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Abstract. SNACKs are succinct non-interactive arguments of chain
knowledge. They allow for efficient and generic solutions to blockchain
light-client bootstrapping. Abusalah et al. construct SNACKs in the
random oracle model for any single-chain blockchain from any graph-
labeling proof of sequential work (PoSW) scheme. Their SNACK con-
struction is a PoSW-like protocol over the augmented blockchain.
Unlike single-chain blockchains, such as proof-of-work and proof-of-stake
blockchains, proof-of-space (PoSpace) blockchains are composed of two
chains: a canonical proof chain and a data chain. These two chains are
related using a signature scheme.
In this work, we construct PoSW-enabled SNACKs for any PoSpace
blockchain. Combined with the results of Abusalah et al., this gives the
first solution to light-client bootstrapping in PoSpace blockchains. The
space cost of our construction is two hash values in each augmented
PoSpace block. Generating SNACK proofs for a PoSpace blockchain is
identical to generating SNACK proofs for single-chain blockchains and
amounts to looking up a succinct number of augmented blocks.

1 Introduction

Consider a blockchain protocol Π, say Bitcoin or the Chia Network, and a
light client V, which is assumed to hold only minimal information about
Π, say its genesis block ψ. A bootstrapping protocol [BKLZ20, AFGK22]
for a blockchain allows such V to hold a commitment to its stable prefix.

A succinct non-interactive argument of chain knowledge (SNACK)
system is a computationally-sound proof system (P,V) that allows a
prover P to give a succinct non-interactive proof that convinces a ver-
ifier V that P knows a chain of certain weight. Crucially, the SNACK
proof is succinct, i.e., poly-logarithmic in the length of the blockchain.

In [AFGK22], secure bootstrapping is formalized and instantiated for
any blockchain protocol Π for which (1) we have a secure SNACK system
and (2) a natural and previously used assumption [BKLZ20] on the adver-
sarial mining power holds. This is captured in the (c, `, ε)-fork assumption,
which informally says that, except with probability ε, no adversary can
produce a fork containing ` consecutive blocks with more than a c-fraction
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of them being valid.1 Furthermore, Abusalah et al. [AFGK22] construct
SNACKs for single-chain blockchains, like Bitcoin, generically from any
graph-labeling proof of sequential work (PoSW) scheme assuming the
(c, `, ε)-fork assumption holds for such chains.

SNACKs for PoSpace Blockchains. In this paper, we study SNACKs for
PoSpace blockchains [PKF+18, CP19]. These blockchains are composed
of two chains in tandem: a proof chain and a data chain – see Fig. 2. Both
chains are bound by a signature scheme. The proof chain contains only
canonical data, such as (unique) proofs of space [DFKP15, AAC+17] and
verifiable-delay function [BBBF18] computations. The data chain con-
tains transactions and any arbitrary data the blockchain protocol allows.
The dual nature of these chains and the requirement that the proof chain
must remain canonical make designing SNACKs for such chains more
involved than their single-chain blockchain counterparts, say Bitcoin.

Contributions. In this work, we extend the framework of [AFGK22] and
construct SNACKs for any PoSpace blockchain from any graph-labeling
PoSW scheme. The cost of our construction is two hash values in each
augmented block, one in the augmented proof block, and one in the aug-
mented data block. Generating a SNACK proof is as efficient as generat-
ing a PoSW proof, which amounts to looking up a succinct2 number of
blocks.

(We mention that simply defining the PoSpace SNACK to be two
SNACK systems, one for the proof chain, and one for the data chain,
doesn’t result in a secure SNACK, and extra care needs to be exercised
in order to prove security of the SNACK and maintain the security of the
underlying PoSpace blockchain.)

Therefore, by the results of [AFGK22], by plugging in our PoSpace
SNACK construction into their generic bootstrapping protocol, we get, to
the best of our knowledge, the first solution to bootstrapping in PoSpace
blockchains that avoids setup assumptions. Our protocol, as outlined
above, is also practically efficient.3

1 This assumption was first introduced in [BKLZ20] in the PoW-blockchain setting
and adopted in [AFGK22] generically, i.e., without reference to the Sybil-mechanism
of the underlying blockchain protocol. Studying the (c, `, ε)-fork assumption in var-
ious blockchain protocols, and possibly deriving it from their underlying security
assumptions, is an interesting open problem that we don’t address in this work.

2 Depending on the PoSW scheme used, this number maybe O(t logn) where n is the
length of the blockchain and t a security parameter

3 SNACKs are on par with Flyclient in terms of practical efficiency [AFGK22].
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1.1 SNACK Systems

Consider a family of weighted DAGs Γ = (Γn = (Gn, Ωn))n∈N, where
Gn = ([n]0, En) is a DAG on [n]0 := {0, . . . , n} and Ωn : [n]0 → [0, 1] is a
weight function, i.e.,

∑n
i=0Ωn(i) = 1. We define an NP language LΓ,R,Com

parameterized by Γ , a position-binding commitment scheme Com, and a
polynomial-time relation R, which defines validity of labels of vertices in
Γ . An element (φ, n) ∈ LΓ,R,Com consists of a Com commitment φ to a
labeling of Gn that is valid with respect to R. A labeling of Gn is any
mapping L : [n]0 → {0, 1}λ.

A SNACK system (P,V) for LΓ,R,Com in a non-interactive argument
system satisfying completeness, (α, ε)-knowledge soundness, and succinct-
ness. Completeness guarantees that an honest P holding a witness for a
statement (φ, n) ∈ LΓ,R,Com makes V accept. For an α ∈ (0, 1], (α, ε)-
knowledge-soundness guarantees that from any convincing prover for a
statement (φ, n), one can extract, except with probability ε, an R-valid
labeling of a path P in Γn of weight at least α. Standard knowledge
soundness is recovered by setting α = 1. However, relaxing α to α < 1
allows for more efficient instantiations of SNACKs. Succinctness requires
that the proof size as well as its verification time are poly-logarithmic in
n and polynomial in the security parameter.

PoSW-Enabled SNACKs. The SNACK construction of [AFGK22]
works by carefully augmenting the labels of the graph underlying a (graph-
labeling) Proof of Sequential Work (PoSW) with the blockchain data in
a way that allows leveraging the security and efficiency guarantees of the
PoSW scheme to the SNACK.

A PoSW scheme (P,V) is an (interactive) proof system in which P,
on common input an integer parameter n and a statement χ sampled
by V, computes a proof π that convinces the verifier that n sequential
computational steps have been performed since χ was received.

All known PoSW schemes [MMV13, CP18, AKK+19, DLM19, AFGK22,
AC23] are based on a random-oracle induced labeling of a particular
weighted DAG (Gn = ([n]0, EG), Ωn) for a weight function Ωn on [n]0.4

In particular, upon receiving a statement χ from V, P uses χ to re-
fresh a random oracle τ : {0, 1}∗ → {0, 1}λ to compute a labeling L :
[n]0 → {0, 1}λ of Gn, where the label of vertex i ∈ [n]0 is defined as
L(i) := τ(χ, i, L(parents(i)), where parents(i) denotes the parents of i in
Gn in any fixed ordering. Then P sends a vector commitment of L to V,

4 In the literature, where Ωn is not explicitly defined, one can think of it as the uniform
distribution on [n]0.
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which, in turn, sends challenges to P sampled according to Ωn. P then
replies by sending, among other things, commitment openings to these
challenges. Finally V accepts or rejects. Such an interactive protocol can
be made non-interactive in the ROM by applying the Fiat-Shamir trans-
form [FS87].

Completeness guarantees that honest provers make the verifier ac-
cept. For α ∈ (0, 1], (α, ε)-knowledge soundness guarantees that from any
PoSW successful prover, except with probability ε, one can extract a se-
quentially labeled path P in Gn whose vertices have total weight ≥ α.
For uniform Ωn, this translates to extracting a sequential path of length
≥ α · n. Succinctness guarantees that proofs are small and verify fast.

We view blockchains as labeled chain graphs, where a chain graph
Hn = ([n]0, EH) is a DAG with edge set EH ⊇ {(i − 1, i) : i ∈ [n]},
i.e., the edge set contains the line graph with potentially more edges.
Hence, we use the terms block and label interchangeably. Furthermore,
we assume that a blockchain is equipped with a polynomial-time relation
R that checks validity, i.e., on input a label/block and the labels of its
parents, R outputs a bit indicating validity of the block. For example, the
edge set of the underlying chain graph of fixed-difficulty Bitcoin is simply
{(i − 1, i) : i ∈ [n]}, and R takes the ith label and the label of its single
parent i−1, and outputs 1 if and only if the proof of work checks out. The
generality of the notion of a chain graph, which allows for extra edges,
is well suited for other blockchains for which the validity of a block may
require checking many parent blocks, rather than the immediate parent.

