problems. Interestingly, several reductions from
prior work using the AGM approach turn out to have a geometric equivalent. Further, the geometric analogue
of several discrete-logarithm type problems are special cases of the search-by-hypersurface problem [AGK20],
for which information theoretic bounds exist. As a consequence, we obtain alternative proofs of several GGM
bounds from prior work that relied on AGM reductions with the additional benefit, that for all considered
problems that can also be expressed in the AI-GGM we obtain the corresponding preprocessing lower bounds
essentially for free.

For a visualization, through a concrete example, of our proposed approach compared to the one using
the AGM, see Figure 1. We now describe our results in more detail.

From generic-group problems to geometry. In Section 3 we show that, in the GGM, the security of
a large class of computational problems can be reduced to the security of a corresponding geometric search-
problem. We try to capture as many problems of interest as possible to prevent that this technical step has to
be redone in future work. Thus, we phrase our result in terms of a family of Uber problems MI-Uber, in the

5



GGM / AI-GGM problems

Geometric search-problems

geo-MI-DL

(lower bound [AGK20])

MI-DL

geo-MI-CDH

MI-CDH

Lem. 12

T
h

m
s.

3
/

4

[A
G

K
2
0]

algebraic adversaries

[AGK20]

Figure 1: Our proposed way of deriving GGM and AI-GGM lower bounds at the example of the multi-
instance CDH problem, compared to the approach taken in [AGK20]. Arrows indicate reductions from
source to sink. The dashed arrow indicates that the reduction holds with respect to algebraic adversaries,
and thus is restricted to (Maurer’s) GGM, but does not apply to the AI-GGM.

style of [BBG05, RLB+08]. In this type of problems, a vector of secret exponents ~x = (x1, . . . , xt) is sampled
from Ztp, and the adversary receives as input group elements of the form gF (~x), where F ∈ Zp[X1, . . . , Xt].

Then, it has to compute group elements of the form gF
∗(~x), for some F ∗ ∈ Zp( ~X). Note that our definition

of MI-Uber extends the definitions of Uber problems in [BBG05, RLB+08]. It captures many Diffie-Hellman-
type problems including e.g. the d-strong Diffie-Hellman-inversion [BB04a] problem, as we allow the target
function to be rational. Further, we cover m-out-of-n multi-instance problems, in which the adversary has
to produce at least m out of n target group elements, and allow access to decisional oracles, such as, for
example, a decisional Diffie-Hellman (DDH) oracle.

The corresponding geometric search-problem geo-MI-Uber roughly looks as follows. A secret vector ~x =
(x1, . . . xt) is sampled uniformly at random from Ztp and the adversary has access to an evaluation oracle Eval

that, on input a polynomial F̂ , returns whether the point ~x satisfies F̂ (~x) = 0 or not.1 As in prior work,
queries of this form are sufficient to (almost) perfectly simulate the group-operation oracle in the GGM.
The problems considered in previous works were connected to variants of the discrete logarithm problem,
and so the adversary’s goal was to compute ~x. In geo-MI-Uber, on the other hand, the adversary has to
compute a polynomial F̂ such that (F ∗ − F̂ )(~x) = 0 for the challenge polynomial F ∗. To prevent ending
up with a trivial problem, e.g., by having the adversary simply output F ∗, we have to restrict the space
of admissible F̂ . Our main observation regarding this is that all solutions our reduction will obtain from
a generic adversary interacting with MI-Uber will be an affine combinations of the input polynomials ~F .
Restricting the solutions in geo-MI-Uber to this form turns out to be sufficient to not end up with trivial
problems. Essentially, we show the following.

For every adversary A against MI-Uber making at most q queries, there exists an adversary B
making at most O(q2) queries such that

AdvMI-Uber(B) ≥ Advgeo-MI-Uber(A)− O(dmaxq
2)

p
,

where dmax is the highest degree of the polynomials ~F .

The loss in our reduction stems from carefully accounting for the possibility of the adversary querying its
group-operation oracle on labels it did not previously receive. We point out that our formal result allows
for more flexibility regarding this error term, and shows that it can reduced exponentially, albeit at the cost

1We refer to these problems as geometric search-problems, since queries of this type can be seen as testing whether the
hypersurface in Zt

p defined by F̂ contains ~x or not.

6



of increasing the reductions query count (see Theorem 3). When reducing from a geometric search-problem,
queries of this type turn out to not be an issue, in contrast to a generic reduction interacting with a generic
algorithm. The main difference is that, here, the reduction simulates the labeling function. Thus, undefined
labels simply correspond to uniformly random, unused group elements, that can be sampled by the reduction
itself. However, additional Eval queries are required to ensure consistency with the previous simulation and,
in unlikely events, the reduction might get unlucky and not find an appropriate group element. We point
out that, so far, queries of this type were either assumed to not occur [AGK20, Yun15] or not accounted for
in the advantage [CDG18].

We extend our result in two ways. First, we show that an analogous result holds in the bit-fixing generic-
group model (BF-GGM) of [CDG18]. As the paper uses a reduction from SHP to argue about the hardness of
solving multiple discrete logarithms in the preprocessing setting, it is not surprising that our reduction from
geo-MI-Uber to MI-Uber carries over to the BF-GGM. However, it requires additional queries to account
for the labels chosen by the adversary.

Finally, we show an analogous result for the generic-group model for bilinear groups. We cover groups of
types 1, 2, and 3. The main additional challenge in this setting is to carefully restrict the range of admissible
queries to the evaluation oracle according to the bilinear group’s type.

As we work in Shoup’s model, our approach is compatible with nonprogrammable random oracles, which
in this setting either take as input or have as output labels in {0, 1}`. As an example of a reduction
to a geometric search-problem in the programmable ROM, we revisit the treatment of BLS signatures
from [FKL18], establishing the same GGM bound of q2/p.

Reductions between geometric search-problems and application to concrete problems. In Sec-
tion 4 we derive generic group lower bounds on the hardness of several problems in the GGM, the AI-GGM,
and the bilinear GGM. To do so, we construct simple reductions between the geometric analogue geo-P of
the problem P and variants of the search-by-hypersurface (SHS) problem of [AGK20]. In the easiest case,
both problems are defined with respect to the same oracle Eval, and the reduction can simply forward all
queries and find the solution to SHS among the roots of polynomials related to the one output by the geo-P
solver as a solution. In other cases, where SHS is defined with respect to secrets (z1, . . . , zs), and P expects
input (x1, . . . , xt) with s ≤ t, our reductions will implicitly set xi = a0 +

∑s
i=0 aizi with known ai ∈ Zp. This

enables them to answer Evalgeo-P(F ) queries by the adversary, for F ∈ Zp[X1, . . . , Xt], with the response

to EvalSHS(F (X ′1(~Z), . . . , X ′t(~Z))), where X ′i = a0 +
∑s
i=0 aiZi. Again, the reduction will solve its SHS

challenge by returning a root of a polynomial related to the one output as a solution by the geo-P solver.
We point out that our reductions are very close in concept to typical reductions in the AGM. In those, the

reduction also translates an algebraic justification into a polynomial, and solves its DL challenge by finding
its roots. Similarly, the processing of Eval challenges corresponds to an AGM reduction re-randomizing and
expanding its challenge. An example of this would be the generation of a CDH challenge (X = Zaxgbx , Y =
Zaygby ) from a discrete-logarithm challenge Z ∈ G using known exponents ax, ay, bx, by ∈ Zp.

As a consequence, some of our reductions can be seen as easy, direct translations of reductions from
prior work to the geometric setting. We see this as an attractive feature of our approach. Concretely, we
are able to formally justify the bounds using the AGM + RO approach for the multi-instance gap-CDH
problem [AGK20] (targeted at Hashed-ElGamal key-encapsulation) and BLS signatures [FKL18]. Further,
we derive new preprocessing bounds for the d-strong discrete logarithm, d-strong Diffie-Hellman inversion,
and multi-instance CDH problems, as well as a large class of Uber assumptions. Regarding the latter, a
recent work by Bauer, Farshim, Harasser, and O’Neill [BFHO22] proves a lower bound in the AI-GGM for
a decisional Uber problem. In turn their bound holds also for the easier, corresponding computational Uber
problem. However, the bound obtained with our approach substantially improves on it. For an overview on
our bounds see Table 1.

Open questions and future work. Our results are limited to computational problems. So, a natural
question is whether decisional problems like DDH also have a geometric equivalent; and, if so, whether
reductions to SHS variants are possible, e.g., following an analogous approach to the one taken by Rotem

7



Model Problem Bound See

GGM

(m,n)MI-gap-DL, (m,n)MI-gap-CDH
(
q2

mp

)m
[AGK20]∗,∗∗(

rq2

mp

)m
+ q
(
q
p

)r
Cor. 13

AI-GGM

d-strong-DL, d-strong-DHI d(sq2+q2)
p Cor. 7

(m,m)MI-DL
(
q2s+q2

mp

)m
[CDG18]∗∗

(m,n)MI-DL, (m,n)MI-CDH
(
q2s+rq2

mp

)m
+ q
(
q
p

)r
Cor. 14

Uber dq2

p +
√

sq2

p [BFHO22]

Uber d(sq2+q2)
p Cor. 11

Bil GGM

Uberφ
dq2

p [BBG05, RLB+08], Cor. 16

BLS signatures
q2+q2RO

p [FKL18]∗, Cor. 18

Table 1: Our GGM and AI-GGM bounds on the advantage of adversaries in groups of size p. Integer q
denotes the number of queries, s the size of the advice string, the expressions are to be understood as Õ.
For problem (m,n)MI-CDH, n ≥ m denotes the number of challenges, m the number of required solutions,
and the bounds hold for arbitrary r (see Remark 1 for a comparison to prior work). For problems Uber
and Uberφ we denote by d the largest degree of the input polynomials. For BLS signatures, we denote by
qRO the number of random oracle queries made by the adversary. Bounds without references are new and
for the other ones we give alternative proofs. References marked with ∗ proved the respective bounds using
AGM + RO. In references marked with ∗∗ it is assumed that adversaries never query on labels they did not
previously receive as input or such queries are not accounted for in the computation of the advantage.

and Segev [RS20], who extend the definition of the AGM to capture decisional problems. A second interesting
direction would be to extend the equivalence results of BF-GGM and AI-GGM from [CDG18] to allow for
decisional oracles, as this would open up the possibility of proving preprocessing bounds in the bilinear GGM
via simple reductions.

Further related work. The gap-CDH problem was first introduced by Okamoto and Pointcheval [OP01].
Ying and Kunihiro [YK17] prove GGM lower bounds on the hardness of (m,n)MI-DL. Bauer, Fuchsbauer,
and Plouviez [FPS20] on the hardness of the one-more-discrete logarithm problem. The latter uses tech-
niques reminiscent of [Yun15]. Blocki and Lee [BL22] prove preprocessing GGM bounds on the hardness of
(1, n)MI-DL.

2 Preliminaries

2.1 Notation

We use the following conventions. We denote the set of natural numbers up to n by [n] := {1, . . . , n} and the
set including 0 by [n]0 := {0, . . . , n}. Typically we use lower case letters to refer to elements of Z or R, and

upper case letters for indeterminants or functions. For prime p and vector of indeterminants ~X we often work
over the multivariate ring of polynomials Zp[ ~X], which we will sometimes see as a vector space over Zp. For

8



a set of polynomials F = {F1, . . . , Fk}, we denote by Span(F) := {F ∈ Zp[ ~X] | ∃ai ∈ Zp : F =
∑k
i=1 aiFi}

its linear span. The ring of rational functions is denoted by Zp( ~X) := {F1/F2 | F1, F2 ∈ Zp[ ~X], F2 6= 0}.
Algorithms A are typically depicted using sans-serif font. Throughout this work we assume that p ∈ N is

a fixed prime, known to all adversaries and reductions. We denote the truth value of a statement E by [E].

2.2 Generic-Group Model

We recall Shoup’s generic group model (GGM). We consider 4 variants of it: the original one as introduced
in [Sho97], its extension to bilinear groups [BB04b], and the auxiliar-input (i.e., preprocessing) and bit-fixing
variants introduced in [CDG18].

Generic-group model. We consider groups G = 〈g〉 of prime order p generated by g. While we use
this notation for ease of exposition when giving intuitive descriptions of problems over G, if we explicitly
work in the generic group model, we identify (G, ·) with (Zp,+) via the isomorphism x 7→ gx. In the GGM,
adversaries get access to group elements via abstract labels, and to the group operation via an oracle. More
precisely, let ` ≥ dlog(p)e and let L : Zp ↪→ {0, 1}` be an injection sampled uniformly at random from the
set of all injections into {0, 1}`. We denote the range of L by R := L(Zp) ⊆ {0, 1}`. An adversary A in the
generic group model receives as input labels σ0, . . . , σt, with σi = L(hi) for some group elements hi ∈ Zp.
Typically, it has to compute either the label of some group element or some discrete logarithm. It has access
to the group operation via the oracle GrpOp(σ1, σ2), which first checks whether both input labels σ1 and
σ2 are in R, returning ⊥ if not, and then returns the label σ = L(L−1(σ1) + L−1(σ2)) corresponding to the
group operation applied to the two group elements. In some problems, A additionally will have access to
decisional oracles such as, for example, a decisional Diffie-Hellman oracle. These take as input one or more
labels and return 0 or 1 depending on whether a certain relation of the corresponding group elements holds.
We measure the running time of A as the (worst-case) number of oracle queries made and typically denote
this value by q. As this work only considers computational problems P, the advantage of adversary A in this
model and any of its variants is given by AdvP(A) := Pr[A solves P].

Preprocessing and bit-fixing generic-group models We now recall the auxiliary-input (AI-GGM)
and bit-fixing (BF-GGM) generic group models. Again, both models consider a group isomorphic to (Zp,+).
Adversaries A = (A1,A2) proceed in two stages, and are parameterized by both advice size s and the number
of oracle queries q made by A2. We refer to such adversaries as (s, q)-adversaries. BF-GGM is additionally
parameterized by M ≤ p, the number of values of the labeling function that can be chosen by A1.

For problems P defined in the AI-GGM, the unbounded preprocessing phase A1 receives as input the
full description of the labeling function L : Zp → {0, 1}`, that is a uniformly random sampled injection, and
returns a state Γ of bit-size at most s. A2 receives as input Γ and the problem instance. It has access to the
group-operation oracle GrpOp(σ1, σ2) = L(L−1(σ1) + L−1(σ2)), that it can query up to q times. As before,
A’s advantage is defined as AdvP(A) := Pr[A solves P].

