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Abstract. The current work makes a systematic attempt to describe
the effect of the relative order of round constant ( RCon) addition in the
round function of an SPN cipher on its algebraic structure. The obser-
vations are applied to the SymSum distinguisher, introduced by Saha et
al. in FSE 2017 which is one of the best distinguishers on the SHA3 hash
function reported in literature. Results show that certain ordering (re-
ferred to as Type-LCN) of RCon makes the distinguisher less effective but
it still works with some limitations. Results in the form of new SymSum
distinguishers are reported on concrete Type-LCN constructions - NIST
LWC competition finalist Xoodyak-Hash and its internal permutation
Xoodoo. New linear structures are also reported on Xoodoo that augment
the distinguisher to penetrate more rounds. Final results include SymSum
distinguishers on 7 rounds of Xoodoo and 5 rounds of Xoodyak-Hash with
complexity 2128 and 232, respectively. All practical distinguishers have
been verified. The characterization encompassing the algebraic structure
and effect of RCon provided by the current work improves the under-
standing of SymSum in general and constitutes one of the first such result
on Xoodyak-Hash and Xoodoo.

Keywords: Higher Order Derivative · SPN cipher · SymSum Distinguisher
· ZeroSum Distinguisher · Xoodoo · Xoodyak-Hash.

1 Introduction

Substitution-Permutation Networks (SPN) have emerged as one of the most
popular cipher design strategies for modern Symmetric-key cryptography. Since
Rijndael [14], which is an SPN design, was announced as the winner of the
AES [3] competition, SPN based crypto primitives have gained a lot of attention.
Security evaluation of symmetric-key crypto has widely benefited from public
cryptanalysis, which forms the cornerstone of trust on such constructions since
they are not provably secure as their asymmetric counterparts. Public competi-
tions like eSTREAM [5], CAESAR [1] and the National Institute of Standards and
Technology Lightweight Cryptography Competition (NIST-LWC) [2] have largely



2 Sahiba Suryawanshi, Dhiman Saha

contributed into the evolution of SPN strategy both from design and cryptanaly-
sis perspectives. Among various cryptanalysis strategies employed, devising dis-
tinguishers targets the most fundamental requirement of a crypto primitive -
non-randomness. A very popular technique to make such distinguishers is based
on higher-order differential cryptanalysis [4] and relies on computing what is
known as the ZeroSum. It is based on the higher-order derivatives principle,
stating that the (d+1)th order derivative of a d−degree function leads to a zero
function. This is evidenced by obtaining a zero XOR-Sum for 2d+1 computations
of function on a (d+ 1)−dimensional subspace.

A very interesting demonstration of the ZeroSum idea was by Aumasson et
al. on the internal permutation (Keccak-f) of the hash function Keccak [9] which
went on to be the winner of the NIST SHA3 [8] competition. The idea constituted
what is referred to as the inside-out technique that allows to devise the ZeroSum
property from the middle round of the permutations and extending in either
direction. This work spawned a rich body of results [10,11,15,17] including full-
round ZeroSum distinguishers. However, the reliance on the inside-out strategy
implied that the results were inapplicable on the Keccak/SHA3 hash function.
In FSE 2017, Saha et al. came up with the idea of the SymSum distinguisher [22]
which was more efficient than ZeroSum by a factor of 4 and constituted the
most efficient distinguishing attack on SHA3 at that time. SymSum exploited the
fact that RCon were added after the non-linear operation in the SHA3 round
function. Augmenting this with symmetry preserving property of the round sub-
operations, (d − 1)th−fold vectorial derivatives (Refer Definition 1) over sym-
metric input subspaces led to what the authors called as the Symmetric-Sum or
SymSum. Suryawanshi et al. extended the SymSum distinguisher using linearization
to reach higher number of rounds [23].

