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Abstract. Hardness amplification is one of the important reduction
techniques in cryptography, and it has been extensively studied in the lit-
erature. The standard XOR lemma known in the literature evaluates the
hardness in terms of the probability of correct prediction; the hardness is
amplified from mildly hard (close to 1) to very hard 1/2+ε by inducing ε2

multiplicative decrease of the circuit size. Translating such a statement
in terms of the bit-security framework introduced by Micciancio-Walter
(EUROCRYPT 2018) and Watanabe-Yasunaga (ASIACRYPT 2021), it
may cause the bit-security loss by the factor of log(1/ε). To resolve this
issue, we derive a new variant of the XOR lemma in terms of the Rényi
advantage, which directly characterizes the bit security. In the course of
proving this result, we prove a new variant of the hardcore lemma in
terms of the conditional squared advantage; our proof uses a boosting
algorithm that may output the ⊥ symbol in addition to 0 and 1, which
may be of independent interest.

1 Introduction

In modern cryptography, cryptographic primitives are usually proposed with se-
curity proofs. When proving the security of a primitive under some hardness
assumption, we show a reduction that solves a hard problem by assuming the
existence of an adversary attacking the primitive. If the reduction requires much
more computational cost than the assumed adversary, we need a stronger hard-
ness assumption to achieve a target level of security. Thus, tight reductions of
security proofs are desirable for the efficient use of cryptographic primitives.

A recent approach of concrete security reveals quantities related to security
reductions. Suppose we want to prove the security of primitive Q assuming the
security of primitive P (or hardness of some problem). Typically, we show that
for any adversary B of primitive Q with running time tB(n) and advantage
εB(n), there is an adversary A of primitive P such that the running time tA(n)
and the advantage εA(n) satisfy tA(n) ≤ ϕ(tB(n)) and εA(n) ≥ ψ(εB(n)) for
some functions ϕ and ψ. Here, n is a security parameter, and a reduction is
a construction of A out of B. We may understand the tightness of the reduc-
tion by specifying two functions, ϕ and ψ. We prefer smaller tA(n) and larger
εA(n) for tight reductions. Thus, it is tempted to combine the two quantities
as tA(n)/εA(n) and achieve the value as small as tB(n)/εB(n) of adversary B.



Namely, we want the loss function

L(n) =
tA(n)

εA(n)
· εB(n)
tB(n)

to be as small as possible.
The above way of quantifying the security loss has been used in the crypto-

graphic literature. In [24], the quantity of tA(n)/εA(n) was used to define the
security of primitives. The same treatment has been employed in the literature [4,
2, 27, 6]. For search primitives such as one-way functions and signature schemes,
the advantage εA(n) is simply defined as the adversary’s success probability. For
decision primitives such as pseudorandom generators and encryption schemes,
it is usually defined as the gap between two probabilities, which we want to be
as small as possible. This treatment of defining advantages has been standard in
the cryptography community. In the literature listed above, the advantage εA(n)
was defined in this way for analyzing the quantity tA(n)/εA(n).

In [11], Goldreich noted that Levin suggested using another quantity
tA(n)/ε

2
A(n), called work, for decision primitives. The reason is that if the gap of

two probabilities is εA(n), we need to repeat the experiment (security game) for
O(1/εA(n)

2) times to amplify it to a constant, say 2/3. The use of this quantity
was not justified well at that time.

Micciancio and Walter [26] initiated a theoretical study for quantifying the
security level of primitives, referring to it as bit security. They proposed using
another notion of advantage, which we call conditional squared (CS) advantage,
for evaluating the decision primitives. Their notion elegantly resolved paradoxical
situations in pseudorandom generators and approximate samplers. In [23], the
notion of [26] was extended for capturing both computational and statistical
parameters. The authors [30] defined bit security with an operational meaning
to justify the formalization of the security level of primitives and characterized
the quantity by another notion called Rényi advantage. The follow-up work [31]
demonstrated that the two advantages of [26, 30] are essentially equivalent3.

In this work, based on the recent advances in the notion of bit security (or the
quantity tA(n)/εA(n)), we focus on a basic problem of hardness amplification [13]
of Boolean functions. A Boolean function f : {0, 1}n → {0, 1} is said to be
mildly hard (unpredictable) if every polynomial-time algorithm fails to compute
f on a δ-fraction of input x ∈ {0, 1}n for a noticeable δ. The task of hardness
amplification is to convert f into another function f ′ so that f ′ is strongly hard
in the sense that every polynomial-time algorithm fails to compute f ′ on a
(1/2−ε)-fraction of input. The most well-known technique is Yao’s XOR lemma;
f ′(x1, . . . , xk) = f(x1) ⊕ · · · ⊕ f(xk) for xi ∈ {0, 1}n. In the framework of bit
security, hardness amplification is to reduce the advantage AdvA,f (n)(= 1/2−δ)
to AdvB,f ′(n)(= ε), where AdvA,f (n) is the advantage of adversary A predicting
f over random guessing.

3 Generally, the CS advantage is bounded above by the Rényi advantage. While the
CS advantage may take a much smaller value in some cases, the CS advantage can be
increased to the level of the Rényi advantage by modifying adversaries appropriately.
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In the two bit-security frameworks of [26, 30], a decision game is formalized
such that an adversary tries to guess the secret bit u ∈ {0, 1} by playing the
game. Thus, we can write a decision game as G = (G0, G1), where a secret bit u
is initially chosen uniformly at random, and the adversary plays Gu for guessing
u. The hardness of predicting a Boolean function f : {0, 1}n → {0, 1} can be
captured by the game Gf as follows; first x ∈ {0, 1}n and σ ∈ {0, 1} are chosen
uniformly at random. Then, the adversary receives (x, f(x)) when u = 0, and
(x, σ) when u = 1, and outputs a symbol in {0, 1,⊥}.4

When employing the framework of [30, 31], the bit security of game Gf =
(G0, G1) against adversaries with computational cost s can be approximated as

BSs(Gf ) = log min
A with cost s

s

AdvRenyi
A,Gf

, (1)

where AdvRenyi
A,Gf

= D1/2(A0∥A1) is the Rényi advantage of A in game Gf ,

D1/2(·∥·) is the Rényi divergence of order 1/2, and Au is the output distribution
of A when playing Gu.

