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Abstract. In real-world applications, the overwhelming majority of cases require
(authenticated) encryption or hashing with relatively short input, say up to 2K bytes.
Almost all TCP/IP packets are 40 to 1.5K bytes, and the maximum packet lengths
of major protocols, e.g., Zigbee, Bluetooth low energy, and Controller Area Network
(CAN), are less than 128 bytes. However, existing schemes are not well optimized
for short input. To bridge the gap between real-world needs (in the future) and
limited performances of state-of-the-art hash functions and authenticated encryptions
with associated data (AEADs) for short input, we design a family of wide-block
permutations Areion that fully leverages the power of AES instructions, which are
widely deployed in many devices. As for its applications, we propose several hash
functions and AEADs. Areion significantly outperforms existing schemes for short
input and even competitive to relatively long messages. Indeed, our hash function
is surprisingly fast, and its performance is less than three cycles/byte in the latest
Intel architecture for any message size. It is significantly much faster than existing
state-of-the-art schemes for short messages up to around 100 bytes, which are the most
widely-used input size in real-world applications, on both the latest CPU architectures
(IceLake, Tiger Lake, and Alder Lake) and mobile platforms (Pixel 7, iPhone 14, and
iPad Pro with Apple M2).
Keywords: Short message · AES instruction · hash function · authenticated
encryption · beyond 5G · IoT

1 Introduction
1.1 Background
In real-world communication environments, the overwhelming majority of cases require
(authenticated) encryption or hashing with relatively short input, say up to 2K bytes. It
is common knowledge that “real-world” TCP/IP packet length is biased towards short

∗This is an updated and extended version from [28]. We added authenticated encryptions with associated
data (AEADs) as an new application of our permutations. In addition, we have updated the performances
of SHA2-256 and BLAKE3 by using code adapted from SUPERCOP (https://bench.cr.yp.to/supercop.
html).
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packets [54], as implemented by the standard benchmark method (Internet Mix1 and the
variants) for Internet routers etc. Packet sizes on the Internet generally follow a bimodal
distribution, where 44% of packets are between 40 and 100 bytes long, and 37% are between
1400 and 1500 bytes in size. Low-power wireless protocols employ short packets, e.g., the
maximum packet length of Zigbee is 127 bytes and 47 bytes for Bluetooth low energy.
The next Controller Area Network (CAN) standard, CAN-FD, has a maximum packet
size of 64 bytes. In the use of narrow-band IoT [2], even the communication of 1-bit
messages (e.g., for device monitoring) is considered one of the target applications. For
end-to-end encryption schemes in real-time video conference systems such as Zoom [34]
and Webex [67, 57], which rapidly became popular due to the COVID-19 pandemic, the
frame size is about 1K bytes. In these applications, an efficient hash function for short
messages is essential. Specifically, to maintain the authenticity of the message, particularly
against potentially malicious servers, the hash value of each packet/frame should be signed
by digital signatures [29]. As such systems require real-time processing, the hash function
should be as fast as possible for short messages.

Short inputs are also crucial for the future of mobile communications. So-called “beyond
5G” or 6G mobile communication technology will require short packets to achieve ultra-low
latency communication. In comparison, some applications of 6G are expected to require a
peak speed of over 100 GBps [44].

The importance of the short-input encryption/hash function has been widely recognized
in the cryptographic research community. The NIST report on Lightweight Cryptography
(LwC) [47, Sect 2.3.2] explicitly mentioned that lightweight applications typically need a
hash function optimized for short messages, such as 256 bits. Also, fast processing for short
messages is one of the important criteria for the ongoing NIST LwC standardization project
for AEADs (see [1, Sect. 3.4]). Some NIST LwC proposals advertise their performances
for short inputs, such as the winner, Ascon [19], a finalist Romulus [30], and second-round
candidates ForkAE [3] and Saturnin [12].

The NIST LwC project targeted lightweight AEADs and hash functions, but only a few
proposals use AES because the project mainly focuses on devices with low computational
resources. On the other hand, the percentage of CPUs that have (the components of)
AES as a dedicated instruction is rapidly increasing in the mobile and desktop PC world,
represented by Intel AES-NI and ARMv8 AES instructions. Steam Hardware Survey
shows that the number of CPUs with AES instructions is as high as 96.65% of the clients
as of December 20222. Standardization of AES instructions is also being considered for
the RISC-V architecture [45], which is expected to become popular. This trend will also
spread to low-end platforms like IoT edge devices.

1.2 Related Work
Short-(Fixed)-Input-Length (SFIL) Hash Functions. Haraka v2 is a SFIL hashing for
post-quantum applications such as hash-based signature schemes [41]. However, a recent
study by Bao et al. [6] reveals that preimage attacks on Haraka-256 and Haraka-512 up to 9
out of 10 rounds and 11 out of 10 rounds are feasible, respectively. That is, Haraka-512 is
completely broken by their cryptanalyses, and the security margin of Haraka-256 is only
one round. Simpira v2 is a family of permutations [25], and a short-input hashing is one of
its applications. Although the security flaw of this application has yet to be found, it needs
to be better optimized for recent CPU architectures, especially for a single permutation
call, which is required for this application. For example, one round of the 256-bit variant
requires two times AES round function calls, and each AES call should be sequentially
executed because the second execution requires the output of the first execution. Because

1https://en.wikipedia.org/wiki/Internet_Mix
2https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
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Intel Ice Lake or later processors can pipeline up to 6 AES instructions, it does not take
full advantage of the pipeline.

Variable-Input-Length (VIL) Hash Functions. As efficient VIL hash functions, there are
KangarooTwelve [10], ParallelHash256 [37], and BLAKE3 [56], in which parallel/tree hash
structures allow to leverage pipeline and parallel executions to enhance the performance in
software. However, these are effective only for long input, ie, processing short messages (less
than 2K bytes) is much less efficient. In addition, KangarooTwelve and BLAKE3 guarantee
the 128-bit preimage security. Other standard hash functions, such as SHA2-256 [65] and
SHA3-256 [66], are also inefficient for short messages.

SFIL AEADs. As an efficient SFIL AEAD, there is KWF proposed by Khovratovich [39].
It uses a single public permutation as the underlying component to provide an efficient
(deterministic) AEAD, also known as a “key wrapping scheme”. In this scheme, associated
data is processed with an unkeyed cryptographic hash function, and then the hashed
associated data and the padded message are processed simultaneously with a single
permutation. To achieve 128-bit security, it suggests Keccak-p[800] or Keccak-p[1600] as
the permutation and SHA2-256 or SHA3-256 as the unkeyed cryptographic hash function,
but these are not efficient for short inputs.

VIL AEADs. Standard authenticated encryption modes, such as OCB3 [42] and GCM [46],
can be run extremely fast by using AES instructions for short messages. However, their
data security is limited to 64 bits (due to the 128-bit block size of AES); namely, they can
be broken with O(264) encrypted blocks. This security level is not enough for the 6G era.
On the other hand, more secure AEADs, such as Deoxys and OPP with BLAKE2b, are not
well optimized for short messages, as we will discuss in detail below.

Deoxys is a family of nonce-based AEAD schemes [32, 33]. It is based on a new family
of tweakable block ciphers, Deoxys-TBC, which uses the AES round function as a building
block; thus, it can greatly benefit from AES instructions. Deoxys is regarded as a very
efficient AEAD scheme for short messages, but it can be seen from [33, Tables 9 and 10]
that short messages (e.g., 64 bytes) are still processed around three times slower than long
messages (e.g., 65K bytes).

OPP is a permutation-based AEAD scheme [23]. It has excellent performance when
compared to other permutation-based AEAD schemes, such as CAESAR submissions (e.g.,
Ascon [18], Keyak [9], and NORX [4]), or the general SpongeWrap schemes [8, 50]. According
to [23], OPP instantiated with the reduced-round BLAKE2b permutation achieves a peak
speed of 0.55 cycles per byte on an Intel Haswell processor. Moreover, when compared
to its competitors AES-GCM [20, 27], OCB3 [42], ChaCha20-Poly1305 [55], and Deoxys-I-
128 [32, 33], this instantiation is faster by factors of around 1.87, 1.25, 3.80, and 1.74,
respectively. Given that the instantiation of OPP without AES-NI is faster than Deoxys-
I-128 with AES-NI, a permutation-based OPP scheme with AES-NI should have further
high performance.

1.3 Motivation
Looking into real-world applications, efficient hash functions, and AEADs for short inputs
up to 2K bytes is essential and will become increasingly important. However, existing
schemes need to be better optimized for short input. Especially, there still needs to be
satisfactory VIL hash functions for short messages regarding speed and security. To bridge
the gap between the need for real-world applications and the performance of state-of-the-art
hash functions and AEADs, we aim to design efficient and secure hash functions and
AEADs for short messages.
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Specifically, our design goal for hash functions is to be highly efficient for short messages
up to 2K bytes, and competitive even for long messages to software-efficient hash functions
KangarooTwelve, ParallelHash256, and BLAKE3 on modern desktop and mobile platforms.
In addition, our design goal for AEADs is to be more efficient than existing software-efficient
schemes, such as Deoxys-I-128 and BLAKE2s-OPP.

1.4 Our Contribution
To achieve our design goals, we first specify a family of efficient permutations Areion that
is optimized for the latest CPU architectures, including Intel and ARM, by fully leveraging
the power of AES instructions. As its applications, we propose SFIL and VIL hashing in
addition to SFIL and VIL AEADs. We then evaluate the security of underlying permuta-
tions and their applications and measure software performances in several architectures.
Our contributions in this paper are summarized as follows.

Software-Efficient AES-Based Permutations. For environments where AES instructions
are available, we design a family of permutations, dubbed Areion, that can be implemented
by only AES instructions such as aesenc and aesenclast in AES-NI or vaeseq and vaesmcq in
ARMv8 NEON as AES instructions are most efficient cryptographic operation among
SIMD operations. As an underlying structure, we propose pipeline-friendly Feistel-type
schemes in which additional F functions are appended to Feistel-type schemes to take full
advantage of the pipeline executions. We find optimal instantiations of F functions by
thoroughly analyzing the security and performance of all possible candidates. As a result,
the performance of Areion is significantly faster than existing permutations in the latest
CPU architectures. Especially, Areion outperforms other permutations in the encrypt
direction. It is an important characteristic of our target applications.

SFIL Hash Function. For an SFIL hashing, we apply Areion to the Davies-Meyer (DM)
construction, which consists of a permutation with a feed-forward (applying the XOR
operation) of the input as with Simpira v2 [25] and Haraka v2 [41]. Our schemes provide
a 256-bit security level against preimage attacks. In addition, these are about 1.4 times
faster than the schemes based on Simpira v2.

VIL Hash Function. For a VIL hashing, we design a compression function based on
Areionand implant it to the general Merkle-Damgård (MD) construction [51, 16]. Our
scheme performs much faster than any other hash functions for the input size up to 1024
bytes and even competitive with other software-efficient hash functions for longer inputs
in laptop and mobile environments while ensuring the 256-bit security level of preimage
attacks. Its performance is less than three cycles/byte for any message size. It is much
faster than existing state-of-the-art schemes for short messages up to around 100 bytes.
Such message lengths are typical in real-world applications on the latest CPU architectures
(IceLake, Tiger Lake, and Alder Lake) and mobile platforms (Pixel 7, iPhone 14, and iPad
Pro with Apple M2).

SFIL AEAD. For an SFIL AEAD scheme, we apply Areion to a (deterministic) AEAD
proposed by Khovratovich [39]. Our scheme is about more than 1.2 times faster than the
scheme based on Simpira v2 for both encryption and decryption.

VIL AEAD. For VIL AEAD schemes, we apply Areion to the Offset Public Permutation
(OPP) mode [23] and the Offset Two-Round (OTR) mode [52]. Consequently, our schemes
have better performance than any other target AEADs, such as Deoxys-I-128 and the
schemes based on BLAKE2s and Simpira v2.
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(a) Areion-256 (b) Areion-512

Figure 1: The round functions of Areion.

1.5 Paper Organization

In Sect. 2, we describe the specification of Areion. Sect. 3 explains details of our design
rationale of Areion and discusses the optimally of our design choices. In Sect. 4, we show
several applications of Areion. In Sects. 5 and 6, we give the security and performance
evaluations of Areion and its applications, respectively. Sect. 7 concludes the paper.

2 Specification of Permutations

We show the specification of Areion. Areion is based on Simpira v2 but has the structure
that allows more AES instructions to be executed in parallel. We provide the following
two variants of our permutation: Areion-256 and Areion-512. The former accepts a 256-bit
block, and the latter accepts a 512-bit block as input.

To illustrate the specification of each permutation, we denote by Fi (i ∈ {0, 1, 2, 3}) the
function based on the operations in the AES round function. Let SubBytes, ShiftRows,
MixColumns, and AddRoundConstant in the AES round function be SB, SR, MC, and
AC, respectively. AC is equivalent to AddRoundKey in ordinal AES, but the constant is
added instead of the round key. Fi consists of a combination of SB, SR, MC and AC.
For each value of i, Fi is defined as follows:

F0 = MC ◦ SR ◦ SB

F1 = SR ◦ SB

F2 = MC ◦ SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB

F3 = MC ◦ SR ◦ SB ◦ AC ◦ SR ◦ SB

A combination of AES instructions in AES-NI or NEON can implement these functions.
Areion-256 consists of F1 and F2, and Areion-512 consists of F0, F1, and F3. The round
function of each variant is shown in Fig. 1.

We set the number of rounds of Areion-256 and Areion-512 are 10 and 15, respectively.
These are derived from our security evaluation. Sect. 5 describes the details. The round
constants are derived from the binary digits of a fraction part of π = 3.1415926 · · · .
Table 1 shows round constants in hexadecimal notation, and round constants are used in
little-endian byte order. In the r-th round of Areion, RCr is added to the state.
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Table 1: Round constants.
RC Round constant
RC0 0x243f6a8885a308d313198a2e03707344
RC1 0xa4093822299f31d0082efa98ec4e6c89
RC2 0x452821e638d01377be5466cf34e90c6c
RC3 0xc0ac29b7c97c50dd3f84d5b5b5470917
RC4 0x9216d5d98979fb1bd1310ba698dfb5ac
RC5 0x2ffd72dbd01adfb7b8e1afed6a267e96
RC6 0xba7c9045f12c7f9924a19947b3916cf7
RC7 0x801f2e2858efc16636920d871574e690
RC8 0xa458fea3f4933d7e0d95748f728eb658
RC9 0x718bcd5882154aee7b54a41dc25a59b5
RC10 0x9c30d5392af26013c5d1b023286085f0
RC11 0xca417918b8db38ef8e79dcb0603a180e
RC12 0x6c9e0e8bb01e8a3ed71577c1bd314b27
RC13 0x78af2fda55605c60e65525f3aa55ab94
RC14 0x5748986263e8144055ca396a2aab10b6

3 The Design

3.1 AES Instructions and SIMD

SIMD is an abbreviation for Single Instruction Multiple Data and a type of parallel
processing. Most modern processors support instructions set for SIMD. SIMD instructions
perform operations vector-wise using data stored in dedicated registers, which allows
arithmetic/bitwise operations in parallel and advanced operations like data shuffling to be
performed with a single instruction.

