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Abstract. We propose a novel protocol, Falkor, for secure aggregation for Federated Learning
in the multi-server scenario based on masking of local models via a stream cipher based on AES

in counter mode and accelerated by GPUs running on the aggregating servers. The protocol
is resilient to client dropout and has reduced clients/servers communication cost by a factor
equal to the number of aggregating servers (compared to the naïve baseline method). It scales
simultaneously in the two major complexity aspects: 1) large number of clients; 2) highly complex
machine learning models such as CNNs, RNNs, Transformers, etc. The AES-CTR-based masking
function in our aggregation protocol is built on the concept of counter-based cryptographically-
secure pseudorandom number generators (csPRNGs) as described in [1] and subsequently used
by Facebook for their torchcsprng csPRNG. We improve upon torchcsprng by careful use of
shared memory on the GPU device, a recent idea of Cihangir Tezcan [2] and obtain 100x speedup
in the masking function compared to a single CPU core.
In addition, we prove the semantic security of the AES-CTR-based masking function. Finally, we
demonstrate scalability of our protocol in two real-world Federated Learning scenarios: 1) efficient
training of large logistic regression models with 50 features and 50M data points distributed across
1000 clients that can dropout and securely aggregated via three servers (running secure multi-
party computation (SMPC)); 2) training a recurrent neural network (RNN) model for sentiment
analysis of Twitter feeds coming from a large number of Twitter users (more than 250,000 users).
In case 1), our secure aggregation algorithm runs in less than a minute compared to a pure MPC
computation (on 3 parties) that takes 27 hours and uses 400GB RAM machines as well as 1
gigabit-per-second network. In case 2), the total training is around 10 minutes using our GPU
powered secure aggregation versus 10 hours using a single CPU core.

1 Introduction

Federated Learning [3,?,?] is a distributed machine learning approach that deploys a supervised training
algorithm to a large collection of remote clients (e.g., mobile phones or IoT edge devices). Each client
trains a local model on its private data and sends training updates to one or more servers for aggregation
to compute the global model update that is then sent back to the clients for the next iteration of the
optimization algorithm.

While the client input data does not leave its source (a priori, a significant privacy advantage
compared to centralized training), sending intermediate local model updates to the server can indirectly
reveal sensitive client information, an important security aspect that has often been ignored in the vast
literature on the subject of federated machine learning.

In addition, the communication overhead between the clients and the servers in this distributed
computing scenario is a major challenge for scaling a federated learning system to support a large
number of clients and complex machine learning models (e.g., deep neural networks) at the same time.
Yet, compressing the model without compromising the model accuracy is a challenging open problem.

Finally, unlike the classical MPC setting with few compute nodes and robust peer-to-peer com-
munication, Federated Learning involves thousands and even millions of devices that may go offline
⋆ This work was done while the author was working for Inpher



during the computation (dropouts) or that may not have stable connections with the server. Designing
protocols that are resilient to dropouts is thus of primary interest.

Therefore, ensuring simultaneously the above security, scalability, model accuracy and robustness
guarantees is of primary importance in the design of real-world federated learning systems.

1.1 Prior works.

For a detailed overview of the state-of-the-art in Federated Learning as well as the open problems,
we refer the reader to [4]. Considering the immense literature on the subject, providing a complete
overview of the state of the art is challenging and would go beyond the scope of the current paper.
Instead, we outline the key areas of contributions of our work and compare against the state-of-the-art
for these particular areas:

1. Security: securing the local input private data from a honest-but-curious aggregating server
2. Scalability: ensuring scalability to both large machine learning models and a large number of clients

while maintaining efficient communication complexity,
3. Robustness against client dropouts: ensuring robustness of the protocol against unstable network

connections between clients and servers as well as dropouts of clients during training,
4. Model accuracy (compared to centralized training): ensuring that the model accuracy is preserved

compared to centralized training, especially in settings when the private data across the different
clients is not independent and identically distributed (the non-IID setting).

For 1), if the clients do not secure the local model updates, the aggregation server can infer informa-
tion about the original private input data on the clients via the so-called “model inversion attacks” [5,?]
(see also [6]). The server being able to reconstruct peer’s original private data poses security risks for
certain federated learning frameworks as Fleet [7,?]. In order to prevent these attacks, various methods
for privacy-preserving server aggregation have been proposed in the literature: differential privacy [8,?],
pairwise additive masking [9], homomorphic encryption, glimmer of trust [10] and more recently, ad-
ditive [11] and FFT-based secret sharing [12].

For instance, the pairwise additive masking approach [9] secures the aggregation using Shamir
secret sharing in the single aggregation server scenario. While this method is adapted to ensure client
dropouts, its original version incurred communication at each client that was linear in the number of
clients, thus limiting its scalability. The extension [13] improved upon that constraint in the semi-honest
and semi-malicious settings, thus addressing scalability constraints. Yet, [13] assumes communication
between the clients as well as multiple rounds of communication between the clients and the servers
at each iteration.

While many the secure aggregation protocols mentioned above are in the setting of a single aggrega-
tion server, there have been attempts to address the multi-server setting as well via generic MPC [14],
[15] as well as in the setting of multiple non-colluding servers [16].

A recent approach on secure aggregation in the multi-server scenario has been proposed in [15]. The
aggregation relies on additive secret sharing and secure multiparty computation, and reduces model
complexity using model compression techniques based on several prior works [17,?]. Even if it supports
more complex machine learning models via these model compression techniques that reduce the size
of the model (and hence, the communication overhead) while maintaining model accuracy similar to
centralized training for specific neural networks such as LeNet on MNIST and AlexNet on CIFAR-10,
unlike [13], it is constrained by the number of clients in a pure MPC protocol (typically less than 10)
and assumes stable communication between these clients. In addition, it assumes that each client is
online during each iteration (no dropout support) and requires multiple rounds of communication per
iteration.

The prior work on AES GPU implementations is discussed in Section 6.



1.2 Our contributions.

Our contributions are three-fold: first and foremost, we achieve highly efficient GPU implementation
of the masking function via acceleration of the AES-CTR-based stream cipher (see Sections 5, 6 and 7).
This yields two orders of magnitude speedup compared to an implementation on a single core CPU.
Our implementation relies on storing AES tables in shared as opposed to constant memory, an idea
inspired by the recent work of Cihangir Tezcan [2]. This improves upon prior art on massively parallel
counter-based PRNGs including Facebook’s torchcsprng to gain up to 20x speedup for generating
parallel random numbers. It is worth mentioning that although we do apply our GPU implementation
primarily in the context of federated learning, this is only one of the many possible applications. In
addition, we analyze and prove the semantic security of our masking function in Section B.

The second major contribution is the Falkor secure aggregation protocol itself and it uses our first
contribution (the AES-CTR GPU masking function) as a major building block (see Sections 2 and 3).
Falkor scales both model complexity (deep neural network models such as CNNs, RNNs, Transformers
and others) and a large number (millions) of clients. It supports linear aggregation functions (e.g., sums
and concatenations) and supports client dropouts and unstable communications between the clients
and the servers. An important property of our protocol is that, unlike [13], it does not require any
communication between the clients and it uses a single round of communication at each iteration.

The protocol operates in the setting of multiple aggregation servers performing secure multiparty
computations (SMPC). Compared to the naïve protocol where each client secret shares its local model
updates and sends the shares to the aggregating servers (a protocol whose communication complexity
depends linearly on the number ℓ of aggregating servers, the total number of training samples N and
the model size), our aggregation protocol reduces the communication complexity by a factor ℓ, thus
making it independent of ℓ. The main idea behind the optimized communication and dropout resilience
is to use shared keys between the clients and the servers together with the GPU accelerated AES-CTR-
based masking function and massive parallelization of the secure aggregation phase (the blockwise
reduction described in Section 7).