The current work uncovers new insights on effect of RCon addition on alge-
braic structure in the light of SymSum. This systematic attempt tries to formalize
the SPN structure that leads to SymSum-like properties. In doing so, we classify
SPN designs in three classes: Type-LNC,Type-LCN and Type-CLN based on the
relative order of RCon addition with regards to substitution and permutation
layers. Our research reveals that while Type-LNC is captured by results reported
on SHA3 by Saha et al., linearization used by Suryawanshi et al. actually maps
to Type-CLN. However, analysis of a Type-LCN SPN construction is furnished for
the first time in the current work. The findings of work are finally verified in
the form of new SymSum distinguishers on a concrete Type-LCN SPN design and
NIST-LWC finalist - Xoodyak-Hash [13] and its internal permutation Xoodoo.

Related Work Despite being a relatively new design by the same team who de-
signed Keccak, both Xoodoo and Xoodyak have had a fair share of distinguishing
attacks. In 2020, Liu et al. proposed a full-round ZeroSum distinguishing attack
on Xoodoo [19]. Since then, other researchers have introduced new distinguishing
attacks on round-reduced Xoodoo, such as using rotational cryptanalysis reported
by Liu et al. in [20], a functional distinguisher introduced by Bellini and Mine-
matsu in [6], and a higher-order differential-linear distinguisher presented by Hu
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et al. in [18]. Moreover, Dunkelman et al. introduced a distinguishing attack
using differential-linear cryptanalysis on Xoodyak in [16].

Along with the theoretical analysis of the three types of SPN constructions
state above, the current work makes an in-depth study of the round-function
of Xoodoo to mount SymSum on both Xoodoo and Xoodyak-Hash. We report
that the Xoodoo state is symmetric in multiple dimensions (Refer Definition 3)
leading to distinguishers in two different axes. This is a stark difference with
Keccak-f , where symmetry is only in the z−axis. We also report linear struc-
tures in the Xoodoo round-function that allow the SymSum property with lesser
complexity. Overall, using Xoodoo and Xoodyak-Hash, we successfully verify our
theoretical result on Type-LCN SPN primitives which states that for Type-LCN
ordering of RCon, SymSum outperforms ZeroSum by a factor of 2. Final results
constitute distinguishers on 5 rounds of Xoodyak-Hash and 7 rounds of Xoodoo
with complexities of 216 and 2128, respectively. Table 1 summarizes our results.

Table 1: Summary of the results, here DoF is degree of freedom
Xoodoo Xoodyak-Hash

#Rounds ZeroSum SymSum Remark ZeroSum SymSum Remark
1 21 20 Only 1 input required 23 20 Only 1 input required
2 21 20 Only 1 input required 25 24 SymSum
3 25 24 SymSum+ 1R Linearization 29 28 SymSum
4 29 28 SymSum+ 1R Linearization + Insideout 217 216 SymSum
5 217 216 SymSum+ 1R Linearization 233 232 SymSum
6 233 232 SymSum+ 1R Linearization + Insideout 265 - Exceed DoF
7 2129 2128 SymSum 2129 - Exceed DoF
8 2257 - Exceed DoF - - Exceed

Organization: Here is the structure of the paper: Section 2 provides an overview
of the m-fold vectorial derivative. 3 explores the impact of reordering the RCon
on the algebraic structure of SPN cipher. Finally, in 4, we apply our study
practically to Xoodoo/Xoodyak-Hash and discuss the linearization technique for
Xoodoo, including their complexity and DoF. 5 presents experimental evidence
supporting our claims and in 6, we conclude the paper. The Appendix includes
brief details of Xoodoo and Xoodyak-Hash.

2 Preliminaries

This work relies on the idea m−fold Boolean vectorial derivatives, which allow
differentiation with respect to a specific subspace. While simple Boolean deriva-
tives capture change in a function w.r.t a change in value of a single variable,
vectorial derivatives capture simultaneous change in set of variables [21]. Higher
order vectorial derivatives use multiple such disjoint partitions. Saha et al. used
this operator in [22] and is restated below.