An example of SIMD instructions that can perform complex operations is an instruction
for executing AES, the dominant block cipher. This instruction belongs to AES-NI (AES
New Instructions set) in the Intel/AMD processors. AES-NI includes aesenc to perform the
round function of the encryption, aesenclast for the final round, instructions for decryption,
and instructions to support the round key generation. On the other hand, in the ARMv8
processors, AES instructions are included in the NEON instructions set. AES instructions
in NEON include vaeseq for AddRoundKey, SubBytes, and ShiftRows, and vaesmcq for
MixColumns. NEON also supports the decryption instructions, while instructions for the
round key generation are not supported.

The performance of SIMD instructions can be measured by their latency, throughput,
and port usage. Latency means the number of clock cycles that are required for the
execution of an instruction. Throughput means the number of clock cycles required before
the responsible ports can accept the same instruction again. Dispatched instructions are
decomposed into micro-operations and then processed by each execution port.

According to the website by Abel and Reineke et al. [58], the latency and throughput
of aesenc/aesenclast in Ice Lake are 3 and 0.5, respectively. A throughput of 0.5 means
that two execution ports can accept the micro-operation from aesenc/aesenclast and each
operation’s throughput is 1 [58]. Fig. 2 illustrates the pipelined execution of multiple
aesenc on Ice Lake. We can see that up to 6 aesenc can be executed in 5 cycles on Ice Lake
using two execution ports, port 0 and port 1.
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Figure 2: Execution of aesenc on Ice Lake processors.

Table 2: The latency and throughput of aesenc, referred by [58].

Processor aesenc
Latency Throughput

Skylake

4 1Kaby Lake
Coffee Lake

Cannon Lake

0.5Ice Lake
3Tiger Lake

Alder Lake
Zen + 4 0.5Zen2

3.2 General Construction
3.2.1 Permutations Realized by only AES Instructions

To construct optimal permutations in environments where hardware instructions of AES
are available, we focus on a class of permutations that can be implemented solely by AES
instructions such as aesenc and aesenclast in AES-NI or vaeseq and vaesmcq in ARMv8
NEON for the following reasons.

• The latency of AES instructions in AES-NI becomes smaller as the processor’s
architecture is upgraded. Moreover, Intel 9th generation and later processors have an
additional execution port that accepts micro-operations generated from AES instruc-
tions, which improves the throughput from 1 to 0.5. The latency and throughput of
aesenc in Intel processors from 6 to 11 generation are shown in Table 2.

• Schemes based solely on AES instructions are beneficial in terms of performance and
security. Since NIST selected AES as a standard block cipher in 2001, no attack has
been published despite considerable cryptanalytic efforts over the past 20 years, and
its security is deeply understood in the community of symmetric cryptography. Thus,
it is easy to evaluate its security by existing tools convincingly and accumulated
cryptanalysis knowledge.

• Haraka v2 [41] is a family of permutations. It is an SPN-type scheme based on
AES instructions and word shuffle operations, such as unpack instructions. Shiba
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et al. show that the structure of Haraka v2 is optimal among SPN-type schemes
based solely on AES instructions and shuffle operations [64]. Thus, presenting a new
SPN-type scheme with better performance than Haraka v2should be challenging.

• Word shuffle operations provide only simple linear transformations. In contrast,
AES instructions include not only more complex linear operations (i.e., MixColumns
and ShiftRows) but also nonlinear operations (i.e., 16 parallel executions of 8-bit
S-box) by only a single instruction call. In addition, the latency of word shuffle
operations requires one, even on the latest CPU architectures. Thus, arguably AES
instructions are the most efficient and cryptographically-strong operations in all
SIMD instructions.

• Haraka v2 does not provide a sufficient level of security as a hash function according to
the recent study by Bao et al. [6]. They present preimage attacks on Haraka-256 and
Haraka-512 up to 9 out of 10 rounds and 11 out of 10 rounds, respectively. In addition,
designers of Haraka v2 did not claim any security as a public permutation. According
to these facts, Haraka v2 should require roughly 1.2 to 1.5 times of recommended
rounds by the designers, i.e., about 12 to 15 rounds to ensure the security as public
permutations of Haraka v2 and hash functions. These additional rounds degrade
the performance of Haraka v2 significantly. We remark that, due to the structure of
Haraka v2, increasing the number of rounds requires not only more AES instructions
but also more word shuffle operations. Thus, it significantly impacts the overall
performance of the tweaked versions of Haraka v2 compared to the Feistel-type
scheme such as Simpira v2, which is a class of permutations that can be implemented
solely by AES instructions.

For the above reasons, we choose the Feistel-type scheme to design new 256- and 512-bit
permutations from 128-bit AES instructions.

3.2.2 Feistel-type Scheme for Leveraging the Pipeline

Limitations of Simpira v2. For the 256- and 512-bit variants of Simpira v2 (hereafrer,
we will refer to each variant as Simpira-256 and Simpira-512, respectively), there is still
room for improvement in their design, considering the characteristic of AES instructions
in modern processors, especially for applications that require sequential executions of
underlying permutations, e.g., SFIL and VIL hash functions.

Specifically, the one-block encryption of Simpira-256 requires two times of executions,
and each AES call should be sequential because the second execution requires the output
of the first execution. On the other hand, one-block encryption of Simpira-512 is capable
of pipelining up to two 2-round AES executions. However, since Intel Ice Lake or later
processors can pipeline up to 6 AES instructions, the structure of Simpira-256 and Simpira-
512 does not take full advantage of the pipeline.

Pipeline-Friendly Feistel-type Schemes. To take advantage of the pipeline as possible,
we design pipeline-friendly Feistel-type schemes in which F functions are added in the
left branch for the 256-bit version and first and third branches for the 512-bit version to
Feistel-type scheme, respectively, as shown in Fig. 3. These allow for pipelined execution
of two and four AES instructions, respectively.

As another possible scheme, we can add F functions in the right branch for the 256-bit
version and the second and fourth branches for the 512-bit version to the above schemes
before XOR operations, respectively. However, our initial evaluation confirmed that these
additional instructions do not improve the performance because they cannot significantly
reduce the required number of rounds to ensure the security of structural attacks on
Feistel, such as impossible differential and integral attacks. Besides, the critical path in
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Table 3: Instructions per cycle (IPC) of each permutation.
Algorithm #Round IPC
Areion-256 10 0.66
Simpira-256 15 0.46
Areion-512 15 0.92
Simpira-512 15 0.52

the decryption of this scheme becomes three times longer than that of the encryption.
From these facts, we conclude that the schemes in Fig. 1 are optimal for 2- and 4-line
Feistel-type schemes for high performance.

Comparison. In order to compare the degree of utilization of the pipeline, we checked
instructions per cycle (IPC) of each variant of Areion and Simpira v2 by static code analysis
using LLVM machine code analyzer (llvm-mca). Table 3 shows the results. For both
variants, the results show the IPC of Areion is larger than that of Simpira v2. Based on
this fact, the construction of Areion can utilizes the pipeline more effectively.

3.3 Finding Optimal Constructions
Possible Candidates of F Functions. Recall that our permutations are realized solely by
AES instructions. As already discussed in [41, 25, 64], F functions consisting of one or two
AES round functions are optimal in Feistel- and SPN-type schemes. In this work, to find
further efficient constructions, we also consider last-round instructions such as aesenclast in
AES-NI or vaesmcq in ARMv8 NEON, respectively, as underlying instructions. Thus,
F functions should be realized by one or two combinations of aesenc and aesenclast in
AES-NI or vaeseq and vaesmcq in ARMv8 NEON, respectively.

There are six possible candidates of Fi (i ∈ {0, 1, 2, 3, 4, 5}), where F0, F1, F2, F3 are
defined in Sect. 2 and F4 and F5 are as follows.

F4 = SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB

F5 = SR ◦ SB ◦ AC ◦ SR ◦ SB

For AES-NI, F0, F1, F2, F3, F4 and F5 are implemented by aesenc, aesenclast, aesenc →
aesenc, aesenclast → aesenc, aesenc → aesenclast, and aesenclast → aesenclast, respectively.
Note that XOR operations in the Feistel-type scheme are executed by the operation of
AddRoundKey, which is the last operation of aesenc and aesenclast, respectively. This
feature of AddRoundKey is the reason why AC is absent in the last of these equations.

For ARMv8 NEON, F0, F1, F2, F3, F4 and F5 are implemented by vaeseq → vaesmcq,
vaeseq, vaeseq → vaesmcq → vaeseq → vaesmcq, vaeseq → vaeseq → vaesmcq, vaeseq →
vaesmcq → vaeseq, vaeseq → vaeseq, respectively. As vaeseq performs AddRoundKey
before SubBytes, the AddRoundKey operation of the first vaeseq in each function is used to
realize the XOR operation of the previous round for Feistel-type schemes. This observation
implies that our schemes can be implemented solely by vaeseq and vaesmcqin NEON,
except for the XOR operation in the last round.

How to Find F functions. To find optimal combinations of functions Fi (i ∈ {0, 1, 2, 3, 4, 5})
in Fig. 3, we first evaluate the security against differential/linear, impossible differential,
and integral attacks using Mixed-Integer Linear Programming (MILP) for all combinations.
Let R1, R2, and R3 be the number of rounds where the following three conditions are
satisfied, respectively.

R1: The number of rounds where the minimum number of active S-boxes is enough to
ensure security against differential/linear attacks.
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(a) 256-bit Permutation (b) 512-bit Permutation

Figure 3: Target constructions of our permutations.

R2: The number of rounds with no byte-truncated impossible differential characteristic.

R3: The number of rounds with no byte-wise integral distinguisher.

Besides, we define max{R1, R2, R3} as Rmax. After obtaining Rmax, we will look into
characterizes for the performance in Rmax to find the most efficient ones. The details are
explained in the following.

3.3.1 On 256-bit Permutations

Let a 256-bit permutation with Fα and Fβ functions be (α, β)-perm, where α, β ∈
{0, 1, 2, 3, 4, 5}, as illustrated in Fig. 3. As a 256-bit permutation has two functions
with six possible candidates, the total number of combinations is 36 (= 6 × 6). Among
them, we look for combinations implemented by the lowest number of AES instructions in
Rmax, i.e., we choose the ones that can achieve the required security level with the lowest
number of AES instructions.

Table 4 shows R1, R2, R3, Rmax and the number of AES instructions in Rmax of all 36
candidates. According to this table, the lowest one is (2, 1)-perm for which, R1, R2 and R3
are estimated as 5, 5, and 4, respectively, namely, Rmax = 5, and #AES instructions in 5
rounds is only 15. From this result, we select (2, 1)-perm as underlying one for Areion-256.

3.3.2 On 512-bit Permutations

Let a 512-bit permutation with Fα, Fβ , Fγ and Fδ functions using π block shuffle layer be
(α, β, γ, δ, π)-perm, where α, β, γ, δ ∈ {0, 1, 2, 3, 4, 5}, as illustrated in Fig. 3. As a 512-bit
permutation has four F functions in which there are six possible candidates and π block
shuffle has 24 (= 4!) patterns, the total number of combinations is estimated as 31104
(= 6 × 6 × 6 × 6 × 4!).

We thoroughly analyze security and performance using the following procedures to find
the most efficient combination among them.

Step 1: Limiting the Number of AES Instructions in Rmax. As with the 256-bit case,
we focus on combinations implemented by the lowest number of AES instructions in
Rmax. As a result of our search, we find 30 candidates in which the lowest number
of AES instructions in Rmax(= 9) is 45, as shown in Table 5.

Step 2: Eliminating the Equivalent Candidates. Twenty-eight candidates out of the re-
maining 30 can be classified into 14 equivalent classes, i.e., each two candidates of
them is mapped to one equivalent class. Based on this fact, we can eliminate 14
equivalent classes, and then reduce to 16 (= 30 − 14) candidates.
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Table 4: Search results on 256-bit permutations.
(α, β) R1 R2 R3 Rmax #AES instructions
(0, 0) 23 7 5 23 46
(0, 1) 8 9 5 9 18
(0, 2) 6 5 4 6 18
(0, 3) 16 7 4 16 48
(0, 4) 6 6 4 6 18
(0, 5) 6 8 5 8 24
(1, 0) 8 9 6 9 18
(1, 1) 33 - - - -
(1, 2) 6 5 4 6 18
(1, 3) 6 9 6 9 27
(1, 4) 6 9 5 9 27
(1, 5) 23 - - - -
(2, 0) 6 5 4 6 18
(2, 1) 5 4 5 5 15
(2, 2) 6 4 3 6 24
(2, 3) 6 5 4 6 24
(2, 4) 4 5 3 5 20
(2, 5) 5 5 4 5 20
(3, 0) 16 7 4 16 48
(3, 1) 7 9 5 9 27
(3, 2) 6 5 4 6 24
(3, 3) 12 - 4 - -
(3, 4) 4 6 4 6 24
(3, 5) 7 - 5 - -
(4, 0) 6 7 4 7 21
(4, 1) 6 9 5 9 27
(4, 2) 4 5 3 5 20
(4, 3) 4 6 4 6 24
(4, 4) 7 - 3 - -
(4, 5) 6 - 5 - -
(5, 0) 7 8 6 8 24
(5, 1) 23 - - - -
(5, 2) 4 5 4 5 20
(5, 3) 7 - 6 - -
(5, 4) 6 - 5 - -
(5, 5) 17 - - - -

Step 3: Considering Efficiency in NEON Instructions. The remaining 16 combinations
can be classified into three different classes. Specifically, each different class has the
following different π:

π1 : xr
0||xr

1||xr
2||xr

3 7→ xr+1
1 ||xr+1

2 ||xr+1
3 ||xr+1

0

π2 : xr
0||xr

1||xr
2||xr

3 7→ xr+1
3 ||xr+1

0 ||xr+1
1 ||xr+1

2

π3 : xr
0||xr

1||xr
2||xr

3 7→ xr+1
1 ||xr+1

3 ||xr+1
0 ||xr+1

2

The two constructions in π3 are unsuitable for implementations using NEON instruc-
tions in ARMv8. This is because the implementation of these two constructions
by NEON requires successive XORs, which hampers the implementation with only
vaeseq and vaesmcq while maintaining the compatibility of the implementation on
ARM and Intel. Based on this fact, we eliminate these two constructions using π3
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Table 5: Search results of 512-bit permutations.
(α, β, γ, δ, π) R1 R2 R3 Rmax #AES instructions
(0, 0, 0, 4, π1) 8 9 5 9 45
(0, 0, 1, 2, π1) 9 9 6 9 45
(0, 0, 2, 1, π1) 9 9 6 9 45
(0, 0, 4, 0, π1) 8 9 6 9 45
(0, 0, 5, 0, π1) 9 9 7 9 45
(0, 1, 0, 2, π1) 9 9 6 9 45
(0, 1, 0, 3, π1) 9 9 6 9 45
(0, 1, 0, 4, π1) 8 9 6 9 45
(0, 1, 2, 0, π1) 9 9 6 9 45
(0, 1, 2, 1, π1) 8 9 6 9 45
(0, 2, 0, 1, π1) 9 9 6 9 45
(0, 2, 1, 0, π1) 9 9 6 9 45
(0, 3, 0, 1, π1) 9 9 6 9 45
(0, 4, 0, 0, π1) 8 9 5 9 45
(0, 4, 0, 1, π1) 8 9 6 9 45
(1, 0, 0, 2, π1) 9 9 6 9 45
(1, 0, 2, 0, π1) 9 9 7 9 45
(1, 2, 0, 0, π1) 9 9 6 9 45
(2, 0, 0, 1, π1) 9 9 6 9 45
(2, 0, 1, 0, π1) 9 9 7 9 45
(2, 1, 0, 0, π1) 9 9 6 9 45
(2, 1, 0, 1, π1) 8 9 6 9 45
(4, 0, 0, 0, π1) 8 9 6 9 45
(5, 0, 0, 0, π1) 9 9 7 9 45
(0, 1, 0, 2, π2) 8 9 5 9 45
(0, 2, 0, 1, π2) 8 9 5 9 45
(1, 0, 2, 0, π2) 9 9 5 9 45
(2, 0, 1, 0, π2) 9 9 5 9 45
(0, 0, 1, 2, π3) 9 9 6 9 45
(0, 0, 1, 4, π3) 9 9 6 9 45

from the candidates. As a result, we obtain 14 constructions.

Step 4: Estimating Theoretical Number of Cycles. For the remaining 14 candidates, we
use a performance analysis tool llvm-mca to estimate the theoretical number of cycles
in Ice Lake or later architecture. Table 6 shows theoretical values of total cycles in
15-round encryption, calculated by llvm-mca. According to this result, we reduce to
6 candidates with the lowest number of cycles to perform the encryption.

Step 5: Performing Experimental Evaluations. We measure the performance of the re-
maining six candidates on several platforms. Table 6 shows the results on Ice Lake
architecture (Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz). From these results,
we selected (0, 1, 0, 3, π1)-perm as the optimal combination for Areion-512.



T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 13

Table 6: Theoretical and experimental value of total cycles at 15-round encryption.
(α, β, γ, δ, π) total cycle cpb

(by llvm-mca) (by experiments)
(0, 0, 0, 4, π1) 8899 1.09016
(0, 0, 1, 2, π1) 8899 1.08927
(0, 0, 2, 1, π1) 11528 -
(0, 0, 4, 0, π1) 11528 -
(0, 0, 5, 0, π1) 11528 -
(0, 1, 0, 2, π1) 8899 1.08918
(0, 1, 0, 3, π1) 8899 1.08882
(0, 1, 0, 4, π1) 8899 1.08989
(0, 1, 2, 0, π1) 11528 -
(0, 1, 2, 1, π1) 11528 -
(1, 0, 0, 2, π1) 8899 1.09017
(1, 0, 2, 0, π1) 11528 -
(0, 1, 0, 2, π2) 9109 -
(1, 0, 2, 0, π2) 9919 -

4 Applications
4.1 Permutation-based Hash Functions
4.1.1 SFIL Hash Function.

For an SFIL hashing, we apply Areion to the Davies-Meyer (DM) construction, which
consists of a permutation with a feed-forward (applying the XOR operation) of the input.
The use of DM for SFIL hashing has already been discussed in [25, 41]. In particular,
Haraka v2 implemented two SFIL hash functions, Haraka256-DM : F256

2 → F256
2 and

Haraka512-DM : F512
2 → F256

2 , defined as follows:

Haraka256-DM(x) = π256(x) ⊕ x, (1)
Haraka512-DM(x) = trunc(π512(x) ⊕ x), (2)

where π256 and π512 are the 256- and 512-bit permutations of Haraka v2, respectively; and
trunc : F512

2 → F256
2 is a truncation function defined as follows:

trunc(x0|| · · · ||x15) = x2||x3||x6||x7||x8||x9||x12||x13, (3)

where x = x0|| · · · ||x15 ∈ F512
2 . Our SFIL hash functions, Areion256-DM and Areion512-DM,

use Areion-256 and Areion-512 instead of Haraka v2’s ones. The DM construction uses only
the forward direction of the permutation, and the overhead beyond the permutation is
negligible. Thus, the performances of Areion256-DM and Areion512-DM are effectively the
same as those of the forward direction of underlying permutations.

The designers of Simpira v2 suggested its application to SFIL hash functions [25]. Then,
for performance comparison, we define DM construction instantiations of Simpira v2 in the
same way as above and refer to them as Simpira256-DM and Simpira512-DM.

4.1.2 VIL Hash Function.

For a VIL hashing, we apply Areion-512 to the Merkle-Damgård (MD) construction, a
classical method of building a cryptographic hash function from a compression function [51,
16].

Our VIL hash function, Areion512-MD, is an MD construction instantiated with
Areion512-DM. Other design details of Areion512-MD follow SHA2-256 [65]. SHA2-256 has
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two phases, preprocessing and hash computation phases. The former is further divided into
three steps: padding the message, parsing the message into message blocks, and setting
the initial hash value. For Areion512-MD, padding, and message parsing are executed in
the same procedure as SHA2-256. However, the length of the padded message should be
adjusted to be a multiple of 256 bits instead of a multiple of 512 bits; and the size of the
parsed message block is 256 bits (see [65, Section 5] for more details). Areion512-MD uses
the same initial hash value H of SHA2-256, and it consists of the following two 128-bit
words:

H0 = 0x6a09e667bb67ae853c6ef372a54ff53a, (4)
H1 = 0x510e527f9b05688c1f83d9ab5be0cd19. (5)

Then, Areion512-DM is used for the hash computation phase. The parsed message block
is inserted into x0 and x1 of the input word positions in Areion-512, and the initial hash
value and chaining values (that is, the output value of each compression function) are set
into x2 and x3 of the input word positions in Areion-512 (see Fig. 1b). Finally, the output
value of the last DM compression function becomes a 256-bit message digest.

The designers of Simpira v2 and Haraka v2 did not mention its application to VIL hash
functions [25, 41]. However, for performance comparison, we define an MD construction
instantiation of Simpira512-DM and Haraka512-DM in the same way as above and refer to
them as Simpira512-MD and Haraka512-MD, respectively.

4.2 Permutation-based AEAD Schemes
4.2.1 SFIL AEAD.

To implement an SFIL AEAD scheme, we apply Areion to a (so-called) key wrapping
scheme, a class of deterministic authenticated encryption (DAE) defined by Rogaway
and Shrimpton [60]. More precisely, key wrapping schemes allow us to wrap (encrypt) a
new short-term secret key with a long-term master key shared between a sender and a
receiver. We present Areion512-KWF, which is a key wrapping scheme instantiated with
Areion-512 and Areion512-MD. Our design is similar to KWF [39]. It is a variant of encode-
then-encipher scheme [7] and needs a single permutation call to process the whole input.
The specification of Areion512-KWF is the same as the original KWF, and Areion-512 and
Areion512-MD are used as a fixed 512-bit permutation F and a collision-resistant hash
function G for an associated data, respectively (see [39, Section 3.2] for more details).
According to [39], to achieve the security level of s bits, the recommended parameters are
defined as follows:

k ≥ s, ℓ ≥ 2s, n ≥ 2s + k, m = n − k − ℓ, (6)

where k, ℓ, n, and m denote the key size, the hash size for associated data, the block size of
the permutation, and the size of a padded message, respectively. For example, to achieve
128-bit security for m = 128, we need k ≥ 128, ℓ ≥ 256, and n ≥ 512. This observation
suggests that Areion-512 is the natural choice to implement (a variant of) KWF.

In [39], it is proved that KWF is provably secure as a DAE. The security proof assumes
that the underlying permutation is a public random permutation and that the hash
function is collision-resistant. The former assumption can be translated into the situation
of no structural weaknesses in the permutation. Our design goals for Areion-512 and
Areion512-MD cover both assumptions. It is known that, by making a nonce as a part of
associated data, a DAE also implements a misuse-resistant AE (MRAE), which provides
the maximum protection against misuse (repeat) of a nonce [60]. Standard AEAD schemes,
such as GCM [46], OCB3 [42], and ChaCha20-Poly1305 [55], are not MRAE hence lack this
property. In this sense, Areion512-KWF provides stronger security than these schemes.
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The designers of Simpira v2 provided its application to AEAD schemes [25]. For
performance comparison, we design KWF instantiated with Simpira-512 and Simpira512-
MD in the same way as above, and we refer to this variant as Simpira512-KWF.

4.2.2 VIL AEADs.

To build VIL AEADs, we rely on Offset Public Permutation (OPP) [23] and Offset
Two-Round (OTR) modes [52].

OPP. The OPP mode, designed by Granger et al. at EUROCRYPT 2016 [23], is a fully
parallelizable nonce-based AEAD scheme based on the Masked Even-Mansour (MEM)
tweakable block cipher construction. The MEM construction improves the efficiency of the
conventional Tweakbale Even-Mansour (TEM) construction [63, 13, 14, 49] by using an
efficient word-oriented LFSR- and powering-up-based masking function. We can expect a
highly-efficient AEAD scheme by combining the MEM construction with a highly-efficient
permutation such as Areion. We present Areion256-OPP, an OPP mode instantiated
with Areion-256. The specification of Areion256-OPP is almost the same as the original
OPP mode (see [23, Sects. 2–4] and the publicly available source code3 for more details),
excluding an LFSR update function in the masking function and a method of setting the
secret key K and nonce N , and Areion-256 is used as the underlying permutation in the
MEM construction.

The masking function: The masking function in the MEM consists of word-oriented LF-
SRs. The LFSR update function depends on the permutation size in the MEM con-
struction and the word size of the LFSR. [23, Table 1] describes several examples of
the LFSR update function, and we choose the following:

φ : (x0, x1, x2, x3) 7→ (x1, x2, x3, (x0 ≪ 3) ⊕ (x3 ≫ 5)), (7)

where the state size b is 256 bits, the word size w is 64 bits, and the number of words
n is 4 (see [23, Section 3.4] for more details).

Input formatting: [23] did not specify the recommended parameters, such as the key and
nonce sizes. We define 128- or 256-bit key and 128-bit nonce as our recommendations.
In OPP, the underlying permutation in MEM takes the concatenation of key and
nonce, i.e., N ||K, for the initialization of the masking function. When using a 128-bit
key, this method works with Areion-256. However, when using a 256-bit key, the
above method does not work as the input size exceeds the block size of Areion-256.
In this case, we recommend setting the following value as the input word positions
x0 and x1 in Areion-256 (see Fig. 1a) with a 256-bit key:

x0||x1 = (N ||0128) ⊕ K, (8)

where 0128 is the 128-bit zero padding value4. Another solution would be to use
Areion-512 instead of Areion-256. However, Areion-256 can achieve a 256-bit security
with the method of setting the key and nonce following Eq. (8), and is superior to
Areion-512 in terms of its efficiency (see Sect. 6 for more details); therefore, it is
better to use Areion-256 as the underlying permutation in the OPP mode.

For performance comparison, we instantiate OPP with Simpira-256 similarly and refer
to this variant as Simpira256-OPP.

3https://github.com/MEM-AEAD/mem-aead
4We do not claim the security against related-key attacks because it is evident that a tuple (N, N ′, K, K′)

satisfying (N ||0128) ⊕ K = (N ′||0128) ⊕ K′ breaks the scheme.

https://github.com/MEM-AEAD/mem-aead
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Figure 4: The overall structure of the permutation-based OTR mode. K, N , M , C,
A, T , δ, and P denote the secret key, nonce, message, ciphertext, associated data,
tag, MEM masking function, and the underlying permutation.

OTR. The OTR mode, proposed by Minematsu at EUROCRYPT 2014 [52], is a block
cipher mode of operation to realize an AEAD scheme. The OTR mode is a rate-1 (i.e. one
block cipher call per one input block) parallel AEAD scheme. It has provable security
up to the birthday bound. In other words, it is secure up to O(2n/2) processed blocks.
Moreover, OTR only needs the block cipher function’s forward direction (inverse-freeness)
for its encryption and decryption. Effectively, these features show that OTR is as efficient
and secure as OCB [59], while removing the necessity of block cipher inverse. We define
Areion256-OTR, a permutation-based OTR mode based on the MEM instantiated with
Areion-256. Areion256-OTR has a similar structure to Prøst-OTR [36]. Dobraunig et
al. presented a related-key forgery attack on Prøst-OTR [17]. Since Areion256-OTR adopted
MEM to realize the internal permutation-based tweakable block cipher, this attack cannot
work against Areion256-OTR. The designers of the MEM claimed that MEM can be proven
the mixed tweakable pseudorandom permutation (MTPRP) security; thus, the permutation-
based OTR mode based on the MEM can be regarded to have provable security if there
are no weaknesses in the underlying permutation, i.e., Areion-256. In addition, OTR is
inverse-free; thus, the permutation-based OTR mode using the MEM construction should
have an advantage in terms of its efficiency in both encryption and decryption because
Areion-256 can realize highly-efficient encryption.

The overall structure of the permutation-based OTR mode is shown in Fig. 4. The
specification of Areion256-OTR is based on the original OPP and OTR modes. Namely,
(1) we replace the combination of the masking part and the block cipher encryption EK

part in the original specification [52] with MEM; (2) use the same padding function as [23]
for the last associated data block and the last two message blocks; and (3) use the tag
generating function, LFSR update function, and input formatting (for the key and nonce)
as in the case of Areion256-OPP.

For performance comparison, we also specify a Simpira v2-based OTR mode, Simpira256-
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OTR, in the same way as above.

5 Security Evaluation
5.1 Security for Underlying Permutations
We evaluate the security of Areion-256 and Areion-512 as public permutations against
differential, linear, impossible differential, and integral attacks.