The third major contribution is the capability of chaining our aggregation protocol Falkor with
non-linear MPC operations on the aggregation servers. The use of MPC for more complex computations
than simple averaging such as private divisions, multiplications, oblivious sorting and comparisons as
well as oblivious permutations allows us to use more complex privacy-preserving versions of adaptive
server optimizers such as FedAdagrad, FedAdam and FedYogi to ensure faster convergence in the deep
neural network setting. We illustrate the scalability of our method by two major examples: 1) scaling
a large logistic regression model training and comparing its scalability to a pure MPC approach as
described in Section 9; 2) training a recurrent neural network (RNN) model for sentiment analysis on
a Twitter dataset where each client is a Twitter user (see Section 10).
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2 Falkor: a Federated Learning Secure Aggregation Protocol

The design of Falkor ensures privacy-protection of the local data of the clients. The baseline naïve
approach for secure federated averaging is simple (Fig. 1): secret share each local model (on each client)
among ℓ servers and distribute the secret shares from the client to the servers. The servers securely
aggregate the updated global model using multiparty computation, they reveal the update to the
clients and optionally perform some additional MPC-computations. The training then proceeds to the
next iteration. This requires communicating a total of nℓ secret shares per single averaging resulting
in complexity O(nℓb) where n is the number of clients and b is the size (in bits) of a single secret share.
This approach requires that no share is lost during the communication. The idea of Falkor is to use
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shared keys between the clients and the servers, and masking via AES-CTR stream cipher to reduce the
above communication complexity by a factor ℓ to O(nb). In addition, it avoid the client communication
and synchronization (the risk that for a given local model all shares do not reach to their destination
servers) with multiple servers and provides a solution that is robust against client dropouts. Instead
of the plain synchronization, clients and servers compute the shares using pseudo random stream of
bytes generated by AES-CTR with initially synchronized shared key.

Suppose that we have n clients client1, . . . , clientn and ℓ aggregating servers server1, . . . , serverℓ.
Additionally, assume that we have shared keys ski,j (of size 384 bits) between client i and server j for
i = 1, . . . , n and j = 1, . . . , ℓ. The generation of the shared keys can be achieved via standard Diffie–
Hellman key exchange or directly communicated by the servers to the clients via secure communication
channel between each client and the servers during the setting/subscription phase.

Each client performs masking of its local model Mi (a vector of integers coefficients mod 264)
with independent random masks (one per server) mask(ski,j , r) generated using the exchanged ski,j
and the iteration number r of the model update (we will discuss the exact choice of the function mask

below). The masked value obtained is

Ai = Mi +

ℓ∑
j=1

mask(ski,j , r)

(see Algorithm 1).
This value is a public and the clienti publishes it to a public Funnel. The Funnel is defined as a

public map-reduce service with following property: given two tuples of masked values, the funnel adds
them and reduces it to one tuple of aggregated masked value. The Funnel repeats this process until
obtain just one final aggregated masked value.
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That means, all masked values (from all connected/available clients Ur) are aggregated progressively
in the Funnel and at the end (after the pre-defined maximal waiting time) we obtain the public
aggregated masked value A :=

∑
i∈Ur

Ai available to at least one of the servers (see Fig. 3).
In turn, each server independently computes the same masks mask(ski,j , r) using the same collection

of keys shared with its connected peers (Algorithm 2) and obtain its shares of the aggregated modelJMK = ∑
i∈Ur

Mi.
Then we can either reveal the secret shares of the model in order to publish/broadcast the updated

common model or perform some additional non-linear MPC operations on the aggregation servers using
directly the secret shares of the model (see Fig. 2). The use of MPC for more complex computations
than simple averaging such as private divisions, multiplications, squaring allows us to use more complex
privacy-preserving algorithms.

The bottleneck operation in this protocol is the computation (by server j) of∑
i∈Ur

mask(ski,j , r),

where Ur is the list of the connected clients. In order to enable aggregation of millions of clients, each
training a local model with millions of coefficients, Falkor uses a high-performance random generation
of masks on the server nodes. For less than 100−1000 clients, a single core CPU can computes this sum
in matter of seconds, however to scale to 1M clients (or more), a GPU is preferred, and in Section 7
we explain the acceleration of the computations of the random masks. Unlike client nodes with limited
compute resources (e.g., mobile phones or IoT devices), in practice, the aggregating servers can use
specialized hardware accelerators such as GPUs or FPGAs.

3 AES-CTR-based Masking

We now discuss the choice of the function mask in more detail. A natural approach would be to
use a masking function based on a suitable pseudorandom number generator (PRNG) designed and
implemented for GPUs (typical examples are cuRAND [18] and rocRAND [19] among others). Yet, as
explained in Section 5, such GPU PRNGs rarely qualify for cryptographic security, hence, resulting in
a lack of official certification to validate their use in cryptographic applications.

To remedy this problem, we take a different approach inspired by the concept of counter-based
PRNG originally proposed by [1] and subsequently used by Facebook for their torchcsprng5, but
5 https://pytorch.org/blog/torchcsprng-release-blog/



Algorithm 1 Model Masked Value Generator
Input: Local models Mi for 1 ≤ i ≤ n; the seeds ski,j for i = 1, . . . , n and j = 1, . . . , ℓ exchanged during the

setting phase and r- the iteration number.
Output: Masked value Ai of the local model Mi for1 ≤ i ≤ n
1: for 1 ≤ i ≤ n do
2: clienti computes

Ai = Mi +

ℓ∑
j=1

mask(ski,j , r)

3: clienti publish Ai to serverℓ (via public Funnel)
4: end for

Algorithm 2 Secret Shares Reconstructor
Input: A list Ur of connected clients (at the rth iteration)
Input: Masked values Ai for i ∈ Ur

Input: ski,j for i = 1, . . . , n and j = 1, . . . , ℓ exchanged during the setting phase
Output: Secret shares of the aggregated model

JMK = ∑
i∈Ur

Mi

1: serverℓ receives A :=
∑

i∈Ur
Ai and Ur (aggregated in the Funnel, note that A can be public)

2: for 1 ≤ j < ℓ do
3: serverj consumes Ur from the Funnel
4: serverj computes

sharej :=
∑
i∈Ur

mask(ski,j , r)

5: end for
6: serverℓ computes shareℓ := shareℓ−A
7: Output JMK = (share1, . . . , shareℓ)
8: Note: MPCReveal(M) =

∑ℓ
j=1 sharej =

∑
i∈Ur

Mi

differing in the way we formally analyze security in our particular application to Federated Learning.
For more background on counter-based PRNGs, we refer to reader to Section 5.