Definition 1 (m-Fold Vectorial Derivative [21,22]). Let {x1,x2, · · · ,xm,xm+1}
be (m+1) partitions of Boolean variables (x1, x2, · · · , xn) and f(x1,x2, · · · ,xm,xm+1) =
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f(x1, x2, · · · , xn) = f(x) a Boolean function of n variables, then

∂mf

∂xm · · · ∂x2∂x1

∣∣∣∣∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
∂

∂xm

(
· · ·

(
∂

∂x2

(
∂f

∂x1

∣∣∣∣∣
x1=c1

)∣∣∣∣∣
x2=c2

)
· · ·

)∣∣∣∣∣
xm=cm

is the m−fold vectorial derivative of the Boolean function f(x1,x2, · · · ,xm,xm+1)
with regards to the m partitions {x1,x2, · · · ,xm}.

∂mf

∂xm · · · ∂x2∂x1

∣∣∣∣∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
⊕

{x1,x2,··· ,xm}∈C
xm+1=cm+1

f(x1,x2, · · · ,xm,xm+1) (1)

where, C =



c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
...

...
. . .

...
...

c1, c2, · · · , cm−1, cm


2m×m

ci ∈ F|xi|
2

3 Investigating Commutativity of Round-Constant
Addition with the Linear and Non-Linear Operation

SPN is a round-based iterative function that in a generic form consists of combi-
nation of linear (L) and non-linear operations (N ) along-with RCon addition (C)
which is aimed to reduce any symmetry which might eventually develop in the
internal state. Though RCon addition is essentially a linear operation, we look
at it in isolation for reasons that will be apparent soon. Our aim is to study
the algebraic structure of SPN ciphers considering the position of RCon addi-
tion relative to the ordered pair (L,N ) implying 3 possibilities: (L,N , RCon),
(L, RCon,N ) and (RCon,L,N ). We respectively classify SPN ciphers into 3 cat-
egories: Type-LNC, Type-LCN and Type-CLN. Our investigation introduces the
algebraic structure of these ciphers which is based on the nature of the monomi-
als that appear in their Algebraic Normal Form (ANF) and classify1 them into 3
types: Type-I monomials are free from any RCon, Type-II monomials involve both
RCon and state variables and Type-III monomials consist only of constant terms.
To illustrate Type-I, Type-II and Type-III monomials, we use following example.

Example 1. Let us consider an arbitrary Boolean function f with the ANF: f =
x1x2x3x4+x1x3x4c2+x1x4x5+x2x4c1c4+ c1c2c3+ c2c4, where ci is a constant.

f = x1x2x3x4 + x1x3x4c2 + x1x4x5 + x2x4c1c4 + c1c2c3 + c2c4

=

fType-I︷ ︸︸ ︷
(x1x2x3x4 + x1x4x5)+

fType-II︷ ︸︸ ︷
(x1x3x4c2 + x2x4c1c4)+

fType-III︷ ︸︸ ︷
(c1c2c3 + c2c4)

1 Note that this classification was introduced in [22].
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Throughout the section, we use X = {x1, x2, . . . xn} to denote the state
variables for the initial state of the cipher while C = {c1, c2, . . . cm} denote RCon
added at various rounds. λ denotes algebraic degree of non-linear component N .
In the following subsections, we analyze the algebraic structure of Type-LNC,
Type-LCN and Type-CLN SPN cipher.

3.1 Algebraic Structure of Type-LNC SPN Cipher

Type-LNC function is obtained by iterating C ◦ N ◦ L sequence. After 1 round,
resulting polynomial takes form

∑
k

∏
xi∈xk⊂X

xi +
∑

cj∈cr⊂C

cj where |xk| ≤ λ, ∀k.

Thus, algebraic degree (d◦) of monomials is upper bounded by λ. This also
implies that for a Type-LNC cipher, no Type-II monomials are generated after
the first round. It is only after second round that Type-II monomials may be
generated. Also after the second round (d◦maxType-I − d◦maxType-II ≤ λ). Thus
difference in the highest degrees always persists even at higher rounds. In [22],
Saha et al. utilized this property to develop SymSum distinguisher. The basic idea
was to use m−fold vectorial derivatives to eliminate Type-II monomials thereby
arriving at a RCon independent function. When derivatives were computed over
specially selected symmetric subspaces, the output sum was deterministically
symmetric i.e. SymSum. However, the analysis furnished in [22] was only limited
to Type-LNC design SHA3. In the current work we give it a more generalized
treatment and study SymSum property for other variants Type-LCN and Type-
CLN.