For problems P defined in the BF-GGM, the range R of the labeling function is first sampled uniformly
at random from all size p subsets of {0, 1}`. Unbounded algorithm A1 receives R as input and returns a
state Γ of bit size at most s, as well as a list (σi, ai)i of at most M elements, with σi ∈ R and ai ∈ Zp,
such that all σi and all ai are distinct. Then, the labeling function L is chosen uniformly at random from
all bijections between Zp and R that satisfy L(ai) = σi for all i, and A2 is invoked on Γ and the problem
instance. It has access to group-operation oracle GrpOp(σ1, σ2) = L(L−1(σ1) + L−1(σ2)), that it can query
up to q times.

We recall the following theorem, which establishes that hardness in the BF-GGM implies hardness in the
AI-GGM.

Theorem 1 ([CDG18] Thm. 1). Let P be a single-stage computational problem defined over generic groups,
and γ > 0. Assume that for M ≥ 6(q+ log(γ−1)) · qcomb the advantage of every (s, q)-adversary solving P in
the BF-GGM is bounded by ε′, where qcomb is the combined query count of A and the problem environment P .

9



Problem SHS(n, d)
00 ~a←$ Znp
01 ~b← AEval

02 return [~a = ~b]

Oracle Eval(F )
03 if deg(F ) > d
04 return ⊥
05 return [F (~a) = 0]

Figure 2: Search-by-Hypersurface problem parameterized dimension n and degree d.

Then, in the AI-GGM every (s, q)-adversary has advantage bounded by

ε ≤ 2ε′ + γ ,

Generic group model for bilinear groups. In the setting of bilinear groups one considers groups G1,
G2, GT , all of prime order p, equipped with a bilinear map e : G1 × G2 → GT . Accordingly, the extension
of the GGM to bilinear groups is obtained by considering three different i.i.d. random injections Lj : Zp ↪→
{0, 1}` for j ∈ {1, 2, T}, with images Rj respectively. The group-operation oracle GrpOp(j, σ1, σ2) can now
be queried with respect to any of the label functions, and thus takes an extra input. The bilinear-map
oracle Bil(σ1, σ2) takes as input two labels σ1 ∈ R1 and σ2 ∈ R2, and outputs the label σ = LT (L−11 (σ1) ·
L−12 (σ2)) ∈ RT .

Different types of bilinear group used in practice differ by the (non)-existence of efficiently computable
isomorphisms between G1 and G2. Thus, depending on type φ ∈ {1, 2, 3}, algorithms might additionally have
access to oracles Iso : G2 → G1 mapping σ 7→ L1(L−12 (σ)); and Iso−1 : G1 → G2 mapping σ 7→ L2(L−11 (σ)).
If φ = 1 algorithms have access to both Iso and Iso−1, if φ = 2 only to Iso, and if φ = 3 to none of the two.

2.3 Search-by-Hypersurface Problem.

We recall the Search-by-Hypersurface problem (SHS(n, d)) [AGK20] for dimension n and degree d, that can
be seen as a generalization of Yun’s Search-by-Hyperplane problem [Yun15] to degrees larger than 1. In
the problem, a vector ~a = (a1, . . . , an) sampled uniformly at random from Znp has to be recovered by an
adversary A. To do so, A receives no input, but has access to oracle Eval that, on input a hypersurface in
Znp of degree at most d, tells whether ~a lies on the hypersurface or not. More precisely, Eval takes as input
polynomials F ∈ Z[X1, . . . , Xn] of degree at most d and returns 1 if F (~a) = 0 and 0 else. For a formal
definition see Figure 2. We now recall an information theoretic lower bound on the hardness of SHS.

Lemma 2 ([AGK20], Lemma 6). Let n, d, q ∈ N. Then, every adversary A that makes at most q queries in
game SHS(n, d) has an advantage bounded by

AdvSHS(n,d)(A) ≤
(
d

p

)n
·
n∑
i=0

(
q

i

)
≤ 1

2
·
(
e dq

pn

)n
,

where e is Euler’s number.

3 From Generic Group Problems to Geometric Search-Problems

In this section we show that the hardness of a large class of problems in the generic group model(s) can be
reduced to the hardness of a corresponding geometric search-problem. In prior work (plain GGM [Yun15,
AGK20], bit-fixing GGM [CDG18]) this approach was taken to prove bounds on the hardness of specific
discrete-logarithm type problems. We show that it can be generalized as follows.

We introduce the first geometric search-problems corresponding to problems that require the adversary
to compute group elements instead of hidden exponents. For these problems the solution is going to be a
polynomial/hypersurface (similar to the ones the adversary is allowed to query for) from a restricted range of

10



admittable solutions. The latter is necessary to not end up with a trivial problem. We define such problems
both for the plain GGM and the bit-fixing GGM and then extend our approach to the setting of bilinear
groups. We phrase our results in terms of Uber-assumptions in the style of [BBG05, RLB+08], where we in
particular allow multi-instance problems and access to decisional oracles. The latter, as well as the bilinear
map e in the case of bilinear groups, require us to carefully restrict the geometric-search problem’s range of
admittable evaluation-oracle inputs in a way that enables us to carry over AGM reductions to reductions
between the corresponding geometric search-problems to in Section 4. This restriction is in contrast to prior
work, where the only restriction was the degree of the queried polynomial.

Section 3.1 covers the plain GGM, Section 3.2 the bit-fixing GGM, and Section 3.3 the bilinear GGM.

3.1 From GGM to Geometric Search-Problems

Considered problems. Our goal is to capture as many problems in the generic group model as possible,
so we state our transformation to geometric search-problems for Uber problem

MI-Uber(t, (m,n), F1, . . . , Fk, F
∗
1 , . . . , F

∗
n ,W1, . . . ,Ws)

where t,m, n ∈ N with m ≤ n, Fi ∈ Zp[X1, . . . , Xt], F
∗
i ∈ Zp(X1, . . . , Xt), and Wi ∈ Zp[Z1, . . . , Zsi ] for some

si. The parameters have the following role.

Parameter Role Example: gap-CDH

t # secrets x1, . . . , xt in Zp t = 2, secrets x, y
n # target group elements 1
m required solutions 1
F1, . . . , Fk input group elements F1 = X ∼ gx, F2 = Y ∼ gy
F ∗1 , . . . , F

∗
n target group elements F ∗1 = XY ∼ gxy

W1, . . . ,Ws decisional oracles DDH-oracle: W1 = X ′Y ′ − Z ′

A MI-Uber adversary A for vector of secrets ~x = (x1, . . . , xt) receives as input (g, gF1(~x), . . . , gFk(~x)) and has
to output an index set I ⊆ [n] of size at least m as well as group elements hi such that hi = gF

∗
i (~x) for all

i ∈ I. It has access to the group operation, as well as decisional oracles Wi which, on input si many group
elements hj = gyj , returns 1 if gWi( ~yj) = 1 (or equivalently Wi(~yj) = 0) and 0 if not. For a formal definition
of MI-Uber in the generic-group model see Figure 3. We point out that the binary encoding game of [ZZK22]
used to separate the GGM and AGM does not fall under the umbrella of MI-Uber because the adversary of
the binary encoding game does not get a description of the target group element via a polynomial.

Associated geometric search-problem. We now define the geometric search problem associated to
MI-Uber(t, (m,n), ~F , ~F ∗, ~W ), called geo-MI-Uber(t, (m,n), ~F , ~F ∗, ~W ). It is parameterized by a set of integers
and variables with the same restrictions as MI-Uber, some of which take different roles, as follows. A vector
~x = (x1, . . . , xt) ←$ Ztp is sampled uniformly at random. The goal of adversary A is to return index

set I ⊆ [n] of size m, and polynomials F̂i ∈ Zp[X1, . . . , Xt] such that F̂i(~x) − F ∗i (~x) = 0 for all i ∈ I. To
do so, A receives no input, but has access to oracle Eval, which on input a polynomial F ′ ∈ Zp[X1, . . . , Xt]
returns 1 if F ′(~x) = 0 and 0 else. Note that this corresponds to the query, whether the hypersurface in Ztp
defined by F ′ contains ~x or not. We make the additional requirement that all output solutions F̂i lie in
the linear span Span(1, F1, . . . , Fk) of the input polynomials and impose the same requirement on inputs to
Eval.2 The restriction on solutions ensures that geo-MI-Uber is non-trivial as long as MI-Uber is; If MI-Uber
cannot be trivially solved, we must have that (sufficiently many) F ∗i /∈ Span(~F ) as else one could compute a
valid solution with a small number of group-operation queries. Accordingly, in this case geo-MI-Uber does
not admit the trivial solution of simply outputting m of the F ∗i . The restriction on the inputs to Eval, on the

2Alternatively, one could also make this requirement explicit by changing the inputs to Eval to be a vector (a0, . . . , ak) ∈ Zk
p

and return whether ~x lies on the hypersurface defined by a0 +
∑k

i=1 aiFi. The requirement for solutions F̂i could be adapted
accordingly.

11



Problem MI-Uber(t, (m,n), ~F , ~F ∗, ~W )
00 L ←$ Inj(Zp, {0, 1}`)
01 ~x←$ Ztp
02 σ0 ← L(1)
03 for i = 1, . . . , k
04 σi ← L(Fi(~x))
05 (I, (σ̂i)i∈I)← AGrpOp,(DecWi )i(σ0, . . . , σk)
06 require I ⊆ [n] ∧ |I| ≥ m
07 return [∀i ∈ [I] : σ̂i = L(F ∗i (~x))]

Oracle GrpOp(σ, σ′)
08 require σ, σ′ ∈ L(Zp)
09 return L(L−1(σ) + L−1(σ′))

Oracle DecWi
(σ′1, . . . , σ

′
si)

10 require σ′j ∈ L(Zp) for j ∈ [si]

11 return [Wi(L−1(σ̃1), . . . ,L−1(σ̃si)) = 0]

Problem geo-MI-Uber(t, (m,n), ~F , ~F ∗, ~W )
12 ~x←$ Ztp
13 (I, (F̂i)i∈I)← AEval,(DecWi )i

14 require F̂i ∈ Span(1, ~F ) for all i ∈ I
15 require I ⊆ [n] ∧ |I| ≥ m
16 return [∀i ∈ I : (F ∗i − F̂i)(~x) = 0]

Oracle Eval(F ′)

17 require F ′ ∈ Span(1, ~F )
18 return [F ′(~x) = 0]

Oracle DecWi
(F ′1, . . . , F

′
si)

19 require F ′j ∈ Span(1, ~F ) for all j ∈ [si]
20 return [Wi(F

′
1(~x), . . . , F ′si(~x)) = 0]

Figure 3: Problems MI-Uber (in the GGM) and the corresponding geometric search problem geo-MI-Uber pa-

rameterized by t,m, n ∈ N, and polynomials ~F = (F1, . . . , Fk), ~F ∗ = (F ∗1 , . . . , F
∗
n) with Fi ∈ Zp[X1, . . . , Xt],

F ∗i ∈ Zp(X1, . . . , Xt) for all i, in the presence of decisional oracles defined by polynomials ~W = (W1, . . . ,Ws)
with Wi ∈ Zp[Z1, . . . , Zsi ] for some si ∈ N. Inj(Zp, {0, 1}`) denotes the set of injections from Zp to label
space {0, 1}`.

other hand, turns out to be useful when construction reductions between geometric search-problems. Finally,
each Wi ∈ Zp[Z1, . . . , Zsi ] corresponds to oracle DecWi

, which on input of F ′1, . . . , F
′
si ∈ Span(1, F1, . . . , Fk)

returns 1 if (Wi(F
′
1, . . . , F

′
si))(~x) = Wi(F

′
1(~x), . . . , F ′si(~x)) = 0, and 0 if not.3 For a formal definition of the

problem see Figure 3.
In the following we give the reduction from geo-MI-Uber to MI-Uber. The key observation is that, by

using the oracle Eval, the reduction can simulate the view of the MI-Uber adversary A without knowledge
of the secret ~x.

Theorem 3. Let t,m, n, k, s ∈ N with m ≤ n, and consider vectors ~F = (F1, . . . , Fk), ~F ∗ = (F ∗1 , . . . , F
∗
n)

of polynomials and rational functions with Fi ∈ Zp[X1, . . . , Xt], F
∗
i ∈ Zp(X1, . . . , Xt) for all i, and ~W =

(W1, . . . ,Ws) with Wi ∈ Zp[Z1, . . . , Zsi ] for some si ∈ N.

Let r ∈ N and A a MI-Uber(t, (m,n), ~F , ~F ∗, ~W )-solver in the GGM, which makes at most q oracle

queries. Then, there exists a geo-MI-Uber(t, (m,n), ~F , ~F ∗, ~W ) solver B that for dmax := maxi(deg(Fi)) and
smax := max(maxi(si), 2) makes at most

q2 · smaxr + q ·
(
(ksmax +m)(r − 1) + k + 1

)
+ k
(
k + 1 +m(r − 1)

)
≈ q2smaxr

queries and satisfies

Advgeo-MI-Uber(t,(m,n), ~F , ~F∗, ~W )(B)

≥AdvMI-Uber(t,(m,n), ~F , ~F∗, ~W )(A)− (qsmax +m) ·
(

(q + k) · dmax

p

)r
.

Proof of Thm 3. The geo-MI-Uber solver B receives as input the number of indeterminates t and the polyno-
mials ~F rational functions ~F ∗ and has access to oracles Eval, (DecWi

)i. To simulate the view of the MI-Uber

3As is the case for Eval, oracle Dec corresponds to evaluating containment in a hypersurface, albeit, one of degree possibly
higher than the ones in the linear span of the input polynomials. Thus, one could incorporate DecWi

into Eval by expanding the
range of admissible polynomials for the latter from Span(1, F1, . . . , Fk) to also include polynomials of the form Wi(F

′
1, . . . , F

′
si

) ∈
Zp[X1, . . . , Xt] for F ′

j ∈ Span(1, F1, . . . , Fk). However, we decided to keep the oracles separated in order to have a clearer
conceptual distinction between the group-operation oracle and decisional oracles.

