
Ready to SQI? Safety first!
Towards a constant-time implementation of isogeny-based signature

SQIsign

David Jacquemin1, Anisha Mukherjee1, Péter Kutas2 and Sujoy Sinha Roy1

1IAIK, Graz University of Technology, Austria
2Eötvös Loránd University and University of Birmingham

Abstract.
NIST has already published the first round of submissions for additional post-quantum
signature schemes and the only isogeny-based candidate is SQIsign. It boasts the
most compact key and signature sizes among all post-quantum signature schemes.
However, its current implementation does not address side-channel resistance. This
work is the first to identify a potential side-channel vulnerability in SQIsign. At
certain steps within the signing procedure, it relies on Cornacchia’s algorithm to
represent an integer as a sum of squares of two integers. This algorithm in turn uses
a ‘half-GCD’ (half-greatest common divisor) sub-routine based on Euclid’s division
algorithm which has often been exploited for side-channel attacks. We show that if
the inputs of Cornacchia’s algorithm leak, then one can retrieve the signing key in
polynomial time. Also, since there is no constant-time implementation for SQIsign,
we propose two timing attack-resistant versions of Cornacchia’s algorithm. The
first version uses a constant-time ‘half-GCD’ algorithm that runs a fixed number
of times for a given upper bound based on the bit-size of the inputs. The second
version is based on the two-dimensional lattice reduction algorithm. We show that
randomizing the starting basis with an unimodular matrix would make the execution
time independent of the input.
Keywords: isogeny-based cryptography, SQIsign, side-channel analysis, isogeny signa-
ture, constant-time implementation

1 Introduction
The currently deployed cryptographic primitives largely rely on the mathematical hard
problems of integer factorization and discrete logarithms. Peter Shor in 1994 published a
breakthrough algorithm [Sho94, Sho97] to factor large integers (which was super-polynomial
in time in classical computers) in polynomial time with the use of quantum computing.
From then on, the looming threat of large-scale quantum computers has led to immense
research in the field of post-quantum cryptography. In 2016 NIST started the procedure to
standardize post-quantum Key Encapsulation Mechanisms (KEMs) and digital signature
schemes [Nata]. In the initial rounds of evaluation, the main criterion was the theoretical
security of the submitted schemes. But moving forward, NIST has broadened its assessment
criteria to also include implementation aspects such as performance and resistance to
side-channel attacks (SCA). The process is currently in Round 4 and the first winners have
been announced in 2022. Three digital signature schemes were chosen for standardization:
Dilithium [DKL+18], Falcon and SPHINCS+ [BHK+19]. While all these schemes have
their merits, NIST deemed the portfolio of signature schemes not diverse enough and
announced a new call for “additional signatures” [Natb] in 2023, exclusively devoted to
post-quantum signature schemes. The first round of submissions have been released in June.

2 Ready to SQI? Safety first!

Among the diverse range of submissions (code-based, multivariate-based, MPC-based etc.),
the only isogeny-based candidate is SQIsign [CSCRSDF+23].

Isogeny-based schemes date back to Couveignes’s seminal paper [Cou97] which was
then rediscovered by Rostovtsev and Stolbunov [RS06]. Improving on Couveignes’s original
approach, De Feo and Galbraith constructed SeaSign [DFG19] using the Fiat-Shamir
protocol with aborts technique. Then Beullens, Kleinjung and Vercauteren proposed
CSi-FiSh [BKV19] which uses Couveignes’ original idea combined with a record class group
computation. CSi-FiSh achieves respectable performance but it is currently infeasible to
instantiate it for higher security levels and it potentially does not reach NIST level I security
[Pei20],[BS20]. An alternative option came in the form of SCALLOP [FFK+23] but it is
also currently too slow for applications. All these signatures are based on cryptographic
group actions (of which CSIDH [CLM+18] and SCALLOP are examples [FFK+23]).

Taking inspiration from SIDH one can also build signature schemes based on the
pure isogeny problem which could actually remain unaffected by recent SIDH attacks
[CD22, MMP+23, Rob23], such as the work by [DFDGZ23]. This scheme however is based
on an identification system with low soundness and thus, has to be repeated many number
of times resulting in big signature sizes.

A completely different approach for constructing signatures from isogenies was proposed
by Galbraith, Petit and Silva [GPS17](GPS). Their signature relies on the observation
that one can compute isogenies between curves of known endomorphism rings. Based on
this observation they designed an identification scheme reminiscent of graph isomorphism.
For this they rely on a quaternion version of the isogeny path-finding problem which was
efficiently solved by Kohel, Lauter, Petit and Tignol, hence dubbed the KLPT algorithm
[KLPT14]. The advantage of the GPS signature scheme is that its security is based on
the endomorphism ring problem which is the fundamental hard problem in isogeny-based
cryptography. However, it has a constrained challenge space as it allows bit-long challenges.
In 2020 De Feo, Kohel, Leroux, Petit and Wesolowski proposed SQIsign [DFKL+20] which
improves upon the GPS scheme in many ways and provides a much better performance.
SQIsign stands out among all its isogeny-based predecessors as well as the rest of its NIST
counterparts because it is the most compact post-quantum signature to date.

Within the framework of the NIST standardization process, submissions are clearly
required to provide comprehensive assessments of the state of cryptanalysis, specifically
pertaining to their security assumptions and their resilience against side-channel attacks.
While there is a plethora of side-channel literature in case of most lattice-based candidates
([RRCB20, REB+22, XPR+22, PPM17], to name only a few), side-channel analysis of
SQIsign present a stark contrast. Indeed, there exists several isogeny-based side-channel
works that target, for instance, point-doubling operations or scalar multiplications on ellip-
tic curves and propose adequate countermeasures [RJB19, PCK+23, SST04, DFEMG+22,
CMRS22, ZYD+20, GLK21, MCR19, OAYT19, BBC+21]. However, SQIsign is yet to
undergo any rigorous cryptanalysis on its quaternion side and as mentioned in its ‘specifica-
tions’ document [CSCRSDF+23] submitted to NIST, it also lacks a side-channel resistant
implementation which is important for practical applications. This implies that several
subroutines within SQIsign are non-constant time such as, computing the Hermite Normal
Form (HNF) of a matrix or solving diophantine equations (one instance of which we address
in this paper) which are fundamental to SQIsign’s quaternion arithmetic. This work is the
first to undertake one such endeavour on two fronts for SQIsign: on one hand, we analyze
its quaternion-based algorithms to look for potential side-channel vulnerabilities, and on
the other hand, we also provide constant-time alternatives for some selected algorithms
as the first step towards a full constant-time SQIsign implementation. The first part of
our work is intended to serve as a reference for any cryptanalyst who wants to target
SQIsign but is intimidated by its sheer complexity. Also, the conventional countermeasures
in elliptic-curve cryptography often revolve around protecting the scalar multiplication

3

using several techniques such as masking, blinding or algorithmic modifications. However,
conventional countermeasures that are effective in the context of pure elliptic curve (or
quaternion) arithmetic would not be directly applicable here. Hence, in the second part of
our work we put significant efforts to devise countermeasures that fit the requirements of
the scheme without greatly increasing its conceptual or computational complexity.

1.1 Our contributions
SQIsign’s success of achieving the most compact key and signature sizes resides in its
mathematical foundations. The complex signing procedure makes an immediate in-depth
cryptanalysis seem quite daunting. This might urge an adversary to identify points of
attack within the ‘simpler’ building blocks. We discuss one such potential cryptanalytic
starting point. In particular, we highlight an instance of Cornacchia’s algorithm within
SQIsign’s signing routine that could make it susceptible to side-channel attacks because
it involves Euclid’s division algorithm which has been shown to be vulnerable to side-
channel attacks [AGS07, AT07, ASS17, AB20]. Moreover, the current implementation of
Cornacchia’s algorithm in SQIsign is indeed not constant-time.

• For our first contribution, we start by considering a general attack model of a powerful
adversary capable of using one or more forms of side-channel attack techniques to
exploit the possible side-channel vulnerabilities of the ‘leaky’ Euclid’s algorithm
within SQIsign. We then present a detailed polynomial-time key recovery method that
reveals the secret signing key to the adversary under the aforementioned hypothesis.
We show that the knowledge of Cornacchia’s inputs allows the attacker to obtain a
feasibly ‘small’ set of possible intermediate values, which can ultimately reveal the
entire signing key (Theorems listed in fig. 1).
In our next contribution, we only consider a specific timing-attack model and provide
constant-time/time-independent solutions for Euclid’s and Cornacchia’s algorithms
in order to realize a constant-time implementation of SQIsign. These alternative
algorithms are also of independent interest as they are integral subroutines of many
important quaternion functions in SQIsign.

• We propose a constant-time half-GCD algorithm that can replace the current non-
constant time version. We give shape to our proposed algorithm by introducing a
parameter to control the execution steps and making considerable tweaks to the un-
derlying idea of Euclid’s algorithm. We verify our constant-time claim experimentally
and report comparison results with its non-constant time counterpart.

• Since solving an equation of the form ‘x2 + y2 = m’ using Cornacchia’s algorithm
is equivalent to finding the shortest vector in a suitable two-dimensional lattice,
we propose lattice reduction as a replacement for Cornacchia’s algorithm. We add
an additional basis-randomization step to ensure that the computations within the
algorithm no longer correlate with the initial secret-dependent inputs of the algorithm.
Using leakage-detection tests, we compare our randomized lattice reduction algorithm
with its non-constant time counterparts.

1.2 Organization of the paper
In Sec. 2, we give all the important background information necessary for our paper. The
design rationale of SQIsign spans over a vast range of topics related to elliptic curves and
quaternion algebra. Many minute details of its construction are not intuitive and can only
be understood after an in-depth study of the scheme. We provide explanations only for a
handful of carefully selected topics to make our results comprehensible to the reader.

4 Ready to SQI? Safety first!

Sec. 3 presents an observation which could lead to a polynomial-time key recovery. We
show that if an attacker (using simple timing or power or more advanced side-channel
techniques) is able to guess the input variables to Cornacchia, then it can successfully
recover the signing key in polynomial time. While we do not present any experimental
attack, we propose a theoretical key-recovery procedure which is applicable in any attack
scenario that can retrieve the inputs of Cornacchia. Sec. 4 describes constant-time
implementations of Cornacchia, as a starting point towards making SQIsign’s signature
generation resistant to side-channel attacks. We provide performance results in Sec. 5.
In Sec. 6 we provide insights into future directions that would motivate greater research
towards exploring the potentials of SQIsign and realizing a more practical, side-channel
resistant implementation.