Our specific idea is to turn one of the cryptographically strong block ciphers in counter mode (e.g.,
the Advanced Encryption Standard AES [20]) into a random mask generator. The goal is to generate
as fast as possible on a GPU the same encryption stream as in AES-CTR mode. The stream cipher is
used to mask additively the local models M (vectors of 64-bit integers), for this reason the output of
the stream is reinterpreted as a vector of 64-bits little endian integers, of the same size as the models.
We define:

AES-CTR-StreamK,IV(B) := truncB(AESK(IV)∥ AESK(IV+1)∥ . . . )

where truncB(S) truncates the first B-bits of a bit stream S. Using this definition, the number of
bits needed to mask the model M (vector of 64-bit integers) is BM := bitlength(M) and our mask
function is expressed as

mask(sk, r) := AES-CTR-StreamK,IV(BM ),

where the 256-bit key K and the 128-bit initial value IV are derived from the sk (384 bits) and the
iteration number r by the key derivation function PBKDF2_sha256() from OpenSSL6 library. In our
protocol, the shared keys sk are secret values while the iteration numbers r are public knowledge. Lets
K|| IV := PBKDF2_sha256(sk, r). The output of the key derivation function is composed by 384 bits
6 www.openssl.org (EVP_sha256)



indistinguishable from uniformly random bits for an adversary that doesn’t know sk. The upper 256
bits are used for the key K and the lower 128 bits for the initial value IV (including the nonce and the
initial counter). The counter wraps around modulo 2128.

The AES-based stream cipher in counter mode turns the AES blockcipher into a stream cipher by
generating the next keystream via encryption of the successive values of a counter.

In our protocol we use a random IV of 128-bits and we add increment-by-one counter to the IV.
It is worth pointing that, although a priori related, our protocol does not rely on the deterministic

random bit generator CTR_DRBG based on AES and our security analysis is reduced simply to the security
of the AES-CTR stream cipher. The advantage of AES-CTR is that it is very efficient and can be pipelined
and parallelized. The semantic security of AES-CTR is properly analyzed in [21, Thm.13]. In high-level
summary, this result establishes indistinguishability from random outputs up to the birthday bound,
that is, up to (2k/2) encrypted k-bit blocks. This means that any attack that breaks the confidentiality
of the plaintext would require Ω(2k/2) blocks of ciphertext. In other words, the models we mask should
have less than 264 blocks, so 271 bits. CTR_DRBG would not have this limitation, however this memory
bound is sufficiently large to fit any model that fit in practice in memory.

The threat model and the security of our protocol are discussed in Appendix B.

4 Background on GPU Architectures

In this section, we provide a basic overview of the organization and principles of a GPU architecture.
These will be needed for the subsequent section where we describe in depth our parallel algorithms for
secure aggregation using AES-CTR.

A GPU kernels is a CUDA function that is called by the host (the CPU) and executed on the GPU
(the device).

Grids, blocks and threads are basic GPU CUDA kernel abstractions. Threads are organized in
blocks and blocks are organized in grids. The grids are dispatched and scheduled on different streaming
multiprocessors (SM) of the device. Inside a grid, each block is executed by a single SM, and consist
of threads that are given access to a common low-latency shared memory space. Within a block,
the threads are sliced and scheduled by warps of 32, in an arbitrary order. For convenience, grids,
blocks and threads can be indexed in 1-, 2- or 3-dimensional arrays and can be identified with their
coordinates/indices.

The global memory is the largest memory partition and is accessible by all threads, yet, the com-
munication with the global memory is the most expensive one. The constant memory is significantly
faster than the global memory, but the data stored in it is cached and hence, cannot be changed during
the execution of the operations. Another partition in the memory hierarchy is the shared memory that
is significantly faster to access than global and constant memory and that can be modified during the
execution of operations. Yet, it is accessible only by the threads in a given block. Finally, the regis-
ters are the fastest form of memory. Registers are local to their thread, each SM contains a bounded
amount of kiloByes that can serve as registers, and their allocation is done at compile time.

There is also a local memory specific to a thread, which is part of the global memory, but is
unfortunately 150x slower than the shared or constant memory, so we cannot use it in our scenario.

Shared memory is organized in 32 banks of 4-byte long elements, thus, element i living in bank i mod
32. A bank conflicts occurs when two threads in the same warp access different elements in the same
bank. Note that bank conflicts cause serial rather than parallel memory accesses, thus compromising
performance.

5 Counter-based PRNGs

The two major approaches to generating random numbers on a GPU are the multistream and substream
methods. In the multistream approach, the PRNG is instantiated in parallel with different parameters.
This approach imposes strong constraints on the sets of parameters for the underlying PRNG which,



when combined with the strong cryptographic security requirements7, has proven to be difficult to
guarantee in practice. In the substream approach, a single sequence of random numbers is split into
disjoint substreams that may be accessed in parallel. In order for this approach to work in practice,
one needs a method to partition the much longer underlying sequence in order to allow the state
space to be deterministically partitioned and the substreams to be statistically independent. This
leads to significant constraints on the family of PRNGs. In addition, the substream approach requires
an underlying PRNG with a very long period so that the probability of overlap between substreams is
negligible. It is well known that the initialization of the state of long-period PRNGs far from obvious,
and if not done properly, the result can have significant defects.

In either approach, a parallel operation of a PRNG requires that the state is stored in each com-
putational unit (thread, warp, block, core, etc.) in close proximity to the ALU for fast memory access.
Since on-chip memory is a precious resource in modern GPUs, PRNGs with large state are not an
efficient option.

With the additional requirement that the CPU and GPU should produce identical orderings of the
sequences when provided with the same seeds (in order to obtain compatible results for the function
mask on the clients and on the servers), this strongly limits our choice. For instance, only two of the
GPU-supported PRNGs in the NVIDIA cuRAND library8, only Philox_4x32_10 and XORWOW enjoy
this property, yet, none of them are proven to be cryptographically secure in the strong sense of being
indistinguishable from a true random source.

As already mentioned in Section 2, an alternative counter-based PRNGs were considered by Salmon
et al. [1] as suitable candidates for massive parallelization on GPU with strong security properties
and small states. This method is an attractive alternative to the two mainstream approaches de-
scribed above. The torchcsprng PyTorch C++/CUDA extension [22] used by Facebook and based
on AES-CTR evaluation on the GPU is such an alternative offering stronger cryptographic security.
The generator torchcsprng is used in another privacy-preserving framework CryptGPU [23] for share
re-randomization in the truncation protocol. Yet, the torchcsprng GPU implementation is tightly
coupled with PyTorch C++/CUDA core. It uses tensor containers to organize data input/output and
a PyTorch internal GPU kernels dispatcher. Hence, deployment of the original torchcsprng outside
of PyTorch is a priori almost impossible.

6 GPU Implementation of AES

Although the GPU instruction set is not specifically adapted to AES, there have been many attempts
to acceleration AES on a GPU in the literature reaching high throughput and more than an order of
magnitude speedups compared to CPU implementations with the AES-NI instruction set. Three major
have been explored:

1. Naïve approach: all operations in the round function implemented directly
2. Table-based approach: inputs are split into different parts and for each part and eacj possible input

for that part, the outputs are precomputed and stored in a table. Each AES round is then reduced
to 16 table lookups and 16 XOR operations.

3. Bitsliced approach: each of the 128 bits of the 128-bit input is sliced and stored into 128 registers
and operations are performed to each bit independently, thus providing SIMD parallelism. Thus,
if the registers have n bits, this approach allows to process n blocks in parallel.