With the notions of bit security, hardness amplification is the task of con-
verting f into f ′ such that maxB AdvRenyi

B,Gf′ is much smaller than maxA AdvRenyi
A,Gf

,

where A and B are taken over adversaries with costs s and s′, respectively. We
want the following loss function

Lamp(n) =
s ·maxB AdvRenyi

B,Gf′

s′ ·maxA AdvRenyi
A,Gf

to be as small as possible. Ideally, we want to achieve Lamp(n) = O(1).
The most efficient reductions of the XOR lemma until now were given

in [21, 3] using boosting versions of hardcore lemmas [19]. They guarantee s′ =
Ω(ε2/ log(1/δ)) · s, where maxA Pr(A(x) = f(x)) = 1− δ and maxB Pr(B(x) =
f ′(x)) = 1/2 + ε, where the maxima are taken over algorithms with cost
s and s′, respectively. Such a predictor A with Pr(A(x) = f(x)) = 1 − δ
can be easily converted to a distinguisher A′ with the same cost such that
AdvTV

A′,Gf
= dTV(A

′
0, A

′
1) = (1 − δ) − 1/2 = 1/2 − δ, where dTV(·, ·) is the total

variation distance. For any adversary A of game Gf = (G0, G1), it holds that(
AdvTV

A,Gf

)2

≤ AdvRenyi
A,Gf

≤ O
(
AdvTV

A,Gf

)
.

Thus, if AdvRenyi
A,Gf

≈
(
AdvTV

A,Gf

)2
holds for every adversary A, the XOR lemma

in [21, 3] gives

Lamp(n) = O
(
log(1/δ)

ε2
· ε2

(1/2− δ)2

)
= O(log(1/δ)),

meaning that the reduction seems to be optimal. Indeed, as observed in [30],

AdvRenyi
A,Gf

≈
(
AdvTV

A,Gf

)2
holds for balanced adversaries, who output every value

4 The symbol ⊥ indicates that the adversary gives up the prediction.
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with probability Ω(1). However, generally, we have AdvRenyi
A,Gf

= O
(
AdvTV

A,Gf

)
.

Thus, the reductions in [21, 3] imply that

Lamp(n) = O
(
log(1/δ)

ε2
· ε

1/2− δ

)
= O

(
log(1/δ)

ε

)
, (2)

which does not seem to be optimal.

1.1 Our results

In this work, in order to evaluate the bit security of hardness amplification
directly, we derive a new variant of the XOR lemma in terms of the Rényi
advantage. Roughly, our XOR lemma claims that if a function is mildly hard in
the sense that Pr(A(x) = f(x)) ≤ 1 − δ for any adversary A of size s, then the

Rényi advantage of the XOR function f ′ satisfies AdvRenyi
B,Gf′ ≤ ε for any adversary

B of size s′ = Ω(ε/ ln(1/δ)) · s.5 This implies that the loss of the reduction is

Lamp(n) = O
(
log(1/δ)

ε
· ε

1/2− δ

)
= O (log(1/δ)) ,

which improves upon the loss in (2) by the factor of 1/ε for general adversaries.
To derive our XOR lemma for the Rényi advantage, we prove a new variant of

the hardcore lemma, originally proved by Impagliazzo [19]. Our hardcore lemma
is stated in terms of the CS advantage. Then, by using the connection between
the CS advantage and the Rényi advantage in [31], we prove the XOR lemma
via the hardcore lemma.

To prove our hardcore lemma, we analyze the performance of the boosting
algorithm such that weak learners may output the ⊥ symbol in addition to
0 and 1. Our main technical contribution in this paper is characterizing the
performance of the boosting algorithm with ⊥ in terms of the CS advantage.

1.2 Related work

The study of hardness amplification has a long history, and there are several
proofs of the XOR lemma; see [9] for a thorough review. As mentioned in Section
1.1, in this paper, we prove our XOR lemma along the line of the proof by
Impagliazzo using the hardcore lemma [19].

Another line of studies on hardness amplification is the direct-product con-
structions; it aims to construct strongly hard (search type) functions from weak
ones [12, 10, 22]. See [22] and the literature therein for recent related work. In this
work, we focus on amplifying the hardness of Boolean (decision type) functions.

In the original paper [19], Impagliazzo provided two proofs of the hardcore
lemma, a constructive one and one based on the min-max theorem.6 Later, it

5 More precisely, this statement assumes that a weighted majority can be implemented
for free. If s = ω(log(1/δ)/ε2), the cost of the weighted majority is negligible; See Re-
mark 1 for discussion.

6 The latter was attributed to Nisan.
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was pointed out that the constructive proof can be interpreted as the boosting
algorithm in learning theory [21]. Based on such identification, there have been
several improvements and applications of the hardcore lemma [18, 20, 3, 25, 29].