The PoSW-enabled SNACK construction of [AFGK22] works by first
defining an augmented chain graph Kn := ([n]0, EG ∪ EH) where EG is
the edge sets of the underlying chain graph Gn of a PoSW scheme (P,V),
and EH is the edge set of the chain graph underlying the blockchain in
question. An illustration of example graphs is given in Fig. 1. Then, an
augmented mining algorithm that labels Kn by infusing PoSW-related
data into blockchain labels is defined. The validity of labels in Kn is
now an augmented validity relation R̃, which in addition to using R to
check blockchain block validity, also checks the consistency of the added
PoSW data. The augmentation is carefully done such that running (the
Fiat-Shamir-transformed non-interactive counterpart of) (P,V) over the
augmented labeled Kn gives rise to a SNACK system for the chain com-
mitment language LΓ,R̃,Com. Knowledge-soundness of the SNACK follows
from that of the PoSW. As we rely on graph-labeling PoSW schemes in
the random oracle model, our SNACKs are also secure in the random
oracle model.
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For blockchain augmentation to work, the blockchain protocol needs
to allow it, i.e., the blockchain uses an augmented mining protocol. The
cost of such augmentation is minimal: the edge structure of the blockchain
changes from EH to EK , and each augmented block contains an extra λ-
bit hash value, say a 256 bit value. The benefit of this augmentation is
that a SNACK system for the augmented blockchain is as efficient as its
underlying PoSW scheme. To put things in perspective, a full node miner
holding the augmented blockchain generates a SNACK proof by simply
looking up a poly-logarithmic number of blocks and sends them to the
verifier, which in turn, simply checks their consistency

It is instructive to stress that the SNACK construction works for
any graph-labeling PoSW scheme whose underlying graph in a chain
graph. Hence, if we instantiate the SNACK with the skiplist PoSW from
[AFGK22], and the fixed-difficulty Bitcoin whose chain graph has edge
set {(i − 1, i) : i ∈ [n]}, then the SNACK proof size is O(t · log2 n)
blocks, where t is a security parameter. If we use a variant of the Cohen-
Pietrzak [CP18] PoSW as given in [AFGK22], then the proof size drops
to O(t · log n) blocks. In this work, we opt for the skiplist PoSW in our
illustrations simply because of its symmetric graph structure.

1.2 Proof of Space Blockchains

We are aware of two PoSpace blockchains: SpaceMint [PKF+18] and
Chia [CP19] and our treatment covers them both.

Unlike blockchains based on either proofs of work (PoW) or proofs of
stake (PoS), proofs of space (PoSpace) based blockchains are composed
of two chains: a canonical proof chain and a data chain. The proof chain
contains unique proofs and hence is canonical. The data chain contains
transactions and any arbitrary data that the blockchain permits. The
data chain is bound to the proof chain by means of digital signatures.

Without loss of generality, we can view a PoSpace blockchain as a
tuple of labeled chains whose underlying DAG is Bn = (Cn, Dn) where
Cn = ([n]0, EC) and Dn = ([n]0, ED) are the chain graphs underlying the
canonical proof and data chains, respectively. Both Cn and Dn are chain
graphs, and we stress that EC and ED need not be equal. Furthermore,
Cn is bound to Dn by a digital signature scheme SIG = (Gen, Sign,Vrfy)
in a simple manner that we explain shortly below.

Example chains graphs for Cn, Dn, and other graphs that we will
shortly be discussing are shown in Fig. 2.

Let (bi := (ci, di))i∈[n]0 denote the labels of these chains, where ci and
di denote the ith labels of the canonical and data blocks, respectively.
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Blockchain H8
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0

PoSW graph G8
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Super-graph K8

g1
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h5
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h6

g7
h7

g8
h8

Fig. 1. Example graphs H8, G8,K8, where G8 is the chain graph underlying the PoSW
scheme of [AFGK22]. The labeling (ki)i∈[8]0 of K8 is computed such that ki = (gi, hi)
where gi is PoSW-related and essentially contains a hash of all parent labels in K8,
and hi is a standard blockchain block, where additionally the publicly verifiable proof
in it, say PoW in Bitcoin, must depend on all parent labels in K8 as well as gi. The
augmented blockchain is now the labeled K8, and therefore, contains in its ith block,
compared to the initial non-augmented blockchain, an additional PoSW-related data
gi, which is typically small, say 256 bits. At this price of augmentation, one can get
SNACKs as efficient as PoSW schemes.

0C8 : 1 2 3 4 5 6 7 8

0D8 : 1 2 3 4 5 6 7 8

Fig. 2. Example DAGs C8 = ([8]0, EC) and D8 = ([8]0, ED).

Although our treatment allows for arbitrary labeling, ci and di, for sim-
plicity of exposition, can be assumed to have the following format (which
is faithful to existing PoSpace blockchains):

– ci = (i, πi) where πi is a canonical computation that depends on
the labels of parent proof blocks (ci1 , . . . , ciq) where (i1, . . . , iq) =
parentsC(i). For simplicity, we assume that π = (δi, (VDFiv,VDFip))

where δi is a proof of space [DFKP15, AAC+17] and (VDFiv,VDFip) is
a verifiable delay function [BBBF18] computation/proof pair.

– di = (si, datai) where si ← Signsk(di1‖ . . . ‖dip‖datai‖ci) is a signature
on the parents data blocks di1‖ . . . ‖dip where (i1, . . . , ip) = parentsD(i),
the current data datai, and the current proof block ci.
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Fig. 3. Example of an insecure design: the DAG U8 = ([8]0, EU := EC ∪ ED) is the
union DAG of C8 = ([8]0, EC) and D8 = ([8]0, ED) from Fig. 2, and K8 augments U8

by the PoSW G8 from Fig. 1.

PoSW-Enabled SNACKs for PoSpace Blockchains. Constructing
SNACKs for PoSpace blockchains is more subtle than for PoW or PoS
blockchains due to the requirement that ci must be canonical, a condition
which is crucial for the security of PoSpace blockchains [PKF+18, CP19].
So, simply viewing a PoSpace blockchain as a single chain graph, call
it Un, which is the union of both Cn and Dn, i.e., Un = ([n]0, EU :=
EC ∪ ED), and then applying the generic SNACK construction outlined
above to Un, would not work. See Fig. 3 for illustrative graphs of this
construction.

The reason this natural construction doesn’t work is that it violates
the canonical nature of the proof chain: in this case, the augmented chain
graph is Kn = ([n]0, EK := EU ∪ EG) and its ith augmented label is
ki = (gi, ui), where gi is defined by the underlying PoSW scheme, and
depends on all parent labels kj in Kn, and ui := (ci, di), where ci is the
proof block and di the data block. For SNACK’s security [AFGK22], the
publicly verifiable proofs in ci must depend on gi, which itself depends
on (grindable) transaction data contained in di, and hence the canonical
nature of the proof chain would be lost.

The insecurity of this SNACK construction suggests the following
alternative idea: independently of Dn, construct a SNACK generically
over Cn which maintains the canonical nature of Cn. However, unless
another SNACK over Dn is executed, no sequentiality guarantees can be
concluded on the data chain. And by symmetry, having a SNACK on Dn

alone doesn’t imply sequentiality on Cn. Therefore, to ensure sequentiality
on the (labeled) PoSpace blockchain, one has to ensure sequentiality on
both (labeled) Cn and Dn simultaneously.

Our SNACK. We construct a SNACK for Bn = (Cn, Dn), by construct-
ing two SNACKs simultaneously, one for Cn, call it CS, and one for the
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data chain Dn, call it DS. Both CS and DS are generic PoSW-enabled
constructions following the blueprint of [AFGK22]. They also satisfy:

1. CS and DS both use the same underlying PoSW scheme PoSW
2. PoSW uses a deterministic vector commitment Com, and
3. CS is embedded into DS.

The final PoSpace SNACK is simply DS. The soundness guarantees of
DS is that from any convincing prover, we can extract an α-valid path
(P,LP ) where LP = ((ci1 , di1), . . . , (cik , dim)) is such that (cij , dij ) is a
valid blockchain block and that (ci1 , . . . , cim) and (di1 , . . . , dim) are both
sequentially computed. These are the guarantees that a SNACK should
provide for a blockchain: sequentiality of its blocks.

Let’s justify the design choice made above. Note that assuming the
same PoSW chain graph in CS and DS simplifies the final construction,
and requiring Com to be deterministic is necessary to preserve the canon-
ical nature of the augmented proof chain.5 To see the necessity of em-
bedding CS into DS, let’s see what guarantees one would get from these
SNACKs individually, and why these guarantees falls short of our goal of
ensuring the sequentiality of the combined PoSpace blockchain blocks.

From α-valid paths (Pc, LPc) and (Pd, LPd) extracted from CS and DS
respectively, we would like to construct an α-valid path (P,LP ) as above.
However, as it may be the case that Pc 6= Pd, i.e., Pc, Pd may not coincide,
constructing (P,LP ) with weight α out of (Pc, LPc) and (Pd, LPd) may not
be possible.