12



solver A, B needs to construct input (σ0, . . . , σk) and reply to oracle queries made by A. To do this in a
consistent manner, B samples labels on the fly and maintains a table T that stores all previously recorded la-
bels σ, each together with a corresponding polynomial P ( ~X) ∈ Span(1, ~F ) in the indeterminates X1, . . . , Xt.
The labels σ will correspond to a perfect simulation of MI-Uber such that we have L−1(σ) = P (~x) for every
entry (P, σ) in T . To make sure that the simulation is consistent, B needs to check that no two polynomials
P, P ′ such that P (~x) = P ′(~x) get paired with different labels. This would be equivalent to a group element
receiving two different labels. Hence, before sampling a new label for a polynomial P , B needs to check that
there is no previously recorded polynomial P ′ in T such that (P − P ′)(~x) = 0 using the oracle Eval. Note

that, if P, P ′ ∈ Span(1, ~F ) then so is P − P ′, and thus the oracle will not return ⊥. In more detail, B does
the following.

• It samples the range R ⊆ {0, 1}` uniformly at random from all subsets of {0, 1}` of size p.4

• To create the input (σ0, σ1, . . . , σk) for A, B does the following: first, it samples σ0 ←$ R, stores (0, σ0)
in T , and then iteratively defines σi as follows. To create σi for i ∈ [k], it queries Eval on Fi−P ′ for all
previously recorded polynomials P ′ in T . If the answer is 1 for some P ′, it sets σi to the corresponding
label of P ′. Otherwise, it chooses a random unused value from R and stores (Fi, σi). Note that all
polynomials stored so far in T trivially lie in Span(1, F1, . . . , Fk), and entries (P, σ) defined so far are
consistent with the property L−1(σ) = P (~x).

• Then B runs A(σ0, σ1, . . . , σk). When A makes a query (σ, σ′) to GrpOp, B does the following:

– First, it checks if σ and σ′ have been recorded in T . If σ has not been recorded, checks if σ ∈ R
and answers ⊥ if not. Otherwise, B makes r attempts at assigning σ a constant unused element
in Zp that is consistent with the simulation so far. In particular, B will repeat the following steps
up to r times. It starts by sampling a random unused element a←$ Zp. If this is the r̃th attempt,
with r̃ < r, it queries Eval on a− P for all previously recorded (non-constant) polynomials P in
T . If Eval outputs 1 for some P , adversary B tries again with a new random unrecorded a←$ Zp.
If Eval does not output 1 for any of the queries or if it is the rth time of sampling a, it stores the
pair (a, σ) in T , where a is to be interpreted as a constant polynomial. It then does the same if
σ′ has not been recorded.

– Let P, P ′ be the polynomials corresponding to labels σ, σ′. For all previously recorded polynomials
P ′′ in T , B queries P + P ′ − P ′′ to oracle Eval. If Eval outputs 1 for any of the P ′′, it looks up
the corresponding label σ′′ in T and sends σ′′ to A. Otherwise, B samples a random σ′′ from the
unused values in R and sends it to A. Then it stores (P + P ′, σ′′) in T .

– Note that, again, all newly stored polynomials are elements of Span(1, ~F ) and that, if for all
(P̂ , σ̂) ∈ T we had that L−1(σ̂) = P̂ (~x), then the same holds for all elements added to the table
during either of these steps.

• When A makes a query (σ′1, . . . , σ
′
si) to one of the decisional oracles DecWi

, B does the following:

– It first checks if for all j ∈ [si], σ
′
j has been recorded in T . If not, it proceeds as in the analogous

case of group operation queries described above, assigning a random constant to it.

– Then, it queries DecWi on (F ′1, . . . , F
′
si), where F ′1, . . . , F

′
r are the polynomials corresponding to

σ′1 . . . , σ
′
si respectively. Sends the answer of DecWi to A.

– Note that for all j it holds that L−1(σ′j) = F ′j(~x), and so the query is answered correctly, since
we have that

Wi(L−1(σ′1), . . . ,L−1(σ′si)) = Wi(F
′
1(~x), . . . , F ′si~x) .

4We measure the running time of generic algorithms by their query count. So, both sampling from R and checking whether
σ ∈ R need not be efficiently computable. We use this approach for ease of exposition, but point out that these operations can
easily be adapted to be done efficiently by sampling R on the fly.

13



• When A outputs (I, (σ̂i)i∈I), B checks for every i ∈ I whether σ̂i has previously been recorded in T
with corresponding polynomial F̂i. If not, it is treated as in the analogous case of group operation
queries described above. Then B outputs (I, (F̂i)i∈I) as its solution. Note that the check of line 14 will

succeed, as F̂i ∈ Span(1, ~F ) for all i.

We now count the number of queries made by B. First, note that to set up A’s input, B adds 1 constant
and k arbitrary entries to T and makes at most k(k + 1) queries to Eval. During the execution of A, every
query to GrpOp or DecWi

adds up to smax constant and one arbitrary polynomial to T . Thus, at the q′th
query, T contains at most k+ 1 + (smax + 1)q′ entries, of which at most k+ q′ are not constant. As the check
against previously unrecorded labels needs to be done only with respect to non-constant polynomials, the
q′th query requires at most (r − 1)smax(k + q′) + (k + 1 + (smax + 1)q′) queries to Eval. Finally, to handle
A’s output, B makes up to (r− 1)m additional checks against the at most (k+ q) non-constant entries in T .
Summing up we can bound the number of queries made by B by

q2 · smaxr + q · ((ksmax +m)(r − 1) + k + 1) + k (k + 1 +m(r − 1)) .

To show that

Advgeo-MI-Uber(t,(m,n), ~F , ~F∗, ~W )(B)

≥AdvMI-Uber(t,(m,n), ~F , ~F∗, ~W )(A)− (qsmax +m) ·
(

(q + k) · dmax

p

)r
,

we define the event

bad = {∃(a, σa), (P, σP ) ∈ T | a constant, P not constant : P (~x)− a = 0} ,

which corresponds to B assigning a label σ it did not previously receive to a constant in a way not consistent
with the simulation. Observe that in the case that bad does not occur, we have L−1(σ) = P (~x) for all (P, σ)
stored in T , and the view of A is a perfect simulation of the MI-Uber game with hidden value ~x. Thus, in
this case we have that (F̂i − F ∗i )(~x) = 0 ⇔ L−1(σ̂i) = F̂i(~x) = F ∗i (~x) for all i ∈ I, and B wins exactly if A
wins.

Finally, when assigning a constant to a previously unseen σ the probability that B does so inconsistently
is at most ((q + k)dmax/p)

r. Indeed, by the Schwartz-Zippel Lemma, the probability the sampled constant
is in the set of roots of any polynomial P is at most dmax/p and, for each of the r attempts at finding a
constant, at most (q+k) polynomials have to be checked. As the reduction has to sample at most (qsmax+m)
constants, the bound follows.

Before turning to the setting of BF-GGM we make a couple observations.

Remark 1. (i) As opposed to prior work, our reduction does not fully preserve the advantage of A, but

introduces an error term of order ∼ q
(
qdmax

p

)r
. The term, as well as some of the additional queries

that B has to make, stems from handling group-operation queries on labels, that the adversary did not
previously receive. The reduction B handles such queries by assigning them a random, unused discrete
logarithm. The number r corresponds to the number of attempts made for each such query to find a
constant that is consistent with the simulation so far.

Looking ahead, the loss in advantage will not cause issues when deriving lower bounds, as the bounds
we obtain on the advantage of B will, for most problems, be of order q2dmax/p. Hence, in this case we
can simply choose r = 1. The only exception are multi-instance (gap) CDH problems, for which the
advantage of B decays exponentially in the number of instances that have to be solved. For these we
end up with worse bounds than the ones from literature (However, if one only considers the number of
queries required to achieve constant success probability the bound stays the same). We point out that
in the reductions of [AGK20, Yun15] it is assumed that A never queries on labels it did not previously
receive. In light of the work by Zhang, Zhou, and Katz [ZZK22] this seems hard to formally justify unless

14



the range of labels is very sparse in {0, 1}`, as is assumed in [Yun15]. In [CDG18], such queries are
handled in the same way that we do. However, neither the probability of failing to sample an adequate
discrete logarithm, nor the additional Eval queries to verify its consistency with the simulation, were
factored in the advantage and query count, respectively, of their reduction.

(ii) One can easily adapt Theorem 3 to discrete-logarithm variants of MI-Uber, in which A receives the
same input and has access to the same oracles, but instead of computing target group elements has to
compute at least m of the x1, . . . , xt. The corresponding geometric search-problem would have access
to the same oracles as in geo-MI-Uber, and also have to compute at least m of the xi.

(iii) Theorem 3 also holds if in both problems the adversaries have oracle access to a random oracle, i.e.,
a uniformly random function RO : R → {0, 1}`′ for some `′. In this case, the reduction can simply
forward all RO queries. Thus, the computed GGM bounds also apply to cryptographic schemes making
use of such oracles, as for example in [AGK20, BL22, FPS20, GT21]. In the case of a random oracle
into the group, i.e., RO; {0, 1}∗ → {0, 1}`, the reduction can simulate the random oracle, and associate
previously unseen labels to a constant polynomial as discussed in point (i). For an example of this type
of reduction, see our result for BLS signatures in Section 4.2 and [ABB+20, KLX22].

3.2 Extension to the Bit-Fixing Generic-Group Model

In this section we show that the translation of problems to geometric search-problems also works in the
BF-GGM. In combination with Theorem 1 and a reduction between the corresponding geometric problems,
like the ones presented in Section 4, this enables us to carry over preprocessing lower-bounds from one
problem to another.

We again consider Uber problems MI-Uber and geo-MI-Uber of Figure 3. However, in this section we will
restrict to problems without decision oracles, i.e., we assume that ~W = ε is the empty vector. We stress that
the reason for this is that the preprocessing GGM and bit-fixing GGM, as well as the translation between
the two in Theorem 1, are defined without decisional oracles. If one was able to extend both models to
allow for such oracles (or to the setting of bilinear groups) and establish their equivalence, we do not see any
obstacles for our translation to geometric search-problems to carry over as well.

We show that the security of MI-Uber in the bit-fixing GGM reduces to the security of geo-MI-Uber
(which does not have a preprocessing phase). The proof follows the one of Theorem 3, the main difference
being that, since in the preprocessing phase A1 fixes the labels of a number of group elements, the reduction
is required to add a corresponding amount of constant polynomials to its table T . This leads to a larger
amount of queries to oracle Eval.

Recall that the BF-GGM is parameterized by M ∈ N, the number of labels chosen by A1 in the pre-
processing phase. A2 receives as input both the advice Γ ← A1(R) and the problem instance as defined in
Figure 3. We obtain the following result. As its proof is very similar to the one of Theorem 3 we defer it to
Supplementary Material A.1.

Theorem 4. Let t,m, n, k ∈ N with m ≤ n, and consider vectors ~F = (F1, . . . , Fk), ~F ∗ = (F ∗1 , . . . , F
∗
n)

of polynomials and rational functions with Fi ∈ Zp[X1, . . . , Xt], F
∗
i ∈ Zp(X1, . . . , Xt) for all i. Further, let

dmax := maxi(deg(Fi)). Let r ∈ N and let A = (A1,A2) be a MI-Uber(t, (m,n), ~F , ~F ∗) solver in the BF-GGM
which makes at most q queries. Using A, we can construct a geo-MI-Uber solver B that makes at most

q
(
M + (2r + 1)q

)
+ kM + q

(
rk + 1 +m(r − 1)

)
+ k
(
k + 1 +m(r − 1)

)
≈ q(M + (2r + 1)q)

queries and satisfies

Advgeo-MI-Uber(t,(m,n), ~F , ~F∗)(B) ≥ AdvMI-Uber(t,(m,n), ~F , ~F∗)(A)− (2q +m)

(
(q + k) · dmax

p

)r
.

15



3.3 Extension to the GGM for Bilinear Groups

In this section we generalize the result of Section 3.1 to the setting of bilinear groups. In Figure 4 we define
the

MI-Uberφ(t, (m,n1, n2, nT ), ~F1, ~F2, ~FT , ~F
∗
1 , ~F

∗
2
~F ∗T ,W1, . . . ,Ws)

problem for bilinear groups of type φ and the corresponding geometric problem

geo-MI-Uberφ(t, (m,n1, n2, nT ), ~F1, ~F2, ~FT , ~F
∗
1 , ~F

∗
2
~F ∗T ,W1, . . . ,Ws) .

Again, t ∈ N is the number of secrets in Zp and m ∈ N is the number of solutions the adversary A is

required to output. The input and target polynomials are now divided into three vectors ~F1, ~F2, ~FT and
~F ∗1 ,

~F ∗2 ,
~F ∗T respectively, that correspond to the three groups G1,G2,GT , where we have dim(~F ∗J ) = nJ

for J ∈ {1, 2, T}. The polynomials Wi define decisional oracles which, on input si many group ele-
ments defined by exponents y1,1, . . . y1,r1 , y2,1, . . . y2,r2 , yT,1, . . . yT,rT for generators g1, g2, gT , return 1 if
Wi(y1,1, . . . y1,r1 , y2,1, . . . y2,r2 , yT,1, . . . yT,rT ) = 0 and 0 if not. In MI-Uberφ, the adversary A receives as
input (

g1, g2, gT , g
~F1,1(~x)
1 , . . . , g

F1,k1
(~x)

1 , g
F2,1(~x)
2 , . . . , g

F2,k2
(~x)

2 , g
FT,1(~x)
T , . . . , g

FT,kT (~x)

T

)
and has to output three index sets I1 ⊆ [n1], I2 ⊆ [n2], IT ⊆ [nT ] such that |I1|+ |I2|+ |IT | ≥ m, as well as

group elements hJ,i = g
F∗J,i(~x)

J for all J ∈ {1, 2, T} and all i ∈ IJ .
In geo-MI-Uberφ, a vector ~x = (x1, . . . , xt) ← Ztp is sampled uniformly at random and A has to output

three sets I1 ⊆ [n1], I2 ⊆ [n2], IT ⊆ [nT ] such that |I1| + |I2| + |IT | ≥ m, as well as polynomials PJ,i such
that PJ,i(~x) = F ∗J,i(~x) for all J ∈ {1, 2, T} and all i ∈ IJ . The adversary A does not receive any input but
has access to the oracle Eval, that takes queries of the form (J, P ) and returns 1 if P (~x) = 0 and 0 else.
Here, P ∈ Zp[X1, . . . , Xt] is a polynomial that satisfies certain restrictions depending on the type φ of the
bilinear group, which we explain in more detail below. Before we give the reduction from geo-MI-Uberφ to
MI-Uberφ in Theorem 5, we define some useful notation.