In contrast to the standard hardcore lemma stated in terms of the probability
of correct prediction, our hardcore lemma is stated in terms of the CS advantage.
The main difficulty of handling the CS advantage is that it may not be linear
with respect to either the input distribution or (stochastic) circuit. Thus, it is
unclear if the min-max theorem is applicable to prove the hardcore lemma for
the CS advantage. To overcome this difficulty, we devise a modified version of
boosting algorithm in [20, 3] by considering that the adversary (weak learner in
the context of learning) may output ⊥ in addition to 0 and 1. In the context
of learning theory, by considering the asymmetry of weak learners’ confidence
for each output, we can improve the standard AdaBoost, which is known as
the confidence-rated AdaBoost or the infoBoosting [28, 1, 16, 17]. Our boosting
algorithm is closely related in spirit to those algorithms in the sense that the
symbol ⊥ signifies that weak learners’ confidence is zero. Since the CS advantage
is a criterion initiated in cryptography, we believe it is an interesting contribution
to characterize the boosting algorithm with ⊥ in terms of the CS advantages of
weak learners; perhaps, it may have certain applications in learning theory.

A utility of the CS advantage in the context of the Goldreich-Levin (GL)
algorithm has been reported by Hast in [15]; he proposed a modified version of
the GL algorithm by taking into account adversaries that may output ⊥ when
predicting the hardcore bit and characterized the performance of such a GL
algorithm in terms of the CS advantage. His algorithm was used in [31] to prove
the tightness of the GL theorem. In this work, we use the utility of outputting
⊥ in a hardcore lemma to provide a tight reduction of hardness amplification.

1.3 Paper organization

We present the formulation of the hardness amplification and the XOR lemma
for the Rényi advantage in Section 2. In Section 3, we present the hardcore
lemma for the CS advantage and its proof using the boosting algorithm with ⊥.
Section 4 presents the proof of the XOR lemma by using the hardcore lemma.
Other than the fact of approximation as in (1), we do not use the knowledge of bit
security frameworks [26, 30]. For readers’ convenience, we review the bit-security
frameworks in Appendix A.

2 Hardness amplification for Rényi advantage

For 0 ≤ ρ ≤ 1 and a function f : {0, 1}n → {0, 1}, ρ-hardness Hρ
avg(f) of function

f is the largest integer s such that any circuit C : {0, 1}n → {0, 1,⊥} of size at
most s satisfies

Pr
x∼Un

(
C(x) = f(x)

)
≤ ρ,
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where Un is the uniform distribution on {0, 1}n. For a prescribed (typically small)
margin δ > 0, a function f is regarded as mildly hard if the value of H1−δ

avg (f) is
sufficiently large. By using the function f as a building block, we are interested
in constructing another function that is much harder than f itself. A typically
used construction is the so-called XOR construction: for a given integer k ≥ 2,
let f⊕k : {0, 1}nk → {0, 1} be the function defined by

f⊕k(x1, . . . , xk) := f(x1)⊕ · · · ⊕ f(xk),

where x1, . . . , xk ∈ {0, 1}n. The standard XOR lemma of Yao claims that f⊕k is

hard in the sense that H
1/2+ε
avg (f⊕k) is as large as ε2

ln(1/δ)H
1−δ
avg (f) for ε ≥ 2(1−δ)k;

this means that even though the circuit size is decreased by the factor of ε2

ln(1/δ) ,

we can guarantee that the adversary’s success probability of predicting the value
of function f⊕k is at most 1

2 + ε. More precisely, the following holds:

Proposition 1 (XOR lemma). For ε ≥ 2(1− δ)k, it holds that

Pr
x1,...,xk∼Un

(
C(x1, . . . , xk) = f⊕k(x1, . . . , xk)

)
≤ 1

2
+ ε

for every circuit C of size at most s for s = Ω
(

ε2

ln(1/δ)

)
·H1−δ

avg (f).

In order to discuss the bit security of the XOR function, let us consider the
distinguishing game between u = 0 instance (x1, . . . , xk, f

⊕k(x1, . . . , xk)) and
u = 1 instance (x1, . . . , xk, σ), where σ is a random bit that is independent of
(x1, . . . , xk). Proposition 1 implies that (by the standard argument of converting
a distinguisher to a predictor), for every circuit of size at most s, the standard
distinguishing advantage (in terms of the total variation distance) is less than
ε. However, as discussed in [26, 30] (see also [31] for more detail), the standard
advantage is not suitable for evaluating bit security. Thus, the above-mentioned
XOR lemma does not guarantee that the bit security is preserved during the
process of constructing f⊕k from f . To resolve this issue, we derive an alternative
version of the XOR lemma in terms of Rényi advantage

AdvRenyi
A,f⊕k = D1/2(A0∥A1) = −2 ln

∑
a

√
A0(a)A1(a),

where Au is the distribution of the output by adversary when the instance is
u. As we mentioned in Section 1 (see also Appendix A), the bit security can
be approximated by the Rényi advantage up to a constant. To that end, it is
desirable to derive a trade-off between the adversary’s Rényi advantage and the
circuit size. We use the weighted majority gate once in the reduction proof of
the following theorem. To avoid the effect of how the weighted majority gate is
implemented, we first assume that the weighted majority gate is available for free
in the evaluation of the initial hardness H1−δ

avg (f); in Remark 1, we will provide
an estimate for the effect of implementing the weighted majority gate.
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Theorem 1 (XOR lemma for Rényi advantage). For ε ≥ 2(1 − δ)k, it
holds that

AdvRenyi
A,f⊕k ≤ ε

for every circuit A of size s′ ≤ ε
48 ln(1/δ)H

1−δ
avg (f), where the initial hardness

H1−δ
avg (f) is evaluated under the assumption that the weighted majority gate is

available for free.

Remark 1. The assumption of the availability of the weighted majority gate
comes from the fact that it is used in the proof of the hardcore lemma of Lemma
1. As we discuss in Remark 2, the effect of implementing the weighted majority
gate can be estimated. More specifically, the statement of Theorem 1 holds for
circuit size s′ ≤ ε

64 ln(1/δ)H
1−δ
avg (f)− c

ε for some constant c. Thus, when the initial

hardness is H1−δ
avg (f) = ω(log(1/δ)/ε2), then the effect of the weighted majority

is negligible.