A natural first idea towards ensuring Pc = Pd would be to fix the same
PoSW scheme in both CS and DS. That is, we augment both Cn and Dn

with the same PoSW chain graph Gn to arrive at augmented chain graphs
Kc
n and Kd

n, respectively. However, this doesn’t mean that Kc
n = Kd

n as Cn
need not be equal to Dn, and hence, the extracted paths may be such that
Pc 6= Pd. But as we will show in Lemma 2 below, in any PoSW-enabled
SNACK, over an augmented chain graph, say Kc

n = ([n]0, EK = EC∪EG),
any extractable α-valid path (Pc, LPc) is such that Pc lies in Gn. Still, that
Pc and Pd lie in Gn doesn’t mean they coincide, but now we are a step
closer towards ensuring they do.

To be able to compose an α-valid path (P,LP ) from α-valid paths
(Pc, LPc) and (Pd, LPd), not only we want to ensure that Pc = Pd, but
also that their labels are valid and bound, i.e., let LPc = (ci1 , . . . , cim) and
LPd = (di1 , . . . , dim), then it must hold that (cij , dij ) is a valid blockchain

5 We remark that all PoSW schemes in the ROM [MMV13, CP18, AKK+19, DLM19,
AFGK22, AC23] use deterministic Com anyway.

8



block including that dij contains a signature on cij . Recall that SIG binds
Cn to Dn. Now because cij is needed to validate dij , DS can’t simply be
independent of CS.

To resolve all issues at once, that is, to make sure Pc = Pd and that
LP := ((ci1 , di1), . . . , (cim , dim)) is valid, where P := Pc = Pd, we require
that CS and DS use the same underlying PoSW scheme, and furthermore,
embed CS into DS. By embedding the augmented labeled proof chain Kc

n

into the augmented labeled data chainKd
n, and relying on Lemma 2 below,

we ensure that the same labeled path in Kd
n contains a valid labeling in

Kc
n at the same time.

The cost of our construction is the same as that of single-chain blockchains
[AFGK22], as recalled in Sect. 1.1, except that we store in the augmented
blockchain two, instead of one, PoSW-related data: one in each augmented
proof chain block and one in each augmented data chain block. Each
PoSW-related data is a λ-bit hash value, say 256 bits.

In Sect. 3.3, we present the PoSpace SNACK construction and prove
its security.

2 Preliminaries

In this section, we review the SNACK-related definitions from [AFGK22].

Notation. For a directed acyclic graph (DAG)G = (V,E) on n+1 vertices,
we always number its vertices V = [n]0 in topological order and often
write Gn to make this explicit. For v ∈ [n]0, we denote the parent vertices
of v in G by parentsG(v), and their number (i.e., the indegree of v) by
degG(v); thus, parentsG(v) = (v1, . . . , vdegG(v)). We also let deg(G) :=
maxv∈V {degG(v)}. We drop the subscript G when it’s clear from context.

Graph labeling. A chain graph is a DAG on [n]0 vertices such that its
edge set E contains a path P := (0, . . . , n) which goes through all [n]0.

Definition 1 (Chain graphs). A DAG Gn = ([n]0, En) is a chain graph
if En ⊇ {(i− 1, i) : i ∈ [n]}.

A DAG is weighted if its vertices have arbitrary weights that sum to 1.
In SNACK constructions, the verifier’s challenges are sampled according
to the distribution induced by the weights of the underlying DAG.

Definition 2 (Weighted DAGs). We call Γn = (Gn, Ωn) a weighted
DAG if Gn = ([n]0, En) is a DAG and Ωn : [n]0 → [0, 1] is a function s.t.
Ωn([n]0) = 1, where for S ⊆ [n]0, Ωn(S) :=

∑
s∈S Ωn(s).
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SNACK constructions are over labeled chain graphs. An augmented
data corresponding to arbitrary blockchain data is infused into the random-
oracle-based labeling of chain graphs that underlie SNACKs.

Definition 3 (Oracle-based graph labeling). Let Gn = ([n]0, En) be
a DAG and τ = (τi)i∈[n]0 be a tuple of oracles, with each τi : {0, 1}∗ →
{0, 1}λ. For any X = (x0, . . . , xn) ∈ ({0, 1}∗)n+1 the X-augmented τ -
labeling Lτ : [n]0 → {0, 1}∗ of Gn is recursively defined as

Lτ (i) :=

{
τi(ε)‖xi if parents(i) = ∅,
τi
(
Lτ (parents(i))

)
‖xi otherwise,

(1)

where Lτ (parents(i)) := Lτ (i1)‖ · · · ‖Lτ (ik) for (i1, . . . , ik) := parents(i).
If X = (ε, . . . , ε), we call Lτ the τ -labeling of Gn.

SNACKs. A valid path is a labeled path whose labels are locally valid
according to some poly-time relation R and globally consistent as in (2).

Definition 4 (Valid paths). Let Gn = ([n]0, En) be a DAG, and R ⊆
N0 × ({0, 1}∗)2 a relation. Furthermore, let P be a path in Gn, LP a
labeling of P , and (pv)v∈P ∈ ({0, 1}∗)|P | a |P |-tuple of bitstrings with
pv = (pv[1], . . . , pv[deg(v)]). We say that (P,LP , (pv)v∈P ) is an R-valid
path in Gn if ∀v ∈ P with (v1, . . . , vdeg(v)) := parents(v), we have

R
(
v, LP (v), pv

)
= 1 and ∀i ∈ [deg(v)] if vi ∈ P then pv[i] = LP (vi). (2)

For a weighted DAG Γn = (Gn = ([n]0, En), Ωn), we say (P,LP , (pv)v∈P )
is (α,R)-valid in Γn if in addition Ωn(P ) ≥ α.

The language over which SNACKs are defined LΓ,R,Com is defined via
a parameter-dependent ternary polynomial-time (PT) relation RΓ,R,Com
over tuples (prm, η, w), where prm is generated by a parameter generation
G algorithm. A statement η = (φ, n) in LΓ,R,Com consists of a position-
binding Com commitment φ to an R-valid labeling of the graph Γn ∈ Γ .
The labeling together with an opening of φ constitutes a witness w for η.

Definition 5 (Chain commitment language). Let Γ = (Γn)n≥0 be a
family of weighted DAGs and Com a vector commitment scheme, define

R(α)
Γ,R,Com :=

{(
prm, η=(φ, n),
w=(P,LP , (pi)i∈P , ρ)

) :
(P,LP , (pi)i∈P ) is (α,R)-valid in
Γn ∧ Com.ver(pp, φ, LP , P, ρ) = 1

}
(3)

where R ⊆ N0 × ({0, 1}∗)2 is a PT relation that depends on prm. We

let RΓ,R,Com := R(1)
Γ,R,Com and LΓ,R,Com denote the language defined by

RΓ,R,Com.
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A SNACK system (P,V) for LΓ,R,Com in a non-interactive argument
system satisfying completeness, (α, ε)-knowledge soundness, and succinct-
ness. Completeness guarantees that an honest P holding a witness for a
statement (φ, n) ∈ LΓ,R,Com makes V accept. For an α ∈ (0, 1], (α, ε)-
knowledge-soundness guarantees that from any convincing prover for a
statement (φ, n) one can extract, except with probability ε, an R-valid
labeling of a path P in Γn of weight at least α. In our SNACK construc-
tions, due to the use of random-oracle graph-labeling, the labels of R will
be guaranteed to be computed sequentially. Succinctness requires that the
proof size as well as its verification time are poly-logarithmic in n and
polynomial in the security parameter.

Definition 6 (SNACK). A tuple of PPT algorithms (P,V) is a succinct
non-interactive argument of chain knowledge (SNACK) for LΓ,R,Com with
parameter generator G from Def. 5 if the following properties hold:

Completeness: ∀λ ∈ N, prm← G(1λ), η, w ∈ {0, 1}∗ with (prm, η, w) ∈
RΓ,R,Com, we have Pr

[
π ← P(prm, η, w) : V(prm, η, π) = 1

]
= 1.

(α, ε)-Knowledge soundness: For every PPT prover P̃ there exists a
PPT extractor E such that

Pr

prm← G(1λ); r
$← {0, 1}poly(λ)(

η, π
)

:= P̃(prm; r)
w′ ← E(prm, r)

:
V(prm, η, π) = 1 ∧

R(α)
Γ,R,Com

(
prm, η, w′

)
= 0

 ≤ ε(λ) ,

(4)

with R(α)
Γ,R,Com from (3).

Succinctness: For all prm ← G(1λ), (prm, η, w) ∈ RΓ,R,Com and π ←
P(n, tη, w), we have |π| ≤ poly(λ, log n), P runs in time poly(λ, n),
and V runs in time poly(λ, log n).