3.2 Algebraic Structure of Type-LCN SPN Cipher

We can obtain the Type-LCN function by iterating the N ◦ C ◦ L sequence. The
algebraic form of the resulting function after one iteration is given below.∑

k

∏
xi∈xk⊂X

xi +
∑ ∏

xm∈xm⊂X
cl∈cl⊂C

xmcl +
∑
r

∏
cj∈cr⊂C

cj (2)

Analyzing this polynomial easily reveals that the highest degrees of Type-I,
Type-II and Type-III monomials are λ, λ− 1 and 0, respectively. Here we can see
that the highest degree of RCon independent monomials is greater than RCon
dependent monomials. Our work studies the case when RCon addition precedes
non-linear (or both linear and non-linear) operations. We argue that SymSum
remains more effective than ZeroSum distinguisher by a factor of 2, even after
switching the operations. In addition, we offer a theoretical validation for our
argument using similar approach as in [22], making it more comprehensible. To
support our claim, we rely on Theorem 1 that builds upon the following Lemma.

Lemma 1 Let F be a SPN round function with N◦C◦L components, where C, N
and L represent the non-linear, round-constant addition and linear components,
respectively. Then, we can express the function F as:

F = G + C ×H+ C,
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where d◦F = d◦G > d◦H, G,H : Fn
2 → Fn

2 and C is a constant

Proof. Function Fnr , which consists of nr rounds, can be expressed as follows:

F = (N ◦ Cnr ◦ L) ◦ · · · ◦ (N ◦ C2 ◦ L) ◦ (N ◦ C1 ◦ L)

=
[(
N ◦ Cnr

◦ L) ◦ · · · ◦ (N ◦ C2 ◦ L)
)
◦ (N ◦ C1)

]
◦ L (3)

The monomials that contain RCon are unaffected2 by the linear function L in
the first round due to the order of operations illustrated in Equation (3). To
distinguish monomials, we need to segregate them. The Fnr function in nr round
SPN can be expressed as: Fnr = Fnr

Type-I
+ Fnr

Type-II
+ Fnr

Type-III

Let us examine degree of monomials d◦Fnr = max(d◦Fnr
Type-I

, d◦Fnr
Type-II

, d◦Fnr
Type-III

)
Now, let us pursue the inductive proof. Note that d◦FType-III = 0 by definition.

Base case: For nr = 1, the degrees of monomials are:

d◦FType-I ≤ λ (degree of non-linear layer)
d◦FType-II ≤ λ− 1 (Due to Exp (2))

Thus, highest degree d◦FType-I > d◦FType-II . Thus, statement holds for nr = 1.

Inductive hypothesis: Assume that Lemma is true for nr = k, then d◦Fk =
d◦Fk

Type-I
(maximum degree of SPN function F is kλ) and d◦Fk

Type-I
> d◦Fk

Type-II

Inductive step: Let nr = k + 1 then Fk+1 = N ◦ Ck+1 ◦ L ◦ Fk

d◦Fk+1
Type-I

= d◦(N ◦ Ck+1 ◦ L) + d◦Fk
Type-I

> d◦(N ◦ Ck+1 ◦ L) + d◦Fk
Type-II

(∵ d◦Fk
Type-I

> d◦Fk
Type-II

)

> d◦Fk+1
Type-II

Hence, by induction, the Lemma holds ∀nr ∈ N. ⊓⊔

As a result, we obtain d◦Fnr = d◦Fnr
Type-I

> d◦Fnr
Type-II

, which indicates that even
after swapping the non-linear operation with RCon addition, the highest degree
monomial of F is of Type-I. Obtaining an upper bound on the maximum degree
of the Type-II and understanding how it relates to the highest degree of the Type-I
from Lemma 1 establishes the following:

Theorem 1. The upper-bound on the degree of Type-II monomials is given by
the following expression: d◦Fnr

Type-II
≤ d◦Fnr − 1

Proof. The proof is very similar to the proof of Lemma 1.