We shall discuss an implication of Theorem 1. For a given integer s, the bit
security against adversaries with cost s is evaluated as (1). In fact, in the setting
of this section, the initial hardness s = H1−δ

avg (f) means BSs(Gf ) = log s+O(1).
For the function f itself, since circuits of much smaller size s′ may have the same
success probability 1 − δ, we cannot guarantee BSs′(Gf ) ≥ BSs(Gf ). However,
Theorem 1 implies that the XOR function f⊕k satisfies

BSs′(Gf⊕k) ≥ BSs(Gf )−O(log ln(1/δ))

for s′ = ε
48 ln(1/δ)H

1−δ
avg (f). In this sense, the bit security is preserved in the

hardness amplification.

3 Hardcore lemma for CS advantage

We shall prove Theorem 1 along the line of the proof by Impagliazzo using the
hardcore lemma [19]. To that end, we develop a new variant of the hardcore
lemma in this section.

By the definition of hardness, any circuit C of size s ≤ H1−δ
avg (f) must satisfy

Pr
x∼Un

(
C(x) = f(x)

)
≤ 1− δ. (3)

This means that there exists a set HC ⊂ {0, 1}n of hard inputs such that |HC | ≥
δ2n and the circuit C fails to compute f(x) for every x ∈ HC ; however, the hard
sets may differ for different circuits. Impagliazzo’s hardcore lemma claims that
there exists a set of inputs that are universally hard for every circuit having a
smaller size. It is more convenient to consider probability distributions, rather
than sets, having density δ; a distribution P on {0, 1}n is said to have density
δ if P (x) ≤ 1

δ2n for every x ∈ {0, 1}n, or equivalently, the min-entropy satisfies
Hmin(P ) ≥ n− log(1/δ). The standard hardcore lemma is a statement as follows:
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Proposition 2 (Hardcore lemma). There exists a hardcore distribution H
having density δ such that

Pr
x∼H

(
C(x) = f(x)

)
≤ 1

2
+ ε (4)

for every circuit C of size at most s for s = Ω
(

ε2

ln(1/δ)

)
·H1−δ

avg (f).

Since the standard hardcore lemma, Lemma 2, is insufficient to prove The-
orem 1, we derive the following variant of the hardcore lemma in terms of the
conditional squared (CS) advantage. For a given distribution P on {0, 1}n and
a circuit C : {0, 1}n → {0, 1,⊥}, the CS advantage of predicting f is defined as7

AdvCS
C,f |P :=

4

(
Pr(C(x) = f(x))− 1

2 Pr(C(x) ̸= ⊥)

)2

Pr(C(x) ̸= ⊥)
(5)

=

(
Pr(C(x) = f(x))− Pr(C(x) ̸= f(x))

)2

Pr(C(x) ̸= ⊥)
(6)

where the probability is with respect to x ∼ P and f(x) = f(x)⊕ 1.

Lemma 1 (Hardcore lemma for CS advantage). There exists a hardcore
distribution H having density δ such that

AdvCS
C,f |H ≤ ε (7)

for every circuit C of size at most s′ := ε
8 ln(1/δ)H

1−δ
avg (f).

For a circuit that does not output ⊥, i.e., Pr(C(x) ̸= ⊥) = 1, we can rewrite
(5) as

Pr(C(x) = f(x)) =
1

2
+

√
AdvCS

C,f |P

2
.

For such a circuit, the bounds (4) and (7) are the same up to a constant (ε2 in
Lemma 2 corresponds to ε in Lemma 1). A main new feature of Lemma 1 is that
it can be applied to circuits that may output ⊥ with significant probability.

In contrast to the standard correct probability (the left-hand side of (4)),
the CS advantage is not linear with respect to either the input distribution or
(stochastic) circuit. Thus, it is unclear if the min-max theorem is applicable to
prove Lemma 1. Instead, we consider a modified version of boosting algorithm
by taking into account the fact that the adversary (weak learner in the context
of learning) may output ⊥ in addition to 0 and 1.

7 More precisely, the CS advantage in (5) is for a predictor; on the other hand, when
we define the bit security, we consider the CS advantage for a distinguisher (cf. (24)).
The CS advantage for a predictor was first introduced in the context of the Goldreich-
Levin algorithm [15].
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Algorithm 1: Boosting

Input: The number T ∈ N of iteration and a circuit CP satisfying (8) for each
P with density δ

Output: A sequence of circuits CP (1) , . . . , CP (T )

1: Initialize P (1) as the uniform distribution on {0, 1}n;
2: Repeat Step 3 and Step 4 for 1 ≤ t ≤ T ;
3: For a circuit CP (t) that satisfies (8) for P (t), set γt =

∆t
4αt

for

αt := Pr
x∼P (t)

(
CP (t)(x) ̸= ⊥

)
,

∆t := Pr
x∼P (t)

(
CP (t)(x) = f(x)

)
− Pr

x∼P (t)

(
CP (t)(x) = f(x)

)
,

and set

P̂ (t+1)(x) =
P (t)(x) exp

(
− γt

{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

})
ZP (t)

,

where f(x) = f(x)⊕ 1 and

ZP (t) =
∑
x

P (t)(x) exp
(
− γt

{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

})
is the normalizer;

4: For the set Pδ of all distributions with density δ, set

P (t+1) = argmin
P∈Pδ

D(P∥P̂ (t+1)),

where D is the KL-divergence.