Early GPU optimizations of AES such as [24] observe that the table-based approach is better than
the naïve approach. These early approaches stored the tables in GPU constant memory and used 4
threads for the encryption of a 128-bit block (i.e., a granularity of 4 bytes per thread). The question
of the best memory use for the table-based approach has been addressed in subsequent works. An
7 For our cryptographic application, cryptographic security is a stronger requirement than standard statistical

tests such as, e.g., TestU01’s BigCrush test.
8 https://docs.nvidia.com/cuda/curand/



Generate 128-bit key on CPU using
/dev/urandom or mt19937

CPU/CUDA block_cipher kernel

0

1

2

3

…

AES

AES

AES

AES

…

c428fe575fcaa943a705b71e65d475a3

310385faab98c32fabfce8bed9c81722

0745b9e9bf880140d1341b975dbdff84

15a83bd859718eb2f72f0837a29d3fc9

…

K
E
Y

type cast

type cast

type cast

type cast

…

3291020887

822314490

122010089

363346904

…

3291020887

822314490

122010089

363346904

…

1607117123

2878915375

321336472

1500614322

…

2802169630

2885478590

3509853079

4147054647

…

1708422563

3653768994

1572732804

2728214473

…

...

.. .

.. .

.. .

…

Resulting random vector or matrix

Fig. 4. The general design of parallel crypto-secure PRNG

important observation has been made in [25] where tables were copied to shared memory from global
memory at the beginning of each kernel (instead of stored in constant memory). Further improvements
were made in [26] where granularity was increased to 32 bytes / thread. In addition, the GPU AES

implementation [27] also leverages shared memory and is tuned to achieve both high performance and
strong resistance to side channel attacks.9 Yet, a major inefficiency in early table-based implementations
such as [25], [26] and [28] were bank conflicts. Shared memory bank conflicts were recently resolved in
an implementation by Cihangir Tezcan [2] to obtain the best AES performance on GPU for AES disk
encryption and exhaustive search attacks (we refer to this implementation as Cihangir, by the name
of the author).

Before discussing GPU implementation of AES-CTR, we recall some of the relevant internals. The
AES algorithm consists of two phases:

– key expansion
– plaintext data encryption.

In all our applications, the key expansion time is negligible compared to data encryption time and
hence, key expansion is done on the CPU. We only describe the data encryption rounds on the GPU.
The major operations in the plaintext data encryption are the following:
1. SubBytes - a non-linear operation that applies the S-box,
2. ShiftRows - applies cyclic shifts of certain offset to the rows of the state,
3. MixColumns - multiplies each column of the state matrix with a fixed polynomial in F28 [x]/⟨x4+1⟩

- this is done with the help of lookup tables of 256 elements,
4. AddRoundKey - XOR-ing of the internal state with the round key.

Since none of the available GPUs offer special instruction sets for AES, we begin by porting the
three steps SubBytes, ShiftRows and AddRoundKey to the GPU in a naïve way, using native arithmetic
operators. Yet, the MixColumns step requires extra care. Since this step is a multiplication of the state
with a constant polynomial in F28 [x]/⟨x4 + 1⟩, it is carried out with the help of lookup tables of 256
elements. To port mbedTLS code from CPU to GPU, one thus loads these tables of coefficients once into
GPU memory and annotates the encryption function for device execution. It is here that we use the
ideas of [2] in a crucial manner. Although the original source code of [2] is adapted to an orthogonal
setting where the goal is to generate preimages or find AES collisions10, the kernels of Cihangir already
demonstrate the important optimization - instead of naively mapping tables to constant memory, the
tables are loaded into shared memory banks. In Section 7, we will show how to adapt Cihangir to our
secure aggregation setting.
9 In XOR-Falkor, secure aggregation shall be performed on dedicated cloud servers to avoid side channel

attacks.
10 In this setting, the key is changing after each cycle of rounds in order to perform brute-force search of the

plaintext that produces a given AES digest



7 Parallel Secure Aggregation on GPU via AES-CTR-based Masking

First, we took mbedTLS AES-CTR encryption on CPU is as a reference implementation. All GPU AES

implementations presented in this paper are verified to produce byte streams bitwise-identical to the
reference for the same initial seeds. In order to decouple the dependency on PyTorch mentioned in
Section 5, we decomposed the source code of torchcsprng and reorganized it to run as a standalone
generator with basic data arrays. This study has revealed the key portion of the torchcsprng kernel
is inherited from tinyAES [29], a portable AES implementation in C. The torchcsprng developers
adapted tinyAES code for GPU execution in the same way as we have ported mbedTLS.
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Fig. 5. Mapping of parallel secure aggregation onto GPU kernels threads and blocks

The common approach to maximizing AES throughput on GPU is to perform massively parallel
encryption of independent streams on individual GPU threads. This strategy is usually suitable for
real applications, e.g. encryption of many large files, or transmitting data over many active SSL ses-
sions. The AES-based GPU random number generator for secure aggregation also follows the same
methodology described in Fig. 4. The initial keys originate from CPU (e.g. from one of the CPU-based
generators), and the parallel AES encryption operations are dispatched to generate portions of the
resulting random vector or matrix. The GPU performance is identified by sustained performance of
all AES encryption operations being executed on parallel GPU threads.

The share reconstructor (Step 4 of Alg. 2) GPU implementation consists of two CUDA kernels
executed sequentially (Fig. 5):

1. In the first kernel, each thread is responsible for generating the AES-CTR byte stream for its own
(K, IV) and then the threads jointly aggregate their streams to form one sum per GPU blocks.
This yields one aggregated stream per GPU block in the global GPU memory (a total of B streams
where B is the number of blocks on the GPU). The aggregation within each individual block is
implemented as an intra-block reduction using CUB.



2. The second kernel sums these B streams into a single one that is then returned to the host. This
kernel requires a classical segmented reduction, and thus is implemented using Thrust.

7.1 Use of shared memory and resolution of bank conflicts

Following Cihangir [2], we let the GPU threads cooperatively load the AES table into the shared memory
Since we need to grant a random access pattern to these lookup-tables to each thread, we load 32 copies
of the table into the shared memory of each thread block. During AES encryption, each thread in a
warp accesses only its own copy of the tabl. This way shared memory reads are made free of bank
conflicts, effectively maximizing the shared memory throughput The amount of shared memory per
block required in this approach totals:

sizetable×#warps× sizeint = 256× 32× 4 = 32768 bytes .

The Cihangir code and the CUB intra-block reduction both use shared memory within the first
kernel. CUB implementation aggregates values within a warp using shuffle operation, and uses a
small amount of shared memory to reduce partial aggregates between warps. Although the intra-
block reduction temporary storage could be allocated as an extra chunk of shared memory in addition
to Cihangir tables storage, the two together will exceed the most desirable shared memory size of
32KBytes (3 simultaneous blocks on V100 with 96KiB per SM). In order to maintain the 32KBytes
limitation, we temporary offload a small portion of Cihangir tables into registers to free up some
shared memory for the reduction temporary storage. In case of mbedTLS and torchcsprng versions,
intra-block reduction is the only consumer of shared memory; the tables are kept in constant memory.

7.2 GPU optimization and occupancy considerations

The GPU efficiency can be measured as the GPU occupancy ratio: the number of active warps divided
by the total number of warps supported by the GPU. The GPU occupancy is highly determined by
how well the properties of a given kernel program (register footprint, block size, amount of shared
memory) are suited for a specific GPU (maximum available registers, active warps and shared memory
per GPU multiprocessor).

If the round key is stored in GPU thread registers, the resulting register footprint could be quite
high, and may dramatically worsen the GPU occupancy rate. For example, with 64 registers per thread,
1024 threads in a block and 32KB of shared memory per block, our AES kernel has the occupancy
rate of 0.5 (50%) on NVIDIA Tesla V100. The same kernel but with 32 registers per thread could
peak at 1.0 (100%) ideal occupancy rate. Therefore, our kernel performance is limited by registers
consumption.