Notation. Let ~R, ~S, ~F be vectors of polynomials. In this section we will use the following notation:

Span(~R, ~S) := Span(R1, . . . , Rdim(~R), S1, . . . , Sdim(~S))

denotes the linear span of the polynomials in the entries of the vectors ~R and ~S. We further define three
different types of spans:

Span1(~R, ~S, ~F , φ) :=

{
Span(~R, ~S) if φ ∈ {1, 2},
Span(~R) if φ = 3;

Span2(~R, ~S, ~F , φ) :=

{
Span(~R, ~S) if φ = 1,

Span(~S) if φ ∈ {2, 3};

SpanT (~R, ~S, ~F , φ) := Span(~F ,Span1(~R, ~S, ~F , φ) · Span2(~R, ~S, ~F , φ)).

If ~R defines elements in G1, ~S defines elements in G2 and ~F defines elements in GT , we have that the elements
in SpanJ(~R, ~S, ~F , φ) correspond to exactly those elements in group GJ that can be obtained from the input
elements by performing group operations, evaluating the bilinear map and applying the isomorphism between
groups G1 and G2.

We obtain the following result. Its proof is in Supplementary Material A.2.

Theorem 5. Let t,m, n1, n2, nT , k1, k2, kT ∈ N with m ≤ n1 + n2 + nT , and consider vectors ~F1 =
(F1,1, . . . , F1,k1), ~F2 = (F2,1, . . . , F2,k2), ~FT = (FT,1, . . . , FT,kT ), ~F ∗1 = (F ∗1,1, . . . , F

∗
1,n1

), ~F ∗2 = (F ∗2,1, . . . , F
∗
2,n2

),
~F ∗T = (F ∗T,1, . . . , F

∗
T,nT

) of polynomials with FJ,i ∈ Zp[X1, . . . , Xt], F
∗
J,i ∈ Zp(X1, . . . , Xt) for all J ∈ {1, 2, T}

and all i and ~W = (W1, . . . ,Ws) with Wi ∈ Zp[Z1, . . . , Zsi ] for some si ∈ N. Let k = k1 + k2 + kT .

16



Problem MI-Uberφ(t, (m,n1, n2, nT ), ~F1, ~F2, ~FT , ~F
∗
1 ,
~F ∗2 ,

~F ∗T ,W1, . . . ,Ws)
00 ~x←$ Ztp
01 σ1,0 ← L1(1)
02 σ2,0 ← L2(1)
03 σT,0 ← LT (1)
04 for J ∈ {1, 2, T}
05 for i = 1, . . . , kJ
06 σJ,i ← LJ(FJ,i(~x))

07 (I1, I2, IT , (σ̂1,i)i∈I1 , (σ̂2,i)i∈I2 , (σ̂T,i)i∈IT )← AIso,Iso−1,GrpOp,Bil,(DecWi )i∈[s]((σ1,i)i∈[k1]0 , (σ2,i)i∈[k2]0 , (σT,i)i∈[kT ]0)
08 require I1 ⊆ [n1] ∧ I2 ⊆ [n2] ∧ IT ⊆ [nT ] ∧ |I1|+ |I2|+ |IT | ≥ m
09 return [∀J ∈ {1, 2, T} ∀i ∈ [IJ ] : σ̂J,i = LJ(F ∗J,i(~x))]

Oracle Iso(σ)
10 require φ ∈ {1, 2} ∧ σ ∈ L2(Zp)
11 return L1(L−12 (σ))

Oracle Iso−1(σ)
12 require φ = 1 ∧ σ ∈ L1(Zp)
13 return L2(L−11 (σ))

Oracle GrpOp(J, σ, σ̂)
14 require J ∈ {1, 2, T} ∧ σ, σ̂ ∈ LJ(Zp)
15 return LJ(L−1J (σ) + L−1J (σ̂))

Oracle Bil(σ, σ̂)
16 require σ ∈ L1(Zp) ∧ σ̂ ∈ L2(Zp)
17 return LT (L−11 (σ) · L−12 (σ̂))

Oracle DecWi(σ̃1,1, . . . , σ̃1,s1 , σ̃2,1, . . . , σ̃2,s2 , σ̃T,1, . . . , σ̃T,sT )
18 require σ̃J,j ∈ LJ(Zp) for all J ∈ {1, 2, T} and all j ∈ [sJ ]
19 return [Wi((L−11 (σ̃1,j))j∈[s1], (L

−1
2 (σ̃2,j))j∈[s2], (L

−1
T (σ̃T,j))j∈[sT ]) = 0]

Problem geo-MI-Uberφ(t, (m,n1, n2, nT ), ~F1, ~F2, ~FT , ~F
∗
1 ,
~F ∗2 ,

~F ∗T ,W1, . . . ,Ws)
00 ~x←$ Ztp
01 (I1, I2, IT , (P̂1,i)i∈I1 , (P̂2,i)i∈I2 , (P̂T,i)i∈IT ) ← AIso,Eval,Bil,(DecWi )i∈[s]

02 require I1 ⊆ [n1], I2 ⊆ [n2], IT ⊆ [nT ] ∧ |I1|+ |I2|+ |IT | ≥ m
03 require ∀J ∈ {1, 2, T} ∀i ∈ IJ : P̂J,i ∈ SpanJ(~F1, ~F2, ~FT , φ)

04 return [∀J ∈ {1, 2, T} ∀i ∈ IJ : (P̂i − F ∗J,i)(~x) = 0]

Oracle Iso(P1, P2)

05 require PJ ∈ SpanJ(~F1, ~F2, ~FT , φ) for all J ∈ {1, 2}
06 return [(P1 − P2)(~x) = 0]

Oracle Eval(J, P )

07 require J ∈ {1, 2, T} and P ∈ SpanJ(~F1, ~F2, ~FT , φ)
08 return [P (~x) = 0]

Oracle Bil(P1, P2, P3)

09 require PJ ∈ SpanJ(~F1, ~F2, ~FT , φ) for all J ∈ {1, 2, T}
10 return [(P1 · P2 − P3)(~x) = 0]

Oracle DecWi
(F̃1,1, . . . , F̃1,s1 , F̃2,1, . . . , F̃2,s2 , F̃T,1, . . . , F̃T,sT )

11 require F̃J,j /∈ SpanJ(~F1, ~F2, ~FT , φ) for all J ∈ {1, 2, T} and all j ∈ [sJ ]

12 return [Wi(F̃1,1, . . . , F̃1,s1 , F̃2,1, . . . , F̃2,s2 , F̃T,1, . . . , F̃T,sT )(~x) = 0]

Figure 4: The problems MI-Uberφ (in the bilinear GGM) and geo-MI-Uberφ for bilinear groups of type

φ ∈ {1, 2, 3} parameterized by t,m, n1, n2, nT , and vectors of polynomials ~F1, ~F2, ~FT , ~F
∗
1 ,
~F ∗2
~F ∗T of different

dimensions with entries in Zp[X1, . . . , Xt] and in Zp(X1, . . . , Xt) respectively, where dim(~F ∗J ) = nJ for
J ∈ {1, 2, T}. The polynomials W1, . . . ,Ws define decisional oracles DecWi

.

17



Let r ∈ N and A be a MI-Uber-solver in the GGM, which makes at most q oracle queries. Then, there
exists a geo-MI-Uber solver B that, for

dmax := max
(

max
i

(deg(FT,i)), 2 max
i

(deg(F1,i)), 2 max
i

(deg(F2,i))
)

and smax := max(maxi(si), 2), makes at most k(k + 3) + q((r − 1)smax(k + q) + k + 3 + (smax + 1)q) + (r −
1)m(k + q) ≈ smaxq

2r queries and satisfies

Advgeo-MI-Uber(t,(m,n1,n2,n3), ~F1, ~F2, ~FT , ~F
∗
1 ,
~F∗2
~F∗T ,W1,...,Ws)(B)

≥AdvMI-Uber(t,(m,n1,n2,n3), ~F1, ~F2, ~FT , ~F
∗
1 ,
~F∗2
~F∗T ,W1,...,Ws)(A)− (qsmax +m)

(
(q + k) · dmax

p

)r
.

4 Reductions Between Geometric Search-Problems

In this section we derive bounds in the GGM and AI-GGM (in Section 4.1) and bilinear GGM (in Section 4.2)
for several problems. Building on the results from Section 3, which show a reduction to the considered
problem from its geometric version, we show that there is a reduction from a variant of the search-by-
hyperplane problem to the geometric problem. Using the lower bounds on the hardness of SHS then gives
us the desired GGM bounds. Interestingly, several of our reductions closely mirror generic reductions in the
AGM following the approach introduced in [FKL18]. While the bounds in the GGM and bilinear GGM are
not new and either have been proven directly in the GGM or by following the AGM approach, we think they
serve as nice examples on how reductions between geometric-search problems can serve as a replacement of
the AGM approach. The bounds in the AI-GGM, on the other hand, are novel. In particular, we point out
that preprocessing bounds for the multi-instance CDH problem seem hard to obtain with a direct reduction
from SHS(m, 2) (compare Figure 1).

As a further result, in Section 4.2 we revisit the tight AGM+RO reduction of [FKL18] between the
security of BLS signatures [BLS04] and the discrete logarithm problem. We give a reduction from SHS(1, 2)
to BLS security in the bilinear GGM + RO and thus obtain a GGM lower bound of order q2/p, matching
that of [FKL18].

4.1 Reductions between geometric search-problems in the GGM and AI-GGM

Preprocessing bounds for d-strong-DL and d-strong-DHI in the GGM. As a warm-up, in this
section we give a simple reduction between the geometric search variants of the d-strong discrete logarithm
(d-strong-DL) and d-strong Diffie-Hellman inversion [BB04a] (d-strong-DHI) problems. Since we identify
the former with the special case SHS(1, d) of the search-by-hypersurface problem, for which bounds of its
hardness exist, we obtain new bounds on the hardness of the two problems in the AI-GGM. While the
problems are arguably more interesting in the bilinear GGM, which is unfortunately not covered in the
translation between BF-GGM and AI-GGM, we think this example nicely illustrates the simplicity of our
approach compared to directly proving the corresponding bounds in the BF-GGM.

Recall that in both problems the adversary receives as input group elements (g, gx, . . . , gx
d

) for x←$ Zp
and has access to no decisional oracles. In d-strong-DL the goal is to compute x, in d-strong-DHI the group
element g1/x (assuming x 6= 0). We define geo-d-strong-DL = SHS(1, d), i.e., adversary A has access to
oracle Eval accepting all univariate polynomials of degree at most d, and has to return x. Note that the
d-strong Diffie-Hellman inversion problem is the special case MI-Uber(1, (1, 1), (X, . . . ,Xd), (1/X)) of the
Uber problem. We obtain the following.

Lemma 6. Let d ∈ N. Then, for every adversary A against geo-d-strong-DHI making at most q queries,
there exist adversary B against geo-d-strong-DL making at most q + d+ 1 queries such that

Advgeo-d-strong-DL(B) ≥ Advgeo-d-strong-DHI(A) .

18



Proof. Note that the case x = 0 can be efficiently recognized by B. Thus assume x 6= 0. Further, note that
the two games only differ by the expected solution and winning condition. Indeed in both games oracle Eval
is defined with respect to indeterminate x and answers queries for polynomials in Span(1, X, . . . ,Xd), i.e., all
polynomials of degree at most d. Thus, adversary B can provide A with a perfect simulation of d-strong-DHI
by simply forwarding all Eval queries. Let F̂ ← AEval. If A wins, then we have

∑d
i=0 aiXi = F̂ ∈ Span(1, ~X),

and 1/x =
∑d
i=0 aix

i = F̂ (x). As x 6= 0 there exists ai 6= 0. Thus the polynomial F = X · F̂ (X) − 1 is
nontrivial, of degree at most d+ 1, and x must be one of its at most d+ 1 roots. B computes all roots yj of
F , uses at most d+ 1 queries of the form X − yj to Eval to determine x, and returns it as its solution.

As a consequence we obtain the following preprocessing bounds.

Corollary 7. Let A, B be (s, q)-adversaries such that q ≥ d in the AI-GGM against d-strong-DL and

d-strong-DHI, respectively. Then we have Advd-strong-DL(A) ∈ Õ
(
d(sq2+q2)

p

)
and Advd-strong-DHI(B) ∈

Õ
(
d(sq2+q2)

p

)
.

Proof. By Lemma 2, every adversary against geo-d-strong-DL = SHS(1, d) making at most q′ queries has
advantage bounded by e dq′/p. Thus, if we set q′ = q(M + 3q) +Mq+ q(k+ 1) + k(k+ 1) ∈ O(q2 + qM) and
r = 1, by Theorem 4, every (s, q)-adversary against d-strong-DL in BF-GGM has advantage bounded by

edq′

p
+

2dq2 + 2d2q + dq + d2

p
∈ O

(
dq2 + dqM

p

)
as a larger advantage would contradict the bound for geo-d-strong-DL. Now the statement follows from
Theorem 1 by observing that qcomb = q+d dlog(p)e, and setting γ = 1/p and M = 6(s+log(p))(q+d dlog(p)e).

Regarding the bound for d-strong-DHI, by Lemma 6 we can bound the advantage of every q′-adversary
against geo-d-strong-DHI by e d(q′ + d + 1)/p. Then, the second part of the statement follows analogously
to the above.

From geo-d-strong-DL to geo-Uber. We consider Uber(t, F1, . . . , Fk, F
∗) := MI-Uber(t, (1, 1), ~F , F ∗),

the subclass of single instance Uber problems without decisional oracles. As before, to make the problem
nontrivial, we require that F ∗ /∈ Span(~F ). Note that this class contains several problems considered in
the AGM setting in prior work as, for example, the CDH, square Diffie-Hellman, and strong Diffie-Hellman
assumptions [FKL18], as well as the CDH variants in cyclic groups and bilinear groups of [MTT19].

We give a reduction from geo-d-strong-DL = SHS(1, d) to geo-Uber by translating the AGM reduction
from d-strong-DL to Uber in [BFL20] to the geometric setting. A key idea of the reduction in [BFL20]
is to rerandomize the element gx obtained from the d-strong-DL game by raising it to random powers yi
and multiplying the result by gzi for random zi. This implicitly sets the secrets for the Uber adversary
to xi = yix + zi. We adapt this idea to our setting by letting the reduction explicitly set the secrets for
the geo-Uber solver to Pi = yiX + zi for random values yi, zi, where X is an indeterminate. Then, when
the geo-Uber outputs a multivariate polynomial, the reduction substitutes in the Pi for the corresponding
variables and solves the resulting univariate polynomial for X. In the proof of Theorem 9 we make use of
the following fact.