2 Preliminaries
In this section we cover certain mathematical and algorithmic topics necessary to present
our results. For more details on elliptic curves we urge the reader to refer to [Sil09] and
for quaternion algebras we refer to [Voi21].

2.1 Notation
We use the notations Fq, Z and Q to denote a finite field of order q, the set of integers and
rational numbers respectively. H represents a quaternion algebra over Q. Multiplication
between integers, reals or quaternion elements is shown using ‘·’, whereas ‘∗’ represents
a matrix multiplication. The dot product between two vectors is given by (·|·) and their
norm is denoted by ∥ · ∥. The floor function is represented by the symbol ⌊·⌋. The p-adic
valuation of an integer is denoted by νp. Bitwise AND, right and left shift operations are
represented by the symbols ‘&’, ‘≪’ and ‘≫’ respectively.

2.2 Supersingular elliptic curves
Let E1 and E2 be elliptic curves defined over some finite field Fq. An isogeny is a non-
zero rational map that sends the point of infinity of E1 to the point of infinity of E2.
Alternatively, one can also define isogenies as rational maps which are simultaneously
group homomorphisms. An isogeny is a finite map of curves, thus, induces a finite field
extension on the function fields of the elliptic curves. An isogeny is called separable if
the said field extension is separable. The degree of the isogeny is defined as the degree of
the field extension. If an isogeny is separable, then its degree is equal to the size of its
kernel. For every isogeny ϕ : E1 → E2 there exists a dual isogeny ϕ̂ : E2 → E1 which has
the same degree as ϕ and ϕ ◦ ϕ̂ is the multiplication-by-deg(ϕ) map (this is also true if
they are composed in the other order). Two elliptic curves E1 and E2 are isomorphic if
and only if there exists a degree 1 isogeny between them. To every elliptic curve E defined
over Fq one can associate an element of Fq called the j-invariant, denoted by j(E). Two
elliptic curves defined over Fq are isomorphic if and only if their j-invariants coincide.

An endomorphism of E is an isogeny from E to itself. In order to obtain a ring structure,
the zero map is also considered to be an endomorphism. Endomorphisms thus form a ring
under addition and composition. If E is defined over Fq, then its endomorphism ring is
never equal to Z (i.e., only contains scalar multiplications) but in most cases it is still
commutative (an order in a quadratic field). If the endomorphism ring of E is commutative,
then we call E ordinary, otherwise E is supersingular. In this paper we will only be looking
at supersingular elliptic curves. Supersingular elliptic curves can all be defined over Fp2 .
One can detect supersingularity efficiently by computing its number of points over Fp2 (as
an equivalent definition of supersingularity is that the trace of Frobenius is divisible by p).

5

2.3 Quaternion algebras and the Deuring correspondence
As mentioned before, the endomorphism ring of a supersingular elliptic curve is a non-
commutative ring. In this subsection, we give more details about the endomorphism ring
and introduce an important categorical equivalence, called the Deuring correspondence.
A rational quaternion algebra H is a central simple algebra of dimension four over Q. It
always has a presentation i2 = a, j2 = b, ij = −ij where 1, i, j, ij constitute a Q-basis and
a, b ∈ Q∗: H(a, b) = Q + iQ + jQ + kQ. An order in a quaternion algebra is a subring
that contains 1 and also contains a Q-basis of the algebra. An order is called maximal if it
is maximal with respect to inclusion.

Let Bp,∞ be the quaternion algebra ramified at p and infinity. In the special case
where p ≡ 3 (mod 4) this just amounts to i2 = −1 and j2 = −p. The endomorphism
ring of a supersingular curve over Fp2 is a maximal order in Bp,∞. Furthermore, every
maximal order in Bp,∞ is the endomorphism ring of a supersingular elliptic curve. It is
also well-understood when non-isomorphic curves have isomorphic endomorphism rings,
namely if and only if they are Frobenius conjugates. The Deuring correspondence is a
correspondence between isomorphism classes of supersingular elliptic curves over Fp2 and
isomorphism classes of maximal orders in Bp,∞. The Deuring correspondence is two-to-one
in most cases and one-to-one if and only if the curve can be defined over Fp. This relation
has considerably more structure than just some map between sets. One can consider
supersingular elliptic curves together with isogenies, so we need to define the quaternion
analogue of an elliptic curve isogeny.

The analogue of an isogeny with domain E is a left ideal of End(E). The way to
associate a left ideal to an isogeny is as follows. Let ϕ : E → EA be an isogeny whose
kernel is a subgroup G. Then one can take the set of all endomorphisms of E which vanish
on G. It is easy to see that this set is a left ideal. In the reverse direction we can take a left
ideal I of End(E) and intersect all the kernels of the endomorphisms in I. This provides
us a subgroup which we denote by E[I]. Then there is a unique isogeny with kernel E[I]
which will be the isogeny associated to I. The norm of the ideal is defined as the greatest
common divisors of all the norms in I and is equal to the degree of the associated isogeny.

A natural question is how do we get the “codomain” for a given left ideal I. This is
provided by the right order Or(I) = {β ∈ Bp,∞|Iβ ⊆ I}. A connecting ideal between
O1 and O2 is a left ideal of O1 whose right order is isomorphic to O2. An Eichler order
is the intersection of two maximal orders. It encodes a particular connecting ideal as
O1 ∩ O2 = Z + I where I is a left ideal of O1 and a right ideal of O2. O1 ∩ O2 is a Z
sub-lattice of O1 and O2 of the same index (sometimes called the level) which is equal to
the norm of the ideal I.

2.4 KLPT and SQIsign
In isogeny-based cryptography the natural algorithmic problem is finding isogenies between
supersingular elliptic curves. A more specific problem is when the degree, say, d of the
isogeny is also specified. When d is small this problem is quite easy, hence, the interesting
case is when d is large. In that case however, just writing down the output (essentially
polynomials of degree d) might be problematic for a generic d. Therefore, it is rather
natural to restrict to degrees which are smooth and quite naturally to the case where
d = lk and l is a small prime (e.g., 2 or 3).

These problems are all thought be hard even for a quantum computer. Due to Deuring
correspondence, there is a natural quaternion analogue of this problem. Namely given two
maximal orders, find a connecting ideal of norm le. Such a connecting ideal should exist
for a large enough e. Even though it is the exact analogue of a hard problem, it admits a
polynomial time algorithm, discovered by Kohel, Lauter, Petit and Tignol [KLPT14]. We
briefly sketch the idea of the KLPT algorithm here.

6 Ready to SQI? Safety first!

For simplicity we will assume that p ≡ 3 (mod 4) (the general case is not much harder).
The first observation is that if one wants to find a path between two maximal orders, then
it is actually enough to connect both maximal orders to one specific order and concatenate
the paths. This special order, denoted by O0 is the endomorphism ring of the elliptic curve
y2 = x3 +x and contains 1, i, j (it is actually generated as a Z-module by 1, i, (1 + j)/2 and
(i+ ij)/2). From now on we assume that we are looking for a connecting ideal between
O0 and some other maximal order O. One finds a connecting ideal I0 using an algorithm
of Kirschmer and Voight [KV10]. Naturally, the norm of this ideal is not likely to be of
the form le, hence our goal is to find an equivalent left ideal of O0 such that its norm is
le. This is basically equivalent to finding some element in I0 whose norm is n(I0) = le.
The next important intermediate step is that one finds an equivalent ideal of prime norm
N . This is easy as one just scans through elements of I0 and since primes are relatively
dense, one will find a suitable element very efficiently. So our goal is to find β ∈ I such
that n(β) = Nle. The next observation is that O0/NO0 is isomorphic to M2(Z/NZ)
and an explicit isomorphism can be computed efficiently. Take into consideration an
endomorphism γ ∈ O0 of norm Nle0 for some e0 (this involves solving a very simple
quadratic equation and can be done using RepresentInteger as in alg. 1 [DFKL+20] or
its slightly modified version in [DFLLW23]) . Then one can view O0γ as a left ideal in
O0/NO0 which is going to be a proper left ideal. I can also be viewed as left ideal in
O0/NO0 and is also a proper left ideal as n(I) = N . In M2(Z/NZ) every proper left ideal
is isomorphic and differs only by a right multiplication which can be computed easily.
Thus one can compute µ ∈ O0 such that (O0γ)µ ≡ I (mod NO0). Here everything is only
determined modulo NO0, hence, there is large variety of choices for µ. If one manages to
choose a µ whose norm is le1 , then β = γ ·µ is going to be an appropriate choice. However,
in general, this lifting problem can be hard. The observation of KLPT is that the lifting
problem is actually easy if µ is a Z-linear combination of j and ij (we will call this set
jZ[i]). This algorithm is called StrongApproximation in alg. 2 [KLPT14]. Luckily µ can be
chosen that way. The crucial detail of the KLPT algorithm is the lifting procedure which
only works in this specific scenario, as one would need jZ[i] to be contained in O0.

One way to interpret KLPT is that if one has two supersingular elliptic curves with
known endomorphism rings, then one can compute an isogeny between them (a task that
is deemed hard otherwise). This motivates the following sigma protocol which is the
high-level idea of SQIsign [DFKL+20]. The public key is a supersingular elliptic curve E
and let E0 be the supersingular elliptic curve, y2 = x3 + x. Let End(E0) = O0 and let
End(E) = O. Here O0 and O are connected by a secret left ideal Iτ of large prime norm.
The secret key is the endomorphism ring of E. The main steps of the sigma protocol are
the following. The prover computes an isogeny, ϕ : E0 → E1 and sends E1 to the verifier.
The verifier sends a challenge isogeny, ψ : E1 → E2 to the prover. The prover responds
with an isogeny between E and E2 of the degree le. The verifier accepts if the isogeny is
indeed between those two curves and has the correct degree (of the form le).