We look at how each round of AES encryption is performed with the help of T -tables. We refer to [2,
p.67318] for the exact expressions (in terms of T -tables and round keys) of the columns of AES in one
encryption round. Each AES encryption step (each counter increases) performs XOR of 16 rotations.
Given that the rotations are computationally independent, we can distribute them across multiple
threads. Moreover, in order to compute a single rotation, only a subset of the round key is required.
This approach opens an opportunity to decrease register consumption by sharing round keys among
the threads working on the same encryption round. Particularly, in the case of NVIDIA Tesla V100
with 96KB of shared memory per multiprocessor, we even have an option to put the round key into
the shared memory. With two active blocks per multiprocessor of 1024 threads, each already spending
32KB on AES tables, we have 16KB remaining to host the round keys. The shared round keys could
all fit into 16KB11 if each cooperative group of threads has at least

sizeblock /

(
sizeshared /# blocks− sizetable

sizeRK

)
11 We reserve 64 integers per key instead of 60 for even division.



threads. For sizeblock = 1024, sizeshared = 98304 bytes, # blocks = 2, sizetable = 32728 bytes,
sizeRK = 4 · 64 bytes = 256 bytes, we obtain 16 threads-per-group, that is, at least 16 threads need
to share a round key in order for us to fit the round keys and the AES tables in shared memory.

As shown, the shared memory is perfectly enough to spare the round key between 16 threads, each
computing a single rotation, and then gathered into a single XOR sum. We add this optimization on
top of the Cihangir’s shared memory approach.

Remarkably, torchcsprng does not make use of the shared memory. It could be explained by a
need to keep the shared memory available to other simultaneous GPU operations, e.g. tensor prod-
ucts. Furthermore, torchcsprng is limited to the PyTorch internal GPU kernels dispatcher. That is,
torchcsprng cannot customize the CUDA compute grid and organize specific threads cooperation.

8 Benchmarking

For the benchmarking, we have chosen a configuration typically used in the cloud compute environ-
ments with potential applications of Falkor technology. The secure aggregation compute node should
be equipped with at least one virtual CPU, and a dedicated GPU, such as NVIDIA Telsa V100. A
sufficient amount of memory both on CPU and GPU is preferred, but is not required, as the Falkor
kernel could be further adapted to perform piecewise (double-buffered) processing to fit limited RAM
size.

The CPU part of the benchmark is a single-threaded AES-CTR and shares aggregation code, which
is based on the mbedTLS implementation leveraging the AES-NI instruction set.

The GPU part of the benchmark includes the two kernels performing AES-CTR and shares aggre-
gation presented in Fig. 5, and the data transfers required to pass the IV vectors from the CPU to
the GPU, and the final result from the GPU to the CPU. The GPU performance is measured with
Cihangir and tinyAES implementations. We benchmark the tinyAES implementation, in order to
demonstrate the performance of torchcsprng, which is based on tinyAES.

We measure the performance of the implementations above on up to 218 clients, and up to 8× 106

bytes of random sequence length.
The speedup of Cihangir GPU implementation on NVIDIA Tesla V100 against a single core Intel

Xeon CPU @ 2.30GHz implementation based on mbedTLS is presented in Fig. 6. The most significant
advantage of GPU implementation is highlighted in the chart.

The CPU-GPU benchmark demonstrates speedups over 100× on workloads with large enough
number of clients and random sequence length. Both dimensions are equally important:

– each client is executed on an individual GPU thread, and a GPU must execute at least ≈ 10, 000
threads, in order to maximize the use of the available GPU resources

– the random sequence length determines the lifetime of each client GPU thread; if the sequence is
too short, the suboptimal initial AES key expansion dominates the timeline.

The speedup of Cihangir GPU implementation against tinyAES GPU implementation on NVIDIA
Tesla V100 is presented in Fig. 7. The most significant advantage of Cihangir version is also highlighted
in the chart. The absent data points have not been produced due to the memory size limitation.

Cihangir is more than 10× faster than tinyAES on GPU entirely thanks to the use of the shared
memory as a T -tables storage.

9 Privacy-preserving Federated Logistic Regression Model Training

In this section, we demonstrate scalability of our protocol by training a large logistic regression models
with 100 features and 50M data points distributed across 1000 clients. We carry out a Newton–Raphson
(second order) optimization, where up to 10% of the clients are allowed to dropout at each iteration and
hence, not submit their local update to the servers. The clients compute locally on their private data
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the local gradients (vectors) and Hessians (matrices) (grad and Hess, respectively), both of dimension
101 (see in Algorithm 6) and generates their corresponding masked value. Such computation takes on
average 4 seconds per client and produces 82kB of masked values to aggregate. All these computation
occur in parallel, and if we allow a long window of 10 seconds, we gather at least 90% of the client
updates, the rest being considered dropouts. All the clients submit these masked values to the funnel,
that uses the Falkor protocol to aggregate them. The Funnel can be organized as a tree of servers,
each client submits its update to the nearest leaf server, and each server aggregate their local updates
and propagate the result to its parent, and so on up to the root server, that ends up with the masked
value of the the global gradient (a vector of size 101) and the global Hessian (a symetric matrix of size
101). Aggregating two 82kB masked values to form one 82kB masked value is a very fast operation
(taking less than 100ms), so thanks to the Funnel server map-reduce topology, we obtain the global
aggregated masked-value in about one second. Then, each MPC server calls the Falkor secret-shares
reconstructor locally to turn the masked value into their own secret shares of the global gradient and
Hessian. The MPC servers compute the global model update step using a pure secret-shared based
MPC. This small computation consists in a linear system resolution in small dimension (a 101 × 101
linear system), and the joint computation terminates in 4 seconds. The MPC servers can optionally
also add a small Gaussian noise before revealing the result, so that the published global model update
protects the differential privacy of the clients. In total our secure aggregation algorithm, performs 6
Newton iterations, which are enough to reach convergence, and runs in less than a minute and uses
1MB network between the MPC servers, and hundreds of kilobytes of inbound/outbound network
on each client device. As a comparison, an end-to-end MPC approach where the costly computation
is performed on the full dataset of dimension 50M × 100 using the MPC logreg described in [30]
on 3 parties takes 27 hours, requires 400GB RAM machines, and requires to exchange more than 2
TeraBytes of masked values, on a very fast gigabit per second network.

Algorithm 3 Distributed logreg
Input: Ur - list of connected clients during iteration r
Input: Mr - current global model at iteration r
Input: Xi - local input data for clienti ∈ Ur

Output: Updated model Mr+1 at iteration r + 1
1: for each clienti ∈ Ur, in parallel do
2: (gradi,r, Hessi,r)← logregStep(Mr, Xi)
3: end for
4: (gradr, Hessr) = (

∑
i∈Ur

gradi,r,
∑

i∈Ur
Hessi,r) (via Falkor secure aggregation)

5: return Mr+1 = Mr − Hess−1
r ·gradr

10 Privacy-preserving Federated RNN Model Training on Twitter Dataset
In this section we apply Falkor to the particular scenario of RNN sentiment analysis model training
on the Twitter dataset. We first describe the dataset and the used RNN model. In order to ensure
faster convergence and accuracy we present secure version of two optimizers: FedAvg and FedAdam.

Dataset The dataset comprises of 1,194,933 tweets labeled positive or negative based on their emojis
for binary sentiment classification [31]. Each client is a Twitter user. We generate data with the LEAF
framework [32] with a ratio of 90-10% for the train data and test data which gives us 254,555 clients
in total.