Lemma 8 ([BFL20, Lemma 2.1]). Let F (X1, . . . , Xt) ∈ Zp[X1, . . . , Xt] be a multivariate polynomial of
degree d. Then F (y1X + z1, y2X + z2, . . . , ytX + zt) is a polynomial in Zp([y1, . . . , yt, z1, . . . , zt])[X] and its
coefficient of maximal degree is a polynomial in Zp[y1, . . . , yt] of degree d.

Theorem 9. Let A be a geo-Uber(t, F1, ..., Fk, F
∗) solver which makes at most q queries, where F ∗, F1, . . . , Fk

are polynomials in t indeterminates of degree at most d, such that F ∗ /∈ Span(1, F1, . . . , Fk). Using A, we
can construct a geo-d-strong-DL solver B that makes q + d queries and satisfies

Advgeo-d-strong-DL(B) = Advgeo-Uber(t,F1,...,Fk,F
∗)(A)− d

p
.

19



Proof. The geo-d-strong-DL solver B needs to find one hidden value x ∈ Zp, but construct t independent
hidden values ~x = (x1, . . . , xt) ∈ Ztp for the geo-Uber solver A. To this end, B sets up polynomials Pi =
yiX + zi for all i ∈ [t], where X is an indeterminate, and yi, zi are i.i.d. uniform values from Zp. It then
provides A with a perfect simulation of geo-Uber for the choice of secrets xi = Pi(x) = yix+ zi as described
below. Note that, indeed, ~x is uniformly random in Ztp.

B has access to the geo-d-strong-DL oracle Eval, that takes as input univariate polynomials of degree
at most d. In order to run A, it needs to answer evaluation queries made by the latter, which consist of
n-dimensional polynomials spanned by 1, F1, . . . , Fk. When A makes a hypersurface query P , B first checks
whether P is a polynomial in t variables X1, . . . , Xt in the span of 1, F1, . . . , Fk, and outputs ⊥ if not. Other-
wise, B sets Xi = Pi for all i ∈ [t] and then queries the resulting univariate polynomial P (P1(X), ..., Pk(X))
to the geo-d-strong-DL oracle Eval. Note that, since P is in the span of 1, F1, . . . , Fk, which have total degree
at most d, the degree of the resulting univariate polynomial is at most d, by Lemma 8. So, Eval answers the
query with 0 or 1. By choice of the xi, we have that P (x1, . . . , xt) = 0⇔ P (P1(x), . . . , Pt(x)) = 0, so B can
simply forward this answer to A.

Finally, A outputs a t-dimensional polynomial F̂ (X1, . . . , Xt). Consider the polynomial F (X1, . . . , Xt) =
F ∗ − F̂ . B checks whether F has at least one (non-constant) non-zero coefficient and aborts if not. Observe
that, since F ∗ /∈ Span(1, F1, . . . , Fk), if we also have F̂ ∈ Span(1, F1, . . . , Fk) (which is a condition for A to
succeed), we obtain that F will indeed have at least one (non-constant) non-zero coefficient.

Now, B sets Xi = Pi(X) in F (X1, . . . , Xt) to obtain a univariate polynomial of degree at most d. By
Lemma 8, this polynomial is non-zero with probability 1− d/p, since the highest degree coefficient depends
on the yi, which are uniformly random. B computes the roots r1, . . . , rd of this polynomial and then queries
X − ri to Eval for all i ∈ [d]. If Eval outputs 1 for one of the roots, B outputs that root. To show that

Advgeo-d-strong-DL(B) = Advgeo-Uber(n,F1,...,Fk,F
∗)(A)− d

p
,

we note that the view of A is a perfect simulation of the geo-Uber game. Further, by the definition of
geo-Uber, if A succeeds, then ~x must be a root of F .

We obtain the following bounds in the GGM and AI-GGM.

Corollary 10. In the GGM , every adversary A against problem Uber(t, ~F , F ∗) making at most q queries,
has advantage

AdvUber(t, ~F ,F∗)(A) ∈ Õ
(
dq2

p

)
,

where d is the maximum among the total degrees of ~F and F ∗.

Proof. By Lemma 2, every adversary against geo-d-strong-DL = SHS(1, d) making at most q2 queries has
advantage bounded by e dq2/p. Thus, if we set q2 = q1 + d then, by Theorem 9, every adversary against
geo-Uber making q1 queries has advantage bounded by e d(q1 + d)/p + d/p ∈ O(dq1/p). Now, setting
q1 = 2q2 + (q + k)(k + 1) ≈ O(q2), the statement of the corollary follows from Theorem 3, with r = 1.

Corollary 11. Every (s, q)-adversary A against problem Uber(t, ~F , F ∗) in the AI-GGM, has advantage

AdvUber(t, ~F ,F∗)(A) ∈ Õ
(
d(sq2 + q2)

p

)
.

Proof. Following the exact same argument as in the proof above, of Corollary 10, we have that any adversary
against geo-Uber, making q2 queries, has advantage bounded by e d(q2 + d)/p+ d/p ∈ O(dq2/p). Now, using
Theorem 4, and setting q2 = (k + q1)(M + 1 + k) + q1(2k + 5q1) ≈ O(q(M + q)), and r = 1, we have that

any adversary in the BF-GGM against Uber(t, ~F , F ∗) making q1 queries, has advantage bounded by

e d(q2 + d) + d

p
+ 2q1

(q1 + k)d

p
≈ O

(
d(q21 + q1M)

p

)
.

20



Now, the statement follows from Theorem 1 by observing that qcomb ≤ q+tk dlog(p)e, and setting γ = 1/p
and M = 6(s+ log(p))(q + tk dlog(p)e) .

From (m,m)geo-MI-gap-DL to (m,n)geo-MI-gap-CDH. In this section we revisit the GGM lower bounds
for the multi-instance gap-CDH problem from [AGK20]. We (re)establish the claimed bound in the GGM
and additionally obtain new preprocessing bounds for the (m,n)MI-CDH problem. To do so, we show that,
for m,n ∈ N with m ≤ n, the algebraic reduction from (m,m)MI-gap-DL to (m,n)MI-gap-CDH in [AGK20,
Thm. 5] can easily be translated to one for the corresponding geometric search problems.

Recall that the (m,m)MI-gap-DL problem requires A, on input (g, gx1 . . . , gxm), to return all discrete
logarithms x1, . . . , xm. In the (m,n)MI-gap-CDH problem, on the other hand, the adversary gets as in-
put (g, gx1 , . . . , gxn , gy1 , . . . , gyn), and has to return an index set I ⊆ [n] of size at least m, as well as
the group elements gxiyi for all i ∈ I. In both problems the term “gap” refers to the fact that the ad-
versary has access to a DDH oracle that, on input group elements (gx

′
, gy

′
, gz

′
), returns 1 if gx

′y′ = gz
′

and 0 else. Thus, (m,n)MI-gap-CDH corresponds to the special case of MI-Uber, where 2n indetermi-
nates x1, . . . , xn, y1, . . . , yn are sampled, the input polynomials are X1, . . . , Xn, Y1, . . . , Yn, the target poly-
nomials X1Y1, . . . , XnYn, and there is one decisional oracle defined by the polynomial Z1Z2 − Z3.

The corresponding geometric search problem (m,n)geo-MI-gap-CDH thus samples ~x, ~y ←$ Znp , and re-

quires adversary A to return an index set I ⊆ [n] of size at least m, as well as polynomials F̂i ∈ Span(1, ~X, ~Y ),
such that for all i ∈ I we have F̂i(~x, ~y) − xiyi = 0. To do so, A has access to oracles Eval, that on in-

put F ∈ Span(1, ~X, ~Y ) returns [F (~x, ~y) = 0], and Dec, that on input F1, F2, F3 ∈ Span(1, ~X, ~Y ) returns
[(F1 · F2 − F3)(~x, ~y) = 0].

Problem (m,m)geo-MI-gap-DL samples ~z ←$ Zmp , and requires adversary A to return all of ~z. A has

access to oracles Eval, that on input of F ∈ Span(1, ~Z) returns [F (~Z) = 0], and Dec, that on input of

F1, F2, F3 ∈ Span(1, ~Z) returns [(F1 · F2 − F3)(~z) = 0].
Regarding our reduction between the geometric search-problems we obtain the following result. It allows

to formally reestablish the lower bounds from [AGK20] on the hardness of (m,n)MI-gap-CDH in the generic
group model. Afterwards, we derive new preprocessing bounds for (m,n)MI-CDH.

Lemma 12. Let m ≤ n ∈ N and let A be an adversary against (m,n)geo-MI-gap-CDH that makes at most
q queries to oracles Eval and Dec. Then, there exists an adversary B against (m,m)geo-MI-gap-DL making
the same number of oracles queries such that

Adv(m,m)geo-MI-gap-DL(B) ≥ 2−mAdv(m,n)geo-MI-gap-CDH(A) .

Proof. We follow the reduction from the proof of [AGK20, Thm. 5], adapting it to the geometric setting as
follows. Solver B for (m,m)geo-MI-gap-DL needs to compute the hidden values z1, . . . , zm. To this end, it
implicitly sets up secrets ~x, ~y ∈ Zn, distributed as required for (m,n)geo-MI-gap-CDH, as follows. It samples
random vectors r, s ←$ Znp , a subset J ⊂ [n] uniformly at random from 2[n], and sets (vi,j)i,j ∈ Zn×mp such
that, when seen as a matrix, every (m×m) submatrix is invertible (concretely, [AGK20] uses a Vandermonde
matrix). Then, for all i ∈ J , B defines the helper polynomials Px,i =

∑m
j=1 vi,jZj + ri and Py,i = si. For

i ∈ [n] \ J , it sets Px,i = si and Py,i =
∑m
j=1 vi,jZj + ri. Then it runs adversary A. Reduction B provides

A with a simulation of (m,n)geo-MI-gap-CDH with secrets xi = Px,i(~z) and yi = Py,i(~z). In particular, for
i ∈ J , the value xi corresponds to a re-randomization of ~z and yi is a known constant. For i ∈ [n] \ J , the
opposite holds.

When A queries oracle Eval on polynomial F ∈ Zp[ ~X, ~Y ], the reduction queries its own Eval oracle on

the polynomial F ′ = F (Px,1, . . . , Px,n, Py,1, . . . , Py,n) ∈ Zp[~Z], and simply forwards its response to A. Since

all Px,i and Py,i are affine functions, we have that F ∈ Span(1, ~X, ~Y ) exactly if F ′ ∈ Span(1, ~Z). Thus, any
invalid query to Eval by A will also trigger a corresponding invalid query by B to its oracle, who will thus
forward the correct answer to A. Further, valid queries are answered correctly as well, since we have

F (~x, ~y) = F (Px,1(~z), . . . , Px,n(~z), Py,1(~z), . . . , Py,n(~z)) = F ′(~z) .

21



Similarly, queries Dec(F1, F2, F3) are answered by forwarding the response to the query Dec(F ′1, F
′
2, F

′
3), where

F ′i = Fi(Px,1, . . . , Px,n, Py,1, . . . , Py,n). It follows from the same argument as above that this corresponds to
a perfect simulation of the game with xi = Px,i(~z), yi = Py,i(~z).

At the end of the game A outputs an index set I ⊆ [n] of size at least m, and polynomials F̂i ∈ Zp[ ~X, ~Y ].
It remains to argue that, if this is a correct solution to (m,n)geo-MI-gap-CDH, then A is able to extract the
values z1, . . . , zm with probability at least 2−m. Note that, for A to be able to win, it is necessary that all Fi ∈
Span(1, ~X, ~Y ), and thus in this case they can be seen as a system A′ ~X+B′~Y + ~c′ of affine linear polynomials

in Zp[ ~X, ~Y ], where A′, B′ ∈ Zm×np and ~c′ ∈ Zmp . Further, in order to solve (m,n)geo-MI-gap-CDH, we must
have that

A′~x+B′~y + ~c′ = ~u where ~uj = xijyij for j ∈ [|I|] and ij ∈ I . (1)

From here on, we can copy the arguments from [AGK20]: Their reduction, on input (m,m)MI-gap-DL
challenge (gz1 , . . . , gzm), sets up a (m,n)MI-gap-CDH challenge consisting of group elements gxi = gPx,i(~z)

and gyi = gPy,i(~z). Next, it runs the algebraic adversary, forwarding all group operation and DDH oracle
queries. It then receives a solution consisting of an index set I and a vector of group elements ~W that
come with an algebraic justification (A′, B′, ~c′) that, if the adversary succeeds in solving its challenge, must
satisfy Equation 1. The proof then argues that the reduction is able to extract all values ~z with probabil-
ity 2−m ([AGK20, Fig. 10, lines 09-33; Prop. 1&2]). As the values ~z, ~x, ~y are distributed equally in their
reduction and ours, and since they have to satisfy the same system of equations, we obtain that if A solves
its (m,n)geo-MI-gap-CDH challenge, then B is able to compute all of ~z with probability at least 2−m.

Corollary 13. Let m ≤ n ≤ p. For every r ∈ N, in the generic group model every adversary A against
problem (m,n)MI-gap-CDH that makes at most q oracle queries has advantage bounded by

Adv(m,m)MI-gap-CDH(A) ∈ Õ
((

rq2

mp

)m
+ q

(
q

p

)r )
In particular, to achieve constant success probability it is necessary that q ∈ Ω(

√
mp). The same bound holds

with respect to (m,n)MI-gap-DL.

Proof. Note that (m,m)geo-MI-gap-DL is at least as hard as the search-by-hypersurface problem SHS(m, 2)
for degree 2. This holds as the EvalSHS oracle allows arbitrary polynomials up to degree 2, and thus can be
directly used to answer any EvalMI-gap-DL query. Further, any query to oracle DecMI-gap-DL(F1, F2, F3) can
be answered by forwarding the answer to EvalSHS(F1 · F2 − F3) where we use that all valid Fi have degree
bounded by 1. Therefore, by Lemma 2, for any (m,m)geo-MI-gap-DL adversary that makes at most q′

queries, it holds that
Adv(m,m)geo-MI-gap-DL ≤ 1/2 · ((e 2q′)/(pm))

m
.

In turn, by Lemma 12, we can bound the advantage of any adversary against (m,n)geo-MI-gap-CDH by

Adv(m,m)geo-MI-gap-CDH ≤ 1/2 ((e 4q′)/(pm))
m

.