Claimed Security for Underlying Permutations. We claim 128-bit security for both Areion-
256 and Areion-512 as with Simpira v2, i.e., we consider the attacks up to 2128 complexity.
There is no rigorous definition of a distinguisher for a public permutation. In the literature,
there is, however, a very related concept called the known-key distinguisher [40] or the
correlation intractability [11]. Note that once the key is known for a block cipher, the
block cipher becomes a public permutation. Roughly speaking, a known-key distinguisher
is that for a block cipher, a relation exists such that given the key, it is easy to find
plaintext-ciphertext pairs satisfying this relation. However, it is difficult to find them for a
random permutation [40]. Moreover, if the relationship is simply the description of the
block cipher itself, this should be meaningless for the following reasons. First, every block
cipher will be vulnerable to this attack with only 1 query. Second, the relationship is not
interesting at all from the designers’ perspective [40]. In [21], a more formal definition of
the known-key distinguisher for a block cipher was given, which is a rigorous description
of the above statement. In both the known-key distinguishers on AES [40, 21], they indeed
are the extensions of the well-known integral attack on round-reduced AES, where the
attackers start from a middle round and aim to find an input-output set such that the sum
of some bytes in the input and output are all zero, respectively. We will rely on similar
start-from-the-middle techniques to construct zero-sum distinguishers for our proposed
public permutations. Moreover, our zero-sum distinguishers also resemble the known-
key distinguishers on AES [40, 21] because we similarly find distinguishers based on the
well-known integral attack on AES.

Differential/Linear Attacks. We estimate the security against differential/linear attacks
by obtaining the lower bound for the number of differentially/linearly active S-boxes with
an MILP-based method proposed by Mouha et al. [53]. ASD and ASL denote the lower
bound for the number of differentially and linearly active S-boxes, respectively.

Since the maximal differential and linear probability of the S-box of AES are both 2−6,
ASD/L of ≥ 22 (2−6×22 < 2−128) is sufficient to ensure 128-bit security against differen-
tial/linear attacks. Table 7 shows the lower bound for the differentially/linearly active
S-boxes for Areion-256 and Areion-512. In our evaluation, Areion-256/Areion-512 achieves
both ASD and ASL of ≥ 22 at 4/6 rounds, and both ASD and ASL at 12 rounds for both
permutations outnumber well over 22. Therefore, we expect full rounds of Areion-256 and
Areion-512 can resist differential and linear attacks.

Impossible Differential Attacks. The miss-in-the-middle approach is known as an efficient
way to find the longest impossible differences, which can be implemented by an MILP with
a small change from an MILP model for counting the number of differentially active S-
boxes [62, 15]. In our evaluation, we search a class of impossible differential characteristics
where input and output differences activate only one byte to find the longest impossible
differences efficiently.

By this approach, we find the impossible differences at 4/8 rounds of Areion-256/Areion-
512, which are the longest ones we can find. Since there is still enough margin to full
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Table 7: The lower bound for the number of differentially/linearly active S-boxes for
Areion-256 and Areion-512. Here, ASD and ASL denote the number of differentially
and linearly active S-boxes, respectively.

Primitives
Rounds 1 2 3 4 5 6 7 8 9 10 11 12

Areion-256
ASD

0 6 12 38 46 53 60 86 92 99 108 135
Areion-512 0 2 5 8 20 36 62 73 90 106 119 135
Areion-256

ASL
0 1 9 24 42 48 65 79 91 102 114 128

Areion-512 0 1 4 8 21 35 50 68 89 103 120 131

rounds for both permutations, we expect that full rounds of Areion-256 and Areion-512 can
resist impossible differential attacks.

Integral Attacks. To find the integral distinguisher, we evaluate the byte-wise division
property with a MILP-based method proposed by Xiang et al. [68]. We search the input
space where only one byte is constant, and the remaining bytes are active, i.e., the
data/time complexity of the integral distinguishers are 2248 and 2504 for Areion-256 and
Areion-512, respectively.

As a result, we find the 3- and 5-round integral distinguisher on Areion-256 and Areion-
512, respectively. It should be emphasized that the required data/time complexities for
these distinguishers exceed our security claim. Hence, the longest integral distinguishers
with up to 2128 data/time complexity, which are in our security claim, are expected to
exist on fewer rounds than that of these distinguishers. Thus, we expect full rounds of
Areion-256 and Areion-512 can resist integral attacks.

Zero-sum Distinguishers. The zero-sum distinguisher [5] is a popular attack on public
permutations. The overall attack procedure is straightforward. Specifically, the attackers
first choose a particular set of intermediate state values and then propagate this set of
values backward and forwards, respectively. If, in the corresponding set of inputs and
outputs, the sum of some input bits and output bits are zero, respectively, a zero-sum
distinguisher is found. We have evaluated the resistance against this attack based on the
well-known 4-round integral distinguisher for AES. It is found that there are zero-sum
distinguishers for 5-round Areion-256 and 10-round Areion-512, respectively. The data and
time complexities of the two zero-sum distinguishers are the same, which are both 232. We
give the details below.

The distinguisher for 5-round Areion-256. First, we explain the zero-sum distinguisher
for 5-round Areion-256, as shown in Fig. 5.

Specifically, we choose 4 bytes of x2
1 which traverses all the 232 possible values. For x2

0,
it is assigned to a random constant value. According to the round function, we have

x4
0 = G1 ◦ G0(x3

0) ⊕ x3
1 = G1 ◦ G0(G1 ◦ G0(x2

0) ⊕ x2
1) ⊕ G0(x2

0),
x4

1 = G0(x3
0) = G0(G1 ◦ G0(x2

0) ⊕ x2
1),

x5
0 = G1 ◦ G0(x4

0) ⊕ x4
1,

x5
1 = G0(x4

0),

For the term G1 ◦ G0(x4
0) in x5

0, with our input form for (x2
0, x2

1), it is equivalent to that
x2

1 passes 4 AES rounds. The term x4
1 in x5

0 is equivalent to that x2
1 passes 2 AES rounds.

Hence, we need to use a data set of size 232, and all the bytes in x5
0 will be balanced.
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Figure 5: The zero-sum distinguisher for 5-round Areion-256.

For x5
1, as x4

0 can be viewed as applying 2 AES rounds to x2
1, each byte of x5

1 will also
be balanced. The above observation also explains why the automatic method based on
the division property could only detect a 3-round integral distinguisher in the forward
direction, i.e., we at least need to consider 4 AES rounds.

In the backward direction, we have

x1
0 = G−1

0 (x2
1),

x1
1 = G0 ◦ G1(x1

0) ⊕ x2
0,

x0
0 = G−1

0 (x1
1).

Therefore, all the bytes in x0
0 will be balanced. To better understand this, one can first

consider the case when only one byte of x2
1 traverses all the 28 possible values. For such

a case, it can be easily checked that each byte in x0
0 will also traverse all the 28 possible

values. Hence, if one diagonal of x2
1 takes all the possible 232 values, all bytes in x0

0 are
also balanced.

The distinguisher for 10-round Areion-512. Next, we explain the zero-sum distinguisher
for 10-round Areion-512, as shown in Fig. 6. We start from the state (x4

0, x4
1, x4

2, x4
3) after 4

rounds of permutation. For the input form, we restrict that 4 bytes of x4
0 will traverse all

the 232 possible values, as shown in Fig. 6. Then, we randomly choose a 128-bit constant
C such that F0(x4

0) ⊕ x4
1 = C always holds. In other words, the value of x4

1 is conditioned,
and it is dynamically chosen according to x4

0. For x4
2, we assign a random constant value

to it. For x4
3, we also assign a random constant value C′ to it but we require that the first

column of x3
0 = F −1

1 (C′) is all 0. Note that (F0, F1, F2, F3) are defined in Sect. 2.
For such an input state, in the forward direction, we can trivially deduce that (x6

0, x6
1, x6

3)
are constants and one diagonal of x6

2 will take all the 232 possible values. Therefore, we
can also deduce that (x7

0, x7
3, x8

3) are all constants.
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Since

x10
2 = F0(x9

2) ⊕ x9
3,

x9
2 = F0(x8

2) ⊕ x8
3,

x8
2 = F0(x7

2) ⊕ x7
3,

x9
3 = F1(x8

0) = F1(F0(x7
0) ⊕ x7

1),

we can rewrite x10
2 as follows where Ci are 128-bit constants:

x10
2 = F0(F0(F0(x7

2) ⊕ C0) ⊕ C1) ⊕ F1(x7
1 ⊕ C2)

= F0(F0(F0(F0(x6
2) ⊕ C3) ⊕ C0) ⊕ C1) ⊕ F1(F3(x6

2) ⊕ C2).

Since F0 = MC ◦ SR ◦ SB, F1 = SR ◦ SB and F3 = MC ◦ SR ◦ SB ◦ AC ◦ SR ◦ SB,
the term F0(F0(F0(F0(x6

2) ⊕ C3) ⊕ C0) ⊕ C1) is equivalent to applying 4 AES rounds to
x6

2. The term F1(F3(x6
2) ⊕ C2) is equivalent to applying 2.5 AES rounds to x6

2. The
above observation implies that we need to use a data set of size 232 to detect an integral
property at x10

2 . Since one diagonal of x6
2 takes all the 232 possible values, each byte in

x10
2 is balanced. For (x10

0 , x10
1 , x10

3 ), we will lose the zero-sum property, and this can be
deduced similarly. In other words, we can obtain a 6-round integral distinguisher with
data complexity 232 in the forward direction, which is one more round than the result
obtained with the automatic method based on the division property. The main reason is
that we dynamically choose values for x4

1 such that F0(x4
0) ⊕ x4

1 is always a constant when
x4

0 varies.
In the backward direction, we consider a subset of (x4

0, x4
1, x4

2, x4
3). Specifically, we

consider the case when the first byte x4
0 takes all the 28 possible values. In this case, the

value of the first column of x4
1 is dynamically chosen such that F0(x4

0) ⊕ x4
1 is a constant C,

as shown in Fig. 6. Then, we have 224 such subsets in total.
Since

x4
1 = F3(x3

2) = F0 ◦ AC ◦ SR ◦ SB(x3
2),

C = F0(x4
0) ⊕ x4

1,

we have

AC ◦ SR ◦ SB(x3
2) = F −1

0 (F0(x4
0) ⊕ C).

Since F0 = MC ◦SR◦SB, the above formula implies that the first byte of AC ◦SR◦SB(x3
2)

will traverse all the 28 possible values. Hence, only the first byte of x3
2 will traverse all the

28 possible values. Therefore, we obtain the form of (x3
0, x3

1, x3
2, x3

3) shown in Fig. 6.
Deducing (x2

0, x2
1, x2

2, x2
3) from (x3

0, x3
1, x3

2, x3
3) is trivial and we omit the details. Deducing

(x1
0, x1

1) is also trivial based on (x2
0, x2

1, x2
2, x2

3). Next, we mainly focus on (x1
2, x1

3). Similarly,
we have

x2
1 = F3(x1

2) = F0 ◦ AC ◦ SR ◦ SB(x1
2),

x3
0 = F0(x2

0) ⊕ x2
1,

AC ◦ SR ◦ SB(x1
2) = F −1

0 (F0(x2
0) ⊕ x3

0).

As the first column of x3
0 is zero, the first diagonal of x1

2 will equal the first diagonal of
AC ◦ SR ◦ SB(x1

2). Hence, we obtain the form of (x1
2, x1

3) as shown in Fig. 6. Based on
(x1

0, x1
1, x1

2, x1
3), deducing (x0

0, x0
1, x0

2, x0
3) is trivial and we omit the details.

In a word, we can construct a zero-sum distinguisher for 10-round Areion-512.
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Figure 6: The zero-sum distinguisher for 10-round Areion-512.



22 Areion: Highly-Efficient Permutations and Its Applications

5.2 Security for Hash Functions
Claimed Security for Hash Functions. We claim 256-bit security against the preimage
attack for both Areion256-DM and Areion512-DM. However, as in Haraka v2 and the SFIL
hash function built on Simpira v2, we do not claim their resistances against the collision
attack since it is unnecessary for their applications.

For the MD-based hash function, we claim 256-bit security against the preimage attack
and 128-bit security against the collision attack, the same as SHA2-256. Due to the generic
second-preimage attack on the MD construction [38], our MD-based hash scheme could
only provide about 193-bit security for second-preimage attacks. This limitation is because
the maximal number of allowed message blocks is 264 and 193 = 256 − 64 + 1, which is the
same security level as SHA2-256.

Meet-in-the-Middle Preimage Attack. For the DM-based SFIL hash functions by using
Areion-256 and Areion-512 as the underlying permutations, respectively, it is necessary to
take into account Sasaki’s meet-in-the-middle (MITM) preimage attack [61]. This attack is
the most powerful preimage attack on such hash functions. Indeed, the designers of Haraka
v2 have evaluated its resistance against this attack in a dedicated way. We also performed a
careful analysis to understand the security of our constructions better. We found preimage
attacks on 5-round Areion256-DM and 10-round Areion512-DM, respectively. Therefore,
there is still a sufficiently large security margin. We detail our analysis below.

To save space, we only describe the general procedure of Sasaki’s meet-in-the-middle
preimage attack, as shown below:

Step 1: Identify the bytes fixed to constants and assign proper values to them.

Step 2: Identify the bytes that are to be exhausted. Classify them into backward neutral
bytes and forward neutral bytes.

Step 3: In the forward direction, we assume that the backward neutral bytes are unknown
and compute the internal state values based on the constant bytes and the forward
neutral bytes. In other words, we only compute the bytes that can be computed
from the knowledge of the constant bytes and the forward neutral bytes. This
step is repeated for all the possible values of the forward neutral bytes, and we
store the corresponding computed information.

Step 4: In the backward direction, we assume that the forward neutral bytes and unknown,
and we only compute the bytes that can be computed from the knowledge of the
constant bytes and the backward neutral bytes. This step is repeated for all the
possible values of the backward neutral bytes, and we store the corresponding
computed information5.

Step 5: Find matches between the store information obtained at Step 3 and Step 4. Suppose
the matching probability is 2−p and there are 2bf and 2bb possible values for the
forward neutral bytes and the backward neutral bytes, respectively. Moreover, for
each obtained state information at Step 3, if it is possible to identify the matched
information obtained at Step 4 with time complexity 1, or vice versa, we can say
that we find 2bf +bb−p possible pairs among the 2bf +bb pairs with time complexity
max(2bf , 2bb) where usually bf + bb − p ≤ 0. In other words, we exhaust 2bf +bb

possible candidates only with time complexity max(2bf , 2bb). Hence, the MITM
preimage attack is min(2bb , 2bf ) times faster than the brute force.