Model The architecture of the recurrent neural network (RNN) model is described on Fig. 9. The
model itself is made of 186,657 trainable weights. Each word in a sample is first converted to its assigned
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token per a vocabulary of size 1.2M. The token is then mapped to its embedding vector of dimension
100. Here, we use a pre-trained (and public) embedding layer of 12M parameters, Glove [33], that is
known to all clients and stays constant during training. The embeddings are fed to a bidirectional
LSTM layer of 100 output units. The bidirectional layer goes through the sequence both forwards and
backwards. Both outputs are concatenated before going to a dense (fully connected) layer of 128 units
and a final classification layer of 1 unit followed by a softmax activation function. The model is trained
with a binary cross-entropy loss.

10.1 Federated Average Optimizer

The FedAvg algorithm [34] is a straightforward procedure that combines local gradient descent at the
client level and model averaging at the server level. Local training LocalOpt can be any type of gradient
descent algorithm such as SGD or Adam. Each client receives a global model from the server, performs
gradient descent on its local dataset and sends back its local gradients. The server then aggregate all
the received gradients ∆̃r and the total number of samples Nr, computes the average ∆r = ∆̃r

Nr
and

updates the global model (see Algorithm 4). In case of private Nr, this division can be performed via
private MPC division.

Benchmarks (GPU vs CPU for FedAvg) We split the training data among a varying (between
10 and 100000) non-overlapping simulated clients. We use the FedAvg algorithm with ηserver = 1 and
Adam as the local optimizer with ηclient = 0.001. The model is trained for 50 rounds.

As shown in Figure 11, increasing the number of clients while keeping the same data size decreases
the local client training time as there is less data per client (which means less gradient steps). However,
the server aggregation time increases as there are more shares to aggregate at the end of each round.
The client local training time depends on the client hardware whereas the server computations can be
improved via our GPU optimizations. For 50 iterations, the total training for 254255 clients is around
10 minutes using the GPU AES-CTR for secure aggregation versus 10 hours with single CPU core. The
GPU speedup for the generation of the aggregated masks with AES-CTR in this scenarios is around
×100 (see Figure 6).



Fig. 9. RNN model for the Twitter dataset

Algorithm 4 FedAvg

Input: Ur - list of connected clients during iteration r
Input: Mr - current global model at iteration r
Input: Xi - local input data for clienti ∈ Ur

Input: ηclient (client learning rate), ηserver (server learning rate),
Output: Updated model Mr+1 at iteration r + 1
1: for each clienti ∈ Ur, in parallel do
2: M̂i,r ← LocalOpt(Mr, Xi, ηclient)
3: ∆̃i,r = Ni,r(Mr − M̂i,r), where Ni,r is the number of samples used in the training in iteration r by

clienti.
4: end for
5: (∆̃r, Nr) = (

∑
i∈Ur

∆̃i,r,
∑

i∈Ur
Ni,r) (via Falkor secure aggregation)

6: ∆r = ∆̃r
Nr

7: return Mr+1 = Mr − ηserver∆r
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Fig. 11. Benchmarks with a single core per client for the local computation and single core versus GPU for
the secure aggregation on servers side.



10.2 Adaptive Federated Optimizers.

While FedAvg is a fairly standard and simple algorithm, its hyperparameters are often difficult to tune
and often exhibits a poor convergence behavior, especially when the number of client increases and the
datasets are not identically distributed across the clients. Recent progress have been made on adaptive
server optimizers such as FedAdagrad, FedAdam and FedYogi [35].

Our framework enables chaining Falkor with highly scalable MPC protocol (e.g., [30]) that runs
on the servers yields high performance implementations of these server optimization algorithms.

We now describe FedAdam (Algorithm 5) and explain how Falkor and MPC computations are used
to implement it.

Algorithm 5 FedAdam

Input: Ur - list of connected clients during iteration r
Input: Mr - current global model at iteration r
Input: Xi - local input data for clienti ∈ Ur

Input: β1, β2 ∈ [0, 1), τ , E - local epochs, B - batch size, ηclient - client learning rate, ηserver - server learning
rate

Output: Updated model Mr+1 at iteration r + 1
1: for each clienti ∈ Ur, in parallel do
2: M̂i,r ← LocalOpt(Mr, Xi, E,B, ηclient)
3: ∆̃i,r = Ni,r(Mr − M̂i,r), where Ni,r is the number of samples used in the training in iteration r by

clienti.
4: end for
5: (∆̃r, Nr) = (

∑
i∈Ur

∆̃i,r,
∑

i∈Ur
Ni,r) (via Falkor secure aggregation)

6: ∆r = β1∆r−1 + (1− β1)(
∆̃r
Nr

)

7: vr = β2vr−1 + (1− β2)∆
2
r

8: return Mr+1 = Mr − ηserver
∆r√
vr+τ
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For this adaptive method we apply Falkor to aggregate (∆̃r, Nr) and MPC for the computation of
∆r, r and xr+1 using MPC linear combination, multiplication, squaring and division (see Figure 12).

Our contribution is to secure the full flow of computations of the adaptive methods and not only the
linear aggregation function. Then we apply them to the particular scenario of RNN sentiment analysis
model training on the Twitter dataset in order to ensure faster convergence and accuracy that is close
to the accuracy obtained in centralized data (i.e., the scenario of all training data being aggregated in
one central location).

More precisely we explore the benefits for using FedAdam versus FedAvg optimizer.
For this experiment only the Twitter users with more than 30 tweets are kept (1 Twitter user is

considered as 1 client). The total number of clients is 2875, the number of iterations with server is 50,
the local epochs E = 1 and the client dropout is 10%. The client optimizer is full-batch Adam with
ηclient = 0.001 and the server learning rate is ηserver = 1 for both FedAvg and FedAdam.

Fig. 13. FedAvg vs FedAdam with 2875 clients (Twitter)

Figure 13 show that using FedAdam instead of FedAvg improves the convergence speed of the model.
The model reaches 78 % test accuracy with FedAdam and 76 % with FedAvg after 50 iterations with
the server. However, FedAdam does not manage to reach the 80 % centralized accuracy. This can be
due to suboptimal hyperparameters and other adaptive server optimizers could also have performed
better.

11 Conclusion

In this paper we proposed a novel approach for secure aggregation for Federated Learning based on
AES-CTR masking. The protocol is resilient to client dropout and has reduced client/server communi-
cation. We have presented a GPU implementation of AES-CTR based masking function. Our implemen-
tation outperforms mbedTLS and tinyAES on V100 GPU. The demonstrated optimizations are largely
based on AES CUDA kernels proposed by Cihangir Tezcan [2]. Our new AES-CTR GPU kernels could
be used as a drop-in replacement of tinyAES in torchcsprng [22], which in turn should further ac-
celerate other privacy-preserving machine learning frameworks, such as CryptGPU [23]. Futhermore,
in CryptGPU share re-randomization (that is, in fact an MPC lift operation for each coefficient) the
required random sequence lengths could be even larger than for Falkor secure aggregation, and po-
tentially demonstrate excellent GPU performance with our AES-CTR kernels. In addition, we proved
the security of our AES-CTR masking and we showed the scalability of our protocol in two real-world



scenario: distributed logistic regression and training a recurrent neural network model for sentiment
analysis of Twitter dataset.
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A Discussion: comparison of AES-based masking approach versus
homomorphic encryption for Falkor

Falkor aggregation protocol can also be achieved using public key linear homomorphic schemes in the
following way:

– clienti: each client additively secret-share their plaintext and encrypt using additive homomorphic
scheme each share with the public key of each servers, and publishes the tuple of encrypted shares
to the Funnel.