Now if we set q′ = 2rq2 + q ((2k +m)(r − 1) + k + 1) + k (k + 1 +m(r − 1)) ≈ 2rq2 then by Theorem 3
we obtain that every (m,m)MI-gap-CDH adversary making at most q′ queries has advantage bounded by

1

2
·
(
e 2q′

pm

)m
+ (2q +m)

(
2(q + n)

p

)r
∈ Õ

((
rq2

mp

)m
+ q

(
q

p

)r )
.

As MI-gap-CDH is at least as hard as MI-gap-DL, the same bound applies to the latter problem.

Regarding preprocessing we obtain the following new lower bound.

22



Corollary 14. Let m ≤ n ≤ p. For every r ∈ N, in the generic group model with preprocessing every
adversary A against problem (m,n)MI-CDH that receives advice bounded by s and makes at most q oracle
queries has advantage bounded by

Adv(m,m)MI-CDH(A) ∈ Õ
((

q2s+ rq2

mp

)m
+ q

(
q

p

)r )
.

In particular, to achieve constant success probability it is necessary that q2s ∈ Ω̃(mp). The same bound holds
for (m,n)MI-DL.

Proof. Note that (m,m)geo-MI-DL = SHS(m, 1), and that Lemma 12 also holds with respect to non-gap
problems (m,n)geo-MI-CDH and (m,m)geo-MI-DL (the only thing changing in the reduction is that one no
longer has to handle Dec queries). Thus we can bound the advantage of any adversary making at most q′

oracle queries by Adv(m,n)geo-MI-CDH ≤ 1/2 ((e 2q′)/(pm))
m

. Now, if we set q′ = q(M + (2r + 1)q) + kM +
q (2rn+ 1 +m(r − 1)) + 2n (2n+ 1 +m(r − 1)) ≈ q(M + (2r+ 1)q) then, by Theorem 4, we can bound the
advantage of any adversary against (m,n)MI-CDH making at most q oracle-queries in the bit fixing model
by

Adv(m,m)MI-gap-CDH ≤ 1

2

(
2e q′

pm

)m
+ (2q +m)

(
2(q + 2n)

p

)r
∈ Õ

((
q(M + rq)

mp

)m
+ q

(
q

p

)r)
.

Now the corollary’s statement follows from observing that the MI-gap-CDH requires at most 2n dlog(p)e
group-operation queries to set up the challenge group elements, and by setting γ = 1/p and M = 6(s +
log(p))(q + 2n dlog(p)e) ∈ Õ(sq). As MI-CDH is at least as hard as MI-DL, the same bound also applies to
the latter problem.

4.2 Reductions between geometric search-problems corresponding to the bilin-
ear GGM

From geo-2d-strong-DL to geo-MI-Uberφ in bilinear groups. In this section we revisit the lower bound
for the

Uberφ := MI-Uberφ(t, (1, 0, 0, 1), ~F1, ~F2, ~FT , F
∗
1 , F

∗
2 , F

∗
T )

problem in the bilinear GGM from [BBG05, Boy08]. While the bound in Theorem 15 is of the same order
as in [BBG05, Boy08], it demonstrates how to apply our techniques in bilinear groups. Their proofs are
similar to the ones for Uber in the GGM and AI-GGM. The proof of Theorem 15 closely follows the proof
of [BFL20, Theorem 3.5].

Theorem 15. Let A be a geo-MI-Uberφ(t, (1, 0, 0, 1), ~F1, ~F2, ~FT , F
∗
1 , F

∗
2 , F

∗
T ) solver which makes at most q

queries, where F ∗J , FJ,i for J ∈ {1, 2, T} and i ∈ [kJ ] are polynomials in t indeterminates of total degree at

most d; and such that there is J̃ ∈ {1, 2, T} such that F ∗
J̃
/∈ SpanJ̃(~F1, ~F2, ~FT , φ). Using A, we can construct

a geo-2d-strong-DL solver B in GJ̃ that makes q + 2d queries and satisfies

Advgeo-2d-strong-DL(B) = Advgeo-MI-Uber(t,(1,0,0,1), ~F1, ~F2, ~FT ,F
∗
T )(A)− 2d

p
.

Proof. Recall that the geo-2d-strong-DL problem corresponds to the special case SHS(1, 2d) of the search-
by-hyperplane problem. A solver B for it, thus, needs to find one hidden value x ∈ Zp. Our solver in this
proof will also need to construct t independent hidden values ~x = (x1, . . . , xt) ∈ Ztp, in order to provide a
simulation for the geo-MI-Uber solver A, which it will run as a subroutine. To this end, B sets up polynomials

23



Ri = yiX + zi for all i ∈ [t], where X is an indeterminate and yi, zi are i.i.d. uniform values from Zp. It
will use xi = Ri(x) = yix+ zi as the t hidden values, which will allow it to output a perfect simulation, as
described below. Note that indeed ~x is uniformly random in Znp .

B has access to the geo-2d-strong-DL oracle Eval, that takes as input univariate polynomials of degree at
most 2d. It needs to answer A’s oracle queries to Iso, Eval and Bil, which consist of t-dimensional polynomials
in SpanJ(~F1, ~F2, ~FT , φ) for some J ∈ {1, 2, T}. B does so as follows.

• When A makes a query Iso(P1, P2), B checks if P1 ∈ Span1(~F1, ~F2, ~FT , φ) and P2 ∈ Span2(~F1, ~F2, ~FT , φ)
and outputs ⊥ if not. Otherwise, B sets Xi = Ri for all i ∈ [t] into the polynomial P1 − P2 and
queries the resulting univariate polynomial to the geo-2d-strong-DL oracle Eval. Note that since P1

and P2 are spanned linearly by polynomials of total degree at most d, the degree of the resulting
univariate polynomial is at most d ≤ 2d. Thus, Eval answers the query without aborting, with
[(P1 − P2)(x) = 0] ∈ {0, 1}. Then, B forwards the answer to A.

• When A makes a hypersurface query (J, P ) to Eval, where J ∈ {1, 2, T} and P is a polynomial in t

variables X1, . . . , Xt, B first checks if P is in SpanJ(~F1, ~F2, ~FT , φ) and outputs ⊥ if not. Otherwise, B
sets Xi = Ri for all i ∈ [t] and then queries the resulting univariate polynomial P (R1(X), ..., Rt(X)) to
the geo-2d-strong-DL oracle Eval. By the same argument as above, the resulting polynomial has degree
at most d for J ∈ {1, 2} and at most 2d for J = T . So, Eval answers the query without aborting. By
choice of the xi, we have that P (x1, . . . , xt) = 0⇔ P (R1(x), . . . , Rt(x)) = 0, so B can simply forward
this answer to A.

• When A makes a query (P1, P2, PT ) to Bil, B checks if PJ ∈ SpanJ(~F1, ~F2, ~FT , φ) for all J ∈ {1, 2, T}
and outputs ⊥ if not. Otherwise, B sets Xi = Ri for all i ∈ [t] into the polynomial P1 · P2 − PT and
queries the resulting univariate polynomial to the geo-2d-strong-DL oracle Eval. By the same argument
as above, the resulting polynomial has degree at most 2d, so B can just forward the oracle’s output to
A.

• Eventually, A outputs three t-variate polynomials F̂1(X1, . . . , Xt), F̂2(X1, . . . , Xt), F̂T (X1, . . . , Xt). Let

J ∈ {1, 2, T} be such that F ∗J /∈ SpanJ(~F1, ~F2, ~FT , φ), which exists by assumption, and consider the

polynomial F (X1, . . . , Xt) = F ∗J − F̂J . As F ∗J /∈ SpanJ(~F1, ~F2, ~FT , φ) and F̂J ∈ SpanJ(~F1, ~F2, ~FT , φ),
we obtain that F has at least one (non-constant) non-zero coefficient. Now, B sets Xi = Ri(X) into
F (X1, . . . , Xt) to obtain a univariate polynomial of degree at most 2d. By Lemma 8, this polynomial
is non-zero with all but probability 2d/p, since the highest degree coefficient depends on the yi, and
these are uniformly random.

• B computes the roots r1, . . . , r2d of this polynomial and queries X − ri to Eval for all i ∈ [2d]. If Eval
outputs 1 for one of the roots, B outputs that root.

To show that

Advgeo-d-strong-DL(B) = Advgeo-MI-Uber(t,(1,0,0,1), ~F1, ~F2, ~FT ,F
∗
T )(A)− 2d

p− 1
,

we note that the view of A is a perfect simulation of the geo-MI-Uber game. Further, by the definition of
geo-MI-Uber, if A succeeds then ~x must be a root of F .

Corollary 16. Let A be an adversary against Uberφ in the bilinear GGM that makes at most q oracle

queries. Then AdvUberφ(A) ∈ Õ
(
q2d+dqk+d2+dk2

p

)
.

Proof. By Lemma 2, every adversary against geo-d-strong-DL = SHS(1, d) making at most q′ queries has
advantage bounded by e dq′/p. Thus, if we set q′ = q + 2d then, by Theorem 15, every q-adversary against
geo-Uberφ in the bilinear GGM has advantage bounded by

edq′

p
+

2d

p
,

24



BLSGen(p,G,GT, g, e)
00 sk = x← Zp
01 pk := gx

02 return (pk, sk)

BLSSig(m, sk)
03 s := H(m)sk

04 return s

BLSVer(m, s)
05 return [e(H(m), pk) = e(s, g)]

Problem UF-CMABLS(p,G,GT , g, e)
06 sk = x← Zp
07 pk := gx

08 Q := ∅
09 σ0 ← L1(g)
10 σpk ← L1(pk)
11 (m∗, σs∗)← ASign,RO,GrpOp,Bil(σ0, σpk)
12 s∗ := L−11 (σs∗)
13 return [m∗ /∈ Q ∧ BLSVer(m∗, s∗)]

Oracle Sign(σm)
14 m := L−11 (σm)
15 Q := Q ∪ {m}
16 s← RO(m)sk

17 σs ← L1(s)
18 return σs

Oracle RO(m)
19 if @(m,σm) ∈ TRO

20 σm ←$ {0, 1}`
21 TRO ←∪ (m,σm)
22 return σm

Oracle GrpOp(σ, σ̂)
23 require σ, σ̂ ∈ L1(Zp)
24 return L1(L−11 (σ) + L−11 (σ̂))

Oracle Bil(σ, σ̂)
25 require σ, σ̂ ∈ L1(Zp)
26 return LT (L−11 (σ) + L−11 (σ̂))

Figure 5: Top: BLS signature scheme. Bottom: Unforgeability-under-chosen-message-attack problem for
with respect to BLS signatures in the bilinear GGM + ROM, where the random oracle returns group
elements of G1.

as a larger advantage would contradict the bound for geo-d-strong-DL. Thus, if we set q′ = k(k+ 3) + q((r−
1) + k + 3 + 3q) and r = 1 then, by Theorem 5, every q-adversary against Uberφ in the bilinear GGM has
advantage bounded by

edq′ + 2d(ed+ 1)

p
+

(2q + 1)(q + k)d

p
∈ O

(
q2d+ dqk + d2 + dk2

p

)
,

as, again, a larger advantage would contradict the bound for geo-MI-Uber.

Security of BLS signatures in the bilinear GGM. In this section we give a tight reduction from
geo-2-strong-DL = SHS(1, 2) to the unforgeability of BLS signatures under chosen-message attacks defined
in Figure 5. We closely follow the proof in [FKL18, Section 6]. Recall that we work in the generic group
model for bilinear groups that we presented in Section 2.2. The bilinear groups are of type 1 so, to not
explicitly have to work with the isomorphism oracle, we can simply set G := G1 = G2.

Theorem 17. Let A be an UF-CMABLS(p,G,GT , g, e) solver in the random-oracle model which makes at
most q group-operation, bilinear map, and signing queries and at most qRO random-oracle queries. Using A,
we can construct a geo-2-strong-DL solver B that makes O(q2) queries and satisfies

Advgeo-2-strong-DL(B) ≥ 1

2
AdvUF-CMABLS(p,G,GT ,g,e)(A)− 4q(3q + 2)

p
− qRO(qRO + q)

p
.

Proof. The geo-2-strong-DL solver B needs to find the hidden value z and has access to oracle Eval, to
which it can query polynomials of degree at most 2. To simulate the view of the UF-CMABLS solver A, B
needs to construct the input pair (σ0, σz), and answer queries made by A to GrpOp and Bil, as well as to
the random oracle RO and to the signing oracle Sign. To do this in a consistent manner, B samples labels
on the fly and maintains tables T1 and TT (for G,GT respectively), that store previously recorded labels
σ, together with corresponding polynomials P (Z) in the indeterminate Z. The labels σ will correspond to
a perfect simulation of UF-CMABLS such that, at every point in time, we have L−1J (σ) = P (Z) for every
entry (P, σ) in TJ . To make sure that the simulation is consistent, B needs to check that no two polynomials
P, P ′ such that P (~x) = P ′(~x) get paired with different labels. This would be equivalent to a group element
receiving two different labels. Hence, before sampling a new label for a polynomial P , B checks that there

25



is no previously recorded polynomial P ′ in TJ such that (P − P ′)(z) = 0, using the oracle Eval. Similarly,
the values for RO are sampled on the fly and stored in table TRO.

In more detail, B does the following: To construct the input pair, B chooses σ0, σZ uniformly at random
from R1 and runs A(σ0, σZ). B handles the queries made by A as follows:

• When A makes a query (σ, σ̂) to GrpOp, B does the following:

– Check if σ and σ̂ have been recorded in T1. If σ has not been recorded, B first checks if σ ∈ R1

returning ⊥ if not. Otherwise, it samples a random unused element a←$ Zp and stores the pair
(a, σ) in T1, where a is to be interpreted as a constant polynomial. B does the same if σ̂ has not
been recorded.

– Let P, P̂ be the polynomials corresponding to labels σ, σ̂. For all previously recorded polynomials
P ′ in T1, query P + P̂ − P ′ to oracle Eval. If Eval outputs 1 for one of the P ′, look up the
corresponding label σ′ in TJ and send σ′ to A. Otherwise sample a random σ′ from the unused
values in R1 and send σ′ to A. Then store (P + P̂ , σ′) in T1.

• When A makes a query (σ, σ̂) to Bil, B does the following:

– Check if σ, σ̂ have been recorded in T1. If not, do the procedure described above.