5Note that in the actual implementations, we only need to store either the information obtained at
Step 3 or Step 4. For simple explanations, we assume both are stored.
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Figure 7: The preimage attack on 5-round Areion256-DM.

Hence, this attack aims to identify the forward and backward neutral bytes as well as
an efficient matching method. We performed careful analysis for the two short-input hash
schemes and found preimage attacks on 5-round Areion256-DM and 10-round Areion512-
DM, respectively. In the two attacks, bb = bf = 8 and the matching phase can be efficiently
finished with time complexity 1. Hence, both the preimage attacks are 28 times faster
than the brute force. The corresponding illustration of the two preimage attacks can be
referred to Figs. 7 and 8, respectively.

Collision Attacks. The most powerful collision attack on AES-based hash functions is
the rebound attack [48], especially when built on the DM construction, as the attacker can
fully control the whole internal state. However, as already mentioned in Haraka v2 and the
SFIL hash function based on Simpira v2, the collision resistance of SFIL hash schemes is
not necessary when they are used in the signature scheme, which is also the case of our
SFIL hash functions.

Security of MD Construction. For our hash scheme built on the MD construction, the
attacker will soon lose the capability to fully control the internal state since each message
block is only 256 bits, i.e., half of the state size. However, by using j > 1 message blocks,
Sasaki’s MITM attack can still be applied in the same way as in the attack on the DM
constructions. Specifically, although the 256-bit initial value set at (x2, x3) in the first
input state is fixed, the attackers can view the 256-bit chaining variable (CV) in the last
input state as a controllable part. Then, Sasaki’s MITM attack is applied, and we aim to
find 2i solutions of the last input state to match the given hash value in less than 2256

time. This way, 2i candidates of CV in the last input state can be obtained. Finally, we
randomly pick values for the first j − 1 message blocks to compute the corresponding
CV for the last input state and expect one such CV to match one of the 2i candidates
obtained by the MITM attack. Hence, we need to try 2256−i different values for the first
j − 1 message blocks, and the time complexity is below 2256.

For the collision resistance, we consider the rebound attack, the most efficient technique
for AES-based hash functions. In particular, the most powerful rebound attack is always
based on the Super-Sbox technique [22, 43]. For such a technique, the attacker can control
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Figure 8: The preimage attack on 10-round Areion512-DM.
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the difference transitions over two consecutive AES rounds with a pre-computation phase
called the inbound phase, as shown in Fig. 9. Combined with the feature of the rebound

SB
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AC

SB

SR

MC

AC

MC

AC

∆A

∆B

Figure 9: The inbound phase: precomputing the pairs (A, ∆A) such that ∆A → ∆B
holds with probability 1.

attack, this technique allows the attacker to ignore the influence of 4 + 16 + 16 + 4 = 38
active S-boxes by using 128 free bits. Since the size of one message block in our VIL hash
function is 256 bits, we expect that the attacker can ignore 38 × 2 = 76 active S-boxes
with the Super-Sbox technique. However, we emphasize that it does not necessarily imply
that the attacker can always ignore 76 active S-boxes in the actual attack because the
rebound attack is also a start-from-the-middle-style attack, and one should be careful of
the consistency in the CV.

According to Table 7, the minimal number of active S-boxes in 11-round Areion-512 is
119. By ignoring 76 active S-boxes, there are still 119 − 76 = 43 active S-boxes left. In
the outbound phase, we usually need to cancel the truncated differences. In the best case,
we only need to consider half of the left active S-boxes, i.e., we know the propagation of
the truncated differences, and we only add conditions on the sum of the two truncated
differences, as shown in Fig. 10. Even if we only consider 43/2 ≈ 21 active S-boxes,
they still correspond to a very low uncontrolled probability of 2−21×8 = 2−168. Note
that we have not yet taken into account the extra conditions on the truncated input and
output differences to generate a collision. If they are considered, the truncated differential
may be worse (i.e., there are more active S-boxes), and the uncontrolled probability may
further decrease. These analyses suggest that the VIL hash function based on the 15-round
Areion-512 is secure against the collision attack.

We also note that there is a variant method [31] of the 2-round Super-Sbox technique
that can cover three consecutive AES rounds, which can allow the attackers to ignore
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Figure 10: Cancel the truncated differences.
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the influence of 4 + 16 + 16 + 16 + 4 = 54 active S-boxes. However, this technique does
not come for free. Specifically, different from the 2-round Super-Sbox technique to satisfy
4 + 16 + 16 + 4 = 38 active S-boxes where lots of degrees of freedom are left after this
phase, there is no degrees of freedom left after performing such a 3-round Super-Sbox
technique and finding a solution to satisfy these 54 active S-boxes succeeds with probability
2−64. In other words, it is like the 2-round Super-Sbox technique with satisfying extra
16 active S-boxes with a probability of only 2−64, which is a considerable improvement
over the 2-round Super-Sbox technique. We also note that it is almost equivalent to our
conservative estimation that we only need to consider half of the remaining active S-boxes
at the outbound phase when using the 2-round Super-Sbox technique for the inbound
phase.

6 Performance Evaluation
In this section, we evaluate the performance of both Areion and its applications to the
permutation-based hash functions and AEAD schemes described in Sect. 4. To this end,
we used the available source code at GitHub6 to evaluate the cycle counters, i.e., cycles per
byte (cpb), in the target primitive. All our evaluations were performed on the following
widely deployed platforms: the Ice Lake, Tiger Lake, and Alder Lake platforms. The Ice
Lake platform has an Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz. The Tiger Lake
platform has an Intel(R) Core(TM) i7-1165G7 CPU @ 2.80GHz. The Alder Lake platform
has an Intel(R) Core(TM) i9-12900K CPU @ 3.20GHz on a performance-core (P-core) and
2.40GHz on an efficient-core (E-core). Turbo Boost technology has been switched off for
all our evaluations. We note here that the P-core has been specified for our evaluations on
the Alder Lake platform because there is almost no difference in the benchmarks between
using either the P-core or E-core.

Besides, we also evaluate the performance of NEON implementations of permutation-
based hash functions proposed in Sect. 4 in several mobile environments. The NEON
implementations of Areion is shown in Appendix A.3.

6.1 Underlying Permutations
We first evaluate the performance of the underlying permutations, i.e., Areion-256 and
Areion-512. These implementations are given in Appendix A.1. For comparison, we used the
underlying permutations of Simpira v2, Haraka v2, and the 512-bit permutation BLAKE2s.
We can find the source codes of Haraka v2 and BLAKE2s available at GitHub7,8, but we
could not find the available source code for Simpira v2. For this reason, we implemented it
as described in Appendix A.2.

According to [25, 41], Simpira v2 and Haraka v2 are supposed to operate on multiple
message blocks, not just a single message block, to get the highest performance. Based on
this concept, we also evaluate the performance when operating on eight message blocks in
parallel and a single message block.

Tables 8 and 9 show benchmarks for single and parallel encryption/decryption on
our platforms. From these tables, Haraka v2 appears to be the fastest encryption, but
it cannot be regarded to have a security margin sufficiently, as discussed in Sect. 3.2.1.
For this reason, we consider there is no problem even if Haraka v2 is excluded from our
comparison. Instead of the original Haraka v2, we select the 12/15-round variants of Haraka
v2, Haraka-256 (x1.2/x1.5) and Haraka-512 (x1.2/x1.5), for our comparison. This selection
is because DM-based instantiations of the tweaked variants, Haraka256-DM (x1.2/x1.5) and

6https://github.com/seb-m/cycles
7https://github.com/kste/haraka
8https://github.com/BLAKE2/BLAKE2

https://github.com/seb-m/cycles
https://github.com/kste/haraka
https://github.com/BLAKE2/BLAKE2
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Table 8: Benchmarks for single block encryption/decryption on the Ice Lake, Tiger
Lake, and Alder Lake platforms. All values are given as cpb.

Ice Lake Tiger Lake Alder Lake
Primitive Enc Dec Enc Dec Enc Dec
Areion-256 1.92 2.84 1.91 2.83 1.93 2.81
Simpira-256 2.94 2.94 2.92 2.92 2.94 2.94
Haraka-256 1.58 4.08 1.58 4.08 1.55 4.00
Haraka-256 (x1.2) 1.90 5.28 1.90 5.28 1.86 4.80
Haraka-256 (x1.5) 2.37 6.12 2.37 6.12 2.32 6.00
Areion-512 1.09 2.52 1.09 2.52 1.09 2.52
Simpira-512 1.47 1.47 1.46 1.46 1.47 1.47
Haraka-512 1.06 2.58 1.06 2.58 1.09 2.58
Haraka-512 (x1.2) 1.27 3.10 1.27 3.10 1.31 3.10
Haraka-512 (x1.5) 1.59 3.87 1.59 3.87 1.63 3.87

Haraka512-DM (x1.2/x1.5), can be regarded to have a similar security level as Areion256-
DM and Areion512-DM. Indeed, the security margins against MITM preimage attacks of
Areion256-DM, Haraka256-DM (x1.2), and Haraka256-DM (x1.5) are 5, 3, and 6, respectively.
Similarly, the security margins of Areion512-DM, Haraka512-DM (x1.2), and Haraka512-
DM (x1.5) are 5, 1, and 4, respectively. We summarize the performance comparison for
the underlying permutations as follows:

• Areion-256 realizes the fastest encryption among the target permutations, excluding
Haraka-256 (x1.2) for single block encryption (although there are almost no differences
in performance). Specifically, Areion-256 performs at least 1.52 and 1.20 times faster
than Simpira-256 and Haraka-256 (x1.5) for single block encryption, respectively,
and at least 1.12 and 1.03 times faster than Simpira-256 and Haraka-256 (x1.2) for
parallel block encryption, respectively. On the other hand, for single and parallel
block decryptions, Areion-256 performs faster than Haraka-256 (x1.2/x1.5), but there
are almost no differences in performance between Areion-256 and Simpira-256.

• Areion-512 realizes the fastest encryption among the target permutations, excluding
Simpira-512 for parallel block encryption (although there are almost no differences in
performance). Specifically, Areion-512 performs at least 1.34 and 1.16 times faster
than Simpira-512 and Haraka-512 (x1.2) for single block encryption, respectively, and
at least 1.26 times faster than Haraka-512 (x1.2) for parallel block encryption. On the
other hand, Areion-512 performs faster than Haraka-256 (x1.2/x1.5) and BLAKE2s,
especially for parallel block decryption, but it performs at least 2.00 times slower
than Simpira-512.

Given that the Areion-512 decryption function is not used for the proposed applications of
Areion described in Sect. 4, we consider that there is no problem even if Areion-512 performs
slower than Simpira-512 for decryption. Therefore, Areion has the strongest advantage of
performing faster than any other target permutations, especially in terms of encryption
direction.

Regarding the advantage of Areion-256 over Areion-512, Table 9 suggests that Areion-
256 is consistently faster than Areion-512 for parallel processing and even the fastest among
all the selected 256-/512-bit permutations in many cases. In addition, it has a balanced
performance for encryption and decryption thanks to its Feistel-like structure, unlike
Haraka-256, and faster than the Feistel-based Simpira-256. That is, it should work more
efficiently with the existing parallelizable permutation-based authenticated encryption
modes, e.g., OPP [23] and a permutation-based counterpart of OTR [52] than other
permutations. The latter would be similar to Prøst-OTR [35] adopting the masking scheme
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Table 9: Benchmarks for parallel block encryption/decryption on the Ice Lake,
Tiger Lake, and Alder Lake platforms. All values are given as cpb.

Ice Lake Tiger Lake Alder Lake
Primitive Enc Dec Enc Dec Enc Dec
Areion-256 0.55 0.66 0.55 0.66 0.51 0.56
Simpira-256 0.69 0.69 0.68 0.68 0.57 0.57
Haraka-256 0.53 1.75 0.54 1.74 0.44 1.52
Haraka-256 (x1.2) 0.64 2.10 0.65 2.09 0.53 1.83
Haraka-256 (x1.5) 0.79 2.62 0.81 2.61 0.66 2.28
Areion-512 0.64 1.24 0.63 1.25 0.61 1.13
Simpira-512 0.63 0.62 0.62 0.61 0.53 0.53
Haraka-512 0.67 2.06 0.66 2.04 0.64 1.83
Haraka-512 (x1.2) 0.81 2.48 0.80 2.45 0.77 2.20
Haraka-512 (x1.5) 1.00 3.09 0.99 3.06 0.96 2.74

of OPP for provable security and for avoiding the attack specific to (the masking scheme
of) Prøst-OTR [17]. Its applications to the parallel authenticated encryption modes are
left as our future work. On the other hand, Areion-512 is the fastest among the selected
256-/512-bit permutations for single block encryption direction (Table 8). That is, it should
work more efficiently with the existing permutation-based compression functions, such as
DM construction, and the existing sequential hash functions, such as MD construction.
These are the target applications for this study.

6.2 Permutation-based Hash Functions
Next, we evaluate the performance of the permutation-based hash functions, i.e., the SFIL
and VIL hash functions (DM and MD constructions). These instantiations of Areion are
implemented based on the source codes of Areion-256 and Areion-512 described in Ap-
pendix A.1. For comparison regarding the SFIL hash functions, we used DM constructions
instantiated with Simpira v2 and Haraka v2. On the other hand, for comparison regarding
the VIL hash functions, we used AES-based VIL hash functions, such as Simpira512-
MD, Haraka512-MD, and double-block-length hash functions proposed by Hirose at FSE
2006 [26]. We refer to Hirose’s hash function as Hirose-DBL. These instantiations are
also implemented similarly to those of Areion. In addition, we used SHA2-256, SHA3-256,
ParallelHash256, KangarooTwelve, and BLAKE3. We can find these source codes available
at SUPERCOP9 and GitHub10,11,12; then, we modified these source codes to use for our
comparison.

Tables 10 and 11 show benchmarks for the SFIL and VIL hash functions on our
platforms. From Table 10, Haraka512-DM appears to be the fastest SFIL hash function,
but Haraka v2 cannot be regarded to have the security margin sufficiently; thus, we use
Haraka256-DM (x1.2/x1.5) and Haraka512-DM (x1.2/x1.5) for our comparison regarding the
SFIL hash functions, as discussed in Sect. 6.1. Similarly, we use Haraka512-MD (x1.2/x1.5)
to compare the VIL hash functions. We summarize the performance comparison for the
SFIL hash functions as follows:

• Areion256-DM realizes the fastest SFIL hashing among the target DM constructions
with the 256-bit permutation, excluding Haraka256-DM (x1.2) (although there are
almost no differences in performance). Specifically, Areion256-DM performs at least
1.41 and 1.21 times faster than Simpira256-DM and Haraka256-DM (x1.5), respectively.