Lemma 2 The d◦F−fold vectorial derivative of Fnr is a function which is un-
affected by the RCon .
2 In terms of the change in algebraic degree.
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This follows logically from Theorem 1 that d◦F−fold vectorial derivative of Fnr

will give function without Type-II or Type-III monomials. Lemma 2, thus, leads
us toward obtaining a RCon independent function. Later in this work, we demon-
strate practical application of this Lemma in form of new SymSum distinguishers
on real-world Type-LCN primitives namely Xoodoo and Xoodyak-Hash.

3.3 Algebraic Structure of Type-CLN SPN Cipher

Type-CLN is generated by iteratively applying the N ◦L ◦ C sequence. When we
apply N ◦ L ◦ C once, we get a polynomial of the following form.∑ ∏

xu∈xw⊂X
cv∈cs⊂C

(xu+cv) =
∑
k

∏
xi∈xk⊂X

xi+
∑ ∏

xm∈xm⊂X
cl∈cl⊂C

xmcl+
∑
r

∏
cj∈cr⊂C

cj (4)

It easy to see that Exp 4 is same as Exp 2. Thus N ◦ L ◦ C ≡ N ◦ C ◦ L in
terms of the algebraic structure implying that L ◦ C ≡ C ◦ L or alternatively C
and L satisfy the commutative property. As a result, similar to the Type-LCN
scenario, we can deduce that for Type-CLN, the highest degrees of Type-I, Type-II
and Type-III monomials are λ, λ− 1 and 0, respectively. Thus Type-CLN follows
all the properties of Type-LCN.

4 Concrete Applications of Type-LNC Xoodoo/Xoodyak-
Hash

This section will explore how the concepts discussed in the preceding sections
can be applied practically, specifically focusing on Xoodoo/ Xoodyak (brief de-
scription of Xoodoo/Xoodyak is given in the Appendix A). To accomplish this,
we will investigate the behaviour of Xoodoo/ Xoodyak under symmetric-inputs.
We will also analyze the benefits of utilizing SymSum over ZeroSum distinguisher
after deploying it on Xoodoo/Xoodyak-Hash.

4.1 Multi-Dimensional-Symmetric State

Xoodoo is a permutation that operates on a 3-D array of 384 bits (4×3×32) and
applies a round function to the input state for a specified number of rounds (nr),
denoted as Xnr = Xoodoo[384, nr]. S defines the internal state of Xnr . In order
to capture the notion of symmetry in the internal state of Xoodoo/Xoodyak-Hash
we will use the following definitions.

Definition 2. Symmetric-Half-State (SHS): A state that can be split into two
identical halves is SHS. A SHS in Xoodoo has a size of 192 bits and can be split
in two directions: HSz

along the z-axis with size 4 × 3 × 16 and HSx
along the

x-axis with size 2× 3× 32.
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Definition 3. Multi-Dimensional-Symmetric State (MDSS): Each member of
S# is referred to as Multi-Dimensional-Symmetry if S# is the set of all states
in which both the conditions satisfy:

HSx1
= HSx2

and HSz1
= HSz2

(5)

(a) Symmetry along z, x and both axes

8BED 8BED EC14 EC14 8BED 8BED EC14 EC14
5453 5453 D705 D705 5453 5453 D705 D705
51FF 51FF 25D6 25D6 51FF 51FF 25D6 25D6

(b) Self-Symmetric State with HSz1

is shown in black and HSz2
is shown

in blue and HSx2
is highlighted in yel-

low

Fig. 1: Exhibiting Self-Symmetric State

Fig. 1a depicts three symmetric states, each with unique symmetric characteris-
tics. The leftmost state shows symmetry along the z−axis, where HSz1