To prove Lemma 1 via a contradiction, suppose that for each distribution P
having density δ, there exists a circuit CP of size at most s′ such that

AdvCS
CP ,f |P > ε. (8)

Starting from the uniform distribution P (1) and a circuit that satisfies (8) for
P (1), we are going to sequentially update distributions and corresponding circuits
that satisfy (8); then, by combining those circuits, we eventually construct a
circuit that violates the assumption (3) on the hardness of f . As we mentioned
above, this procedure is essentially the same as the boosting algorithm in learning
theory, in which we construct a strong learner from weak learners. Our algorithm
for boosting is described in Algorithm 1. The sequence of distributions generated
by the algorithm satisfies the following.

Lemma 2. The distributions P (1), . . . , P (T ) generated by Algorithm 1 satisfy

T∑
t=1

1

T

AdvCS

C
(t)
P ,f |P (t)

8
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≤ Ex∼P

[ T∑
t=1

1

T
γt
{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}]
+
D(P∥P (1))

T

(9)

for every P ∈ Pδ, where Pδ is the set of all distributions with density δ.

Proof. The proof proceeds along the line of [20, 3]; however, we need more careful
analysis to take into account the probability of ⊥. First, for an arbitrary P ∈ Pδ,
from the definition of the KL-divergence and the update rule of P̂ (t+1), we have

D(P∥P (t))−D(P∥P̂ (t+1))

=
∑
x

P (x) ln
P̂ (t+1)(x)

P (t)(x)

= −γt
∑
x

P (x)
{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}
− lnZP (t)

= −γtEx∼P

[{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}]
− lnZP (t) .

Here, we can evaluate lnZP (t) as

lnZP (t) = ln
∑
x

P (t)(x) exp
(
− γt

{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

})
≤ ln

∑
x

P (t)(x)
(
1− γt

{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}
+ 2γ2t 1[CP (t)(x) ̸= ⊥]

)
= ln

(
1− γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

)
− Pr

x∼P (t)

(
CP (t)(x) = f(x)

)}
+ 2γ2t Pr

x∼P (t)

(
CP (t)(x) ̸= ⊥

))
≤ −γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

)
− Pr

x∼P (t)

(
CP (t)(x) = f(x)

)}
+ 2γ2t Pr

x∼P (t)

(
CP (t)(x) ̸= ⊥

)
,

where the first inequality follows from8 e−θ ≤ 1 − θ + 2θ2 for θ ∈ [−1, 1] and
that

exp
(
− γt

{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

})
= 1

8 By the Taylor approximation, we have

e−θ ≤ 1− θ + sup
−1≤τ≤1

e−τ

2
θ2 ≤ 1− θ +

e

2
θ2 ≤ 1− θ + 2θ2.
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when CP (t)(x) = ⊥; and the second inequality follows from ln(1 − θ) ≤ −θ for
θ < 1. Thus, we have

D(P∥P (t))−D(P∥P̂ (t+1))

≥ −γtEx∼P

[{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}]
+ γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

)
− Pr

x∼P (t)

(
CP (t)(x) = f(x)

)}
− 2γ2t Pr

x∼P (t)

(
CP (t)(x) ̸= ⊥

)
. (10)

Here, we apply the Pythagorean inequality by noting that Pδ is a closed convex
set: it holds that (e.g., see [5, Theorem 3.1])

D(P∥P (t+1)) +D(P (t+1)∥P̂ (t+1)) ≤ D(P∥P̂ (t+1))

for any P ∈ Pδ, which implies

D(P∥P (t+1)) ≤ D(P∥P̂ (t+1)). (11)

Thus, (10) and (11) imply

D(P∥P (t))−D(P∥P (t+1))

≥ −γtEx∼P

[{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}]
+ γt

{
Pr

x∼P (t)

(
CP (t)(x) = f(x)

)
− Pr

x∼P (t)

(
CP (t)(x) = f(x)

)}
− 2γ2t Pr

x∼P (t)

(
CP (t)(x) ̸= ⊥

)
.

By taking the summation of the both sides for t = 1 through T , we have

D(P∥P (1))−D(P∥P (T+1))

≥ −Ex∼P

[ T∑
t=1

γt
{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}]

+
T∑

t=1

γt
{

Pr
x∼P (t)

(
CP (t)(x) = f(x)

)
− Pr

x∼P (t)

(
CP (t)(x) = f(x)

)}
−

T∑
t=1

2γ2t Pr
x∼P (t)

(
CP (t)(x) ̸= ⊥

)
. (12)

Since D(P∥P (T+1)) ≥ 0, by substituting αt,∆t and γt = ∆t

4αt
defined in Algo-

rithm 1, and by rearranging terms, we have

T∑
t=1

∆2
t

8αt

≤ Ex∼P

[ T∑
t=1

γt
{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}]
+D(P∥P (1)).

11



Finally, by noting that AdvCS

C
(t)
P ,f |P (t)

=
∆2

t

αt
and by dividing by T , we have (9).

⊓⊔

Proof of Lemma 1 To prove via a contradiction, suppose that for each distribu-
tion P having density δ, there exists a circuit CP of size at most s′ satisfying
(8). We shall prove that there exists a circuit C⋆ of size at most s := H1−δ

avg (f)
such that

Pr
x∼Un

(
C⋆(x) = f(x)

)
> 1− δ. (13)

We construct C⋆ as follows. For T = 8 ln(1/δ)
ε , let CP (1) , . . . , CP (T ) be the circuits

obtained by Algorithm 1. For a given input x ∈ {0, 1}n, by invoking the weighted
majority oracle, C⋆ outputs a ∈ {0, 1} if (the tie can be decided arbitrarily)

T∑
t=1

1

T
γt
{
1[CP (t)(x) = a]− 1[CP (t)(x) = a]

}
> 0, (14)

where a = a ⊕ 1. Note that the size of C⋆ is Ts′. Note also that C⋆ makes an
error for input x, i.e., C⋆(x) = f(x) only if

T∑
t=1

1

T
γt
{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}
≤ 0. (15)

Let

E =

{
x ∈ {0, 1}n :

T∑
t=1

1

T
γt
{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}
≤ 0

}
.

be the set of all inputs such that C⋆ may make an error. If we prove |E|
2n < δ,

we are done, i.e., (13) holds. To prove via a contradiction, assume that |E|
2n ≥ δ,

which implies that the uniform distribution PE on E has density δ. Since P (1) is
the uniform distribution, we have

D(PE∥P (1)) =
∑
x

PE(x) ln 2
nPE(x) ≤

∑
x

PE(x) ln(1/δ) = ln(1/δ).