– Funnel: Given two tuples of encrypted shares, the funnel adds them homomorphically and reduces
it to one tuple of encrypted shares.

– serverj : at the end, each server grabs its final encrypted share from the final tuple in the Funnel,
and decrypts it locally.

With the HE solution, the list of participant identifiers Ur does not need to be transmitted (this
list is required in the AES-CTR-based masking approach), the size of a tuple of encrypted shares do not
grow with the number of clients who participated. In practice, it doesn’t matter for the funnel: a client
id is in general 10 bytes, and if 1 million clients participates, the participants list is still < 10M , which
stays small compared to the actual data. Furthermore, the use-case scenario may actually require to
track the participants lists to prevent e.g. double submissions. It does matter however for decryption
on the servers: decryption time in Falkor is linear on the number of clients, whereas in HE, it is not.

With ElGamal [36], RSA [37], or Paillier-based [38] HE scheme, the group elements are large
(that have a big impact on the network size). The trade-off is that on CPU we can process roughly
1000 AES-CTR+ streams in the time to decrypt one RSA decryption. Besides, the first two Additional
difficulty is the fact that El-Gamal and RSA operate on a multiplicative group and our protocol would
require to compute discrete logarithms on the plaintext. Paillier scheme is homomorph for addition
and does not have this problem. .

With LWE HE scheme [39], the additional benefit is that we can use multi-key homomorphic
encryption: a tuple of encrypted shares is just one LWE-encrypted share. LWE also supports packing
of coefficients. The disadvantage is that LWE uses noise, whose propagation is additive wrt, and that
must be eliminated at decryption (secret shares must be exact). Expect to lose 20 least significant bits
for 1 million clients, and to be forced to use 128-bit arithmetic and doing 128-bit FFT at encryption
on each client.

B Security Analysis

B.1 Threat model.

In our threat model, there are n clients and ℓ servers. The security of Falkor relies on the following
assumptions:

– A colluding coalition G consists of a set C of at most n − 1 clients and a set S of at most ℓ − 1
aggregating servers.

– The colluding coalition has access to the following data:

https://doi.org/10.1145/359340.359342


1. the plaintext input data of all clients in C - for party i, this is the local model Mi; in order to
separate securing the local model from the security aspects related to model inversion attacks,
we assume that the input data is the local model as opposed to the local input training data,

2. the shared keys ski,j for i ∈ C and j ∈ S,
3. the masked values sent over the network, that is, Ai for i = 1, . . . , n.

– The data that needs to be protected is:
1. input data (local models Mi) of all clients i ∈ C := {1, . . . , n} − C,
2. secret shares of all servers j ∈ S := {1, . . . , ℓ} − S,
3. the shared keys ski,j for i ∈ C and j ∈ S.

B.2 Real-or-random (RoR) indistinguishability

For a vector x of 64-bit integers and Bx = bitlength(x) (the total bitlength of x) we define:

AES-CTR⊕K,IV(x) := x⊕ AES-CTR-StreamK,IV(Bx),

AES-CTR+K,IV(x) := x+ AES-CTR-StreamK,IV(Bx).

In the first equation, x is interpreted as a sequence of Bx bits. In the second equation AES-CTR-StreamK,IV(Bx)
is interpreted as a vector of integers modulo 264 of same size as x.

We first need to prove that given any message m of Bm-bits, and a list of keys and initial values
(K1, . . . ,Kt) and (IV1, . . . , IVt), the value m+

∑t
i=0 AES-CTR-StreamKi,IVi

(Bm) for an adversary that
does not know at least one key Ki reveals nothing about m and Ki. To prove this, we first note that
the above expression can be viewed as then encryption AES-CTR+Ki,IVi

(m′) for a suitable m′, where the
AES-CTR+Ki,IVi

encryption only differs from the classical AES-CTRKi,IVi by the fact that in the first one,
the stream is 64-bits wise added to the message instead of bit-wise xored to the message. We then prove
that the two encryption schemes AES-CTR+ and AES-CTR⊕ are equivalent in the sense of IND-CPA security.
Bellare et al. [21] discussed various formalisms for the security for symmetric encryption schemes,
including indistinguishability under chosen plaintext attacks (IND-CPA). Two variants of IND-CPA they
come up with are left-or-right (LoR) and real-or-random (RoR), which they prove to be equivalent. We
thus provide our reduction on the real-or-random game.

We consider two basic real-or-random oracles:

1. AES+ - for a key K, it takes as input a secret values x of Bx bits as well as a bit b, it generates
uniformly random initial value IV

rand← B128 (128 bits) and outputs

AES+K(x; b) =

{
(AES-CTR+K,IV(x), IV) if b = 1,

(AES-CTR+K,IV(y
rand← BBx), IV) if b = 0.

Here, it is understood that the oracle AES+ picks the random coins for the choice of IV as well as
the choice of the random y in the case b = 0.

2. AES⊕ - for a key K, it takes as input a secret values x of Bx bits as well as a bit b, it generates
uniformly random initial value IV

rand← B128 and outputs

AES⊕K(x; b) =

{
(AES-CTR⊕K,IV(x), IV) if b = 1,

(AES-CTR⊕K,IV(y
rand← BBx), IV) if b = 0.

Similarly, the oracle picks the random coins for the choices of both IV and y.

Furthermore, let AAES⊕ be an adversary that has access to the oracle AES⊕(x, b). Conversely, let
AAES+ be an adversary having access to the oracle AES+(x, b).

Next, we will prove that its semantic security is equivalent to that of AES⊕.
Consider now the following games:



1. The challenger generates a random K for some security parameter k (the key size in bits) and
retains K.

2. The challenger selects a random bit b ∈ {0, 1}
3. The adversary submits polynomial number of queries (x) to the challenger.
4. The challenger responds with the value AES+(x; b) (resp. AES⊕(x; b)) to the adversary.
5. The adversary is free to perform any polynomially bounded number of additional computations.
6. Finally, the adversary outputs a guess for the value of b.

The scheme is ROR IND-CPA secure (or, ROR-CPA for brevity) if every probabilistic polynomial time
adversary has only a negligible advantage over a random guessing of b.

To define this notion precisely, consider the following ROR-CPA game (experiment):

Algorithm 6 ExpROR-CPA-bA (k)

Input: An adversary A having access to one of the random oracles that outputs a bit
1: Challenger selects K

rand← {0, 1}k

2: Challenger selects b
rand← {0, 1}

3: Adversary computes d← A(·, b)
4: return d

We will instantiate the above game with either A = AAES+ or A = AAES⊕ .

Definition 1 (ROR-CPA). We define the advantages of the adversaries as

AdvROR-CPAAAES+ (k) := Prob
(
ExpROR-CPA-1AAES+ (k) = 1

)
−

− Prob
(
ExpROR-CPA-0AAES+ (k) = 0

)
,

AdvROR-CPAAAES⊕ (k) := Prob
(
ExpROR-CPA-1AAES⊕ (k) = 1

)
−

− Prob
(
ExpROR-CPA-0AAES⊕ (k) = 0

)
.