Our SNACK construction relies on augmented graph-labeling PoSWs.
Informally, an (augmented graph-labeling) PoSW scheme PoSW := (P
:= (P.label,P.open),V) is an (interactive) proof system in which P, on
common input a weighted DAG (Gn, Ωn), and a statement χ sampled by
V, computes a proof that convinces the verifier that a certain number
of sequential computational steps with weight 1 according to Ωn have
been performed since χ was received. In particular, P.label computes an
augmented τ -labeling L of Gn and sends a vector commitment of L to
V, which sends challenges to P, where P.open replies by giving, among
other things, commitment openings to these challenges. Finally V accepts
or rejects. (α, ε)-knowledge soundness of PoSW guarantees that from any
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convincing prover, a sequentially-labeled path of total weight ≥ α, can
be extracted except with probability ε.

The formal definition of augmented graph-labeling PoSW schemes
utilizes the notion of sequential weights of oracle queries.

Definition 7 (Sequential weight). Let Q = (Q1, . . . , Q`) be a sequence
of parallel queries to an oracle τ = (τi)i∈[n]0. We define the sequential
weight of Q with respect to a weight function Ωn : [n]0 → [0, 1] as

Ωseq(Q) :=
∑`

i=1 max
{
Ωn(j) : Qi contains a query to τj

}
.

Note that if Ωn is uniform, i.e., ∀i ∈ [n]0 : Ωn(i) = 1
n+1 , then Ωseq(Q) =

`
n+1 .

Definition 8 (Augmented Graph-Labeling PoSW). Let Γ = (Γn =
(Gn, Ωn))n∈N be a family of weighted DAGs such that for all n, Gn has a
unique sink n. A pair of PPT algorithms (P := (P0,P1),V := (V0,V1,V2)),
with access to an oracle τ = (τi)i∈N0 is an augmented (oracle-based)
graph-labeling proof of sequential work (GL-PoSW) if it instantiates the
template described in Fig. 4 by specifying a vector commitment scheme
Com = (setup, commit, open, ver) and subroutines PoSW.label, PoSW.open
and PoSW.ver; and it satisfies the following properties:

Completeness: For all n, λ ∈ N it holds that

Pr
[
(outP, outV)← 〈P(1n)↔ V(1λ, n)〉 : outV = 1

]
= 1 .

(α, ε)-Soundness: For all λ ∈ N and every PPT adversary (P̃′, P̃ =
(P̃0, P̃1)) s.t. P̃ makes a sequence Q of parallel queries to τ = (τj(·))j∈[n]0

of sequential weight Ωseq(Q) < α, it holds that

Pr

[
(n, st)← P̃′(1λ)

(outP̃, outV)← 〈P̃(st)↔ V(1λ, n)〉
: outV = 1

]
≤ ε(λ) .

Succinctness: The size of the transcript |〈P(1n)↔ V(1λ, n)〉| as a func-
tion of λ and n is upper-bounded by poly(λ, log n). The running time
of P is poly(λ, n) and that of V is poly(λ, log n).

We say that (P,V) is (α, ε)-knowledge-sound we additionally have:

12



Verifier V = (V0,V1,V2):

Stage V0: On input (1λ, n):

1. χ
$← {0, 1}λ

2. pp← Com.setup(1λ)

3. send prm := (χ, pp) to P0

Stage V1: On input φL:

1. ∀i ∈ [t] do ιi
$← Ωn

2. send ι = (ιi)
t
i=1 to P1

Stage V2: On input (γi = (oi, ρi))
t
i=1:

1. ∀i ∈ [t] do

(a) b
(1)
i := PoSW.ver(χ, ιi, oi)

(b) b
(2)
i := Com.ver(pp, φL, L(ιi), ιi, ρi)

2. output
∧t
i=1(b

(1)
i ∧ b

(2)
i )

Prover P = (P0,P1) :

Stage P0: On input 1n and prm := (χ, pp):

1. L := PoSW.label(χ, 1n)

Use χ to sample oracles τ := (τi(·))i∈[n]0
and compute a (possibly augmented) τ -

labeling L of Gn satisfying Def. 3.

2. (φL, aux)← Com.commit(pp, L)

3. send φL to V1

Stage P1: On input ι = (ιi)
t
i=1:

1. ∀i ∈ [t] do

(a) oi ← PoSW.open(χ, pp, φL, aux, L, ιi)

We assume that oi contains L(ιi)

(b) ρi ← Com.open(pp, φL, aux, L(ιi), ιi)

(c) γi := (oi, ρi)

2. send (γ1, . . . , γt) to V2

Fig. 4. The template of a GL-PoSW, parametrized by a family of weighted DAGs
(Γn)n∈N, a vector commitment scheme Com and the number of challenges t.

(α, ε)-Knowledge soundness: There exists a PPT extractor E such that
for every PPT adversary (P̃′, P̃ = (P̃0, P̃1)) we have

Pr


r

$← {0, 1}poly(λ);

(n, st) := P̃′(1λ; r);

(outP̃, outV)←
〈
P̃(st; r)↔ V(n)

〉
(1λ);

w′ ← EP̃(1λ, r)

:

outV = 1 ∧
R(α)
Γ,R,Com

(
prm,

(outP̃0
, n), w′

)
= 0

 ≤ ε(λ) ,

where prm is as sampled by V0, outP̃0
is the output φL of P̃0 and

relation R(α)
Γ,R,Com is as in (3) with R := Rχ defined as

R
(
i, L(i), pi

)
= 1 iff L(i) = τi(pi)‖xi for some xi ∈ {0, 1}∗ . (5)

The connection between SNACKs and PoSW schemes is captured by
the following lemma.

Lemma 1 ([AFGK22]). Let Π be an (interactive) (α, ε)-knowledge-
sound GL-PoSW based on a family of weighted DAGs Γ and a commit-
ment scheme Com. Then applying the Fiat-Shamir [FS87] transformation

Π results in an (α, ε)-knowledge-sound SNACK system for R(α)
Γ,R,Com when

R is defined as in (5).
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3 SNACKs for Proof-of-Space Blockchains

We extend the PoSW-enabled SNACK construction of [AFGK22] to the
context of PoSpace blockchains. Our construction in a nutshell follows
the simple outline of (1) defining an appropriate DAG (2) labeling it and
(3) running a PoSW-like protocol over it.

3.1 Proof-of-Space Blockchains

We are aware of two PoSpace blockchains: SpaceMint [PKF+18] and
Chia [CP19] and our treatment covers them both.

Unlike blockchains based on either proofs of work (PoW) or proofs of
stake (PoS), proofs of space (PoSpace) based blockchains are composed
of two chains: a canonical proof chain and a data chain. The proof chain
contains unique proofs and hence is canonical. The data chain contains
transactions and any arbitrary data that the blockchain permits. The
data chain is bound to the proof chain by means of digital signatures.

Without loss of generality we can view a PoSpace blockchain as a
tuple of labeled chains whose underlying DAG is Bn = (Cn, Dn) where
Cn = ([n]0, EC) and Dn = ([n]0, ED) are the chain graphs underlying the
canonical proof and data chains, respectively. Both Cn and Dn are chain
graphs in the sense of Def. 1, and we stress that EC and ED need not
be equal. Furthermore, Cn is bound to Dn by a digital signature scheme
SIG = (Gen,Sign,Vrfy) in a simple manner that we explain shortly below.
Example chain graphs for Cn, Dn are shown in Fig. 2.

We view blockchain mining as the process of labeling the vertices of
these chains. We let (bi := (ci, di))i∈[n]0 denote the labels of these chains,
where ci and di denote the ith labels of the canonical and data blocks,
respectively. Although our treatment allows for arbitrary labeling, ci and
di, for simplicity of exposition, can be assumed to have the following
format (which is faithful to existing PoSpace blockchains):

– ci = (i, πi) where πi is a canonical computation that depends on
the labels of parent proof blocks (ci1 , . . . , ciq) where (i1, . . . , iq) =
parentsC(i). For simplicity, we assume that π = (δi, (VDFiv,VDFip))

where δi is a proof of space [DFKP15, AAC+17] and (VDFiv,VDFip) is
a verifiable delay function [BBBF18] computation/proof pair.

– di = (si, datai) where si ← Signsk(di1‖ . . . ‖dip‖datai‖ci) is a signature
on the parents data blocks di1‖ . . . ‖dip where (i1, . . . , ip) = parentsD(i),
the current data datai, and the current proof block ci.
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These simplifying assumptions are without loss of generality. For ex-
ample, in both Chia and SpaceMint, πi contains a unique PoSpace δi.
The PoSpace challenge chali for δi is uniquely determined by the labels of
its parents parentsC(i). The value of δi is defined by chali and the public
key pk associated with the signing key sk of SIG. In Chia, πi additionally
contains (VDFiv,VDFip) where VDFiv is a verifiable delay function evalua-

tion on input xi for a time parameter ti and VDFip is a unique proof of

correctness of VDFiv; both xi and ti are uniquely defined by parentsC(i).6

3.2 SNACKs for PoSpace Blockchains: An Overview

Constructing SNACKs for PoSpace blockchains is more subtle than for
PoW blockchains, mainly due to the requirement that proof chain blocks
must remain canonical. That the proof chain must be canonical (non-
grindable) is crucial for the security of PoSpace blockchains [PKF+18,
CP19]. In Sect. A, we give an intuition on why proofs in PoSpace blockchains
must remain canonical.