The degree condition is necessary as otherwise a malicious prover could take an isogeny
from E to E1 as a commitment and then concatenate it with the challenge isogeny. Since
one can translate endomorphism rings through isogenies [GPS17], the endomorphism ring
of E2 can be computed by the prover. The naive approach here is to use the KLPT
algorithm to provide an isogeny between E and E2. However, the KLPT isogeny has the
peculiar feature that it always goes through E0. This could reveal the secret key (i.e., the
endomorphism ring of E) after one response. SQIsign uses a modified version of KLPT
which connects E and E2 in a direct fashion, not leaking (conjecturally) any information
about the endomorphism ring of E. This can be done by deriving a quaternion analogue
of commutative isogeny diagrams. One constructs a left O0-ideal of the correct norm and
pushes it forward via Iτ to a left ideal of O. Of course the difficulty here is to ensure that
the right order of this left ideal is isomorphic to End(E2). This is ensured by using the

7

Eichler order O0 ∩ O and other techniques developed in KLPT.
In order to be able to respond to the verifier one has to translate the aforementioned

ideal into an isogeny. There are two issues that arise in practice. First, the norm of the
ideal obtained this way is large, hence its kernel will be defined over a large extension field.
Second, it is not obvious how one can evaluate elements of Bp,∞ as endomorphisms. The
first issue is solved by cutting up the ideal into smaller chunks, such that for every chunk
the kernel is defined over a small extension field.

The second issue is more complicated, furthermore, there is a difference between the
original SQIsign construction [DFKL+20] and the improved version [DFLLW23]. First we
recall the original construction. Let α ∈ O and we would like to evaluate it on certain
points. Now α corresponds to an endomorphism of E which (by abuse of notation) we will
also denote by α. The order O0 has the special property that every element of O0 can be
evaluated in a natural fashion (as i corresponds to the automorphism (x, y) 7→ (−x, iy)
and j corresponds to the Frobenius endomorphism). If α is in the Eichler order O0 ∩ O,
then we can evaluate it in O0. In order to evaluate it on O we need to use KLPT to
translate it to E.

In the improved version [DFLLW23] they do not need to evaluate all endomor-
phisms of the Eichler order O0 ∩ O, just a well-chosen one. This is accomplished
with the SpecialEichlerNorm given in alg. 3 (that uses a slightly different version of
StrongApproximation called the FullStrongApproximation) which provides a β ∈ O with
a specific norm and some extra property. Now these special elements are used throughout
the ideal to isogeny translation algorithm and KLPT is no longer needed. This results in
a considerable speed-up, the main reason being that that a much better prime p can be
chosen this way.

We have omitted many details from [DFKL+20] and [DFLLW23] but we will recall
three algorithms in its entirety here as they will be relevant to our attack: RepresentInteger,
StrongApproximation, and SpecialEichlerNorm.

Algorithm 1 RepresentIntegerO0(M) [DFKL+20]
Require: M ∈ Z such that M > p.
Ensure: γ = x+ yi+ zj + tij ∈ O0 with n(γ) = M .

1: Set m =
⌊√

M
p·(1+q)

⌋
and sample random integers z, t ∈ [−m,m].

2: Set M ′ = M − p · f(z, t). ▷ f(z, t) = z2 + t2

3: if Cornacchia(M ′) = ⊥ then
4: Go back to Step 1.
5: else
6: x, y ← Cornacchia(M ′).
7: end if
8: γ = (x+ iy + j(z + it)).
9: return γ.

2.5 Side-channel attacks
Even though the mathematical ‘hard’ problem at the core of a cryptographic primitive
ensures theoretical security, its practical implementation often leaks fatal intermediate
information. An adversary can observe and exploit these side-channel leaks. There are a
few different classes of such side-channel attacks, some target the physical characteristics
of a system while others measure changes in the timing or power consumption associated
with the operations being executed. These classes can again be categorized depending
on whether they use measurements from just one execution of the algorithm (called

8 Ready to SQI? Safety first!

Algorithm 2 StrongApproximation [DFKL+20]
Require: Prime N , l a non quadratic residue modulo N , and C,D ∈ Z.
Ensure: µ = λ · µ0 +N · µ1, with µ0 = j(C + iD), µ1 ∈ O0 such that n(µ) = le1 for some

e1 ∈ N.
1: Select e1 ≥ p · N4 and adjust the parity so that le

p·(C2+qD2) is a quadratic residue
mod N . Its square root is denoted by λ.

2: Select z, t such that le − p · f(λC +Nz, λD +Nt) = 0 mod N2.
3: Set M = le−p·f(λC+Nz,λD+Nt)

N2 .
4: if Cornacchia(M) =⊥ then
5: Go back to Step 2.
6: else
7: x, y ← Cornacchia(M).
8: end if
9: return µ = λj(C + iD) +N(x+ iy + j(z + it)).

Algorithm 3 SpecialEichlerNorm(O, I,K) [DFLLW23]
Require: O a maximal order, I a (O0,O)-ideal and K a left O-ideal of norm l.
Ensure: β ∈ O\(Z +K) of norm dividing T 2.

1: Set L = RandomEquivalentPrimeIdeal(I), N = n(L) and compute α such that L = Iα.
2: Compute K ′ = α−1 ·K · α.
3: Compute (C : D) = EichlerModConstraint(L, 1, 1).
4: Enumerate all possible solutions of µ = FullStrongApproximation(N,C,D) until µ /∈

Z +K ′. If it fails, go back to Step 1.
5: return β = α · µ · α−1

single-trace attacks) or more (called multi-trace attacks). Some popular forms of side-
channel analysis techniques include Simple or Differential Power Analysis (SPA/DPA),
timing-based, memory cache-based, profiling side-channel etc.

As mentioned earlier, attacks on elliptic curve-based cryptosystems often (not always,
such as in the case in SIKE [CD22, MMP+23, Rob23]) target point-doubling or scalar
multiplications. While SQIsign also has elliptic curve computations and so could have
potential elliptic curve-based vulnerabilities worth exploring, what makes it interesting is
that there are other possibilities of attack scenarios due to additional quaternion arithmetic.
We explore one such scenario: Euclid’s GCD algorithm. Many of its versions have been
found to be ‘leaky’ in side-channel literature, [AGS07, AT07, ASS17, AB20]. These works
focus on mounting single-trace attacks. Since these attacks target just one execution
of the algorithm, they are a more serious threat than multi-trace attacks relying on
statistical analysis of several measurements to gain useful secret information. For example,
[AGS07] presented a theoretical attack on this algorithm by proposing a model that relates
its execution flow with the inputs. More specifically, the authors use a Simple Branch
Prediction Analysis (SBPA) attack strategy to exploit timing differences in the execution
flow and recover the inputs. This GCD algorithm can also be terminated ‘half-way’, leading
to a sub-quadratic algorithm known as ‘half-GCD’. SQIsign uses the half-GCD algorithm
within one of its subroutines, the Cornacchia’s algorithm to express an integer as a sum
of two squares. In this paper, we show how an adversary can guess the signing key of
SQIsign if they are able to exploit the side-channel vulnerabilities of Euclid’s algorithm.
To mitigate timing vulnerabilities of their current non-constant time implementations, we
provide constant-time algorithms (the timing complexity is independent of the input).

9

2.6 Algorithms: Cornacchia and Euclid
Cornacchia’s algorithm [Cor08] states that, for two co-prime integers m and d, the solution
of the diophantine equation, x2 + d · y2 = m, in coprime integers x and y (if any) is given
by the Euclid’s algorithm applied to the pair (x0,m) where x0 is any root of x2 ≡ −d
(mod m). The algorithm stops when in the successive sequence (rn) of remainders, it finds
an rk satisfying the relation, r2

k < m ≤ r2
k−1. In practical implementations, this translates

to employing the ‘half-GCD’ algorithm. The solution is then,
(
x = rk, y =

√
m−r2

k

d

)
if y

is an integer, otherwise the process is repeated with another modular square root x′
0 until

all such roots get exhausted. SQIsign implements a version of the Cornacchia’s algorithm
for d = 1. We mention this algorithm in alg. 4 from [CSCRSDF+23].

Algorithm 4 Cornacchia(m) [Cor08]
Require: m ∈ Z
Ensure: x, y ∈ Z s.t. x2 + d · y2 = m.

1: Compute u =
√
−d (mod m).

2: Compute rk = halfgcd(u,m).
3: Check,

√
(m− r2

k)/d ∈ Z.
4: if False then
5: go to step 1 for a new u.
6: else
7: x = rk, y =

√
(m− r2

k)/d.
8: end if
9: return x, y

Algorithm 5 halfgcd(m,u) [Lon23]
Require: m,u ∈ Z.
Ensure: a ∈ Z.

1: Set l = ⌊
√
m⌋

2: Set a, b = m,u
3: while a > l do
4: Compute r = a (mod b).
5: Set a, b = b, r.
6: end while
7: return a

The sub-routine halfgcd in alg. 4 is just the Euclid’s algorithm terminated ‘half-way’,
that is, when the condition of rk <

√
m is met, as given in alg. 5. Euclid’s algorithm

is a sequence of recursive steps used to compute the greatest common divisor (GCD) of
two integers. For two integers a, b ∈ Z and assuming that a > b, it can be visualized as
a sequence of linear combinations of successive quotients qi and remainders ri such that,
ri+1 = ri−1 − qi+1 · ri. If after certain N steps of the algorithm, the remainder rN = 0
then the last non-zero remainder rN−1 is the GCD of a and b, that is, rN−1 = gcd(a, b).

2.7 Lattices and Lagrange reduction
A lattice L of dimension r is a discrete subgroup of Rn. In other words, L = {

∑r
i=1 civi :

ci ∈ Z, i ∈ {1, 2, · · · , r}}. Thus a lattice consists of all Z-linear combinations of linearly
independent vectors vi ∈ Rn. The vectors vi comprise a ‘basis’ β of the lattice. A basis β
can also be represented by a matrix B of row vectors such as,

B =

v1
...

vr

 =

v11 · · · v1n

...
. . .

...
vr1 · · · vrn

 .
A lattice L usually has an infinite number of bases. If {v1, · · · ,vr} is a basis then another
basis would be {v1, · · · ,vi−1,vi + k · vj,vi+1, · · · ,vr}, where i ̸= j and k ∈ Z. The
volume of the lattice L is given by V(L) =

√
det(G), where G = B ∗ BT ∈ Rr×r is the

associated ‘Gram matrix’. Transitioning between basis matrices, say B and B′ is usually
equivalent to multiplying one of the basis matrices with an unimodular matrix M over Z,
i.e., B′ = M ∗B. The volume of the lattice however, is invariant,

√
det(G) =

√
det(G′).