(red) is
identical to HSz2

(white). Similarly, state in the center has symmetry in x−axis
in which first two sheets (white) are same as the other two (blue). The right-most
state has symmetry in both x and z axes, with first 16 slices being identical to
the last 16 slices and the first two columns in each slice being the same as the
next two. This state is an example of MDSS in two directions. When symmetry
is in one of the directions (x−axis or z−axis), it is clear from Definitions 2 that
|Sx| = |Sz| = 2192, where Sx and Sz have all states that have symmetry in the
x−axis and z−axis, respectively, one of the examples is illustrated Table 2. When
symmetry is in both the x−axis and z−axis, then |S#| = 296 (by Definition 3);
one of the examples is given in Table 1b.

Table 2: Depicting the Self-Symmetric State in the x−axis with HSx1
(black)

and HSx2
(blue) and the z−axis HSz1

(black) and HSz2
(highlighted in yellow).

Symmetry in z-axis Symmetry in x-axis
FFFA6482 DEEE4E3B FFFA6482 DEEE4E3B 8BED 8BED EC14 EC14 3B68 3B68 EF3F EF3F
C2F49C55 F04F94D1 C2F49C55 F04F94D1 5453 5453 D705 D705 0C7F 0C7F 970A 970A
571AAB4A 335CD3F0 571AAB4A 335CD3F0 51FF 51FF 25D6 25D6 48A0 48A0 B154 B154

4.2 Distinguishing attack using Symmetric property in Xoodoo

This section explores the behaviour of symmetry in Xoodoo. When a symmetric
state is fed into Xoodoo, the output after one round displays near-symmetry
because the ι function introduces asymmetry in some bits. As a result, we get
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an output symmetry of over 70% for up to two rounds. However, as the number of
rounds increases, the symmetry diminishes from the third round. This property
enables us to identify round-reduced Xoodoo. Therefore, with just one message,
we can distinguish round-reduced Xoodoo up to two rounds.

Corollary 1. The highest degree of a monomial including round-constant for
nr rounds of the Xoodoo permutation is d◦Knr − 1.

Proof. The Xoodoo design F expresses as F = L2 ◦N ◦ C ◦ L1, with linear com-
ponents L1 and L2, non-linear component N and constant addition component
C. Fnr , the Xoodoo-permutation in nr rounds, unwraps as follows:

F = (L2 ◦ N ◦ Cnr
◦ L1) ◦ · · · ◦ (L2 ◦ N ◦ C2 ◦ L1) ◦ (L2 ◦ N ◦ C1 ◦ L1)

= (L2 ◦ N ) ◦ Cnr
◦ (L1 ◦ L2) ◦ · · · ◦ (L1 ◦ L2) ◦ N ◦ C2 ◦ (L1 ◦ L2) ◦ N ◦ C1 ◦ L1

= (N
′
◦ Cnr

◦ L
′
) ◦ (N ◦ Cnr−1 ◦ L

′
) ◦ · · · ◦ (N ◦ C2 ◦ L

′
) ◦ (N ◦ C1 ◦ L1)

Here, the composition of two linear functions always is a linear function denoted
by L′

( where L′
= L1 ◦ L2). Also, a nonlinear function followed by a linear

function is a nonlinear function N ′
( where N ′

= L2 ◦ N ). Therefore, one round
of the Xoodoo permutation can represent N ◦C◦L. Thus by Theorem 1, d◦Knr−1
is the highest degree of RCon dependent monomial for nr rounds. ⊓⊔

Proposition 1 While computing the d◦Xoodoo−fold vectorial derivative of the
Xoodoo’s self-symmetric input states, the symmetric property will be maintained.

As RCon addition disturbs symmetry, by Proposition 1 the symmetry will be
preserved while computing (d◦Xoodoo)−fold vectorial derivative of Xoodoo using
self-symmetric inputs. However, this property is not assured for m < (d◦Xoodoo).
The experimental result for the theoretical claim is given in Section 5.