We give here a high-level overview of the SNACK construction of
[AFGK22]. Let Hn = ([n]0, EH) be the underlying chain graph of the
blockchain in question and Gn = ([n]0, EG) the chain graph of any (graph-
labeling) PoSW scheme. Then, the SNACK construction works by first
defining an augmented chain graph Kn = ([n]0, EK = EH ∪ EG) whose
ith augmented label is ki = (gi, hi) where gi is defined by the underlying
PoSW scheme and hi contains the actual content of the block includ-
ing the publicly verifiable (say PoW) proof πi. The SNACK then would
essentially be a non-interactive augmented PoSW on this labeled Kn.
The (α, ε)-knowledge soundness guarantees imply that from any success-
ful prover, we can extract, except with probability ε, an (α,R)-valid path
(P,LP , (pv)v∈P ) as defined in Def. 4, such that the labels of LP are se-
quentially computed and have total weight α.

For notational simplicity, we refer to (α,R)-valid paths (P,LP , (pv)v∈P )
by (P,LP ), and when R is either clear from the context or irrelevant for
the discussion, we call an (α,R)-valid path, α-valid.

Our SNACK. We construct a SNACK for Bn = (Cn, Dn), by construct-
ing two SNACKs simultaneously, one for Cn, call it CS, and one for the

6 In fact, in Chia, the pair (VDFiv,VDF
i
p) is a pair of tuples, i.e., VDFiv = (yi1 , . . . , yik )

and VDFip = (ρi1 , . . . , ρik ) where (yij , ρij ) is a VDF evaluation/proof pair on a
challenge and time parameter pair (xij , tij ), which is uniquely defined by the proof
chain so far (c0, . . . , ci−1).
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data chain Dn, call it DS. Both CS and DS are generic PoSW-enabled
constructions following the blueprint of [AFGK22]. They also satisfy:

1. CS and DS both use PoSW, i.e., the same underlying PoSW scheme
2. PoSW uses a deterministic Com, and
3. CS is embedded into DS.

The final PoSpace SNACK is simply DS. The soundness guarantees of
DS is that from any convincing prover, we can extract an α-valid path
(P,LP ) where LP = ((ci1 , di1), . . . , (cik , dim)) is such that (cij , dij ) is a
valid blockchain block and that (ci1 , . . . , cim) and (di1 , . . . , dim) are both
sequentially computed. These are the guarantees that a SNACK should
provide for a blockchain: sequentiality of its blocks.

Let’s justify the design choice made above. Note that assuming the
same PoSW chain graph in CS and DS simplifies the final construction,
and requiring Com to be deterministic is necessary to preserve the canon-
ical nature of the augmented proof chain.7 To see the necessity of em-
bedding CS into DS, let’s see what guarantees one would get from these
SNACKs individually, and why these guarantees falls short of our goal of
ensuring the sequentiality of the combined PoSpace blockchain blocks.

From α-valid paths (Pc, LPc) and (Pd, LPd) extracted from CS and DS
respectively, we would like to construct an α-valid path (P,LP ) as above.
However, as it may be the case that Pc 6= Pd, i.e., Pc, Pd may not coincide,
constructing (P,LP ) with weight α out of (Pc, LPc) and (Pd, LPd) may not
be possible.

A natural first idea towards ensuring Pc = Pd would be to fix the same
PoSW scheme in both CS and DS. That is, we augment both Cn and Dn

with the same PoSW chain graph Gn to arrive at augmented chain graphs
Kc
n and Kd

n, respectively. However, this doesn’t mean that Kc
n = Kd

n as Cn
need not be equal to Dn, and hence, the extracted paths may be such that
Pc 6= Pd. But as we will show in Lemma 2 below, in any PoSW-enabled
SNACK, over an augmented chain graph, say Kc

n = ([n]0, EK = EC∪EG),
any extractable α-valid path (Pc, LPc) is such that Pc lies in Gn. Still, that
Pc and Pd lie in Gn doesn’t mean they coincide, but now we are a step
closer towards ensuring they do.

To be able to compose an α-valid path (P,LP ) from α-valid paths
(Pc, LPc) and (Pd, LPd), not only we want to ensure that Pc = Pd, but
also that their labels are valid and bound, i.e., let LPc = (ci1 , . . . , cim) and
LPd = (di1 , . . . , dim), then it must hold that (cij , dij ) is a valid blockchain

7 We remark that all PoSW schemes in the ROM [MMV13, CP18, AKK+19, DLM19,
AFGK22, AC23] use deterministic Com anyway.
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block including that dij contains a signature on cij . Recall that SIG binds
Cn to Dn. Now because cij is needed to validate dij , DS can’t simply be
independent of CS.

To resolve all issues at once, that is, to make sure Pc = Pd and that
LP := ((ci1 , di1), . . . , (cim , dim)) is valid, where P := Pc = Pd, we require
that CS and DS use the same underlying PoSW scheme, and furthermore,
embed CS into DS. By embedding the augmented labeled proof chain Kc

n

into the augmented labeled data chainKd
n, and relying on Lemma 2 below,

we ensure that the same labeled path in Kd
n contains a valid labeling in

Kc
n at the same time.

3.3 SNACK for PoSpace Blockchains: The Main Construction

For simplicity, fix an integer n and let PoSW be any (graph-labeling)
PoSW scheme and Γn = (Gn = ([n]0, EG), Ωn) its underlying weighted
chain graph, where Gn is a chain graph and Ωn : [n]0 → [0, 1] s.t.
Ωn([n]0) = 1 is a weight function. We will use the PoSW from [AKK+19,
AFGK22] in our illustrative examples. Its underlying DAG is depicted
in Fig. 1. (We emphasize the our SNACK construction works for any
graph-labeling PoSW scheme whose underlying graph is a chain graph.)

Furthermore, let Bn = (Cn, Dn) be a PoSpace blockchain with ψ
being its genesis block, and Rcψ and Rdψ be the polynomial-time validity
relations for the (labeled) proof and data chains, respectively. That is, let
(i1, . . . , ip) := parentsC(i), then

Rcψ(i, ci, (ci1 , . . . , cip)) = 1 (6)

iff ci is a valid proof chain block, and for (i1, . . . , iq) := parentsD(i):

Rdψ(i, (ci, di := (si, datai)), (di1 , . . . , diq)) = 1 (7)

iff di is a valid data chain block. In particular, (7) implies that

Vrfypk(di1‖ . . . ‖diq‖datai‖ci, si) = 1 . (8)

The validity relation for Bn is simply the relation that checks that both
(6) and (7) hold simultaneously. These validity relations are blockchain
specific and they can be augmented or redefined to suite the specific
instantiation of the PoSpace blockchain in question.
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Fig. 5. Example Kc
8 and Kd

8 defined in (9) and (10) where Cn and Dn are from Fig. 2
and G8 is from Fig. 1. CS and DS are w.r.t. Kc

8 and Kd
8 , respectively. The dashed

arrows indicate the labels of the source are embedded into the labels of the target. The
labels of these graphs are computed by SInit and SMine of Fig. 6.

Augmented Blockchains. We define augmented chain graphs Kc
n and

Kd
n that respectively underlie CS and DS as follows:

Kc
n = ([n]0, EKc) with EKc = EG ∪ EC (9)

Kd
n = ([n]0, EKd) with EKd = EG ∪ ED ∪ EC (10)

Note that while Kc
n augments Cn with Gn, Kd

n augments the union of
Cn and Dn with Gn. The reason for this is that we would like the DS
extractor to succeed in extracting a labeled path in (the labeled) Kd

n such
that it contains a labeled path in Kc

n, and for this to be possible, we make
sure that (1) the (augmented) labels of Kc

n are embedded (as data) in the
(augmented) labels of Kd

n and that (2) EKd ⊇ EKc . Examples of these
graphs are depicted in Fig. 5.

Let τ be an oracle and χ a bitstring to be defined later, we define
oracles (τi)i∈[n]0 as τi(·) := τ(i, χ, ·) and use these oracles to label our
augmented blockchain.

The augmented blockchain is obtained by labeling the augmented chain
graphs Kc

n and Kd
n at once, and furthermore, embedding Kc

n in Kd
n as

data. This labeling is done using oracles (τi)i∈[n]0 , where τi(·) := τ(i, χ, ·)
for a random oracle τ and random bitstring χ.