– Let (P, P̂ ) be the polynomials corresponding to the labels (σ, σ̂). For all P ′ previously recorded in
TT , query P · P̂ − P ′ to Eval. If Eval outputs 1 for one of the queries, look up the corresponding
label σ′ and send it to A. Otherwise, sample a random unused label σ′ from RT and send it to
A. Then store (P · P̂ , σ′) in TT .

In the simulation, group elements σ will correspond to affine functions Fσ = (aσZ+b). Thus, A returning
a forgery (m∗, σs∗) corresponds to the equation

Fσs∗ (z) = as∗z + bs∗ = Fσx(z) · FRO(m∗)(z) , (2)

where σx is the label corresponding to the public key. To simulate the signing and random oracles B chooses
between one of the following two strategies, each with probability 1/2. (The first will be successful in the
case FRO(m∗)(z) 6= as∗ , the second in the case FRO(m∗)(z) = as∗ .)

Strategy 1

• B stores (Z, σx) in T1 and sets the public key to σx.

• When A makes a query RO(m), B checks whether TRO already contains a pair (m,σm) and, if so,
returns σm. If not, it samples σm ←$ R1 and checks whether σm = σ for any σ in TRO, T1, or TT .
If so, it aborts, else stores (m,σm) in TRO and returns σm. Then, B samples a random am ← Zp and
stores (am, σm) in T1.

• When A makes a query m to Sign, B calls σm = RO(m), and recovers the corresponding constant
polynomial am from T1. Then, it sets F (Z) := am · Z and, for all polynomials F ′ previously recorded
in T1, queries F ′ − F to Eval. If Eval answers 1 to one of the queries, it looks up the corresponding
label σF and sends it to A. Otherwise it samples a random unused value σF from R1, sends it to A
and stores (F, σF ) in T1.

• When A outputs the pair (m∗, σs∗), B checks if σs∗ has previously been recorded in T1. If not, it
proceeds as in the corresponding case for GrpOp or Bil. Let Fs∗(z) = as∗z + bs∗ be the polynomial
corresponding to σs∗ in T1, which is linear since all entries in T1 are in Span(1, Z). Let σm∗ := RO(m∗)
and (am∗ , σm∗) be the corresponding entry in T1. If A wins, Equation 2 corresponds to

as∗z + bs∗ = zam∗ . (3)

If as∗ − FRO(m∗)(z) = as∗ − am∗ 6= 0, B can efficiently compute z from (3) and output the result.
Otherwise, B aborts.

26



Strategy 2

• In this strategy, B fixes a random x ∈ Zp as the public key and stores (x, σx) in T1. The indeterminate
Z is only introduced in the output of the random oracle.

• When A makes a random oracle query RO(m), B checks whether TRO already contains a pair (m,σm)
and, if so, returns σm. If not, it samples σm ←$ R1, checks whether σm = σ for any σ in TRO, T1,
or TT . If so, it aborts, else stores (m,σm) in TRO and returns σm. Then, it samples random values
aσm , bσm ← Zp and stores (aσmZ + bσm , σm) in T1.

• When A makes a query m to Sign, B calls σm = RO(m) and recovers the polynomial Fσm corresponding
to σm from T1. Then it sets F (Z) := Fσm(Z) · x. For all polynomials F ′ previously recorded in T1, it
queries F ′ −F to Eval. If Eval answers 1 to one of the queries, B looks up the corresponding label σF
and sends it to A. Otherwise it samples a random unused value σF from R1, sends it to A and stores
(F, σF ) in T .

• When A outputs the pair (m∗, σs∗), B calls σm∗ = RO(m) and recovers from T1 the corresponding
polynomial Fσm∗ (Z) = am∗Z + bm∗ . Let Fσs∗ = as∗Z + bs∗ be the polynomial corresponding to σs∗ in
T1, which is linear since all entries in T1 are in Span(1, X). If FRO(m∗)(z) = as∗ we have

as∗ = am∗z + bm∗ , (4)

so B can efficiently compute z if am∗ 6= 0 and output the result. Otherwise, B aborts.

We now upper-bound the number of queries done by B to Eval. First, to set up A’s input, B adds 2
entries to the table T1. During the execution of A, every query to GrpOp,Bil,Sign or RO adds at most 3
polynomials to a table TJ . Thus, at the q′th a query any table TJ contains at most 3q′ + 2 entries, so the
q′th query requires at most 3q′ + 2 queries to Eval. Hence, we can bound the number of queries made by B
by q(3q + 2).

To show that

Advgeo-2-strong-DL(B) ≥ 1

2
AdvUF-CMABLS(p,G,GT ,g,e)(A)− 4q(3q + 2)

p
− qRO(qRO + q)

p
,

we first note that A chooses the correct strategy with probability 1/2, and the probability that B aborts is
at most qRO(qRO + q)/p. We define the event

bad = {∃(F, σF ), (P, σP ) ∈ T1 | P (~x)− F (~x) = 0} ,

which corresponds to B assigning a label σ it did not previously receive to a polynomial not consistent with
the simulation. If B does not abort, the probability of the bad event is at most 4q(3q+2)/p, since the degree of
recorded polynomials is at most 2, and so the probability of a collision is 2/p for a fixed polynomial. Further,
B needs to, per attempt, check at most 3q + 2 polynomials and it has to sample at most 2q polynomials for
unrecorded labels. Otherwise, B simulates the view of A perfectly in both strategies.

Corollary 18. In the bilinear GGM for groups of type 1 and programmable random-oracle model every
adversary A that make at most q group-operation, bilinear map, and signing queries and at most qRO random-
oracle queries has advantage of order O((q2 + q2RO)/p).

Proof. By Lemma 2 every adversary against geo-2-strong-DL = SHS(1, d) making at most q′ queries has
advantage bounded by e 2q′/p. Thus, if we set q′ = 3q2 + 2q, then by Theorem 17 every q-adversary against
UF-CMABLS in the bilinear GGM has advantage bounded by

2eq′

p
+

12q2 + 8q + q2RO + qROq

p
∈ O

(
q2 + q2RO

p

)
,

as a larger advantage would contradict the bound for geo-2-strong-DL.

27



References

[ABB+20] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki, Jonathan Katz, and Jiayu
Xu. Universally composable relaxed password authenticated key exchange. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part I, volume 12170
of Lecture Notes in Computer Science, pages 278–307. Springer, Heidelberg, August 2020.

[AGK20] Benedikt Auerbach, Federico Giacon, and Eike Kiltz. Everybody’s a target: Scalability in public-
key encryption. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, Part III, volume 12107 of Lecture Notes in Computer Science, pages 475–506.
Springer, Heidelberg, May 2020.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer,
Heidelberg, May 2004.

[BB04b] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and
Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 56–73. Springer, Heidelberg, May 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 440–456. Springer, Heidelberg, May 2005.

[BFHO22] Balthazar Bauer, Pooya Farshim, Patrick Harasser, and Adam O’Neill. Beyond uber: Instanti-
ating generic groups via PGGs. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022:
20th Theory of Cryptography Conference, Part III, volume 13749 of Lecture Notes in Computer
Science, pages 212–242. Springer, Heidelberg, November 2022.

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational assump-
tions in the algebraic group model. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture Notes in Computer
Science, pages 121–151. Springer, Heidelberg, August 2020.

[BL13] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power of free
precomputation. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASI-
ACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science, pages 321–340.
Springer, Heidelberg, December 2013.

[BL22] Jeremiah Blocki and Seunghoon Lee. On the multi-user security of short schnorr signatures with
preprocessing. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer Science, pages 614–643.
Springer, Heidelberg, May / June 2022.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of
Cryptology, 17(4):297–319, September 2004.

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Kenneth G.
Paterson, editors, PAIRING 2008: 2nd International Conference on Pairing-based Cryptography,
volume 5209 of Lecture Notes in Computer Science, pages 39–56. Springer, Heidelberg, September
2008.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring. In
Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes
in Computer Science, pages 59–71. Springer, Heidelberg, May / June 1998.

28



[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 693–721. Springer, Heidelberg, August 2018.

[CK18] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 415–447. Springer, Heidelberg,
April / May 2018.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 33–62. Springer, Heidelberg,
August 2018.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors, Ad-
vances in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lecture Notes in Computer
Science, pages 63–95. Springer, Heidelberg, May 2020.

[GT21] Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the algebraic group
model. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,
Part III, volume 12827 of Lecture Notes in Computer Science, pages 64–93, Virtual Event, August
2021. Springer, Heidelberg.

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the algebraic
group model. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022: 25th
International Conference on Theory and Practice of Public Key Cryptography, Part II, volume
13178 of Lecture Notes in Computer Science, pages 468–497. Springer, Heidelberg, March 2022.

[LCH11] Hyung Tae Lee, Jung Hee Cheon, and Jin Hong. Accelerating id-based encryption based on
trapdoor dl using pre-computation. Cryptology ePrint Archive, Paper 2011/187, 2011. https:

//eprint.iacr.org/2011/187.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of
Lecture Notes in Computer Science, pages 1–12. Springer, Heidelberg, December 2005.

[Mih10] Joseph P. Mihalcik. An analysis of algorithms for solving discrete logarithms in fixed groups. Mas-
ter’s thesis, Naval Postgraduate School (2010), 2010. https://calhoun.nps.edu/bitstream/

handle/10945/5395/10Mar_Mihalcik.pdf.

[MTT19] Taiga Mizuide, Atsushi Takayasu, and Tsuyoshi Takagi. Tight reductions for Diffie-Hellman
variants in the algebraic group model. In Mitsuru Matsui, editor, Topics in Cryptology – CT-
RSA 2019, volume 11405 of Lecture Notes in Computer Science, pages 169–188. Springer, Hei-
delberg, March 2019.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In Kwangjo Kim, editor, PKC 2001: 4th International
Workshop on Theory and Practice in Public Key Cryptography, volume 1992 of Lecture Notes in
Computer Science, pages 104–118. Springer, Heidelberg, February 2001.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to
discrete log. In Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788
of Lecture Notes in Computer Science, pages 1–20. Springer, Heidelberg, December 2005.

29

https://eprint.iacr.org/2011/187
https://eprint.iacr.org/2011/187
https://calhoun.nps.edu/bitstream/handle/10945/5395/10Mar_Mihalcik.pdf
https://calhoun.nps.edu/bitstream/handle/10945/5395/10Mar_Mihalcik.pdf


[RLB+08] Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-Reza Sadeghi.
Sufficient conditions for intractability over black-box groups: Generic lower bounds for generalized
DL and DH problems. In Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 489–505. Springer, Heidelberg, Decem-
ber 2008.

[RS20] Lior Rotem and Gil Segev. Algebraic distinguishers: From discrete logarithms to decisional
uber assumptions. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of
Cryptography Conference, Part III, volume 12552 of Lecture Notes in Computer Science, pages
366–389. Springer, Heidelberg, November 2020.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer
Science, pages 256–266. Springer, Heidelberg, May 1997.

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 205–223.
Springer, Heidelberg, August 2007.

[YK17] Jason H. M. Ying and Noboru Kunihiro. Bounds in various generalized settings of the discrete
logarithm problem. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17:
15th International Conference on Applied Cryptography and Network Security, volume 10355 of
Lecture Notes in Computer Science, pages 498–517. Springer, Heidelberg, July 2017.

[Yun15] Aaram Yun. Generic hardness of the multiple discrete logarithm problem. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057
of Lecture Notes in Computer Science, pages 817–836. Springer, Heidelberg, April 2015.

[Zha22] Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part III, volume 13509 of Lecture
Notes in Computer Science, pages 66–96. Springer, Heidelberg, August 2022.

[ZZK22] Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz. An analysis of the algebraic group model. In
Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022, Part IV,
volume 13794 of Lecture Notes in Computer Science, pages 310–322. Springer, Heidelberg, De-
cember 2022.

30



Supplementary Material

A Omitted Proofs of Section 3

A.1 Proof of Theorem 4

Proof of Theorem 4. The geo-MI-Uber solver B receives as input t,m, n and the polynomials ~F , rational
functions ~F ∗, and has access to the oracle Eval. To simulate the view of the MI-Uber solver A, B needs to store
the labels fixed by A1, construct input labels σ0, σ1 . . . , σk, and answer group operation queries made by A2 to
the oracle GrpOp. To do this in a consistent manner, B samples labels on the fly and maintains a table T , that
stores all previously recorded labels σ, each together with a corresponding polynomial P ( ~X) ∈ Span(1, ~F )
in the indeterminates X1, . . . , Xt. The labels σ will correspond to a perfect simulation of MI-Uber such
that we have L−1(σ) = P (~x) for every entry (P, σ) in T . As in the proof of Theorem 3, to make sure that
the simulation is consistent, B needs to check that no two polynomials P, P ′ such that P (~x) = P ′(~x) get
paired with different labels. This would be equivalent to a group element receiving two different labels.
Hence, before sampling a new label for a polynomial P , B needs to check that there is no previously recorded
polynomial P ′ in T such that (P −P ′)(~x) = 0 using the oracle Eval. Note that, if P, P ′ ∈ Span(1, F1, . . . , Fk)
then so is P − P ′, and thus the oracle will not return ⊥. In more detail, B does the following.

• It samples the range R ⊆ {0, 1}` uniformly at random from all subsets of {0, 1}` of size p and sends it
to A1. Recall that this corresponds to the range of the labeling function L. B receives back a list of
M pairs of the form (ai, σi), where ai ∈ Zp and σi ∈ R, as well as a state Γ. For all i ∈ [M ], it stores
the pair (ai, σi) in T , where ai is viewed as a constant polynomial.

• To create the input (σ0, σ1, . . . , σk) for A2, B does the following:

– To create σ0, check if the zero polynomial is contained in T . If so, set σ0 to the corresponding
label. Otherwise, set σ0 to a random unused value from R and store (0, σ0).

– To create σi for i ∈ [k], query Eval on Fi − P ′ for all previously recorded polynomials P ′ in T . If
the answer is 1 for some P ′, set σi to the corresponding label of P ′. Otherwise, choose a random
unused value from R and store (Fi, σi). Note that for all entries (P, σ) ∈ T , P trivially lies in
Span(1, F1, . . . , Fk) and additionally L−1(σ) = P (x).

Then B runs A2(σ0, σ1, . . . , σk,Γ).