9https://bench.cr.yp.to/supercop.html
10https://github.com/wereHamster/sha256-sse
11https://github.com/XKCP/XKCP
12https://github.com/BLAKE3-team/BLAKE3

https://bench.cr.yp.to/supercop.html
https://github.com/wereHamster/sha256-sse
https://github.com/XKCP/XKCP
https://github.com/BLAKE3-team/BLAKE3
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Table 10: Benchmarks for SFIL hash functions on the Ice Lake, Tiger Lake, and
Alder Lake platforms. All values are given as cpb.

Primitive Ice Lake Tiger Lake Alder Lake
Areion256-DM 2.01 2.01 1.99
Simpira256-DM 2.84 2.83 2.81
Haraka256-DM 1.64 1.63 1.61
Haraka256-DM (x1.2) 1.97 1.96 1.94
Haraka256-DM (x1.5) 2.46 2.44 2.41
Areion512-DM 1.05 1.05 1.04
Simpira512-DM 1.41 1.41 1.40
Haraka512-DM 1.12 1.10 1.13
Haraka512-DM (x1.2) 1.35 1.32 1.36
Haraka512-DM (x1.5) 1.68 1.65 1.69

Table 11: Benchmarks for VIL hash functions on the Ice Lake, Tiger Lake, and
Alder Lake platforms. All values are given as cpb.

Security Input sizes (bytes)
Platform Primitive level† Impl. 64 128 256 512 1024 2048 4096
Ice Lake Areion512-MD 256 AES-NI 1.99 2.35 2.54 2.60 2.63 2.65 2.66

Simpira512-MD 256 AES-NI 2.03 2.65 3.04 3.25 3.34 3.38 3.40
Haraka512-MD 256 AES-NI 2.12 2.47 2.57 2.66 2.69 2.71 2.72
Haraka512-MD (x1.2) 256 AES-NI 2.55 2.96 3.09 3.19 3.23 3.25 3.26
Haraka512-MD (x1.5) 256 AES-NI 3.18 3.70 3.86 3.99 4.03 4.07 4.08
Hirose-DBL 256 AES-NI 12.29 12.21 12.21 12.34 12.27 12.28 12.27
SHA256 256 AVX2 5.81 4.27 3.48 3.09 2.90 2.79 2.75
ParallelHash256 256 AVX2 61.09 30.65 19.88 14.43 11.71 10.33 9.37
ParallelHash256 256 AVX512 42.61 21.39 13.89 9.90 7.91 6.92 6.24
BLAKE3 128 SSE 4.70 3.63 3.22 3.02 2.92 1.53 0.84
KangarooTwelve 128 AVX2 11.59 5.96 5.27 4.86 4.15 3.79 3.61
KangarooTwelve 128 AVX512 8.16 4.17 3.78 3.34 2.79 2.52 2.38

Tiger Lake Areion512-MD 256 AES-NI 1.89 2.31 2.50 2.57 2.61 2.63 2.64
Simpira512-MD 256 AES-NI 1.98 2.60 3.01 3.22 3.32 3.37 3.40
Haraka512-MD 256 AES-NI 2.09 2.44 2.57 2.64 2.68 2.71 2.72
Haraka512-MD (x1.2) 256 AES-NI 2.51 2.92 3.08 3.16 3.22 3.26 3.27
Haraka512-MD (x1.5) 256 AES-NI 3.14 3.65 3.85 3.95 4.02 4.07 4.08
Hirose-DBL 256 AES-NI 12.30 12.21 12.24 12.34 12.24 12.24 12.24
SHA256 256 AVX2 5.48 3.89 3.11 2.72 2.53 2.43 2.38
ParallelHash256 256 AVX2 61.04 30.62 19.86 14.40 11.67 10.35 9.36
ParallelHash256 256 AVX512 42.40 21.77 13.83 9.98 7.86 6.87 6.20
BLAKE3 128 SSE 5.03 3.76 3.28 3.05 2.94 1.53 0.84
KangarooTwelve 128 AVX2 11.60 5.93 5.30 4.87 4.16 3.78 3.61
KangarooTwelve 128 AVX512 8.22 4.20 3.78 3.33 2.78 2.50 2.36

Alder Lake‡ Areion512-MD 256 AES-NI 1.60 2.16 2.42 2.60 2.66 2.68 2.70
Simpira512-MD 256 AES-NI 1.65 2.30 2.87 3.19 3.32 3.39 3.42
Haraka512-MD 256 AES-NI 1.68 2.15 2.41 2.55 2.62 2.65 2.67
Haraka512-MD (x1.2) 256 AES-NI 2.02 2.58 2.90 3.05 3.14 3.18 3.21
Haraka512-MD (x1.5) 256 AES-NI 2.52 3.23 3.62 3.82 3.92 3.97 4.01
Hirose-DBL 256 AES-NI 12.67 12.61 12.58 12.59 12.61 12.61 12.61
SHA256 256 AVX2 4.45 3.26 2.63 2.35 2.20 2.12 2.06
ParallelHash256 256 AVX2 59.38 29.47 19.48 14.25 11.62 10.30 9.36
ParallelHash256 256 AVX512 – – – – – – –
BLAKE3 128 SSE 5.20 4.05 3.77 3.64 3.57 1.85 1.26
KangarooTwelve 128 AVX2 10.65 5.40 4.99 4.73 4.06 3.73 3.57
KangarooTwelve 128 AVX512 – – – – – – –

† The security level is against preimage attacks.
‡ Our Alder Lake platform does not support the AVX512 instruction set.

• Areion512-DM realizes the fastest SFIL hashing among the target DM constructions
with the 512-bit permutation. Specifically, Areion512-DM performs at least 1.34 and
1.25 times faster than Simpira256-DM and Haraka256-DM (x1.2), respectively.
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Table 12: Benchmarks for hash functions on the Pixel 5, Pixel 6, Pixel 7, iPhone13,
iPhone14, and iPadPro. All values are given as Gbps.

Input sizes (bytes)
Platform Primitive 32 64 128 256 512 1024 2048 4096
Pixel 5 (Snapdragon765G) Areion512-MD 3.99 4.38 4.82 5.07 5.22 5.29 5.33 5.33

SHA2-256 0.33 0.63 1.23 2.21 3.69 5.57 7.42 8.96
SHA3-256 0.20 0.40 0.80 1.17 1.51 1.76 1.93 2.09

Pixel 6 (Google Tensor) Areion512-MD 6.07 7.28 7.20 7.19 7.18 7.18 7.18 7.18
SHA2-256 0.45 0.86 1.62 2.87 4.71 6.94 9.07 10.72
SHA3-256 0.28 0.56 1.12 1.66 2.19 2.59 2.86 3.11

Pixel 7 (Google Tensor2) Areion512-MD 5.81 7.40 7.33 7.33 7.27 7.31 7.28 7.29
SHA2-256 0.44 0.86 1.61 2.87 4.75 6.96 9.02 10.89
SHA3-256 0.28 0.57 1.13 1.67 2.21 2.63 2.88 3.14

iPhone 13 (A15) Areion512-MD 8.39 14.71 13.84 11.15 10.19 9.75 9.56 9.46
SHA2-256 0.96 1.81 3.44 6.00 9.08 12.19 14.70 16.42
SHA3-256 0.47 0.96 1.97 2.78 3.51 3.98 4.33 4.67

iPhone 14 (A15) Areion512-MD 8.03 14.84 13.95 11.20 10.21 9.79 9.58 9.48
SHA2-256 0.94 1.77 3.29 5.77 8.98 12.19 14.63 16.36
SHA3-256 0.50 0.97 1.90 2.69 3.39 3.87 4.17 4.49

iPad Pro (Apple M1) Areion512-MD 8.39 14.98 14.38 11.74 10.75 10.31 10.11 10.00
SHA2-256 0.49 1.81 3.40 5.92 8.68 12.03 14.48 16.19
SHA3-256 0.47 0.95 1.98 2.76 3.49 3.92 4.33 4.56

iPad Pro (Apple M2) Areion512-MD 8.67 15.59 15.08 12.09 11.04 10.58 10.36 10.24
SHA2-256 1.02 1.95 3.65 6.32 9.55 12.84 15.92 17.76
SHA3-256 0.51 1.03 2.06 2.91 3.64 4.11 4.45 4.78

Consequently, It can be considered that Areion256-DM and Areion512-DM are the fastest
SFIL hash functions. On the other hand, we summarize the performance comparison for
the VIL hash functions as follows:

• Areion512-MD realizes the fastest VIL hashing among the target hash functions
with a 256-bit security level for input sizes up to around 4K bytes. Specifically, its
performance is less than 3 cpb for any message size. Moreover, it is much faster than
existing state-of-the-art schemes (e.g., SHA2-256, SHA3-256, and ParallelHash256)
for short messages up to around 100 bytes, a widely-used input size in real-world
applications.

Considering the need for cryptographic primitives resistant to symmetric-key cryptanalysis
based on quantum algorithms (e.g., Grover’s algorithm [24]), hash functions with a 256-bit
security level must be required for the future. For this reason, we consider that there is
no problem even if Areion512-MD performs slower than KangarooTwelve when the input
size is 2K bytes or more. In addition, according to the current study on packet sizes on
the Internet [54], it is known that around 44% of packets are between 40 and 100 bytes
long and 37% are between 1400 and 1500 bytes in size. Given that most of the packet
sizes on the Internet are 1.5K bytes or less, Areion512-MD has the strongest advantage of
performing faster than any other target VIL hash functions with a 256-bit security level.

Tables 12 shows benchmarks for the VIL hash functions using NEON implementations in
Appendix A.3 on mobile environments. We compare with existing schemes of SHA2-256 and
SHA3-256 which are available for optimized implementations in OpenSSL. Areion512-
MD achieves outstanding performance for short messages, especially up to 128 bytes.

6.3 Permutation-based AEADs
Finally, we evaluate the performance of the permutation-based AEADs, i.e., SFIL and VIL
AEADs (the KWF, OPP, and OTR modes). These instantiations of Areion are implemented
based on the source codes of Areion-256 and Areion-512 described in Appendix A.1. For
comparison regarding the SFIL AEAD, we used Simpira512-KWF. It is implemented in the
same way as Areion512-KWF. We note here that the key wrapping functions instantiated
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Table 13: Benchmarks for SFIL AEADs on the Ice Lake, Tiger Lake, and Alder
Lake platforms. The sizes of associated data and plaintext are 256 and 16 bytes,
respectively. All values are given as cpb.

Ice Lake Tiger Lake Alder Lake
Primitive Enc Dec Enc Dec Enc Dec
Areion512-KWF 2.38 2.38 2.37 2.37 2.30 2.30
Simpira512-KWF 2.87 2.87 2.86 2.86 2.69 2.69

Table 14: Benchmarks for VIL AEADs on the Ice Lake, Tiger Lake, and Alder Lake
platforms. The size of the associated data is 128 bytes. All values are given as cpb.

Input sizes (bytes)
64 128 256 512 1024 2048

Platform Primitive Enc / Dec Enc / Dec Enc / Dec Enc / Dec Enc / Dec Enc / Dec
Ice Lake Areion256-OPP 1.95 / 2.10 1.52 / 2.03 1.22 / 1.46 1.03 / 1.32 0.88 / 1.20 0.80 / 1.14

Areion256-OTR 2.23 / 2.23 1.82 / 1.82 1.29 / 1.45 1.06 / 1.26 0.91 / 1.15 0.82 / 1.08
Simpira256-OPP 2.39 / 2.39 1.83 / 1.87 1.52 / 1.49 1.29 / 1.27 1.13 / 1.10 1.04 / 1.02
Simpira256-OTR 2.75 / 2.75 2.29 / 2.29 1.62 / 1.64 1.35 / 1.40 1.18 / 1.23 1.07 / 1.13
Deoxys-I-128 2.72 / 3.99 2.20 / 3.17 1.69 / 2.50 1.27 / 1.85 1.02 / 1.39 0.87 / 1.13
BLAKE2s-OPP 5.28 / 4.84 4.55 / 4.03 3.91 / 3.25 3.44 / 2.72 3.12 / 2.33 2.93 / 2.10
BLAKE2s-OTR 6.67 / 6.40 4.81 / 4.80 3.93 / 3.96 3.61 / 3.59 3.32 / 3.29 3.15 / 3.14

Tiger Lake Areion256-OPP 1.96 / 2.12 1.53 / 2.04 1.22 / 1.45 1.03 / 1.29 0.87 / 1.18 0.79 / 1.13
Areion256-OTR 2.22 / 2.23 1.79 / 1.80 1.30 / 1.45 1.06 / 1.27 0.91 / 1.15 0.82 / 1.07
Simpira256-OPP 2.35 / 2.36 1.85 / 1.89 1.53 / 1.50 1.29 / 1.26 1.13 / 1.10 1.04 / 1.01
Simpira256-OTR 2.76 / 2.73 2.33 / 2.32 1.61 / 1.63 1.36 / 1.40 1.18 / 1.22 1.07 / 1.12
Deoxys-I-128 2.76 / 3.96 2.28 / 3.15 1.76 / 2.49 1.31 / 1.84 1.03 / 1.38 0.88 / 1.12
BLAKE2s-OPP 5.27 / 4.83 4.54 / 4.02 3.91 / 3.25 3.45 / 2.71 3.12 / 2.32 2.92 / 2.10
BLAKE2s-OTR 6.64 / 6.40 4.81 / 4.80 3.95 / 3.93 3.61 / 3.58 3.32 / 3.29 3.14 / 3.13

Alder Lake Areion256-OPP 1.94 / 2.06 1.52 / 1.67 1.15 / 1.26 0.95 / 1.09 0.81 / 0.97 0.73 / 0.89
Areion256-OTR 2.00 / 2.00 1.74 / 1.77 1.22 / 1.26 1.00 / 1.06 0.86 / 0.91 0.77 / 0.83
Simpira256-OPP 2.33 / 2.31 1.78 / 1.84 1.34 / 1.37 1.12 / 1.16 0.96 / 1.01 0.86 / 0.91
Simpira256-OTR 2.46 / 2.46 2.24 / 2.25 1.53 / 1.58 1.27 / 1.32 1.10 / 1.16 1.00 / 1.06
Deoxys-I-128 2.29 / 3.22 1.71 / 2.33 1.36 / 1.82 1.09 / 1.42 0.90 / 1.15 0.79 / 0.99
BLAKE2s-OPP 4.99 / 4.55 4.30 / 3.81 3.68 / 3.12 3.21 / 2.60 2.86 / 2.23 2.68 / 2.00
BLAKE2s-OTR 6.47 / 6.15 4.64 / 4.62 3.70 / 3.71 3.33 / 3.33 3.04 / 3.02 2.87 / 2.87

with Haraka-512 and Haraka-512 (x1.2/x1.5) are excluded from our comparison because
Haraka-512 cannot be regarded to have the security margin sufficiently, and the underlying
permutation of Haraka-512 (x1.2/x1.5) are clearly slower than that of Areion-512, as
explained Sect. 6.1. On the other hand, for comparison regarding the VIL AEADs,
we used Deoxys-I-128 and the OPP and OTR modes instantiated with BLAKE2s called
BLAKE2s-OPP and BLAKE2s-OTR. We can find the source codes of Deoxys-I-128 and
BLAKE2s-OPP at SUPERCOP13 and GitHub14, respectively; then, we modified these
source codes to use for our performance comparison. In addition, BLAKE2s-OTR is
implemented in the same way as Areion256-OTR.