This labeling is formalized by the augmented mining algorithms Init
and SMine, in Fig. 6. In particular, from an initial genesis block ψ, we
define in Init, an augmented genesis block σ := LK(0), which contains, in
addition to ψ and pk0, PoSW-related data such as χ and pp.
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Algorithm SInit :

On input 1λ and ψ:

Computing kc0:

1. χ← {0, 1}λ

2. `c0 := τ0(ε)

3. pp← Com.setup(1λ)

4. (φc0, aux
c
0) := Com.commit(pp, `c0)

5. gc0 := (`c0, φ
c
0)

6. (sk0, pk0)← Gen(1λ)

7. π0 := (ψ, χ, pp, pk0)

By definition Rcψ
(
0, (gc0, π0), ε

)
= 1

8. c0 := (0, π0)

9. LKc (0) := kc0 := (gc0, c0)

Computing kd0 :

1. `d0 := τ0(ε)

2. (φd0, aux
d
0) := Com.commit(pp, `d0)

3. gd0 := (`d0, φ
d
0)

4. data0 := (ψ, kc0)

5. s0 ← Signsk0 (gd0‖data0)

6. d0 := (s0, data0)

7. kd0 := (gd0 , d0)

8. LKd (0) := kd0

return (σ := LKd (0)), auxc0, aux
d
0)

Algorithm SMine:

On input
(
sk, pk, datai, (kdj := (gdj , dj))j∈[i−1]0 )

)
:

Parse (kcj )j∈[i−1]0 out of (kdj )j∈[i−1]0

See Line 4 in kdi below.

Computing kci :

1. `ci := τi(LKc (parentsKc (i)))

2. (φci , aux
c
i ) := Com.commit(pp, (kcj )j∈[i−1]0‖`

c
i )

3. gci := (`ci , φ
c
i )

4. Let πi be s.t.

Rcσ
(
i, (gci , πi), LKc (parentsC(i))

)
= 1

πi is associated with pk for (sk, pk) ∈ [Gen(1λ)]

5. ci := (i, πi)

6. kci := (gci , ci)

Computing kdi :

1. `di := τi(LKd (parentsKd (i)))

2. (φdi , aux
d
i ) := Com.commit(pp, (kdj )j∈[i−1]0‖`

d
i )

3. gdi := (`di , φ
d
i )

4. datai = (datai, kci )

5. si ← Signsk(LKd (parentsD(i))‖gdi ‖datai)
6. di := (si, datai)

7. LKd (i) := kdi := (gdi , di)

kdi = (`di , φ
d
i , si, datai, k

c
i )

Note: Rdσ
(
i, LKd (i), LKd (parentsD(i))

)
= 1

return (LKd (i), auxci , aux
d
i )

Fig. 6. The mining algorithms Init and SMine for PoSpace-augmented blockchains.

SMine, on input (kdj := (gdj , dj)j∈[i−1]0 , i.e., the augmented labels of

the first i vertices of Kd
n, as well as the current data datai including

transactions and the signing/verification key pair (sk, pk) of an arbitrary
space farmer, and some auxiliary information auxci−1, auxdi−1 related to the
commitment opening (which we explicitly state in Fig. 6, but ignore in
this informal discussion for simplicity), computes the augmented labels
of both the proof and data chain as follows.

As for the ith augmented proof chain label, SMine computes the PoSW
label `ci using the random oracle τi and the graph structure of Kc

n, com-
putes a deterministic commitment φci of the labels (kcj := (gcj , cj))j∈[i−1]0

and `ci , and defines the label gci := (`ci , φ
c
i ). We stress that the commitment

φci must be deterministic, for otherwise the proof chain becomes grindable.
The label of the proof chain is defined as ci := (i, πi) and the augmented
label is defined as LKc(i) := kci := (gci , ci). For the sequentiality guaran-
tees of the PoSW to carry on to the SNACKs, we must ensure that in the
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augmented blockchain, πi is computed after φci – see [AFGK22] for a de-
tailed discussion on this point. However, note that Line 4 in Fig. 6 doesn’t
make this explicit, as ensuring this condition is blockchain-specific.

As for the ith augmented data chain label, SMine computes the PoSW
label `di using τi and the graph structure of Kd

n, computes a commitment
φdi of the labels (kdj := (gdj , dj))j∈[i−1]0 and `di , and defines the label gdi :=

(`di , φ
d
i ). A space farmer/miner who generates a PoSpace proof δi using pk,

computes a digital signature si, using the corresponding signing key sk, on
(LKd(parentsD(i))‖gdi ‖datai), where LKd(parentsD(i)) are the augmented
labels of the parents of i in D, datai is the current data including (the
now embedded) kci , transactions, and any arbitrary data that the original
mining protocol allows. Finally set di := (si, datai) and LKd := kdi :=
(gdi , di).

Blockchain validity must be adapted to accommodate the augmenta-
tion. Therefore, we define the augmented validity relations Rcσ and Rdσ of
the proof and data chains, by overriding Rcψ and Rdψ, respectively. Both

Rcσ and Rdσ still consider the same graph structure as Rcψ and Rdψ but
expect augmented labels. Concretely, we override Rcψ from (6) as

Rcσ
(
i, LKc(i), LKc(parentsC(i))

)
= 1 , (11)

iff the augmented block is valid. Note that σ is defined by SInit and is the
augmented genesis block. As before, this validity is blockchain specific.
Similarly, we override Rdψ from (7) as

Rdσ
(
i, LKd(i), LKd(parentsD(i))

)
= 1 (12)

iff the augmented data block is valid, which in particular, implies that

Vrfypk(LKd(parentsD(i))‖gdi ‖datai, si) = 1 . (13)

Note that Rdσ doesn’t verify transaction consistency in datai. The consis-
tency of datai is assumed, i.e., we assume honest miners would not finalize
block i that contains datai that is inconsistent with data0, . . . , datai−1. The
consistency of data in orthogonal to the SNACK construction.

As the ith augmented (proof/data) block contains, not only blockchain-
specific, but also PoSW-specific data, we define augmented validity rela-
tions R̃cσ and R̃dσ that check the validity of (a) the blockchain-specific data
using Rcσ and Rdσ, respectively, and check (b) the PoSW data. Concretely,
define R̃cσ, R̃

d
σ and Rσ:
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R̃cσ
(
i, LKc(i), LKc(parentsKc(i))

)
= 1⇔ ∃xi s.t. (14)

Rcσ
(
i, LKc(i), LKc(parentsC(i))

)
= 1 ∧ LKc(i) = τi(LKc(parentsKc(i)))‖xi.

R̃dσ
(
i, LKd(i), LKd(parentsKd(i))

)
= 1⇔ ∃xi s.t. (15)

LKd(i) = τi(LKd(parentsKd(i)))‖xi ∧Rdσ
(
i, LKd(i), LKd(parentsD(i))

)
= 1.

Rσ
(
i, LKd(i), LKd(parentsKd(i))

)
= 1⇔ (16)

R̃cσ
(
i, LKc(i), LKc(parentsKc(i))

)
= R̃dσ

(
i, LKd(i), LKd(parentsKd(i))

)
= 1.

where by construction (see Fig. 6), LKc(i) is contained in LKd(i) as part
of datai and parentsKc(i) is contained in parentsKd(i) by definition of Kd

n.

Arguments for Augmented PoSpace Blockchains. We first define
the witness relation R with respect to which we construct our SNACK.

Definition 9 (Augmented PoSpace chain language). We define the

augmented PoSpace chain relation R(1)

Γ dn ,Rσ ,Com
for any α ∈ (0, 1] as

R(α)

Γ dn ,Rσ ,Com
:=



(
(prm := (σ, pp), η := (φc, φd, n),
w := (P,LdP , (p

d
i )i∈P , ρ

c, ρd)
)

s.t.
(P,LdP , (p

d
i )i∈P ) is an (α,Rσ)-valid path in Γ dn

∧ Com.ver(pp, φc, LcP , P, ρ
c) = 1

∧ Com.ver(pp, φd, LdP , P, ρ
d) = 1

 .

(17)
where Rσ is defined in (16) and Γ dn := (Kd

n, Ωn) for Kd
n as in (10) and

Ωn from the underlying PoSW scheme PoSW. We let LΓ d,Rσ ,Com be the

language associated with R(1)

Γ dn ,Rσ ,Com
.

Having formalized LΓ d,Rσ ,Com, we now build for it a succinct Ar-
gument of Chain Knowledge8 (ACK) system ACK := (ACK.P,ACK.V),
which we later Fiat-Shamir to get our final DS. The ACK is given in Fig. 8.
Note that the prover takes as input the labeling of Kd

n as its witness. Addi-
tionally, the SNACK parameter generator G outputs prm. Syntactically,
ACK can be seen as two copies of the respective ACK construction of
[AFGK22], one for the proof chain and one for the data chain. The dif-
ference is that we embed Kc

n into Kd
n, use the same underlying PoSW

scheme as well as the same verifier challenges in these two copies.

8 A SNACK is a succinct and non-interactive ACK.
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Algorithm PoSW.verKc :

On input (χ, ιi, oi):

1. Run bi := PoSW.ver(χ, ιi, oi) modi-

fied as follows: whenever it queries

τj(LKc (parentsG(j))) for some j, issue

query τj(LKc (parentsKc (j))) instead.

(Missing labels are provided in oi,2.)

2. return bi

Algorithm PoSW.openKc :

On input (χ, pp, φn, auxn, L, ιi):

1. oi,1 ← PoSW.open(χ, pp, φn, auxn, L, ιi)

(PoSW.open acts based on edges EG.)