A lattice basis transition is necessary, for example, when one wants to find a “nice” basis
for the lattice. A measure for how “nice” the basis is could be found in the ‘orthogonality

10 Ready to SQI? Safety first!

defect’ of a basis. The more orthogonal (lesser defect) the vectors are, the “nicer” is the
basis. The orthogonality defect is defined as, def(v1, · · · ,vr) = ∥v1∥···∥vr∥

Vol(L) ≥ 1.
Lattice basis reduction refers to techniques that are used to transform a given lattice

basis into a “nice” lattice basis consisting of vectors that are short and close to orthogonal.
This means that algorithms for lattice reduction aim to reduce the orthogonality defect
of the starting basis as much as possible. Reduction of two dimensional lattice bases in
R2 was given by Lagrange and Gauss. The LLL algorithm [LLL82] is used for higher
dimension lattices. It generalizes the Lagrange-Gauss algorithm and uses the Gram-Schmidt
orthogonalization process. Here, we make use of the algorithm by Lagrange-Gauss given
in alg. 6 which we will call ‘Lagrange Reduction’ from hereafter. An ordered basis with
v1,v2 ∈ R2 is called Lagrange-reduced if ∥v1∥ ≤ ∥v2∥ ≤ ∥v2 + k · v1∥, ∀k ∈ Z. This
algorithm is closely related to Euclid’s algorithm and we give a brief of the discussion
by [Gal12]. For x, y ∈ Z the Euclid’s algorithm produces a sequence of integers ri, si, ti
satisfying x · si + y · ti = ri such that |ri · ti| < |x| and |ri · si| < |y|. The initial values are:
r−1 = x, r0 = y, s−1 = 1, s0 = 0, t−1 = 0, t0 = 1. Then the lattice L generated by the basis

matrix B with the following structure, B =
[
0 y
1 x

]
=

[
s0 r0
s−1 r−1

]
, contains vectors of the

form (si, ri) = (ti, si) ∗ B. These vectors are shorter with smaller orthogonality defect
than the starting basis vectors of the lattice. The worst-case complexity of Alg. 6 has been
studied extensively by [Lag80, Val91] which also discusses the worst-case input types.

Algorithm 6 LagrangeReduction(u, v)
Require: u,v ∈ β(L) ⊆ Z2.
Ensure: u,v two minimal basis vectors.

1: B1 = ∥u∥2.
2: Compute µ = ⌊ (u|v)

B1 ⌋.
3: Compute v = v− µ · u.
4: B2 = ∥v∥2.
5: while B2 < B1 do
6: Swap u and v.
7: B1 = B2
8: Compute µ = ⌊ (u|v)

B1 ⌋.
9: Compute v = v− µ · u.

10: B2 = ∥v∥2.
11: end while
12: return u,v

3 Vulnerabilities of Cornacchia and retrieval of signing key
In order to formulate a theoretical polynomial-time key recovery procedure, the attack
model we assume is that of a powerful adversary capable of employing side-channel attack
techniques such as SPA, DPA, timing, profiling-based attacks, or even a combination of
them. With this assumption in mind, we begin our analysis of the various quaternion-
specific algorithms in SQIsign’s signing routine. As mentioned previously, there are
several non-constant time avenues of the quaternion-specific algorithms that could be
a potential target for side-channel attacks. SQIsign represents elements of Bp,∞ as a
5-tuple of integers in Z5 and hence, quaternion arithmetic boils down to linear algebra
and integer arithmetic [CSCRSDF+23, Section 2.4]. In the context of linear algebra,
computing the HNF of a matrix (or a lattice) is an important operation and is potentially
non-constant time. However, we set our focus on integer arithmetic and especially on

11

Cornacchia’s algorithm because of two primary reasons: first, it makes use of Euclid’s
algorithm which, as mentioned previously in Sec. 2.5, has been shown to be vulnerable
under various side-channel attack techniques and so it is a plausible candidate for our
hypothetical adversary. The second reason is that both Euclid’s (central in SQIsign’s
integer arithmetic [CSCRSDF+23, Section 2.4.1]) and Cornacchia’s algorithm (one of the
quaternion building blocks for solving norm equations, [CSCRSDF+23, Section 2.5.1])
are important subroutines of SQIsign and in one instance within the signing routine,
Cornacchia’s algorithm directly involves the secret endomorphism ring. As a result, if an
adversary can exploit side-channel leakages from Cornacchia to obtain its inputs, they can
obtain SQIsign’s secret signing key (this is shown by the red dotted path in fig. 1), as we
demonstrate later in this section.
Remark 1. In this paper we consider both the original version [DFKL+20] and the improved
version [DFLLW23] of SQIsign. The version [CSCRSDF+23] submitted to NIST is, for
our purposes, essentially the same as [DFLLW23]. Nevertheless changes can be made (e.g.,
SQISignHD [DLRW23] is a somewhat different construction) and we would like to initiate
new methods that might be interesting for future applications as well.

In the context of SQIsign the relevant Cornacchia variant is when one wants to represent
an integer m as a sum of two square integers, x2 + y2. In actual implementation [Lon23],
the authors use an ‘extended’ version of the algorithm which we mention in alg. 7 referred
to as ExtendedCornacchia(M). It ensures that the input m to Cornacchia is almost always a
prime and definitely odd. This primality assurance is implemented using the following two
procedures: a check to ensure that M and h3 =

∏
pi (for pi congruent to 3 (mod 4) and

3 ≤ pi ≤ 83) are co-prime, and, repeated divisions by 2 and all primes qj congruent to 1
(mod 4) for 2 ≤ qj ≤ 101 until the highest exponents of all these primes have been removed
from M (to represent this repeated division in alg. 7 we use h1 = 2ν2 · 5ν5 · 13ν13 · · · · 101ν101

with νj denoting the p-adic valuation of qj w.r.t M). These specific numbers are chosen
by the authors of the implementation [Lon23]. The resultant ‘unfactored’ part m is then
expected to be prime.

Algorithm 7 ExtendedCornacchia(M) [Lon23, DFKL+20]
Require: M ∈ Z.
Ensure: x, y ∈ Z such that x2 + y2 = m where m is computed from M .

1: h1 = 2ν2 · 5ν5 · 13ν13 · · · · 101ν101

2: h3 = 3 · 7 · · · · 83 ▷ Product of all 3 (mod 4) primes until 101
3: if gcd(M,h3) == 1 then
4: Compute m = M

h1
.

5: Compute x, y = Cornacchia(m).
6: return x, y
7: end if

Let us assume that an attacker is able to observe and then analyse the variations in
the number of times the division step runs within the halfgcd (step 2 of alg. 4) sub-routine
in alg. 5 through side-channel analysis of Euclid’s algorithm such that it reveals m. From
experimental observations we found that in large number of instances (∼40%) of the
signing algorithm either M = m or, M = 2 ·m . We assume m = M and show how one
can retrieve the output of StrongApproximation using M in Theorem 1.
Theorem 1. Suppose we have a way of retrieving outputs and inputs of Cornacchia. Then
one can obtain the output of StrongApproximation in KLPT if the output size le is known.
Proof. Since we have access to Cornacchia inputs and outputs, we know M and x, y such
that M = x2 + y2. Then one has the equality

MN2 = le − p · ((λC +Nz)2 + (λD +Nt)2) (1)

12 Ready to SQI? Safety first!

Sign(s)

KLPT(s)

StrongApproximation(M)

Cornacchia(m)

Halfgcd(u, m) Side-channel leaks

Obtain 'm' and
outputs

Obtain M
Theorem 1

Obtain output ideal
Theorem 2

Recover signing key
Corollary1/Theorem 3

Figure 1: Steps for signing key recovery

and hence, MN2 ≡ le (mod p). Since M and le are known, we have two choices for N
modulo p. In KLPT, N ≈ √p which gives us the exact value of N . Indeed, every residue
has 2 square roots modulo p, namely some a and the other p − a. This implies that
the other square root of N2 will be bigger than p/2. Equation 1 implies that we know
(λC+Nz)2 +(λD+Nt)2. From this one can solve the equation (λC+Nz)2 +(λD+Nt)2 =
x2

0 + y2
0 and compute all solutions x0, y0. Usually there should only be a few solutions here,

so by testing we may assume that we have found λC +Nz and λD +Nt. The output of
StrongApproximation is µ = Nx+Nyi+ (λC +Nz)j − (λD +Nt)ij, and thus, we have
found µ as we now know every coordinate of µ.

Proposition 1. Suppose we have a way of retrieving outputs and inputs of Cornacchia.
Then we can obtain a small set of valid outputs (amongst which is the actual output) γ of
RepresentIntegerO0 in polynomial time if either of the following conditions is satisfied:

• n(γ) is of the form Nle where l, e are known and N < p.

• n(γ) = M < p log(p)c for some constant c

Proof. First one can obtain M ′ as the input of Cornacchia in Step 3 of alg. 1. From this
we know x, y along with M ′ such that x2 + y2 = M ′. Now we split our algorithm into two
cases depending on which condition is satisfied.

If the first condition is satisfied, then we know that n(γ) = M = Nle where le is known
and N < p. We also know that M = M ′−p · (z2 + t2) (Step 2, alg. 1) where we know p and
M ′ but don’t know z and t. This implies that we know M modulo p. Now as M = Nle

and le is known and coprime to p, we can obtain N modulo p by modular inversion. Since
N < p, we have obtained N exactly which implies that we have obtained M as well. This
in turn implies that z2 + t2 is known and we can compute z, t with Cornacchia. There
are usually not too many solutions to choose from and all the possible solutions can be
computed from factoring z2 + t2 (in practice this is a small number).

If the second condition is satisfied, then we can proceed in a similar fashion. Here we
just need to guess M . The condition M < p log(p)c implies that m is small thus one has
only O(log(p)c) choices for z, t.

13

Theorem 1 and Proposition 1 are the main building blocks of our attacks. We will
provide two key recovery methods, one on the original SQIsign construction [DFKL+20]
and one on the newer version [DFLLW23]. First we focus on the original construction.