Our platforms’ benchmarks for the SFIL and VIL AEADs are shown in Tables 13 and
14. From Table 13, Areion512-KWF performs at least 1.17 times faster than Simpira512-
KWF for encryption and decryption; thus, Areion512-KWF is the fastest SFIL AEAD. On
the other hand, we summarize the performance comparison regarding the VIL AEADs as
follows:

• Areion256-OPP realizes the fastest encryption among the target AEADs. Specifically,
Areion256-OPP is the only AEAD to achieve less than two cpb for 64-bit messages
on all our platforms. In addition, Areion256-OPP provides the fastest encryption/de-
cryption among the target AEADs, excluding Areion256-OTR, on the latest CPU
architecture Alder Lake.

• Areion256-OTR realizes the fastest encryption/decryption among the target AEADs,
excluding Areion256-OPP and Simpira256-OPP. Specifically, compared to its main

13https://bench.cr.yp.to/supercop.html
14https://github.com/MEM-AEAD/mem-aead

https://bench.cr.yp.to/supercop.html
https://github.com/MEM-AEAD/mem-aead
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competitor Simpira256-OTR, Areion256-OTR provides faster encryption/decryption
than Simpira256-OTR for all messages up to 2K bytes. In addition, when compared
to Areion256-OPP, Areion256-OTR is balanced in encryption and decryption for long
messages of 256 bits or more.

From the above viewpoints, Areion256-OPP and Areion256-OTR have better performance
than any other target AEADs.

7 Conclusion
We proposed a family of wide-block permutations Areion that fully leverages the power of
AES instructions and show its applications of hash functions and AEADs. Our schemes
significantly outperform existing schemes for short input and are competitive for relatively-
long messages. Among them, our hash function is surprisingly fast. Its performance is less
than three cycles/byte in the latest Intel architectures for any message size. It is about
ten times faster than existing schemes for short messages up to around 100 bytes, which
are the most widely-used input size in real-world applications, on both of on latest CPU
architectures (IceLake, Tiger Lake, and Alder Lake) and mobile environments (Pixel 7,
iPhone 14, and iPad Pro with Apple M2).
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A Reference Implementations
A.1 Areion-256 and Areion-512
#include <stdint.h>
#include <immintrin.h>

/* Round Constants */
const uint32_t RC[15*4] = {

0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344,
0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89,
0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917,
0x9216d5d9, 0x8979fb1b, 0xd1310ba6, 0x98dfb5ac,
0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96,
0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7,
0x801f2e28, 0x58efc166, 0x36920d87, 0x1574e690,
0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658,
0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5,
0x9c30d539, 0x2af26013, 0xc5d1b023, 0x286085f0,
0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e,
0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27,
0x78af2fda, 0x55605c60, 0xe65525f3, 0xaa55ab94,
0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6

};

/* Round constants are used in little-endian byte order. */
#define RC0(i) _mm_setr_epi32(RC[(i)*4+3], RC[(i)*4+2], RC[(i)*4+1], RC[(i)*4+0])
#define RC1(i) _mm_setr_epi32(0, 0, 0, 0)

/* Round Function for the 256-bit permutation */
#define Round_Function_256(x0, x1, i) do { \

x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC0(i)), x1); \
x0 = _mm_aesenclast_si128(x0, RC1(i)); \

} while(0)

/* 256-bit permutation */
#define perm256(x0, x1) do { \

Round_Function_256(x0, x1, 0); \
Round_Function_256(x1, x0, 1); \
Round_Function_256(x0, x1, 2); \
Round_Function_256(x1, x0, 3); \
Round_Function_256(x0, x1, 4); \
Round_Function_256(x1, x0, 5); \
Round_Function_256(x0, x1, 6); \
Round_Function_256(x1, x0, 7); \
Round_Function_256(x0, x1, 8); \
Round_Function_256(x1, x0, 9); \

} while(0)

/* Inversed Round Function for the 256-bit permutation */
#define Inv_Round_Function_256(x0, x1, i) do { \

x0 = _mm_aesdeclast_si128(x0, RC1(i)); \
x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC0(i)), x1); \

} while(0)

/* Inversed 256-bit permutation */
#define Inv_perm256(x0, x1) do { \

Inv_Round_Function_256(x1, x0, 9); \
Inv_Round_Function_256(x0, x1, 8); \
Inv_Round_Function_256(x1, x0, 7); \
Inv_Round_Function_256(x0, x1, 6); \
Inv_Round_Function_256(x1, x0, 5); \
Inv_Round_Function_256(x0, x1, 4); \
Inv_Round_Function_256(x1, x0, 3); \
Inv_Round_Function_256(x0, x1, 2); \
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Inv_Round_Function_256(x1, x0, 1); \
Inv_Round_Function_256(x0, x1, 0); \

} while(0)

/* Round Function for the 512-bit permutation */
#define Round_Function_512(x0, x1, x2, x3, i) do { \

x1 = _mm_aesenc_si128(x0, x1); \
x3 = _mm_aesenc_si128(x2, x3); \
x0 = _mm_aesenclast_si128(x0, RC1(i)); \
x2 = _mm_aesenc_si128(_mm_aesenclast_si128(x2, RC0(i)), RC1(i)); \

} while (0)

/* 512-bit permutation */
#define perm512(x0, x1, x2, x3) do { \

Round_Function_512(x0, x1, x2, x3, 0); \
Round_Function_512(x1, x2, x3, x0, 1); \
Round_Function_512(x2, x3, x0, x1, 2); \
Round_Function_512(x3, x0, x1, x2, 3); \
Round_Function_512(x0, x1, x2, x3, 4); \
Round_Function_512(x1, x2, x3, x0, 5); \
Round_Function_512(x2, x3, x0, x1, 6); \
Round_Function_512(x3, x0, x1, x2, 7); \
Round_Function_512(x0, x1, x2, x3, 8); \
Round_Function_512(x1, x2, x3, x0, 9); \
Round_Function_512(x2, x3, x0, x1, 10); \
Round_Function_512(x3, x0, x1, x2, 11); \
Round_Function_512(x0, x1, x2, x3, 12); \
Round_Function_512(x1, x2, x3, x0, 13); \
Round_Function_512(x2, x3, x0, x1, 14); \

} while(0)

/* Inversed Round Function for the 512-bit permutation */
#define Inv_Round_Function_512(x0, x1, x2, x3, i) do { \

x0 = _mm_aesdeclast_si128(x0, RC1(i)); \
x2 = _mm_aesdeclast_si128(_mm_aesimc_si128(x2), RC0(i)); \
x2 = _mm_aesdeclast_si128(x2, RC1(i)); \
x1 = _mm_aesenc_si128(x0, x1); \
x3 = _mm_aesenc_si128(x2, x3); \

} while (0)

/* Inversed 512-bit permutation */
#define Inv_perm512(x0, x1, x2, x3) do { \

Inv_Round_Function_512(x3, x0, x1, x2, 14); \
Inv_Round_Function_512(x2, x3, x0, x1, 13); \
Inv_Round_Function_512(x1, x2, x3, x0, 12); \
Inv_Round_Function_512(x0, x1, x2, x3, 11); \
Inv_Round_Function_512(x3, x0, x1, x2, 10); \
Inv_Round_Function_512(x2, x3, x0, x1, 9); \
Inv_Round_Function_512(x1, x2, x3, x0, 8); \
Inv_Round_Function_512(x0, x1, x2, x3, 7); \
Inv_Round_Function_512(x3, x0, x1, x2, 6); \
Inv_Round_Function_512(x2, x3, x0, x1, 5); \
Inv_Round_Function_512(x1, x2, x3, x0, 4); \
Inv_Round_Function_512(x0, x1, x2, x3, 3); \
Inv_Round_Function_512(x3, x0, x1, x2, 2); \
Inv_Round_Function_512(x2, x3, x0, x1, 1); \
Inv_Round_Function_512(x1, x2, x3, x0, 0); \

} while(0)

/* Areion-256 */
void permute_areion_256(__m128i dst[2], const __m128i src[2])
{

__m128i x0 = src[0];
__m128i x1 = src[1];
perm256(x0, x1);
dst[0] = x0;
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dst[1] = x1;
}

/* Invresed Areion-256 */
void inverse_areion_256(__m128i dst[2], const __m128i src[2])
{

__m128i x0 = src[0];
__m128i x1 = src[1];
Inv_perm256(x0, x1);
dst[0] = x0;
dst[1] = x1;

}

/* Areion-512 */
void permute_areion_512(__m128i dst[4], const __m128i src[4])
{

__m128i x0 = src[0];
__m128i x1 = src[1];
__m128i x2 = src[2];
__m128i x3 = src[3];
perm512(x0, x1, x2, x3);
dst[0] = x3;
dst[1] = x0;
dst[2] = x1;
dst[3] = x2;

}

/* Invresed Areion-512 */
void inverse_areion_512(__m128i dst[4], const __m128i src[4])
{

__m128i x0 = src[0];
__m128i x1 = src[1];
__m128i x2 = src[2];
__m128i x3 = src[3];
Inv_perm512(x0, x1, x2, x3);
dst[0] = x1;
dst[1] = x2;
dst[2] = x3;
dst[3] = x0;

}

A.2 Simpira-256 and Simpira-512

#include <stdint.h>
#include <immintrin.h>

/* Round Constant */
#define RC0(i) _mm_setr_epi32(0x00^(i)^(2), 0x10^(i)^(2), 0x20^(i)^(2), 0x30^(i)^(2))
#define RC1(i) _mm_setr_epi32(0x00^(2*(i)+1)^(4), 0x10^(2*(i)+1)^(4), 0x20^(2*(i)+1)^(4), 0

x30^(2*(i)+1)^(4))
#define RC2(i) _mm_setr_epi32(0x00^(2*(i)+2)^(4), 0x10^(2*(i)+2)^(4), 0x20^(2*(i)+2)^(4), 0

x30^(2*(i)+2)^(4))

/* Round Function for the 256-bit permutation */
#define Round_Function_256(x0, x1, i) do { \

x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC0(i)), x1); \
} while(0)

/* 256-bit permutation */
#define perm256(x0, x1) do { \

Round_Function_256(x0, x1, 0); \
Round_Function_256(x1, x0, 1); \
Round_Function_256(x0, x1, 2); \
Round_Function_256(x1, x0, 3); \
Round_Function_256(x0, x1, 4); \
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Round_Function_256(x1, x0, 5); \
Round_Function_256(x0, x1, 6); \
Round_Function_256(x1, x0, 7); \
Round_Function_256(x0, x1, 8); \
Round_Function_256(x1, x0, 9); \
Round_Function_256(x0, x1, 10); \
Round_Function_256(x1, x0, 11); \
Round_Function_256(x0, x1, 12); \
Round_Function_256(x1, x0, 13); \
Round_Function_256(x0, x1, 14); \

} while(0)

/* Inversed 256-bit permutation */
#define Inv_perm256(x0, x1) do { \

Round_Function_256(x0, x1, 14); \
Round_Function_256(x1, x0, 13); \
Round_Function_256(x0, x1, 12); \
Round_Function_256(x1, x0, 11); \
Round_Function_256(x0, x1, 10); \
Round_Function_256(x1, x0, 9); \
Round_Function_256(x0, x1, 8); \
Round_Function_256(x1, x0, 7); \
Round_Function_256(x0, x1, 6); \
Round_Function_256(x1, x0, 5); \
Round_Function_256(x0, x1, 4); \
Round_Function_256(x1, x0, 3); \
Round_Function_256(x0, x1, 2); \
Round_Function_256(x1, x0, 1); \
Round_Function_256(x0, x1, 0); \

} while(0)

/* Round Function for the 512-bit permutation */
#define Round_Function_512(x0, x1, x2, x3, i) do { \

x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC1(i)), x1); \
x3 = _mm_aesenc_si128(_mm_aesenc_si128(x2, RC2(i)), x3); \

} while (0)

/* 512-bit permutation */
#define perm512(x0, x1, x2, x3) do { \

Round_Function_512(x0, x1, x2, x3, 0); \
Round_Function_512(x1, x2, x3, x0, 1); \
Round_Function_512(x2, x3, x0, x1, 2); \
Round_Function_512(x3, x0, x1, x2, 3); \
Round_Function_512(x0, x1, x2, x3, 4); \
Round_Function_512(x1, x2, x3, x0, 5); \
Round_Function_512(x2, x3, x0, x1, 6); \
Round_Function_512(x3, x0, x1, x2, 7); \
Round_Function_512(x0, x1, x2, x3, 8); \
Round_Function_512(x1, x2, x3, x0, 9); \
Round_Function_512(x2, x3, x0, x1, 10); \
Round_Function_512(x3, x0, x1, x2, 11); \
Round_Function_512(x0, x1, x2, x3, 12); \
Round_Function_512(x1, x2, x3, x0, 13); \
Round_Function_512(x2, x3, x0, x1, 14); \

} while(0)

/* Inversed 512-bit permutation */
#define Inv_perm512(x0, x1, x2, x3) do { \

Round_Function_512(x2, x3, x0, x1, 14); \
Round_Function_512(x1, x2, x3, x0, 13); \
Round_Function_512(x0, x1, x2, x3, 12); \
Round_Function_512(x3, x0, x1, x2, 11); \
Round_Function_512(x2, x3, x0, x1, 10); \
Round_Function_512(x1, x2, x3, x0, 9); \
Round_Function_512(x0, x1, x2, x3, 8); \
Round_Function_512(x3, x0, x1, x2, 7); \
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Round_Function_512(x2, x3, x0, x1, 6); \
Round_Function_512(x1, x2, x3, x0, 5); \
Round_Function_512(x0, x1, x2, x3, 4); \
Round_Function_512(x3, x0, x1, x2, 3); \
Round_Function_512(x2, x3, x0, x1, 2); \
Round_Function_512(x1, x2, x3, x0, 1); \
Round_Function_512(x0, x1, x2, x3, 0); \