2. J :=
{
j ∈ [n]0 : LKc (parentsG(j))

which appear in oi,1
}

3. oi,2 := {(j, LKc (parentsC(j)))}j∈J
4. return oi :=

(
oi,1, oi,2

)
Fig. 7. Algorithms PoSW.openKc and PoSW.verKc defined based on PoSW.open and
PoSW.ver, respectively. Algorithms PoSW.openKd and PoSW.verKd are defined analo-
gously by changing every occurrence of c to d and C to D.

Theorem 1. Let SNACK := (SNACK.P, SNACK.V) be the non-interactive
counterpart of ACK from Fig. 8, then in the ROM, SNACK is an (α, ε)-
knowledge-sound SNACK for LΓ d,Rσ ,Com as in Def. 9 if PoSW is an (α, ε)-
knowledge-sound τ -based GL-PoSW as in [AFGK22] with Com being its
underlying deterministic commitment scheme, (Gn = ([n]0, EG), Ωn)n∈N
its weighted graph family, and τ modeled as a random oracle.

SNACK’s Cost and Guarantees. We started with an underlying
chain Bn = (Cn, Dn) of a PoSpace blockchain, and augmented it to
(Kc

n,K
d
n), on which we run ACK, whose non-interactive counterpart SNACK

is the SNACK construction for the PoSpace blockchain. The space cost of
SNACK is storing in each block in Kc

n a PoSW label and a commitment
pair (`ci , φ

c
i ). The same holds for Kd

n. (Note that the embedding of LKc(i)
into LKd(i) doesn’t mean that we actually store LKc(i) twice, in Kc

n and
Kd
n; all what it means is that computing and verifying LKd(i) requires

having LKc(i) explicitly given as input.) If we instantiate PoSW from ei-
ther PoSW schemes in [AFGK22], then φci = `ci and φdi = `di and hence
the space cost is `ci and `di per (PoSpace) block. Setting |`ci | = |`di | = 256
bits is a reasonable instantiation. Furthermore, modeling a hash function
as a RO, `ci and `di are efficient hash computations.

Generating SNACK proofs is identical to generating PoSW proofs in
the underlying PoSW scheme when EC = ED = {(i− 1, i) : i ∈ [n]}. The
more edges EC and ED contain, the bigger the proof size. Furthermore
optimizations similar to those given in [AFGK22] are possible.

At this storage and computation costs, we get sequentiality guarantees
on the blockchain: Fix prm and a statement (φc, φd, n) ∈ LΓ d,Rσ ,Com, then
from any convincing SNACK prover, a witness w can be extracted, and
such a witness contains an (α,Rσ)-valid path in Γ dn , which is sequentially
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Verifier ACK.V = (V1,V2)

Stage V1: On input (1λ, η):

1. ∀i ∈ [t] do ιi
$← Ωn

2. ι0 := 0

3. send ι := (ιi)i∈[t]0 to P

Stage V2: On input γ := (γi)i∈[t]0 :

1. ∀i ∈ [t] do:

(a) bci,1 := R̃cσ
(
ιi, k

c
ιi
, pcιi

)
(b) bci,2 := PoSW.verKc (χ, ιi, o

c
i )

(c) bci,3 := Com.ver(pp, φcn, k
c
ιi
, ιi, ρ

c
i )

(d) bdi,1 := R̃dσ
(
ιi, k

d
ιi
, pdιi

)
(e) bdi,2 := PoSW.verKd (χ, ιi, o

d
i )

(f) bdi,3 := Com.ver(pp, φdn, k
d
ιi
, ιi, ρ

d
i )

2. output
∧t
i=0 b

c
i,1 ∧ bci,2 ∧ bci,3 ∧
bdi,1 ∧ bdi,2 ∧ bdi,3

Prover ACK.P:

On input (1λ, (η, (kdj )j∈[n]0 , (aux
c
n, aux

d
n), ι):

1. Parse η as ((σ, pp), (φcn, φ
d
n, n))

2. Parse (kcj )j∈[n]0 out of (kdj )j∈[n]0

3. ∀i ∈ [t]0 do:

(a) oci ← PoSW.openKc

(χ, pp, φcn, aux
c
n, (k

c
j )j∈[n]0 , ιi)

(b) odi ← PoSW.openKd

(χ, pp, φdn, aux
d
n, (k

d
j )j∈[n]0 , ιi)

We assume odi contains both LKd (ιi)

and pdιi := LKd (parentsKd (ιi)).

Similarly for oci .

(c) ρci ← Com.open(pp, φcn, aux
c
n, k

c
ιi
, ιi)

(d) ρdi ← Com.open(pp, φdn, aux
d
n, k

d
ιi
, ιi)

(e) γi := ((oci , o
d
i ), (ρci , ρ

d
i ))

4. send γ := (γi)i∈[t]0 to V2

Fig. 8. The interactive proof system ACK which underlies our SNACK construction.

computed. That the extracted path lies in Kd
n is clear, but that it also

lies in Kc
n is not. In the sequel, we show that extracted paths must be in

Kc
n as well, and hence this shows that the extracted path contains valid

blocks in the combined augmented blockchain. This, in turn, allows us to
talk of the PoSpace blockchain as a single sequentially mined chain.

Lemma 2 says that if P is a path extracted by the knowledge-soundness
of SNACK from Theorem 1, then the edges of P lie in Gn.

Lemma 2. Let SNACK be as in Theorem 1 and let(
σ, η := (φc, φd, n), w := (P,LdP , (p

d
i )i∈P , ρ

c, ρd)
)
∈ R(α)

Γ dn ,Rσ ,Com

be such that w is output by the extractor guaranteed by the (α, ε)-knowledge
soundness of SNACK, then P is a path in Gn.

The following lemma shows that SNACK contains an embedded SNACK
system for LΓ cn,R̃cσ ,Com, where LΓ cn,R̃cσ ,Com is as in Def. 5 and R̃cσ as in (14).

Lemma 3. Let
(
prm, (φc, φd, n), (P,LdP , (p

d
i )i∈P , ρ

c, ρd)
)
∈ R(α)

Γ dn ,Rσ ,Com
and

P be a path in Gn, then (prm, (φc, n), (P,LcP , (p
c
i )i∈P , ρ

c)) ∈ R(α)

Γ cn,R̃
c
σ ,Com

,

where R(α)

Γ cn,R̃
c
σ ,Com

is defined as in Def. 5 and Lc(i), pci are embedded in

and extracted from Ld(i), pdi .
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Theorem 1 and Lemma 3 imply Corollary 1, which shows that SNACK
proves knowledge of sequentially computed and valid PoSpace blockchain.

Corollary 1. Let SNACK be as in Theorem 1 and let(
σ, η := (φc, φd, n), w := (P,LdP , (p

d
i )i∈P , ρ

c, ρd)
)
∈ R(α)

Γ dn ,Rσ ,Com

be s.t. w is output by the extractor guaranteed by the (α, ε)-knowledge
soundness of SNACK, then (P,LdP ) is a sequentially-computed path con-
taining valid PoSpace blocks, i.e., let P = (i0, . . . , ik), then ∀j ∈ [k]0, L

d
P (ij)

contains a valid augmented data chain block which contains a signature
on a valid augmented proof chain block LcP (ij), and for every j ∈ [k],
LcP (ij) is computed after LcP (ij−1) and LdP (ij) after LdP (ij−1).

Proofs of Theorem 1 and Lemmas 2 and 3 are in Sect. B.
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A On the Canonical Nature of Proof Chains in Proof of
Space Blockchains

We give here an intuition of why proofs must be canonical in PoSpace
blokchains [PKF+18, CP19], and refer the reader to the respective papers
for details. In a PoSpace blockchain, given a proof chain of length i, each
PoSpace farmer can propose at most one valid proof label ci+1 for the next
block, which either gets adopted or abandoned by the network of miners.
This is in contrast to PoW blockchains, where a miner, given a blockchain
of length i, can in principle generate infinitely many valid next blocks by
tweaking transaction data and using different PoW nonces. As the mining
resource in a PoW blockchain is exactly this PoW computation, and a
miner’s success in appending the next valid block to the chain needs to
be proportional to its mining resource, this process of generating many
PoWs is the honest mining strategy. However, in PoSpace blockchains,
the mining resource is space, and therefore, being able to generate more
than one valid PoSpace value δi+1 for the next block for a single unit of
space is a malicious mining strategy that must be prevented. To make
sure that a space miner/farmer when given a proof chain of length i can
only propose at most a single next block, it must be ensured that each
PoSpace farmer, for each space unit, gets a single PoSpace challenge chali
and that all used primitives such as the PoSpace scheme itself, signatures
(if used in the proof chain), VDFs, etc. are unique. This ensures that a
miner can generate and propose at most a single block for each space unit
per index i.