By applying Lemma 2 for PE , by noting (8) for each CP (t) , and by noting that
(15) with probability 1 for x ∼ PE , we have

ε

8
< Ex∼PE

[ T∑
t=1

1

T
γt
{
1[CP (t)(x) = f(x)]− 1[CP (t)(x) = f(x)]

}]
+
D(PE∥P (1))

T

≤ D(PE∥P (1))

T

≤ ε

8
,

which is a contradiction. ⊓⊔

12



Remark 2. Even though we did not take into account the precision of the weight
γt in the proof of Lemma 1, it can be evaluated as follows. Note that αt and ∆t

in Algorithm 1 satisfy

ε <
∆2

t

αt
≤ ∆t

αt
≤ 1.

By setting τ = ⌈log(1/ε)⌉ so that 1
2τ ≤ ε, we divide the interval (1/2τ , 1] into τ

parts (
1

2τ
,

1

2τ−1

]
,

(
1

2τ−1
,

1

2τ−2

]
, . . . ,

(
1

2
, 1

]
.

Then, each ∆t

αt
satisfies

∆t

αt
∈
(

1

2ℓt
,

1

2ℓt−1

]
for some ℓt; if we set γt =

1
2ℓt+2 , then we have

∆t

8αt
≤ γt <

∆t

4αt
. (16)

If we use γt =
1

2ℓt+2 instead of γt =
∆t

4αt
in Algorithm 1, the last two terms of

(12) is lower bounded as

T∑
t=1

γt
{

Pr
x∼P (t)

(
CP (t)(x) = f(x)

)
− Pr

x∼P (t)

(
CP (t)(x) = f(x)

)}
−

T∑
t=1

2γ2t Pr
x∼P (t)

(
CP (t)(x) ̸= ⊥

)
=

T∑
t=1

∆2
t

αt
γt
αt

∆t

(
1− 2γt

αt

∆t

)

≥
T∑

t=1

∆2
t

αt

1

8

(
1− 2

8

)
=

T∑
t=1

3∆2
t

32αt
,

where the inequality follows from that the function g(θ) = θ(1 − 2θ) is lower
bounded by g(1/8) for 1/8 ≤ θ ≤ 1/4 and (16). Thus, even if we take into
account the precision of the weight γt, we have the same claim as Lemma 1
except that the factor 1

8 in s′ is replaced by 3
32 .

Furthermore, since each weight γt takes a value between 1/2τ+2 and 1/8, we
can implement the weighted majority by creating 2τ+2γt ≤ 1/ε copies of each
input and by using the majority.9 If we take into account the cost of the weighted

9 Such a naive implementation of the weighted majority has been studied in the circuit
complexity [8].
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majority, the proof goes through as long as

Ts′ +
cT

ε
= T

(
s′ +

c

ε

)
≤ s

for some constant c.10 Thus, the claim of Lemma 1 still holds for every circuit of
size at most s′ = 3ε

32 ln(1/δ)H
1−δ
avg (f) − c

ε ; when the initial hardness is H1−δ
avg (f) =

ω(log(1/δ)/ε2), then the cost of the weighted majority is negligible.

4 Proof of Theorem 1

For notational simplicity, we prove the case of k = 2; general k ≥ 2 can be
proved similarly. Toward deriving a contradiction, suppose that there exists A
with size s′ ≤ ε

48 ln(1/δ)H
1−δ
avg (f) such that AdvRenyi

A,f⊕k > ε. By Lemma 1, there

exists a hardcore distribution H with density δ such that

AdvCS
C,f |H ≤ ε

6
(17)

for every circuit C of size s′ ≤ ε
48 ln(1/δ)H

1−δ
avg (f). Let G be the distribution

on {0, 1}n given by G(x) = 1/2n−δH(x)
1−δ . Then, the uniform distribution Un on

{0, 1}n can be decomposed as

Un(x) = (1− δ)G(x) + δH(x). (18)

When (x1, x2) are distributed according to distribution Q, we denote the output
distribution of adversary A by AQ

u for u = 0, 1 (note that, when u = 1, σ is
generated independently of (x1, x2) ∼ Q). Then, the output distribution Au of
adversary A under the uniform distribution can be decomposed as

Au = (1− δ)2AGG
u + (1− δ)δAGH

u + δ(1− δ)AHG
u + δ2AHH

u . (19)

By the joint convexity of the Rényi divergence of order 1/2 (e.g., see [7, Theorem
11]), we have

ε < AdvRenyi
A,f⊕k

= D1/2(A0∥A1)

≤ (1− δ)2D1/2(A
GG
0 ∥AGG

1 ) + (1− δ)δD1/2(A
GH
0 ∥AGH

1 )

+ δ(1− δ)D1/2(A
HG
0 ∥AHG

1 ) + δ2D1/2(A
HH
0 ∥AHH

1 ).

Since (1− δ)2 < ε
2 by the assumption and D1/2(A

GG
0 ∥AGG

1 ) ≤ 1 (cf. [31, Propo-
sition 1]), we have

ε

2
< (1− δ)δD1/2(A

GH
0 ∥AGH

1 )

+ δ(1− δ)D1/2(A
HG
0 ∥AHG

1 ) + δ2D1/2(A
HH
0 ∥AHH

1 ).