Theorem 2. Suppose we have a way of retrieving outputs and inputs of Cornacchia. Then
one can retrieve the output ideal of the KLPT algorithm.

Proof. The KLPT algorithm, as mentioned before (and described in [KLPT14]) has three
main steps. First computing γ which is the output of the RepresentIntegerO0 algorithm.
Then computing a µ0 such that (O0γ)µ ≡ I (mod NO0) and then lifting µ0 to µ whose
norm is le. Then γ · µ will be an element of I of norm Nle which provides an equivalent
ideal I J of norm le. Theorem 1 implies that we can obtain µ and Proposition 1 implies
that we can obtain γ. Putting these together we obtain γ · µ which is exactly needed to
get the output of KLPT.

Remark 2. Proposition 1 might not be strictly necessary in certain contexts if the algo-
rithm RepresentIntegerO0 is performed deterministically as one can just recompute the
algorithm offline. The reason is that 1 also provides N (not just µ), hence if le is chosen
deterministically one does not need to use the Cornacchia oracle again. Actually, if N is a
prime congruent to 1 modulo 4, often one just chooses e0 = 0.

Corollary 1. Suppose we have a way of retrieving outputs and inputs of Cornacchia. Then
we can get the signing key in SQIsign [DFKL+20] in polynomial time.

Proof. We focus on [DFKL+20, Algorithm 9] which provides the ideal-to-isogeny translation.
In Step 2, KLPT is used to obtain an equivalent ideal J which is a connecting ideal between
O0 and O where O is the endomorphism ring of the public curve. Theorem 2 implies that
we can get J which immediately reveals O as the right order of J is isomorphic to O.

Theorem 2 is not directly applicable to the new SQIsign version [DFLLW23] as in the
ideal-to-isogeny translation algorithm KLPT is no longer used. Instead of computing with
entire endomorphism ring, the algorithm SpecialEichlerNorm is called which computes a
well chosen endomorphism of the appropriate maximal order. In the next theorem we
show how to apply 1 to obtain the signing key.

Theorem 3. Suppose we have a way of retrieving outputs and inputs of Cornacchia.
Then we can retrieve the signing key in the improved version of SQIsign [DFLLW23] in
polynomial time.

Proof. We target Step 5 of SpecialEichlerNorm which is a call to StrongApproximation
algorithm. Theorem 1 implies that we can obtain µ using our Cornacchia approach.
Furthermore, the proof of Theorem 1 implies that we also retrieve n(L) = N as N < p.
Our goal is to compute generators for the ideal L as then the right order of L will be O that
reveals the endomorphism ring of the public curve (as the first input of SpecialEichlerNorm
is the order O). Now µ ∈ Z + L, so µ alone is not enough to retrieve L. Since µ ∈ O0
one can write it as a 2× 2 matrix with entries from Z/NZ via the explicit isomorphism
O0/NO0 ∼= M2(Z/NZ). Elements in L have the property that when they are written as
2× 2 matrices, they are not invertible as their norms are divisible by N . Now µ = λ+ σ
where λ ∈ Z and σ ∈ L hence one needs to figure out the value of λ. Since NO0 is
contained in L, actually, λ is only determined modulo N . Also, since elements in L
correspond to matrices that are not invertible, µ − λ is not an invertible matrix which
is equivalent to λ being an eigenvalue of µ. Eigenvalues can be computed efficiently as
N is a prime number. In general µ has two eigenvalues which provides two possible
choices λ1 and λ2 for λ. Elements in L correspond to a set of matrices in M2(Z/NZ)
whose kernel contains a particular cyclic subgroup of (Z/NZ)2 (or equivalently a point
in P1(Z/NZ)). Hence for both λi’s we compute the kernel of µ − λi and compute the

14 Ready to SQI? Safety first!

corresponding ideal Li. By computing right orders we get two candidates O1 and O2 for
O. Then we compute the supersingular elliptic curves corresponding to these orders and
choose the one whose j-invariant matches that of the public curve. The last step can be
accomplished in polynomial time and is quite practical using the methods of SQIsign or
that of [EPSV23].

Remark 3. It would be tempting to attack SigningKLPT [CSCRSDF+23, Algorithm 17]
using our methods as that is common in both versions as the difference lies in the ideal to
isogeny translation algorithm. However, the StrongApproximation algorithms used there
will reveal the endomorphism ring corresponding to the pushforward of the secret ideal
hence it is not immediate how one would get the signing key from that information. We
leave this as an open problem for the future.

4 Timing attack-resistant alternatives
In this section, we only take into consideration a timing-attack based adversary who
can exploit the non-constant time property of Cornacchia’s algorithm and propose two
different alternatives that are either constant-time or time-independent. For the first one,
we present a constant-time replacement of the halfgcd algorithm (or, Euclid’s algorithm, at
the lowest level of the algorithm hierarchy) that we call C-halfgcd. As the second timing-
independent alternative, we suggest replacing Cornacchia altogether by a two-dimensional
(Randomized) LatticeReduction algorithm (at a higher level of the algorithm hierarchy).
Also, proposing constant-time solutions for Euclid’s algorithm has a wider and more
independent scope because it is one of the fundamental functions that many high-level
quaternion-based algorithms depend on, some of which we mention later in this section. We
duly note that countermeasures against adversaries using attack techniques like SPA, DPA,
etc., make sense only after realizing a complete constant-time implementation. Hence, in
this work we focus exclusively on this starting point.

4.1 Constant-time half-GCD
One way of mitigating the attack lies in the use of a constant-time implementation of
the halfgcd algorithm. A work by [BY19] proposes certain tweaks such that the iterations
within the GCD algorithm no longer depend on the inputs but on auxiliary parameters.
It follows an algorithmic flow similar to Stein’s [Ste67] binary-GCD algorithm. [BY19]
introduces a function called the ‘divstep’, which is the actual constant-time element in the
algorithm. The function, divstep : Z× Z∗

2 × Z2 → Z× Z∗
2 × Z2 is defined as,

divstep(δ, a, b) =
{

(1 + δ, b, (b− a)/2), if δ > 0 and b is odd
(1− δ, b, (b+ (b (mod 2)) · a)/2), otherwise

where Z2 is the ring of 2-adic integers (not the finite field) and Z∗
2 is its group of units.

In this GCD implementation, the auxiliary parameter δ depends on the maximum of
the two input sizes, k, i.e., for two inputs a and b, |a| < 2k, |b| < 2k. The algorithm is
constant-time if k is constant. It then calculates an integer n under a special function of
k, iterations(k) and this integer n serves as an upper bound of the number of iterations
[BY19, Theorem 11.2]. It ensures that whenever divstep is executed n times with initial
inputs (a, b), the sequence of intermediate values ai and bi are updated in a way such that,
an → ±gcd(a, b) and, bn → 0.

However this algorithm cannot be trivially ported into a half-GCD algorithm as we
demonstrate with the following two examples:

15

• Let us assume that we need to apply Cornacchia’s algorithm to two integers, M =
7349, u = 2061. Note that ⌊

√
M⌋ = 85. Starting with an = M, bn = u, a half-GCD

algorithm would terminate as soon as it encounters an ai < 85. In such a scenario,
Euclid’s algorithm stops at the first such ai, namely, a5 = 82 such that the square
root of M − ai is also an integer. Hence, (82, 25) are valid solutions of Cornacchia.
However, the constant GCD algorithm oscillates between positive and negative values.
Although it comes across b24 = 25, the values of the preceding steps are already
b25 = 50 or |b31| = 48. If we were to use Cornacchia’s bound-check naively, this
algorithm would wrongly terminate at |b31| or b25 and Cornacchia would then begin
a second run with a new modular square root.
The constant-time GCD algorithm [BY19] produces the two sequences, ai+1, bi+1 =
divstep(ai, bi) for i ∈ [0, n] as shown in fig 2. The steps that the usual Euclid’s
algorithm follows is given in fig 3.

contd..

Figure 2: Constant-time gcd(7349, 2061)

Figure 3: Euclid’s gcd(7349, 2061)

• Next, we apply both GCD algorithms to another pair of integers, (61, 11), where 11
is a modular square root of 61. Euclid’s algorithm would terminate at the very first
iteration, 61 = 11 · 5 + 6, because 62 < 61. It is easy to see that (6, 5) is also a valid
solution of the equation, x2 + y2 = 61. In contrast however, the constant-time GCD
algorithm does not come across either of the values, 6 or 5, as shown in fig 4. In
this case again, it would have to re-run the algorithm with another possible modular
square root of 61.

Figure 4: Constant-time gcd(61, 11)

Therefore, taking inspiration from [BY19] and applying the iteration bound of n, we
propose a constant-time half-GCD algorithm in 8. We take into account two sequences
and make them converge to specific values. Our sequences of intermediate values are
n-terms long, with n being calculated based on the size of the input as in [BY19]. We
compute the same intermediate values as the usual Euclid’s algorithm. In fact, we can
make use of Cornacchia′s bound check, l (used as an input to alg. 8 and assumed to have

16 Ready to SQI? Safety first!

been computed in constant-time) to control the first sequence (ai)i∈{0,n} in our algorithm
in such a way that it converges to the half-GCD. The value of the variable ‘sign’ (step
8, alg. 8) becomes 0 as soon as the algorithm encounters a value less than l. The second
sequence (bi)i∈{0,n} then converges to 0, it reaches 0 when the value of ai at a certain step
i is approximately less than half of the initial value, thus freezing the value of the sequence
(ai)i∈{0,n} at the half-GCD. It is this sequence that helps us achieve constant time, as past
a certain point i in the iterations, the intermediate values no longer change till the end of
n iterations.

Algorithm 8 C-halfgcd(M,u, l)
Require: M,u, d such that u2 ≡ −d mod M ▷ d = 1 in SQIsign
Require: l = ⌊

√
M⌋

Ensure: x, y such that x2 + d · y2 = M
1: k = max(nbit(M), nbit(u)) ▷ nbit() returns the bit-size of the input
2: n = iterations(k)
3: a, b = M,u
4: while n > 0 do
5: c = max(a, b)
6: kc = nbit(c)
7: sign = msb(l − c) ▷ Considering two’s complement representation
8: b = min(a, b, c) · sign
9: a = max(a, b, c)− (min(a, b, c)≪ α) ▷ α = 0, or, nbit(max)− nbit(min)− 1.