B Omitted Proofs

Proof (of Theorem 1). The proof strategy is simple: we use (ACK.P,ACK.V)
(Fig. 8) and Alg. SMine (Fig. 6) to build an augmented PoSW Π̄ :=
(PoSW.P,PoSW.V) whose knowledge-soundness implies that of (ACK.P,
ACK.V). The non-interactive (SNACK.P,SNACK.V) is simply the Fiat-
Shamir transformation [FS87] applied to (ACK.P,ACK.V).

Concretely, in Fig. 9 we define an augmented PoSW Π̄ whose

1. labeling is X-augmented τ -labeling, for an X that we specify later,

2. underlying weighted graph family is (Kd
n, Ωn)n∈N where Kd

n is defined
in (10),

3. witness relation R(1)

Γ dn ,Rσ ,Com
as in Def. 9 is defined with respect to a

relation Rσ as defined in (16).
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We will then show that Π̄ is (α, ε)-knowledge sound if Π := (PoSW.P,
PoSW.V) is (α, ε)-knowledge sound, i.e., we need to argue that the secu-
rity guarantees of Π are preserved under the modifications in the above
Items 1, 2, and 3.

As for Items 1 and 2, note that the X-augmented labeling LKd differs
from the labeling LG of (PoSW.P,PoSW.V) in that the parents(·) function
used in the τ -labeling is now w.r.t. graph Kd

n rather than Gn = ([n]0, EG).
Recall that Kd

n = ([n]0, EKd) has the same vertex set [n]0 of Gn but
differs in that its edge set is expanded as EKd = EG ∪ ED ∪ EC where
ED and EC are the edge sets of Dn and Cn, respectively. However, when
τ is modeled as a random oracle, it is easy to see that if Π is a τ -based
(α, ε)-knowledge-sound PoSW for the weighted graph family (Gn, Ωn)n∈N,
then Π̄ is an X-augmented τ -based (α, ε)-knowledge-sound PoSW for
the weighted graph family (Kd

n, Ωn)n∈N and X = (x0, . . . , xn), where xi
can be any bitstring, in our case xi = (φdi , si, datai). Note that kdi =
(`di , φ

d
i , si, datai) as computed by SMine (and SInit). To argue this we

need to argue that appending xi to the random oracle τ does not affect
soundness of the PoSW. This however follows because (1) τ is a random
oracle and the extra input xi simply defines an xi-salted random oracle,
and crucially (2) the new edge structure EKd does not give a malicious
prover PoSW.P̃ any more power than its counterpart PoSW.P̃: this is
ensured by ACK.V by making sure that for each challenge ιi ∈ [n]0, the
PoSW-related responses of any prover are verified w.r.t. the edge structure
imposed by EG, which suffices for preserving the underlying soundness of
Π. (The edge structure EKd is used to verify the validity of the augmented
blockchain using Rσ.)9

As for Item 3, recall that the witness relation for Π is R(α)
Γ,R,Com as in

Def. 5 and R as in (5), while the witness relation for Π̄ is R(α)

Γ dn ,Rσ ,Com
as in

Def. 9 and Rσ is defined in (16). This imposes the extra checks in ACK.V2

of Fig. 8: Lines 1a, 1b, 1c, and 1d. However, these extra checks don’t affect
soundness: if a protocol Π is sound when the verifier executes a check C1,
then it is clearly sound if the verifier executes an additional check C2 and
accepts if and only if both checks pass. However, Π is not guaranteed to
remain complete due to the extra checks: clearly the verifier would reject a
proof π that verifies with respect to C1 but fails with respect C2. To make
sure that completeness is also preserved, we need to make sure that an

9 Note that if the PoSW-related responses are verified w.r.t. EKd , one can no longer
prove soundness of the PoSW scheme as its underlying graph would then be Kd

n

and now Gn. Soundness of any PoSW scheme relies on its graph structure and
manipulating its structure may allow for shortcuts.
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Verifier PoSW.V = (V0,V1,V2):

Stage V0: On input (1λ, n, ψ):

1. (σ, auxc0, aux
d
0)← Init(1λ, ψ)

2. send σ to P0

Stage V1: On input (φcn, φ
d
n):

1. η := (σ, (φcn, φ
d
n), n)

2. ι← ACK.V1(1λ, η)

3. send ι to P1

Stage V2: On input γ:

output ACK.V2(γ)

Prover PoSW.P = (P0,P1):

Stage P0:

On input
(
1λ, 1n, (ski, pki, datai)i∈[n]

)
and σ:

1. LKd (0) := σ

2. ∀i ∈ [n] do

(LKd (i), auxci , aux
d
i )← SMine(

ski, pki, datai, (LKd (j))j∈[i−1]0 )

3. parse (φcn, φ
d
n) out of LKd (n)

4. send (φcn, φ
d
n) to V1

Stage P1: On input ι:

1. γ ← ACK.P
(
1λ, η, (LKd (j))j∈[n]0 , aux

c
n, aux

d
n, ι
)

2. send γ to V2

Fig. 9. The augmented PoSW scheme constructed from mining algorithms and an
ACK system ACK.V = (ACK.V1,ACK.V2),ACK.P.

honest augmented prover PoSW.P gets extra information that allows it to
pass these extra checks: in fact, η, (LKd(j))j∈[n]0 , auxcn, auxdn provided as

input to PoSW.P by the output of (the honest) SMine ensure this: to show
this, we show that Line 2 of Fig. 8 holds, i.e., that we can parse (kcj)j∈[n]0

out of (kdj )j∈[n]0 : it suffices to observe that, by construction (see SMine
and Sinit), ∀j ∈ [n]0, LKd(j) contains LKc(j), and that, by construction
of (10), EKc ⊆ EKd . This allows PoSW.P via invoking ACK.P to run all
subroutines corresponding to the extra checks.

This establishes that Π̄ is an (α, ε)-knowledge-sound X-augmented τ -
based (with labeling LKd) PoSW for the weighted graph family (Kd

n, Ωn).
By absorbing the computation of PoSW.V0 into ACK.V1 and PoSW.P0

into ACK.P, the pair (ACK.P,ACK.V) is syntactically an augmented PoSW.10

Now by Lemma 1 it holds that (SNACK.P, SNACK.V), the Fiat-Shamir
transform of (ACK.P,ACK.V), is an (α, ε)-knowledge-sound SNACK for
the language LΓ d,Rσ ,Com as in Def. 9. ut

Proof (of Lemma 2). The SNACK construction starts with a PoSW scheme
Π with an underlying weighted DAG is (Gn, Ωn) and validity relation
is R,11 and augments it into X-augmented PoSW Π̄ whose underlying

10 To justify this syntactic manipulation, note that PoSW.V0 outputs σ which contains
χ and pp which are generated identically to any graph-labeling PoSW scheme. Sim-
ilarly we assume that the (honest) input to ACK.P was computed by an (honest)
PoSW.P0, which is the computation of the honest mining Mine, which is in turn an
honest PoSW computation.

11 This R is the PoSW relation in (5).
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weighted DAG is (Kd
n, Ωn) where Kd

n is as in (10) and validity relation
Rσ. Now the (α, ε)-knowledge soundness of Π implies that from any con-
vincing prover an (α,R)-valid path in Gn can be extracted. Similarly
for Π̄, i.e., its (α, ε)-knowledge soundness implies that from any con-
vincing prover an (α,Rσ)-valid path in Kd

n can be extracted. However,
by construction, Π̄ runs (see Fig. 8) the augmented PoSW procedures
PoSW.openKd ,PoSW.verKd ,PoSW.openKc ,PoSW.verKc .12 Although these
procedures consider augmented labelings LKd and LKc , they still, and
crucially so,13 consider the edge structure EG of Gn, and not EKc or
EKd . Therefore, the extracted path must still lie in Gn even though its
labels are augmented. This dependency on EG is highlighted in Fig. 7,
which is invoked by these augmented PoSW algorithms. This implies that
the extracted (α,Rσ)-valid path in Kd

n must actually lie Gn. ut

Proof (of Lemma 3). We need to show that an (α,Rσ)-valid path in Γ dn
contains an (α, R̃cσ)-valid path in Γ cn, where Rσ and R̃cσ are defined in (16)
and (14), respectively. By design, Ld(i) contains Lc(i) as a substring –
see Fig. 6. By (2), it holds that pd(i) = LdP (i) and therefore pc(i) in
contained in pd(i) as a substring. This, together with the fact that Rσ
internally checks R̃cσ, implies that (P,LcP , (p

c
i )i∈P ) is an (α, R̃cσ)-valid in

Γ cn. Furthermore, by (17), it holds that Com.ver(pp, φc, LcP , P, ρ
c) = 1,

where pp is contained in σ. Consequently, (σ, (φc, n), w) ∈ R(α)

Γ cn,R̃
c
σ ,Com

.
ut

12 Note that these augmented PoSW algorithms work identically to their underlying
PoSW.open,PoSW.ver from Π, except that the labels are augmented and some extra
parent labels need to be provided by PoSW.openKd and PoSW.openKc for Rcσ and
Rdσ to be checked – and these extra parents are defined by Kd and Kc.

13 See the proof of Theorem 1.
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