Here, the probabilities are taken over the random coins used by the challenges (in the choices of K
and b) as well as the random coins picked by the oracle. To formalize the security notions in the
computation setting and relate them to the formalism of [21], we introduce the relevant parameters for
the resources of the adversary:

– t - time complexity
– q - number of queries to the underlying oracle
– µ - the amount of ciphertext the adversary sees in response to its encryption/masking oracle queries

For a given set of parameters t, q, µ, we can thus define the advantages

AdvROR-CPAAES+ (k, t, q, µ) := max
AAES+

AdvROR-CPAAAES+ (k),

where the maximum is taken over all adversaries AAES+ with time complexity t that make at most q
queries to the oracle and see a µ-fraction of the ciphertext / masking. Similarly, we define

AdvROR-CPAAES⊕ (k, t, q, µ) := max
AAES⊕

AdvROR-CPAAAES⊕ (k),

where the maximum is over all adversaries AAES⊕ with resources parametrized by (t, q, µ).



We start by the following simple equivalence whose proof is rather formal:

Theorem 1 (AES+ ⇔ AES⊕). For any quadruple of parameters (k, t, q, µ), we have

AdvROR-CPAAES+ (k, t, q, µ) = AdvROR-CPAAES⊕ (k, t, q, µ) (1)

Before, we present the formal proof, we illustrate the steps for the reduction AES+ ⇒ AES⊕ in
Fig. 14. The reduction AES⊕ ⇒ AES+ is similar.

Challenger for AES-CTR⊕ReductionAdversary for AES-CTR+

Generates K

x
x 0Bx

(c, IV)
c′ = c+ x

(c′, IV)

AES⊕K(0Bx ; b)

Chooses b ∈ {0, 1}

b
b b

forward b

for each query:

final answer:

Fig. 14. Reduction AES+ ⇒ AES⊕.

We now formalize the steps of the proof:

Proof. We start by proving the inequality

AdvROR-CPAAES+ (k, t, q, µ) ≤ AdvROR-CPAAES⊕ (k, t, q, µ) (2)

Consider any (k, t, q, µ)-bounded adversary AAES+ for AES+. We use AAES+ to define an adversary AAES⊕

for AES⊕ via the following rule:

1. Assume that the challenger for the AES+ oracle has selected the random key K of size k and the
random bit b.

2. For every query x that AAES+ submits to its oracle AES+K , the adversary AAES⊕ submits a binary
string of Bx zero bits (denoted by 0Bx) to its oracle AES⊕ to obtain (c, IV) = AES⊕K(0Bx ; b) and
retains (x+ c, IV) as the result of the query.

3. The adversary AAES⊕ outputs exactly the same bit as the output of the adversary AAES+ on the
oracle AES+K(·; b).

Clearly, the adversary AAES⊕ is (k, t, q, µ)-bounded and its advantage in guessing the bit of the chal-
lenger is the same as the same as the advantage of AAES+ . This implies that

AdvROR-CPAAAES+ (k) = AdvROR-CPAAAES⊕ (k) ≤ AdvROR-CPAAES⊕ (k, t, q, µ) .

Since the above holds for any (k, t, q, µ)-bounded adversary AAES+ , we obtain (2).
The proof of the opposite inequality

AdvROR-CPAAES⊕ (k, t, q, µ) ≤ AdvROR-CPAAES+ (k, t, q, µ) (3)

is exactly the same, but with AAES+ and AAES⊕ switched. Consider any (k, t, q, µ)-bounded adversary
AAES⊕ for AES⊕. This time, we use AAES⊕ to define a (k, t, q, µ)-bounded adversary AAES+ according to
the following rule:



1. Assume that the challenger for the AES⊕ oracle has selected the random key K and the random
bit b.

2. The adversary AAES+ chooses the challenge 0 of Bx zero bits where x is the challenge selected by
the adversary AAES⊕ . The adversary AAES+ retains the response x⊕ AES+K(0; b).

3. The adversary AAES+ outputs exactly the same bit as the output of the adversary AAES⊕ on the
oracle AES⊕K(·; b).

This yields (3).

Security of local models To prove real-or-random indistinguishability, an adversary A selects a
message (model) m of Bm bits (this correspond to a local model of a client not in the collusion group
G, i.e., not in C). We assume that the adversary has access to a real-or-random oracle OK1,...,Kℓ

(•, •; b)
(here, Kj is the output of key derivation function with input the shared key skj between the client
above with the jth server). For a given b, the oracle is given an input m and computes

OK1,...,Kℓ
(m; b) =


(m+

∑ℓ
j=0 AES-CTR-StreamKj ,IVj (Bm), IV)

if b = 1,

(y
rand← BBm , IV) if b = 0.

Without loss of generality, we assume that S consists of servers {1, . . . , ℓ − 1}. In this case, we can
simplify the oracle (by letting K = Kℓ, IV = IVℓ and x = m +

∑ℓ−1
j=1 AES-CTR-StreamKj ,IVj

(Bm)) to
reduce to the basic AES+(x, b) oracle.

Since AES-CTR+K,IV is as ”strong” as AES-CTR⊕K,IV, it is exactly as hard, given a ciphertext to retrive
either any non-trivial information on the message m or on the key K.

As shown in [21, Thm.13], the AES-CTR⊕K,IV indistinguishability from random outputs is valid up
to 264 encrypted 128-bit blocks. This means we should limit the size of our messages to 264 blocks of
128 bits.

Exactly like for AES-CTR⊕K,IV, the above is under the condition that the same (K, IV+ counter)
is never used to encrypt/mask two different messages twice throughout the protocol. Since in our
protocol, (K, IV) is derived from PBKDF2_sha256 with 384 bits of input entropy (ski,j) and a public
unique identifier r for the computation, a collision will occur either due to: an attack on the kdf (with
advantage 2−192 , or a random collision of the kdf’s output, which should produce the same 256-bits of
key and two IVs that are closer than the maximum length of the message. If B is the maximal number
of bits in a message, the kdf should collide on 384− log2(B/128) bits , which occurs with probability
2−((384−log2 B+7)/2). If B < 70, the collision probability is < 2−160.

Security of server shares Assuming the ”worst-case” coalition of exactly ℓ − 1 servers S and at
most n− 1 clients C, the coalition has access to the masked value

c = shareℓ +

n∑
i=1

mask(ski,ℓ, r) +

n∑
i=1

∑
j ̸=ℓ

mask(ski,j , r).

The third term is known entirely by the coalition, in the second term, there is at least one client i for
which the coalition does not know the key, so the share shareℓ is protected (the coalition only knows
an AES-CTR+ encryption of shareℓ).

Security of the sk the idea here is to use a composition argument: If by knowing tuples (m, c), we
were able to inverse the composition

c = AES-CTR+(PBKDF2_sha256(sk, r),m)



and find sk, then by applying the PBKDF2_sha256 to the result, would recover the key and initial value
K∥IV = PBKDF2_sha256(sk, r) of the encryption AES-CTR+. The IND-CPA security of AES-CTR+ and
the fact that PBKDF2_sha256 is with negligible probability (< 2−156) of collision imply that no such
these key-recovery attacks exist.

In conclusion In this section we showed that under traditional computational security assumptions
about AES and PBKDF2_sha256, no information is leaked during the secure aggregation protocol. As
a result, the Falkor aggregation protocol can be modeled as an ideal functionality that takes as input
each client’s local model (privately), and provides secret-shares of its aggregation to the servers. The
functionality does not return anything to the clients, and each server learns only its own share.

After an aggregation, the servers run an MPC computation and publishes an output, that becomes
the only available result after the aggregation step. To analyze the full security of the protocol, it
remains to analyze this sequence of published outputs, and to relate them to the client’s private data:
techniques based on differential privacy can typically be used to analyse the the full protocol. Such
analysis highly depends on the machine learning use-case, and is out of scope for this work.
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