10: n = n− 1
11: end while
12: x = a, y =

√
M−x2

d

13: return x, y

Theorem 4. The algorithm for C-halfgcd given in 8 is correct and terminates in constant-
time for a given size of the inputs.

Proof. First, we prove correctness. Without loss of any generality, let, a > b such that,
nbit(a) ≥ nbit(b) and hence, k = nbit(a) in Step 1. Let the number of iterations of the
while loop be n as per the function iterations(k). When n = 1, c = a in Step 5 and kc = k
in Step 6. The variable ‘sign’ is a boolean value that represents the following conditional
statement:

sign =
{

0, if c < l

1, else

Considering a two’s complement representation, this means checking the most signif-
icant bit of the value of l − c. In constant time, ‘sign’ can be evaluated as, sign =
((l − c)&(1≪ kc))≫ kc. Then, in step 8, if sign = 1, then b = min(a, b, c) = min(a, b) = b,
otherwise b = 0. Let us assume that in this iteration, c > l so that sign = 1. In Step 9
the value of a gets updated as, a← a− 2α · b. Indeed, Step 9 is Euclid’s division where
we interpret these divisions explicitly as repeated subtractions. Moreover, the rationale
behind introducing the variable α in alg. 8, step 9, can be argued as follows: without α,
step 9 would include many subtractions which could result in very large worse-case bounds
for the algorithm. As a way of optimizing this step, we can merge multiple sequential
subtractions by the value of min(a, b, c) into one subtraction by the value 2α ·min(a, b, c).
If the minimum and the maximum value have the same number of bits then we set α = 0,
else, α is set to one less than the bit difference of the maximum and the minimum values.
Next, for n = 2, c = max(a− 2α · b, b) and so on, such that we get a decreasing sequence of
(ai, bi). As soon as c < l, sign becomes 0 and ai is not updated anymore for the remaining

17

length of n. Thus, this becomes equivalent to the scenario where Euclid’s algorithm runs
until the condition in Step 1 of alg. 5 is met.

The proof that n ≥ 1 comes directly from [BY19, Theorem 11.2]. The argument for
termination is straightforward as the number of times the while loop in Step 4 will run, that
is, the value of n, is calculated deterministically in Step 2 as a function of the maximum
bit-size k. After every iteration, n is decremented by 1 and the loop terminates when
n = 0.

Remark 4. Note that the constant-time GCD algorithm in [BY19] is based on Stein’s
algorithm [Ste67], but alg. 8 follows the flow of Euclid’s algorithm as previously discussed.
However, the iteration function of [BY19] works directly for alg. 8 (the number of loops
can be reduced even further) because of the following reason: in Step 9 of alg. 8, our
algorithm performs the following subtraction a = max(a, b, c)− (min(a, b, c)≪ α). Here,
min≪ α is one bit smaller than max(a, b, c) which means that regardless of the bit-size
of the inputs, it will take a maximum of two iterations of n for a to decrease by one bit.
Since we want to compute the half-GCD, we can estimate that the maximum number
of iterations needed would be around 2 · k/2 = k, where k is described as in Step 2 of
alg. 8. Also, since iterations(k) ∼ 3 · k, hence, the execution time of this algorithm can be
improved further by imposing tighter bounds, as we experimentally verify in Sec. 5.3.

Applications of C-halfgcd: Recall that C-halfgcd follows the exact algorithmic flow of
Euclid’s algorithm and hence, simple modifications in alg. 8 can give us a constant-time
Euclid’s GCD algorithm as shown in alg. 9. First we set the number of iterations similar
to alg. 8 (exact comparison is given in the proof of Corollary 2 since the algorithm needs
to find the GCD instead of the half-GCD of the two input integers). Also, the boolean
variable ‘sign’ introduced earlier is no longer useful. Moreover, adding additional steps to
compute the Bezout’s coefficients during GCD calculation would result in a constant-time
Extended GCD (XGCD) algorithm. These algorithms are fundamental building blocks
of important quaternion-specific algorithms such as StrongApproximation, RepresentInteger,
searching for a generator of an ideal, lattice reduction in higher dimensions such as the
LLL (Lenstra-Lenstra-Lovász) algorithm, etc. [CSCRSDF+23, Lon23].

Algorithm 9 C-gcd(x, y)
Require: x ∈ Z, y ∈ Z
Ensure: a = GCD(x, y).

1: k = max(nbit(x), nbit(y)) ▷ nbit() returns the bit-size of the input
2: n = iterations(k) ▷ n ≈ 3 · k > 2 · k
3: a, b = x, y
4: while n > 0 do
5: c = max(a, b)
6: b = min(a, b)
7: a = max(a, b, c)− (min(a, b, c)≪ α) ▷ α = 0, or, nbit(max)− nbit(min)− 1.
8: n = n− 1
9: end while

10: return a

Corollary 2. The algorithm for C-gcd given in 9 is correct and terminates in constant-time
for a given size of inputs.

Proof. In order to prove correctness, observe that the algorithmic flow of C-gcd is exactly
the same as that of C-halfgcd except for the fact that the variable ‘sign’ is no longer being
used. From the proof of alg. 8 it is clear that ‘sign’ was used to ensure that the sequence of

18 Ready to SQI? Safety first!

ai’s converges to the half-GCD of the inputs. In the absence of ‘sign’, alg. 9 will complete
a full run of Euclid’s algorithm to compute the GCD of the inputs.

The proof of constant-time termination follows from the proof of Theorem 4. Also,
since the upper bound of k is already enough for computing the half-GCD of two inputs
(Remark 4), an upper bound of 2 · k < iterations(k) will suffice for computing the GCD of
given inputs.

4.2 Lattice reduction
In SQIsign, Cornacchia is used to write a number as a sum of two squares. In general this
can be a hard algorithmic problem as it is essentially equivalent to factoring the number.
In SQIsign this is circumvented by iterating until the number to be expressed as a sum of
two squares is prime. Here we describe an alternative way to write a prime number M as
a sum of two squares. First one computes an integer u such that u2 ≡ −1 (mod M). This
can be done efficiently (e.g., choosing a random element and raising it to the (M − 1)/4-th
power). Then one can look at the lattice L generated by (1, u) and (0,M). This lattice
has two properties: every vector (a, b) in this lattice has the property that a2 + b2 ≡ 0
(mod M) and, the determinant of the lattice is M . Now, Minkowski’s convex body theorem
(published in [Min10] but the reader is referred to a more modern introduction in [Cas12])
implies that the shortest non-zero vector in this lattice is shorter than 2M , hence its length
is exactly M . Thus solving x2 + y2 = M amounts to finding the shortest vector in this
lattice which can be accomplished efficiently with Lagrange reduction (alg. 6). However,
the side-channel resistance of this algorithm is not straightforward as we explain in Sec. 5.2.
Thus, in order to have a timing attack-resistant algorithm for Cornacchia, we re-randomize
the starting basis of L by multiplying it with a uniformly random matrix of determinant 1,
with 128-bit uniformly random entries. This process of randomization works similar to
masking in side-channel protection. A matrix of determinant 1 (unimodular) is chosen
so that the resultant ‘randomized matrix’ will still represent a basis matrix as has been
mentioned in 2.7. The next subsection discusses the methods of generating this matrix in
more detail. Due to this randomization trick, the number of executions of the steps from
5-11 in alg. 6 no longer depend directly on the input basis elements but their random scalar
combinations. We present it in alg. 10 with the modular square root u passed as as an
input to the function. The computation of modular square root u of M in constant-time
can be done using the Fermat theorem: u = v(M−1)/2 (mod M), with v = M − 1. This
computation is analogous to constant-time exponentiation done using Montgomery ladder
[JY02] and has highly regular execution steps in the form of a multiplication always
followed by a squaring irrespective of the processed bit.

Algorithm 10 (Randomized) LatticeReduction(M,d, u)
Require: M,d, u three integers with u2 ≡ −d mod M ▷ d = 1 in SQIsign.
Ensure: x, y such that x2 + d · y2 = 0 mod M

1: Set the matrix L =
[
1 u
0 M

]
2: Generate S =

[
r0 r1
r2 r3

]
▷ A random matrix of determinant 1.

3: Update L = S ∗ L such that l0 = L[0] and l1 = L[1].
4: Compute l0, l1 = LagrangeReduction(l0, l1).
5: return x = l0[0], y = l0[1]

19

4.2.1 Generation of the random matrix S

There can be many ways of generating a random unimodular matrix. One simple way is to

generate only two random integers r0 and r1, each of 128 bits so that S =
[

1 r0
r1 r0 · r1 + 1

]
.

However, we explain why this does not lead to a truly randomized lattice reduction
algorithm. Let M and u be ∼ k-bits long. Then the inputs of LagrangeReduction (alg. 6)
are l0 = (1, u+ r0 ·M) and l1 = (r1, r1 · u+M · (r0 · r1 + 1)). Notice that in Step 2, the
scalar µ is calculated via a rounding operation. After the first rounding operation the value
of µ becomes r1. Using this value in Step 3 we get, l0 = (1, u+ r0 ·M) and l1 = (0,M).
Similarly next, after entering the ‘while’ loop in Step 5, the value of µ is r0 due to which l1
and l0 get updated to the initial matrix L in alg. 10. Thus with such an S, the randomized
lattice reduction always takes 2 iterations more than the usual (non-randomized) lattice
reduction. This method of generating the random matrix therefore fails to make the
execution of the algorithm independent of the inputs.

However, it is also not very feasible to generate 4 distinct 128-bit random integers
while ensuring that S is unimodular at every iteration of the lattice reduction algorithm.
Hence, we opt for the following method of generating the matrix S: for each call i of the
algorithm, instead of 4 distinct 128-bit random integers, we sample just one, say, ri and

set Ri =
[
1 ri

0 1

]
. Additionally, we maintain a list of pre-generated random unimodular

matrices (except the identity matrix) of the form, Pj =
[
pj0 pj1

pj2 pj3

]
with much smaller

(log2 (pjk
) < < 128, k ∈ {0, 1, 2, 3}) random integers. Then for each i one can pick a

j such that every entry of the resultant matrix, Sij = Pj ∗ Ri ∗ P−1
j will have similar

bit-sizes (∼ 128), thereby preventing irregular-sized components in l0 and l1. If i > j,
then new unimodular matrices can be computed via random product of Pj ’s, that is, for
t ∈ {j + 1, · · · , i}, Pt = Pj ∗ Pj′ .