} while(0)

A.3 NEON Implementations of Areion-256 and Areion-512

#include<stdint.h>
#include<arm_neon.h>

/* Round Constant aligned for little endian */
const uint32_t RC[][4] = {

{0x03707344, 0x13198a2e, 0x85a308d3, 0x243f6a88},
{0xec4e6c89, 0x082efa98, 0x299f31d0, 0xa4093822},
{0x34e90c6c, 0xbe5466cf, 0x38d01377, 0x452821e6},
{0xb5470917, 0x3f84d5b5, 0xc97c50dd, 0xc0ac29b7},
{0x98dfb5ac, 0xd1310ba6, 0x8979fb1b, 0x9216d5d9},
{0x6a267e96, 0xb8e1afed, 0xd01adfb7, 0x2ffd72db},
{0xb3916cf7, 0x24a19947, 0xf12c7f99, 0xba7c9045},
{0x1574e690, 0x36920d87, 0x58efc166, 0x801f2e28},
{0x728eb658, 0x0d95748f, 0xf4933d7e, 0xa458fea3},
{0xc25a59b5, 0x7b54a41d, 0x82154aee, 0x718bcd58},
{0x286085f0, 0xc5d1b023, 0x2af26013, 0x9c30d539},
{0x603a180e, 0x8e79dcb0, 0xb8db38ef, 0xca417918},
{0xbd314b27, 0xd71577c1, 0xb01e8a3e, 0x6c9e0e8b},
{0xaa55ab94, 0xe65525f3, 0x55605c60, 0x78af2fda},
{0x2aab10b6, 0x55ca396a, 0x63e81440, 0x57489862},
{0x7c72e993, 0xa15486af, 0x1141e8ce, 0xb4cc5c34},
{0x741831f6, 0x2ba9c55d, 0x636fbc2a, 0xb3ee1411},
{0x6c24cf5c, 0xafd6ba33, 0x9b87931e, 0xce5c3e16},
{0x6b4bb9af, 0x3b8f4898, 0x28958677, 0x7a325381},
{0xfb21a991, 0x61d809cc, 0x66282193, 0xc4bfe81b},
{0xe98575b1, 0xef845d5d, 0x5dec8032, 0x487cac60},
{0xd396acc5, 0x23893e81, 0xeb651b88, 0xdc262302},
{0x48420040, 0xe0b4482a, 0x3f442392, 0xf6d6ff38},
{0xf6e96c9a, 0x21c66842, 0x9e1f9b5e, 0x69c8f04a}

};

#define RC0 vmovq_n_u8(0)
#define RC1(i) vreinterpretq_u8_u32(vld1q_u32(RC[i]))

/* Operations for the round function */
#define A1(X, K) vaesmcq_u8((vaeseq_u8(X, K)))
#define A2(X, K) vaeseq_u8(X, K)
#define A3(X) vaesmcq_u8(X)
#define A4(X, K) vaesdq_u8(X, K)
#define XOR(X, Y) veorq_u8(X, Y)

/* Round Function for the 256-bit permutation */
#define R_FIRST(x0, x1, i) \

do { \
x1 = A2(A1(A1(x0, RC0), RC1(i)), x1); \
x0 = A2(x0, RC0); \

} while (0)

#define R_MIDDLE(x0, x1, i) \
do { \

x1 = A2(A1(A1(x0, RC0), RC1(i)), x1); \
} while (0)

#define R_LAST(x0, x1, i) \
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do { \
x1 = XOR(A1(A1(x0, RC0), RC1(i)), x1); \
x0 = A2(x0, RC0); \

} while (0)

/* 256-bit permutation */
#define perm256(x0, x1) \

do { \
R_FIRST(x0, x1, 0); \
R_MIDDLE(x1, x0, 1); \
R_MIDDLE(x0, x1, 2); \
R_MIDDLE(x1, x0, 3); \
R_MIDDLE(x0, x1, 4); \
R_MIDDLE(x1, x0, 5); \
R_MIDDLE(x0, x1, 6); \
R_MIDDLE(x1, x0, 7); \
R_MIDDLE(x0, x1, 8); \
R_LAST(x1, x0, 9); \

} while (0)

/* Inversed Round Function for the 256-bit permutation */
#define Inv_R_FIRST(x0, x1, i) \

do { \
x0 = A4(x0, RC0); \
x1 = A4(A1(A1(x0, RC0), RC1(i)), x1); \

} while (0)

#define Inv_R_MIDDLE(x0, x1, i) \
do { \

x1 = A4(A1(A1(x0, RC0), RC1(i)), x1); \
} while (0)

#define Inv_R_LAST(x0, x1, i) \
do { \

x1 = XOR(A1(A1(x0, RC0), RC1(i)), x1); \
} while (0)

/* Inversed 256-bit permutation */
#define Inv_perm256(x0, x1) \

do { \
Inv_R_FIRST(x1, x0, 9); \
Inv_R_MIDDLE(x0, x1, 8); \
Inv_R_MIDDLE(x1, x0, 7); \
Inv_R_MIDDLE(x0, x1, 6); \
Inv_R_MIDDLE(x1, x0, 5); \
Inv_R_MIDDLE(x0, x1, 4); \
Inv_R_MIDDLE(x1, x0, 3); \
Inv_R_MIDDLE(x0, x1, 2); \
Inv_R_MIDDLE(x1, x0, 1); \
Inv_R_LAST(x0, x1, 0); \

} while (0)

/* Round Function for the 512-bit permutation */
#define R_FIRST(x0, x1, x2, x3, i) \

do { \
x1 = A2(A1(x0, RC0), x1); \
x3 = A2(A1(x2, RC0), x3); \
x0 = A2(x0, RC0); \
x2 = A1(A2(x2, RC0), RC1(i)); \

} while (0)

#define R_MIDDLE(x0, x1, x2, x3, i) \
do { \

x1 = A2(A1((x0), x1); \
x3 = A2(A3(x2), x3); \
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x2 = A1(x2, RC1(i)); \
} while (0)

#define R_LAST(x0, x1, x2, x3, i) \
do { \

x1 = XOR(A3(x0), x1); \
x3 = XOR(A3(x2), x3); \
x2 = A1(x2, RC1(i)); \

} while (0)

/* 512-bit permutation */
#define perm512(x0, x1, x2, x3) \

do { \
R_FIRST(x0, x1, x2, x3, 0); \
R_MIDDLE(x3, x0, x1, x2, 1); \
R_MIDDLE(x2, x3, x0, x1, 2); \
R_MIDDLE(x1, x2, x3, x0, 3); \
R_MIDDLE(x0, x1, x2, x3, 4); \
R_MIDDLE(x3, x0, x1, x2, 5); \
R_MIDDLE(x2, x3, x0, x1, 6); \
R_MIDDLE(x1, x2, x3, x0, 7); \
R_MIDDLE(x0, x1, x2, x3, 8); \
R_MIDDLE(x3, x0, x1, x2, 9); \
R_MIDDLE(x2, x3, x0, x1, 10); \
R_MIDDLE(x1, x2, x3, x0, 11); \
R_MIDDLE(x0, x1, x2, x3, 12); \
R_MIDDLE(x3, x0, x1, x2, 13); \
R_LAST(x2, x3, x0, x1, 14); \

} while (0)
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B Test Vectors
B.1 Areion-256

/* test vector #1 */
Input:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output:
28 12 a7 24 65 b2 6e 9f ca 75 83 f6 e4 12 3a a1
49 0e 35 e7 d5 20 3e 4b a2 e9 27 b0 48 2f 4d b8

/* test vector #2 */
Input:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

Output:
68 84 5f 13 2e e4 61 60 66 c7 02 d9 42 a3 b2 c3
a3 77 f6 5b 13 bb 05 c7 cd 1f b2 9c 89 af a1 85

B.2 Areion-512

/* test vector #1 */
Input:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output:
b2 ad b0 4f a9 1f 90 15 59 36 71 22 cb 3c 96 a9
78 cf 3e e4 b7 3c 6a 54 3f e6 dc 85 77 91 02 e7
e3 f5 50 10 16 ce ed 1d d2 c4 8d 0b c2 12 fb 07
ad 16 87 94 bd 96 cf f3 59 09 cd d8 e2 27 49 28

/* test vector #2 */
Input:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

Output:
b6 90 b8 82 97 ec 47 0b 07 dd a9 2b 91 95 9c ff
13 5e 9a c5 fc 3d c9 b6 47 a4 3f 4d aa 8d a7 a4
e0 af bd d8 e6 e2 55 c2 45 27 73 6b 29 8b d6 1d
e4 60 ba b9 ea 79 15 c6 d6 dd be 05 fe 8d de 40

B.3 Areion256-DM

/* test vector #1 */
Input:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output:
28 12 a7 24 65 b2 6e 9f ca 75 83 f6 e4 12 3a a1
49 0e 35 e7 d5 20 3e 4b a2 e9 27 b0 48 2f 4d b8

/* test vector #2 */
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Input:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

Output:
68 85 5d 10 2a e1 67 67 6e ce 08 d2 4e ae bc cc
b3 66 e4 48 07 ae 13 d0 d5 06 a8 87 95 b2 bf 9a

B.4 Areion512-DM
/* test vector #1 */
Input:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output:
59 36 71 22 cb 3c 96 a9 3f e6 dc 85 77 91 02 e7
e3 f5 50 10 16 ce ed 1d ad 16 87 94 bd 96 cf f3

/* test vector #2 */
Input:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

Output:
0f d4 a3 20 9d 98 92 f0 5f bd 25 56 b6 90 b9 bb
c0 8e 9f fb c2 c7 73 e5 d4 51 88 8a de 4c 23 f1

B.5 Areion512-MD
/* test vector #1 */
Input:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output:
7f 22 34 44 5f 3a 72 00 65 93 79 42 01 53 6c 94
09 5d ab d3 fd b5 84 67 48 d3 59 55 5c 52 e6 51

/* test vector #2 */
Input:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f

Output:
3e 4d 31 0f be 21 d0 7b b9 00 46 88 a1 50 36 b7
ab d9 ae 2f e9 e6 0c 9a ca 2a cc 36 98 5e 60 0b
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B.6 Areion512-KWF

/* test vector #1 */
key:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

associated data:
3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

message:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

ciphertext:
01 94 4a 6a f7 14 72 20 81 30 f7 5d 27 ed 10 15
12 71 dc 0e fd 80 e3 88 71 29 0d 7d fb e0 6e ed
3c aa 13 ec 37 1a c1 df 29 70 6f c8 6b 90 60 ee
75 2e 21 50 4f 43 5a 7f 59 ee 5b b3 9c af 63 d5

/* test vector #2 */
key:

0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

associated data:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

message:
00 01 02 03 04 05 06 07 08 09 0a 0b

ciphertext:
a4 27 e4 10 65 cd ab 1b 53 b5 f9 7b c9 ac ad 4f
e1 f0 5b 4e 0d a4 87 30 e4 6c 55 81 cc c0 30 d5
ad 86 9c 07 be de 72 31 50 31 ec b7 18 5b f2 f0
bb a2 46 72 cf bb a4 fc 7e 25 48 28 85 30 fb 11

B.7 Areion256-OPP

/* test vector #1 */
key:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

nonce:
0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

associated data:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

plaintext:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

ciphertext:
a4 69 c0 ab 00 bf b6 8e 1f f3 74 54 b8 3d da 59
ef 61 1b 32 30 c0 a7 f0 a7 36 7c ab 36 c8 8a 59
d4 dc e1 ec 7e cb 9b ad b4 77 16 93 24 b9 22 b4
ef 04 17 8a 46 58 85 10 c2 44 ae 7b 7c bc 05 a0

tag:
76 12 8b 16 b6 cd 68 21 e3 7b df 58 69 27 61 a5
05 dd 89 f4 cc 81 b7 c9 28 96 53 d6 83 a7 a8 a7
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/* test vector #2 */
key:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

nonce:
0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

associated data:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

plaintext:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f

ciphertext:
16 d7 b2 7a 50 0a a0 3e a1 d1 79 f3 26 63 b3 b9
e3 f0 41 b9 ba dd 0e 4d 59 f1 bf 87 82 5b 2a 30
f9 00 11 96 fd 45 30 6d 59 86 d7 a2 57 0c 6c 8a
df 68 8e 7e a2 0a 27 1b 61 e0 67 39 4f a2 85 5d
e8 71 76 5c ce 79 5b 4d 81 6c 7e b3 74 b1 66 6f
dc a1 de c1 af 22 8b bb eb 76 74 86 b8 52 08 c1
26 f2 b2 79 87 94 0b 03 00 f6 23 27 86 55 ba 5d
c9 db 3e bc 56 55 69 a0 f2 16 22 9d a4 a6 63 d8

tag:
25 d9 b9 09 41 45 e6 1f f0 f5 49 be 6d fe 81 a2
ec 7c e7 8c 8f c0 ba b0 d7 72 1b 9d 80 d4 76 f7

B.8 Areion256-OTR

/* test vector #1 */
key:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

nonce:
0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

associated data:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

plaintext:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

ciphertext:
84 48 e2 88 24 9a 90 a9 37 da 5e 7f 94 10 f4 76
df 50 29 01 04 f5 91 c7 9f 0f 46 90 0a f5 b4 66
41 1d fc 8b 9b 44 a3 08 7e 60 2b 50 77 d9 2c 31
d2 22 d3 f0 dd 33 df 9f a0 0d e6 12 cb 54 89 09

tag:
f2 4f 05 07 54 d1 aa d2 04 5f c5 39 14 ad 2b 5c
ac 31 6c d8 04 28 91 d7 42 b0 59 fa d7 ca be ef
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/* test vector #2 */
key:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

nonce:
0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

associated data:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

plaintext:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f

ciphertext:
36 f6 90 59 74 2f 86 19 89 f8 53 d8 0a 4e 9d 96
d3 c1 73 8a 8e e8 38 7a 61 c8 85 bc be 66 14 0f
74 45 c3 d5 4a dc de 89 6f ae c3 46 c8 99 69 b8
45 8c 19 51 68 54 fe f6 fa 7b b6 84 02 1a 8b 2c
21 38 98 01 2d 93 7c 50 81 18 ed 1d 8e a4 a6 ce
3c 70 73 5c ac 9d c2 09 6a 39 62 54 72 ab 25 7d
a8 23 9f c2 24 6f ac 0b 13 7c c7 a9 75 cf 49 ee
0b 4f 74 e7 86 02 ff 6e 8a 7c ce d2 9b f4 e5 48

tag:
ce 51 cc 06 29 22 f2 10 37 e1 07 ea 84 44 19 77
e7 f1 73 73 39 94 6c a5 fb f8 3b 92 fa c6 0c 5b
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