10 It comes from the fact that the majority can be realized by a circuit of linear size of
inputs [32].
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Since the summation of (1 − δ)δ, δ(1 − δ), and δ2 is less than 1, by
the averaging argument, at least one of D1/2(A

GH
0 ∥AGH

1 ), D1/2(A
HG
0 ∥AHG

1 ),
or D1/2(A

HH
0 ∥AHH

1 ) is larger than ε
2 . For instance, suppose that

D1/2(A
GH
0 ∥AGH

1 ) > ε
2 (other cases are similar). We can write

AGH
0 (a) = Pr

x∼G
y∼H

(
A(x, y, f(x)⊕ f(y)) = a

)
= Ex∼G

[
Pr
y∼H

(
A(x, y, f(x)⊕ f(y)) = a

)]
and

AGH
1 (a) = Pr

x∼G
y∼H

(
A(x, y, σ) = a

)
= Pr

x∼G
y∼H

(
A(x, y, f(x)⊕ σ) = a

)
(20)

= Ex∼G

[
Pr
y∼H

(
A(x, y, f(x)⊕ σ) = a

)]
,

where the identity (20) holds since σ being a random bit independent of (x, y)
implies that f(x)⊕σ is a random bit independent of (x, y). For each x ∈ {0, 1}n,
let us consider an adversary Ax for distinguishing between (y, f(y)) and (y, σ)
for y ∼ H; given input (y, z), Ax runs A(x, y, f(x)⊕ z) (since we consider non-
uniform complexity, f(x) can be precomputed and provided to the circuit, and
the size of Ax is s′). By applying the joint convexity of the Rényi divergence of
order 1/2 once more, we have

ε

2
< D1/2(A

GH
0 ∥AGH

1 ) (21)

≤ Ex∼G

[
D1/2(A

x
0∥Ax

1)

]
. (22)

Thus, there exists x ∈ {0, 1}n such that

ε

2
< D1/2(A

x
0∥Ax

1).

By the same argument as [31, Theorem 3] (for completeness, we provide a proof
in Appendix B), there exists a predictor C : {0, 1}n → {0, 1,⊥} that invokes Ax

once and satisfies

AdvCS
C,f |H ≥ 1

3
D1/2(A

x
0∥Ax

1) >
ε

6
, (23)

which contradicts (17). ⊓⊔
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A Bit-security frameworks

As we mentioned in Section 1, the bit security for decision game G was first
introduced in [26], and an operational framework was later introduced in [30].
For readers’ convenience, in this appendix, we review the bit-security frameworks
of [26] and [30] and discuss their equivalence shown in [31]. Since the main focus
of this paper is decision games, we only present the formulation of the decision
game in the following; see [26, 30] for the formulation of the search game.

Let U be the random variable describing the choice of a decision game; for
instance, in the indistinguishability game of pseudorandom number generator
(PRG) from the true random number generator (TRG), U = 0 corresponds to
the game played with PRG and U = 1 corresponds to the game played with
TRG. In the framework of [26], we consider an adversary A that outputs ⊥ in
addition to 0 and 1; the symbol ⊥ signifies that the adversary has difficulty
predicting the value of U and gives up the prediction. For the random variable
Y describing the adversary’s output, let

αA := Pr(Y ̸= ⊥),

βA := Pr(Y = U |Y ̸= ⊥),

and define the conditional squared (CS) advantage

AdvCS
A,G := αA(2βA − 1)2. (24)

Then, the bit security of [26] is defined as11

min
A

{
log2

(
sA

AdvLA,G

)}
, (25)

where sA is the cost of the adversary.12

In the bit-security framework of [30], in order to define the bit security op-
erationally, we consider an outer adversary B in addition to the inner adversary
A that plays the given security game. In the framework, the outer adversary B
seeks to increase the success probability of predicting U by invoking the inner
adversary A for NA,B times. Then, by integrating the outputs from the invoca-
tions of the inner adversary, the outer adversary outputs the predicted value Z.
Then, for a prescribed success probability 1 − µ (say 0.99), the bit security of
decision game G is defined as

BSµG := min
A,B

{
log2(NA,B · sA) : Pr(Z = U) ≥ 1− µ

}
. (26)

11 In [26], the authors first introduced an advantage using the Shannon entropy and
the mutual information; then, in order to justify the definition (25), they discussed
that that advantage is approximated by the CS advantage.

12 In this paper, we focus on the circuit size.
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Furthermore, it was shown in [30] that the bit security is characterized by the
Rényi advantage up to a constant, i.e.,

BSµG = min
A

{
log2 sA + log2

⌈
1

AdvRenyi
A,G

⌉}
+O(1), (27)

where the Rényi advantage is given by the Rényi divergence

AdvRenyi
A,G := D1/2(A0∥A1)

for the distributions A0 and A1 of adversary for U = 0 and U = 1, respectively.
At first glance, the bit security defined in (25) and that in (27) (defined via

operational formula (26)) are different quantities. However, it was shown in [31]
that the two notions of bit security are equivalent in the following sense.

Proposition 3. For an arbitrary adversary A for a decision game G, it holds
that AdvCS

A,G ≤ 8AdvRenyi
A,G . On the other hand, for an arbitrary adversary A

satisfying AdvRenyi
A,G ≤ 1, there exists an adversary Ã having the same cost as A

such that AdvRenyi
A,G ≤ 12AdvCS

Ã,G
.