Let S =
[
r0 r1
r2 r3

]
be generated using the above-mentioned method. Then the two

vectors that are to be Lagrange-reduced are given by l0 = (r0, r0 · u + r1 · M) and
l1 = (r2, r2 · u+ r3 ·M), which clearly have more regular-sized entries. Notice now that
µ = r0·r2+(r0·u+r1·M)·(r2·u+r3·M)

r2
0+(r0·u+r1·M)2 , so that the value of the numerator is roughly of the same

bit-size as that of the denominator. Thus, the rounding operation cannot remove the
randomness deterministically after two iterations. The t-test scores verifying the efficacy
of this method against the others are provided in Table 2.

5 Results
In this section, we compiled our implementation of all algorithms (alg. 5, 6, 8, 10) in C
programming language using gcc-11.4 with optimization flags -O3, hyper-threading support
disabled and measured computation time using a single core of an Intel(R) Core(TM)
i7-8700 processor running at 3.20GHz on a Desktop computer with Ubuntu 22.04 operating
system.

5.1 Constant-time verification
To verify that our implementation is indeed constant-time, we make use of the ‘ctgrind’
library and the ‘Valgrind’ analysis tool. ‘ctgrind’ is a library which when combined with
the ‘Valgrind’ tool allows the detection of data-dependent branches in our program. In
Table 1 we provide the mean and standard deviation (sd) in terms of cycle counts for
C-halfgcd along with halfgcd. The standard deviation for the C-halfgcd is not null despite

20 Ready to SQI? Safety first!

the algorithm being constant time because of how an operating system (OS) behaves, that
is, constant-time does not imply a constant run-time.

Additionally, in order to compare using a sample-independent parameter, we take into
consideration the Coefficient of Variation corresponding to the three algorithms. The
Coefficient of Variation (CV) is a measure of of the extent of variability with respect
to the mean and is given by the ratio of the standard deviation to the mean. Since
CVC−hgcd < CVhgcd, we can say that the execution time of halfgcd varies much more than
that of C-halfgcd.

Table 1: Cycle count comparison for 10k runs
Functions mean (cc) sd (cc) CV
C-halfgcd 140, 950 8, 335 0.059
halfgcd 61, 676 5, 871 0.095

5.2 t-test to distinguish timing dependencies
Unlike C-halfgcd, the lattice reduction algorithm is not constant-time. The process of
randomizing the starting basis simply makes the execution time independent of the secret
inputs. Thus, the constant-time verification rationale used in the previous subsection will
not be viable here. Since randomization as a countermeasure is similar to the masking
techniques used in power side channel, hence, we decided to employ the Test Vector
Leakage Assessment (TVLA) method introduced in [GJJR11] to check for leakages. We
take into consideration our randomized lattice reduction algorithm under two cases: one
where the matrix S in alg. 10 is set to the identity matrix (hence alg. 10 reduces to the
usual Lagrange reduction) whereas in the second case S consists of uniformly random
integers. We run our t-test experiment for each of the aforementioned cases with 105

sample inputs belonging to two different classes: class 1 consisting of a fixed M and class
2 with varying values of M but of a fixed size (according to SQIsign NIST-I parameters
[CSCRSDF+23]). We also perform a t-test for the non-constant time half-GCD (alg. 5) as
given in Table 2. We execute these algorithms once by enabling the flag -fno-tree-vectorize
to prevent the compiler from doing vectorizations and then by disabling it. Clearly, the
half-GCD algorithm has a high t-value in both these scenarios. Interestingly, we observe
that when the tool is allowed to vectorize, LagrangeReduction has a t-score of 4.5 which
means that the null hypothesis cannot be rejected with confidence. The randomized lattice
reduction algorithm, however, has a t-score below 4.5 in both cases as shown in Table 2.

Table 2: t-test scores

Mode
Algorithm halfgcd LagrangeReduction (Randomized)LatticeReduction

× -fno-tree-vectorize 16.6 4.5 2.5
✓-fno-tree-vectorize 15.2 2.5 2.1

5.3 Performance results and choice of countermeasures
Based on the targeted level of the algorithmic hierarchy as shown in fig. 1, we report two
distinct comparisons. Starting with the lower level, we compare the performance of C-
halfgcd with the non-constant time halfgcd as in alg. 5. The current SQIsign implementation
[Lon23] relies on the GMP library for its large-integer arithmetic. Hence, for a fair
comparison we also implement a GMP version of C-halfgcd and provide the performance
figures in Table 3. Clearly, C-halfgcd has an overhead of roughly 250× when compared to

21

the usual halfgcd algorithm. As explained in Remark 4, the iteration bound of C-halfgcd
can be improved further by taking n = iterations(k)/2 (denoted as C-halfgcd(2)) or even
n ∼ k(denoted as C-halfgcd(3)). We observe that the cycle count improves proportionately
with respect to the bound on n.

Then, going up the hierarchical ladder, we give a comparison (again using GMP) of
Cornacchia with LagrangeReduction as well as (Randomized) LatticeReduction (assuming
that the random unimodular matrices are pre-generated) in Table 4. The run-time of both
Cornacchia and LagrangeReduction are similar but the latter exhibits better timing-attack
resistance. The (Randomized) LatticeReduction provides the best timing-attack resistance
but is 5× slower. Employing a good Random Number Generator (RNG) is crucial for the
success of the randomized lattice reduction algorithm.

Table 3: Cycle count comparison of half-GCD algorithms for 10k runs
Functions C-halfgcd C-halfgcd(2) C-halfgcd(3) halfgcd
mean (cc) 137, 296 68, 855 49, 645 531

Table 4: Cycle count of Cornacchia vs lattice reduction algorithms for 10k runs
Functions Cornacchia LagrangeReduction (Randomized) LatticeReduction
mean (cc) 1, 109 1, 165 5, 969

Therefore, if one aims for for a complete constant-time implementation of SQIsign,
one may choose the C-halfgcd algorithm as one can predict and set average/worst-case
iteration bounds directly based on a given size of the inputs. If one is intended on a timing-
attack resistant implementation without compromising too much on performance, then the
(Randomized) LatticeReduction is a viable choice. However, looking at the big picture gives
us a very different perspective: when compared to the run-times of computation-heavy
algorithms such as IdealToIsogeny, these constant-time alternatives will have almost no
performance overhead and can be equally suitable for implementation, as demonstrated
for C-halfgcd in Table 5. Also, we present a range of cycle counts for the full signing
routines because, as already reiterated throughout the text, there are several other non
constant-time functions in SQIsign that greatly affect the run-time.

Table 5: Cycle count of non-constant SQIsign vs with C-halfgcd
Version Non-constant SQIsign SQIsign with C-halfgcd

range (cc) (8.680644− 15.195743)× 109 (8.738787− 14.586137)× 109

6 Conclusion
In this paper, we showed that if inputs and outputs of Cornacchia’s algorithm leaks, then
one can recover the signing key in SQIsign in polynomial time. This can be a starting
point for research on future side-channel attacks on the modified versions of SQIsign
[CSCRSDF+23] and to propose efficient countermeasures. We did not demonstrate the
experimental method for actually retrieving Cornacchia outputs because the current
implementation is not meant to be constant time or resistant to side-channel attacks.
Hence, it is a compelling research direction to mount a fine-tuned single trace attack on
Cornacchia’s algorithm and attack the SigningKLPT algorithm as mentioned in Remark 3.

Additionally, we also proposed two timing-attack resilient alternatives that could replace
the non-constant algorithms. The first one is based on lattice reduction techniques in two
dimensions. We suggested randomization of the starting lattice basis to eliminate input
dependency. The second one is a constant-time half-GCD algorithm. The constant-time

22 Ready to SQI? Safety first!

feature of the algorithm comes from setting an upper bound on the iterations based only
on the maximum of the input sizes. We also analyzed the performance of our algorithm
and verified that it is constant-time using standard tools. A future direction would be to
derive tighter bounds of the constant-time half-GCD algorithm that would still ensure
correct termination. In fact, coming up with a better bound could significantly improve its
performance. The signing procedure of SQIsign is complex and we have not yet proposed
a full constant-time implementation but we initiated the first step on the quaternion side,
hoping to motivate further cryptanalysis for SQIsign.

References
[AB20] Alejandro Cabrera Aldaya and Billy Bob Brumley. When one vulnerable

primitive turns viral: Novel single-trace attacks on ECDSA and RSA.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):196–221, 2020.

[AGS07] Onur Aciiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch
prediction vulnerabilities in openssl and necessary software countermea-
sures. In Steven D. Galbraith, editor, Cryptography and Coding, 11th
IMA International Conference, Cirencester, UK, December 18-20, 2007,
Proceedings, volume 4887 of Lecture Notes in Computer Science, pages
185–203. Springer, 2007.

[ASS17] Alejandro Cabrera Aldaya, Alejandro Cabrera Sarmiento, and Santiago
Sánchez-Solano. SPA vulnerabilities of the binary extended euclidean
algorithm. J. Cryptogr. Eng., 7(4):273–285, 2017.

[AT07] Sarang Aravamuthan and Viswanatha Rao Thumparthy. A paralleliza-
tion of ECDSA resistant to simple power analysis attacks. In Sanjoy
Paul, Henning Schulzrinne, and G. Venkatesh, editors, Proceedings of the
Second International Conference on COMmunication System softWAre
and MiddlewaRE (COMSWARE 2007), January 7-12, 2007, Bangalore,
India. IEEE, 2007.

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. CTIDH:
faster constant-time CSIDH. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2021(4):351–387, Aug. 2021.

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 2129–2146, New York, NY,
USA, 2019. Association for Computing Machinery.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
efficient isogeny based signatures through class group computations. In
Advances in Cryptology–ASIACRYPT 2019: 25th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part I, pages
227–247. Springer, 2019.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis
of csidh. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual
International Conference on the Theory and Applications of Cryptographic

23

Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II 30,
pages 493–522. Springer, 2020.