• When A2 makes a query (σ, σ′) to GrpOp, B does the following:

– First, it checks if σ and σ′ have been recorded in T . If σ has not been recorded, checks if σ ∈ R
and answers ⊥ if not. Otherwise, B makes r attempts at assigning σ a constant unused element
in Zp that is consistent with the simulation so far. In particular, B will repeat the following steps
up to r times. It starts by sampling a random unused element a←$ Zp. If this is the r̃th attempt,
with r̃ < r, it queries Eval on a− P for all previously recorded (non-constant) polynomials P in
T . If Eval outputs 1 for some P , adversary B tries again with a new random unrecorded a←$ Zp.
If Eval does not output 1 for any of the queries or if it is the rth time of sampling a, it stores the
pair (a, σ) in T , where a is to be interpreted as a constant polynomial. It then does the same if
σ′ has not been recorded.

– Let P, P ′ be the polynomials corresponding to labels σ, σ′. For all previously recorded polynomials
P ′′ in T , it queries P + P ′ − P ′′ to oracle Eval. If Eval outputs 1 for one of the P ′′, B looks up
the corresponding label σ′′ in T and sends σ′′ to A. Otherwise, it samples a random σ′′ from the
unused values in R and sends σ′′ to A2. Then stores (P + P ′, σ′′) in T .

– Note that, again, all newly stored polynomials are elements of Span(1, ~F ) and that, if for all
(P̂ , σ̂) ∈ T we had that L−1(σ̂) = P̂ (~x) up to this point, then the same holds for all elements
added to the table during either of these steps.

31



• When A2 outputs (I, (σ̂i)i∈I), B checks, for every i ∈ I, if σ̂i has previously been recorded in T with
corresponding polynomial F̂i. If not, it is treated as in the analogous case of group operation queries
described above. Then B outputs (I, (F̂i)i∈I) as its solution. Note that the check of line 14 will succeed,

as F̂i ∈ Span(1, ~F ) for all i.

We now upper-bound the number of queries made by B to Eval. First, note that to handle the bit-fixing,
B adds M constant polynomials to T . To set up A2’s input, it adds 1 constant and k arbitrary entries to
T , therefore making at most k(M + 1 + k) queries to Eval. During the execution of A2, every query to
GrpOp adds up to 2 constant and one arbitrary polynomial to T . Thus, at the q′th query, T contains at
most M + 1 + k + 3q′ entries, of which at most k + q′ are not constant. As the check against previously
unrecorded labels needs to be done only with respect to non-constant polynomials, the q′th GrpOp-query
requires at most 2(r− 1)(k+ q′) + (M + 1 +k+ 3q′) queries to Eval. Finally, to handle A2’s output, B makes
up to (r − 1)m additional checks against the at most (k + q) non-constant entries in T . Summing up, we
can bound the number of queries made by B by

k(M + 1 + k) + q
(
2(r − 1)(k + q) + (k + 3q +M + 1)

)
+m(r − 1)(k + q)

=q(M + (2r + 1)q) + kM + q (rk + 1 +m(r − 1)) + k (k + 1 +m(r − 1)) .

To prove the bound on the advantage we define the event

bad = {∃(a, σa), (P, σP ) ∈ T | a constant, P not constant : P (~x)− a = 0} ,

corresponding to the event where B assigned a label σ it did not previously receive a constant not consistent
with the simulation. Observe that in the case that bad does not occur, the view of A is a perfect simulation
of the MI-Uber game with hidden value ~x, and, as stated above, we have L−1(σ) = P (~x) for all (P, σ) stored
in T . Thus, in this case, we have that (F̂i − F ∗i )(~x) = 0 ⇔ L−1(σ̂i) = F̂i(~x) = F ∗i (~x) for all i ∈ I and so B
wins exactly if A wins.

Finally, when assigning a constant to a previously unseen σ the probability that B does so inconsistently
is at most ((q + k)dmax/p)

r. Indeed, by the Schwartz-Zippel Lemma, the probability the sampled constant
is in the set of roots of any polynomial P is at most dmax/p and, for each of the r attempts at finding a
constant, at most (q+ k) polynomials have to be checked. As the reduction has to sample at most (2q+m)
constant, the bound follows.

A.2 Proof of Theorem 5

Proof of Theorem 5. The geo-MI-Uber solver B receives as input the number of indeterminates t, input
polynomials ~F1, ~F2, ~FT , and a total of n target polynomials distributed over vectors ~F ∗1 ,

~F ∗2 ,
~F ∗T ; and has

access to the oracles Isoφ,Eval,Bil,DecW1 , . . . ,DecWs . To simulate the view of the MI-Uber solver A, B
needs to construct input labels (σ1,i)i∈[k1], (σ2,i)i∈[k2], (σT,i)i∈[kT ] and answer queries made by A to the
oracles Isoφ,GrpOp,Bil,DecW1

, . . . ,DecWs
. To do this in a consistent manner, B samples labels on the fly and

maintains three tables T1, T2, TT , that correspond to the three groups G1,G2,GT . For each J ∈ {1, 2, T}, the
table T stores all previously recorded labels σ from the range RJ of the labeling function LJ , each together
with a corresponding polynomial P ( ~X) in the indeterminates X1, . . . , Xt. The labels σ will correspond

to a perfect simulation of MI-Uber such that we have L−1J (σ) = g
P (~x)
J for every entry (P, σ) in TJ . To

make sure that the simulation is consistent, B needs to check that no two polynomials P, P ′ such that
P (~x) = P ′(~x) get paired with different labels. This would be equivalent to a group element receiving two
different labels. Hence, before sampling a new label for a polynomial P , B needs to check that there is no
previously recorded polynomial P ′ in TJ such that (P − P ′)(~x) = 0 using the oracle Eval. Note that, if

P, P ′ ∈ SpanJ(~F1, ~F2, ~FT , φ), then so is P −P ′, and thus the oracle will not return ⊥. In more detail, B does
the following.

• B samples the disjoint ranges R1,R2,RT ⊆ {0, 1}` uniformly at random from all subsets of {0, 1}` of
size p.

32



• To create the input (σ1,i)i∈[k1], (σ2,i)i∈[k2], (σT,i)i∈[kT ], B does the following for all J ∈ {1, 2, T}:

– Set σJ,0 to a random unused value from RJ and store (0, σJ,0).

– To create σJ,i for i ∈ [kJ ], i 6= 0, query Eval on FJ,i − P ′ for all previously recorded polynomials
P ′ in TJ . If the answer is 1 for some P ′, set σJ,i to the corresponding label of P ′. Otherwise,
choose a random unused value from RJ and store (FJ,i, σJ,i). Note that all polynomials stored so

far in TJ trivially lie in SpanJ(~F1, ~F2, ~FT , φ).

Then B runs A((σ1,i)i∈[k1], (σ2,i)i∈[k2], (σT,i)i∈[kT ]).

• When A makes a query to any of the oracles it has access to, it is allowed to query labels that it has not
received before. B handles these cases as follows: Whenever A queries a label σ of an element of the
group GJ that has not been recorded in TJ , B first checks if σ ∈ RJ . If not, B returns ⊥. Otherwise, B
makes r attempts at assigning σ a constant unused element in Zp that is consistent with the simulation
so far. In particular, B will repeat the following steps up to r times. It starts by sampling a random
unused element a ←$ Zp. If this is the r̃th attempt, with r̃ < r, it queries Eval on (J, a − P ′) for all
previously recorded (non-constant) polynomials P ′ in TJ . If Eval outputs 1 for some P ′, adversary B
tries again with a new random unrecorded a ←$ Zp. If Eval does not output 1 for any of the queries
or if it is the rth time of sampling a, it stores the pair (a, σ) in TJ , where a is to be interpreted as a
constant polynomial.

• When A makes a query σ to Iso, B does the following:

– If φ = 3, return ⊥.

– Check if σ has been recorded in T2. If not, do the procedure described above.

– Let P be the polynomial corresponding to σ in T2. For all previously recorded polynomials P ′ ∈ T1,
query (P ′, P ) to Iso. If Iso returns 1 for one of the queries, look up the label σ′ corresponding to
P ′ in T1 and send it to A. Otherwise, sample a random unused label σ′ from R1 and send it to
A. Then store (P, σ′) in T1.

• When A makes a query σ to Iso−1, B does the following:

– If φ ∈ {2, 3}, return ⊥.

– Check if σ has been recorded in T1. If not, do the procedure described above.

– Let P be the polynomial corresponding to σ in T1. For all previously recorded polynomials P ′ ∈ T2,
query (P, P ′) to Iso. If Iso returns 1 for one of the queries, look up the label σ′ corresponding to
P ′ in T2 and send it to A. Otherwise, sample a random unused label σ′ from R2 and send it to
A. Then store (P, σ′) in T2.

• When A makes a query (J, σ, σ̂) to GrpOp, B does the following:

– Check if σ and σ̂ have been recorded in TJ . If not, do the procedure described above.

– Let P, P̂ be the polynomials corresponding to labels σ, σ̂. For all previously recorded polynomials
P ′ in TJ , query (J, P + P̂ − P ′) to oracle Eval. If Eval outputs 1 for one of the P ′, look up the
corresponding label σ′ in TJ and send σ′ to A. Otherwise sample a random σ′ from the unused
values in RJ and send σ′ to A. Then store (P + P̂ , σ′) in TJ .

– Note that, again, all newly stored polynomials are elements of SpanJ(~F1, ~F2, ~FT , φ) and that, if
for all (P, σ) ∈ TJ we had that L−1J (σ) = gP (~x), then the same holds for all elements added to the
table during either of these steps.

• When A makes a query (σ, σ̂) to Bil, B does the following:

– Check if σ has been recorded in T1 and σ̂ has been recorded in T2. If not, do the procedure
described above.

33



– Let (P, P̂ ) be the polynomials corresponding to the labels (σ, σ̂). For all P ′ previously recorded in
TT , query (T, P ·P̂−P ′) to Eval. If Eval outputs 1 for one of the queries, look up the corresponding
label σ′ and send it to A. Otherwise, sample a random unused label σ′ from RT and send it to
A. Then store (P · P̂ , σ′) in TT .

• When A makes a query (σ̃1,1 . . . , σ̃1,r1 , σ̃2,1 . . . , σ̃2,r2 , σ̃T,1 . . . , σ̃T,rT ) to one of the decisional oracles
DecWi , B does the following:

– Check if for all J ∈ {1, 2, T} and all j ∈ [rJ ], σ̃J,j has been recorded in TJ . If not, do the procedure
described above.

– Query DecWi
on (F̃1,1, . . . , F̃1,r1 , F̃2,1, . . . , F̃2,r2 , F̃T,1, . . . , F̃T,rT ), where F̃J,j is the polynomial cor-

responding to σ̃J,j . Send the answer of DecWi
to A.

• When A outputs the tuple (I1, I2, IT , (σ̂1,i)i∈I1 , (σ̂2,i)i∈I2 , (σ̂T,i)i∈IT ), B checks if all labels σ̂J,i have
previously been recorded in TJ . If not, B does the procedure described above. Then B outputs the
tuple (I1, I2, IT , (P̂1,i)i∈I1 , (P̂2,i)i∈I2 , (P̂T,i)i∈IT ), where P̂J,i is the polynomial corresponding to σ̂J,i.

Note that the check of line 14 will succeed, as P̂J,i ∈ SpanJ(~F1, ~F2, ~FT , φ) for all J ∈ {1, 2, T} and all
i ∈ IJ .

We will now upper-bound the number of queries B made to Eval. Let k := k1 + k2 + kT .First, in order
to set up A’s input, B adds 3 constant and k arbitrary entries to the tables T1, T2, T3 and makes less than
k(k + 1) queries to Eval. During the execution of A, every query to Iso, Iso−1,GrpOp,Bil or DecWi adds
at most smax constant and one arbitrary polynomial to a table TJ . Thus, at the q′th query, any table TJ
contains at most k+ 3 + (smax + 1)q′ entries, of which at most k+ q′ are not constant. As the check against
previously unrecorded labels needs to be done only with respect to non-constant polynomials, the q′th query
requires at most (r − 1)smax(k + q′) + (k + 3 + (smax + 1)q′) queries to Eval. Finally, to handle A’s output,
B makes up to (r − 1)m additional checks against the at most (k + q) non-constant entries in any table TJ .
Summing up, we can bound the number of queries made by B by

k(k + 3) + (r − 1)smaxq(k + q) + q(k + 3 + (smax + 1)q) + (r − 1)m(k + q) .

To show that

Advgeo-MI-Uber(t,(m,n1,n2,n3), ~F1, ~F2, ~FT , ~F
∗
1 ,
~F∗2
~F∗T ,W1,...,Ws)(B)

≥ AdvMI-Uber(t,(m,n1,n2,n3), ~F1, ~F2, ~FT , ~F
∗
1 ,
~F∗2
~F∗T ,W1,...,Ws)(A)

− (qsmax +m)

(
(q + k) · dmax

p

)r
,

we define the event

bad = {∃(a, σJ,a), (P, σJ,P ) ∈ TJ | a constant, P not constant : P (~x)− a = 0} .

This corresponds to the event where B assigned a label σ it did not previously receive to a constant not
consistent with the simulation. Observe that in the case that bad does not occur, the view of A is a perfect
simulation of the MI-Uber game with hidden value ~x, and, as stated above, we have L−1J (σ) = gP (~x) for all

J ∈ {1, 2, T} and all (P, σ) stored in TJ . Thus in this case, for all J and i, we have that (P̂J,i − F ∗J,i)(~x) =

0⇔ L−1J (σ̂J,i) = gP̂J,i(~x) = gF
∗
J,i(~x) and so B wins exactly if A wins. Finally, when assigning a constant to a

previously unseen σ, the probability that B does so inconsistently is at most ((q + k)dmax/p)
r. Indeed, by

the Schwartz-Zippel Lemma, the probability the sampled constant is in the set of roots of any polynomial P
is at most dmax/p and, for each of the r attempts at finding a constant, at most (q+ k) polynomials have to
be checked. As B has to sample at most (qsmax +m) constants, the bound follows.

34


	Introduction
	Our Contributions

	Preliminaries
	Notation
	Generic-Group Model
	Search-by-Hypersurface Problem.

	From Generic Group Problems to Geometric Search-Problems
	From GGM to Geometric Search-Problems
	Extension to the Bit-Fixing Generic-Group Model
	Extension to the GGM for Bilinear Groups

	Reductions Between Geometric Search-Problems
	Reductions between geometric search-problems in the GGM and AIGGM
	Reductions between geometric search-problems corresponding to the bilinear GGM

	Omitted Proofs of Section 3
	Proof of Theorem 4
	Proof of Theorem 5