By using the conversion of two advantages in Proposition 3, we can argue that
the two notions of bit security coincide up to a constant; for more detail, see
[31, Section 4]. Since the two notions are equivalent, in the main body of the
paper, we focus on the bit security characterized by the Rényi advantage, (27).
However, the CS advantage adapted for predictors also plays an important role
when we prove the hardcore lemma in Section 3. From a technical perspective,
it seems that the CS advantage is more suitable for analyzing the performance
of algorithms; on the other hand, the Rényi advantage is more convenient for
analysis in a certain situation since it satisfies (joint) convexity with respect to
the distributions, which is used in the proof of Theorem 1.

Here, we should note that the standard advantage defined by the total vari-
ation distance between A0 and A1 is unsuitable for evaluating bit security. No-
tably, as was pointed out in [26] (see also [31, Section 1.3] further discussion),
the standard advantage cannot resolve the paradoxical nature of the linear test
for the PRG.

B Proof of (23)

In this appendix, we prove that there exists a predictor C : {0, 1}n → {0, 1,⊥}
that invokes Ax once and satisfies (23). We use the following technical lemma.

Lemma 3. For given distributions P and Q with P ≪ Q, we have

D1/2(P∥Q) ≤ D(P∥Q) ≤
∑

x∈X+

(P (x)−Q(x))2

Q(x)
.

where X+ = {x : Q(x) > 0}, and D(P∥Q) =
∑

x P (x) log(P (x)/Q(x)) is the
KL-divergence.
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Proof. The former inequality follows from the fact that the Rényi diver-
gence is monotonically non-decreasing with respect to α and D(P∥Q) =
limα→1Dα(P∥Q). The latter inequality appears in the middle of the proof of
[14, Lemma 4.1]. ⊓⊔

Note that, for y ∼ H, the distribution of the adversary Ax for u = 0 instance
(y, f(y)) and u = 1 instance (y, σ) are given by

Ax
0(a) = Pr

y∼H

(
Ax(y, f(y)) = a

)
,

Ax
1(a) = Pr

y∼H

(
Ax(y, σ) = a

)
for a ∈ {0, 1,⊥}. Note that the support of (y, f(y)) is included in the support of
(y, σ).13 Thus, if the adversary Ax outputs a symbol a with positive probability
under u = 0, then Ax must output a with positive probability under u = 1 as
well, i.e., Ax

0 ≪ Ax
1 .

Let a⋆ ∈ {0, 1,⊥} be such that Ax
1(a

⋆) > 0 and

max
a∈{0,1,⊥}:
Ax

1 (a)>0

(Ax
0(a)−Ax

1(a))
2

Ax
1(a)

=
(Ax

0(a
⋆)−Ax

1(a
⋆))2

Ax
1(a

⋆)
.

Then, by Lemma 3, we have

D1/2(A
x
0∥Ax

1) ≤ 3
(Ax

0(a
⋆)−Ax

1(a
⋆))2

Ax
1(a

⋆)
. (28)

We consider two cases separately.

When Ax
0(a

⋆) ≥ Ax
1(a

⋆) In this case, we consider the following predictor C.
First, we sample the uniform random bit σ. Second,

– If Ax(y, σ) = a⋆, then C outputs σ;
– If Ax(y, σ) ̸= a⋆, then C outputs ⊥.

For this predictor, we have

Pr
y∼H

(
C(y) ̸= ⊥

)
= Pr

y∼H

(
Ax(y, σ) = a⋆

)
= Ax

1(a
⋆)

and

Pr
y∼H

(
C(y) = f(y)

)
=

1

2
Pr
y∼H

(
Ax(y, σ) = a⋆|σ = f(y)

)
=

1

2
Pr
y∼H

(
Ax(y, f(y)) = a⋆

)
=
Ax

0(a
⋆)

2
,

13 Here, the support is the set of realizations that occur with positive probability.
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which implies

Pr
y∼H

(
C(y) = f(y)

)
− 1

2
Pr
y∼H

(
C(y) ̸= ⊥

)
=
Ax

0(a
⋆)−Ax

1(a
⋆)

2
.

Thus, the CS advantage of C satisfies (cf. (5))

AdvCS
C,f |H =

(Ax
0(a

⋆)−Ax
1(a

⋆))2

Ax
1(a

⋆)

≥ 1

3
D1/2(A

x
0∥Ax

1),

where the last inequality follows from (28).

When Ax
0(a

⋆) < Ax
1(a

⋆) In this case, we consider the following predictor. First,
we sample the uniform random bit σ. Second,

– If Ax(y, σ) = a⋆, then C outputs σ ⊕ 1;
– If Ax(y, σ) ̸= a⋆, then C outputs ⊥.

For this predictor, we have

Pr
y∼H

(
C(y) ̸= ⊥

)
= Pr

y∼H

(
Ax(y, σ) = a⋆

)
= Ax

1(a
⋆)

and

Pr
y∼H

(
C(y) = f(y)

)
= Pr

y∼H

(
σ = f(y)⊕ 1, Ax(y, σ) = a⋆

)
= Pr

y∼H

(
Ax(y, σ) = a⋆

)
− Pr

y∼H

(
σ = f(y), Ax(y, σ) = a⋆

)
= Ax

1(a
⋆)− 1

2
Pr
y∼H

(
Ax(y, σ) = a⋆|σ = f(y)

)
= Ax

1(a
⋆)− 1

2
Pr
y∼H

(
Ax(y, f(y)) = a⋆

)
= Ax

1(a
⋆)− Ax

0(a
⋆)

2
,

which implies

Pr
y∼H

(
C(y) = f(y)

)
− 1

2
Pr
y∼H

(
C(y) ̸= ⊥

)
=
Ax

1(a
⋆)−Ax

0(a
⋆)

2
.

Thus, the CS advantage of C again satisfies

AdvCS
C,f |H =

(Ax
0(a

⋆)−Ax
1(a

⋆))2

Ax
1(a

⋆)

≥ 1

3
D1/2(A

x
0∥Ax

1).

⊓⊔
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