[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation
and modular inversion. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):340–398, 2019.

[Cas12] John William Scott Cassels. An introduction to the geometry of numbers.
Springer Science & Business Media, 2012.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
sidh (preliminary version). Cryptology ePrint Archive, pages Paper–2022,
2022.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. CSIDH: an efficient post-quantum commutative group
action. In Advances in Cryptology–ASIACRYPT 2018: 24th International
Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings,
Part III 24, pages 395–427. Springer, 2018.

[CMRS22] Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger.
Patient zero and patient six: Zero-value and correlation attacks on
CSIDH and SIKE. Cryptology ePrint Archive, Paper 2022/904, 2022.
https://eprint.iacr.org/2022/904.

[Cor08] Giuseppe Cornacchia. Su di un metodo per la risoluzione in numeri
interi dell’equazione

∑n
h=0 Chx

n−hyh = P . Giornale di Matematiche di
Battaglini, 49:33-90, 1908.

[Cou97] Jean-Marc Couveignes. Hard homogeneous spaces. Preprint at
https://eprint. iacr. org/2006/291, 1997.

[CSCRSDF+23] Jorge Chavez-Saab, Maria Corte-Real Santos, Luca De Feo, Jonathan Ko-
mada Eriksen, Basil Hess, David Kohel, Antonin Leroux, Patrick Longa,
Michael Meyer, Lorenz Panny, Sikhar Patranabis, Christophe Petit, Fran-
cisco Rodríguez-Henríquez, Sina Schaeffler, and Benjamin Wesolowski.
SQISIGN: Algorithm specifications and supporting documentation. Na-
tional Institute for Standards and Technology, https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures, 2023.

[DFDGZ23] Luca De Feo, Samuel Dobson, Steven D Galbraith, and Lukas Zobernig.
SIDH proof of knowledge. In Advances in Cryptology–ASIACRYPT
2022: 28th International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December 5–9,
2022, Proceedings, Part II, pages 310–339. Springer, 2023.

[DFEMG+22] Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kaluđerovi´c,
Natacha Linard de Guertechin, Simon Pontié, and Élise Tasso. SIKE
channels: Zero-value side-channel attacks on sike. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022(3):264–289, Jun.
2022.

[DFG19] Luca De Feo and Steven D Galbraith. Seasign: compact isogeny signatures
from class group actions. In Advances in Cryptology–EUROCRYPT 2019:
38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part III 38, pages 759–789. Springer, 2019.

https://eprint.iacr.org/2022/904
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

24 Ready to SQI? Safety first!

[DFKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and
Benjamin Wesolowski. SQISign: compact post-quantum signatures from
quaternions and isogenies. In Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December
7–11, 2020, Proceedings, Part I 26, pages 64–93. Springer, 2020.

[DFLLW23] Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski.
New algorithms for the deuring correspondence. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
pages 659–690, Cham, 2023. Springer Nature Switzerland.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-dilithium: A
lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):238–268, 2018.

[DLRW23] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski. SQISignHD: New dimensions in cryptography. Cryptol-
ogy ePrint Archive, 2023.

[EPSV23] Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia
Veroni. Deuring for the people: Supersingular elliptic curves with pre-
scribed endomorphism ring in general characteristic. Cryptology ePrint
Archive, 2023.

[FFK+23] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP:
Scaling the CSI-FiSh. In Public-Key Cryptography–PKC 2023: 26th
IACR International Conference on Practice and Theory of Public-Key
Cryptography, Atlanta, GA, USA, May 7–10, 2023, Proceedings, Part I,
pages 345–375. Springer, 2023.

[Gal12] Steven D. Galbraith. Lattice basis reduction, page 347–365. Cambridge
University Press, 2012.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. A
testing methodology for side channel resistance. 2011.

[GLK21] Aymeric Genêt, Natacha LinarddeGuertechin, and Novak Kaluđerović.
Full key recovery side-channel attack against ephemeral sike on the cortex-
m4. In Shivam Bhasin and Fabrizio De Santis, editors, Constructive
Side-Channel Analysis and Secure Design, pages 228–254, Cham, 2021.
Springer International Publishing.

[GPS17] Steven D Galbraith, Christophe Petit, and Javier Silva. Identification
protocols and signature schemes based on supersingular isogeny problems.
In Advances in Cryptology–ASIACRYPT 2017: 23rd International Con-
ference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23,
pages 3–33. Springer, 2017.

[JY02] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International

25

Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Pa-
pers, volume 2523 of Lecture Notes in Computer Science, pages 291–302.
Springer, 2002.

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol.
On the quaternion-isogeny path problem. LMS Journal of Computation
and Mathematics, 17(A):418–432, 2014.

[KV10] Markus Kirschmer and John Voight. Algorithmic enumeration of ideal
classes for quaternion orders. SIAM Journal on Computing, 39(5):1714–
1747, 2010.

[Lag80] J.C Lagarias. Worst-case complexity bounds for algorithms in the theory
of integral quadratic forms. Journal of Algorithms, 1(2):142–186, 1980.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Miklós Lovász. Fac-
toring polynomials with rational coefficients. Mathematische Annalen,
261:515–534, 1982.

[Lon23] Patrick Longa. sqisign-ec23 (2023). https://github.com/SQISign/
sqisign-ec23, 2023.

[MCR19] Michael Meyer, Fabio Campos, and Steffen Reith. On lions and elligators:
An efficient constant-time implementation of csidh. In Jintai Ding and
Rainer Steinwandt, editors, Post-Quantum Cryptography, pages 307–325,
Cham, 2019. Springer International Publishing.

[Min10] Hermann Minkowski. Geometrie der zahlen. BG Teubner, 1910.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. A direct key recovery attack on SIDH. In Ad-
vances in Cryptology–EUROCRYPT 2023: 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part V, pages 448–471.
Springer, 2023.

[Nata] National Institute for Standards and Technology (NIST). Post-quantum
crypto standardization (2016), https://csrc.nist.gov/projects/
post-quantum-cryptography.

[Natb] National Institute for Standards and Technology (NIST). Post-quantum
crypto standardization (2016), https://csrc.nist.gov/projects/
pqc-dig-sig/standardization/call-for-proposals.

[OAYT19] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi.
(short paper) a faster constant-time algorithm of CSIDH keeping two
points. In Nuttapong Attrapadung and Takeshi Yagi, editors, Advances in
Information and Computer Security, pages 23–33, Cham, 2019. Springer
International Publishing.

[PCK+23] Dongjun Park, Minsig Choi, Gyusang Kim, Daehyeon Bae, Heeseok Kim,
and Seokhie Hong. Stealing keys from hardware wallets: A single trace
side-channel attack on elliptic curve scalar multiplication without profiling.
IEEE Access, 11:44578–44589, 2023.

https://github.com/SQISign/sqisign-ec23
https://github.com/SQISign/sqisign-ec23
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals

26 Ready to SQI? Safety first!

[Pei20] Chris Peikert. He gives c-sieves on the csidh. In Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–
14, 2020, Proceedings, Part II 30, pages 463–492. Springer, 2020.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-
channel attacks on masked lattice-based encryption. In Wieland Fischer
and Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 513–533, Cham, 2017. Springer International
Publishing.

[REB+22] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam
Chattopadhyay, and Sujoy Sinha Roy. Will you cross the threshold for me?
generic side-channel assisted chosen-ciphertext attacks on NTRU-based
kems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):722–761,
2022.

[RJB19] Prasanna Ravi, Bernhard Jungk, and Shivam Bhasin. Single trace elec-
tromagnetic side-channel attacks on fpga implementation of elliptic curve
cryptography. In 2019 Joint International Symposium on Electromag-
netic Compatibility, Sapporo and Asia-Pacific International Symposium
on Electromagnetic Compatibility (EMC Sapporo/APEMC), pages 1–4,
2019.

[Rob23] Damien Robert. Breaking sidh in polynomial time. In Advances in
Cryptology–EUROCRYPT 2023: 42nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part V, pages 472–503. Springer,
2023.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on cca-secure lattice-based PKE
and kems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335,
2020.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem
based on isogenies. IACR Cryptology ePrint Archive, 2006:145, 2006.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations of
Computer Science, pages 124–134, 1994.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484–1509, 1997.

[Sil09] Joseph H Silverman. The arithmetic of elliptic curves, volume 106.
Springer, 2009.

[SST04] Hisayoshi Sato, Daniel Schepers, and Tsuyoshi Takagi. Exact analysis of
montgomery multiplication. In Anne Canteaut and Kapalee Viswanathan,
editors, Progress in Cryptology - INDOCRYPT 2004, 5th International
Conference on Cryptology in India, Chennai, India, December 20-22,
2004, Proceedings, volume 3348 of Lecture Notes in Computer Science,
pages 290–304. Springer, 2004.

27

[Ste67] J Stein. Computational problems associated with racah algebra. Journal
of Computational Physics, 1(3):397–405, 1967.

[Val91] Brigitte Vallée. Gauss’ algorithm revisited. Journal of Algorithms,
12(4):556–572, 1991.

[Voi21] John Voight. Quaternion algebras. Springer Nature, 2021.

[XPR+22] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald, Wang
Yao, and Zhiming Zheng. Magnifying side-channel leakage of lattice-based
cryptosystems with chosen ciphertexts: The case study of kyber. IEEE
Transactions on Computers, 71(9):2163–2176, 2022.

[ZYD+20] F. Zhang, B. Yang, X. Dong, S. Guilley, Z. Liu, W. He, F. Zhang, and
K. Ren. Side-channel analysis and countermeasure design on arm-based
quantum-resistant SIKE. IEEE Transactions on Computers, 69(11):1681–
1693, nov 2020.

	Introduction
	Our contributions
	Organization of the paper

	Preliminaries
	Notation
	Supersingular elliptic curves
	Quaternion algebras and the Deuring correspondence
	KLPT and SQIsign
	Side-channel attacks
	Algorithms: Cornacchia and Euclid
	Lattices and Lagrange reduction

	Vulnerabilities of Cornacchia and retrieval of signing key
	Timing attack-resistant alternatives
	Constant-time half-GCD
	Lattice reduction

	Results
	Constant-time verification
	t-test to distinguish timing dependencies
	Performance results and choice of countermeasures

	Conclusion