Degree of freedom: There are 2384 ways to generate Xoodoo states, but it must
meet at least one of the two conditions from Equations (5) to produce a sym-
metric state. Thus, the maximum number of symmetric states is 2192 due to 192
conditions. By Corollary 1, (d◦Xoodoo)−fold vectorial derivatives are required
for the symmetric state of Xoodoo. Therefore, this distinguisher can be used on
round-reduced Xoodoo up to 7 rounds with complexity 2128.

4.3 Extending the Distinguisher on Xoodoo using Linearization

This section formalizes the idea of linearizing Xoodoo for one round, inspired by
the linear structure of Keccak, proposed by Guo et al. in [17]. Xoodoo’s non-linear
function χ acts on the column as xi⊕(xi+1⊕1)xi+2, where i, i+1, i+2 ∈ {0, 1, 2}.
Thus to linearize χ, we must take at most one variable in a column. Moreover,
to handle θ diffusion, we need to maintain state parity which can be achieved
by following constraints.

A(0,0,∗) ⊕A(1,0,∗) = C0 (6)
A(0,2,∗) ⊕A(1,2,∗) = C2 (7)
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Here, C0 and C1 are constants, lane A(x,y,∗) is located at coordinate (x, y) and
∗ represents the entire lane of 32 bits. Equation (6) and (7) ensure a constant
parity for the first and third sheet, respectively. Fig. 2a illustrates the idea of
linearizing Xoodoo. The size of each cell in the figure is 1 byte for a clearer
demonstration. The lanes with white cells are constant, while those with grey
cells have an algebraic degree of 1, which meet the requirements of Equation (6)
and (7) to deal with θ. Due to those conditions after θ, the number of elements

(a) Forward round lin-
earization with 264 DoF.

(b) One round linearization of sym-
metric state with 232 DoF.

Fig. 2: Showing one round linearization of Xoodoo which is represented in bytes
rather than in bits for brevity.

with algebraic degree 1 remain the same. ι function does not affect degrees.
However, for the subsequent operation, ρwest, the bit positions change, aiding in
maintaining the input to χ. As we can see in the Fig. 2a, the input to χ should
have only linear terms in each column to maintain linearity of the state after χ.
ρeast does not impact the degree, only alters the positions.

Degree of freedom: To linearize the state, we can take at most one bit in
each column to handle χ. Thus total variable we can take is 128. These variables
should satisfy 64 constraints to handle θ. As a result, we can have 2128−64 = 264

such states that maintain the linearity for 1 round. Therefore, the degrees of
freedom of such states is 264.

Linearization in Symmetric States: Both x and z axes can provide sym-
metry to the Xoodoo input. To linearize the symmetric input state, we need to
apply the following equations.

A(x,∗,∗) ⊕A(x+2,∗,∗) = 0 where x ∈ {0, 1} (8)
A(∗,∗,z) ⊕A(∗,∗,z+16) = 0 where z ∈ {0, 1, . . . , 15} (9)

A(0,0,∗) ⊕A(1,0,∗) = C0 (10)

Here, ∗ in above equations represents all; more specifically, ∗ represents x ∈
{0, 1, 2, 3}; y ∈ {0, 1, 2}; and z ∈ {0, 1, . . . , 31} on the x, y, and z axis, respec-
tively. Here either Equation (8) or Equation (9) is used to provide symmetry in
the direction of x or z axis and Equation (10) handles θ for linearization.
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Fig. 2b depicts an overview of one round of linearization for symmetric input
to Xoodoo, with the symmetry shown along x−axis. Here, purple and grey bytes
are equal. Similarly, white and pink bytes are equal. White and pink cells are
constants, and grey and purple cells have an algebraic degree 1. The initial state
satisfies conditions stated in Equation (8) and (10), ensuring that the plane’s
parity will be constant. As a result, the symmetry of the state is preserved after
θ. The symmetry is destroyed due to ι at lane (0, 0) and the asymmetry induced
due to ι is further propagated by χ as depicted in dark gray. Consequently, there
is only one variable in each column. Thus, the highest degree of the state remains
1 after one round.

Lemma 3 Lemma 1 holds under linearization.

If the SPN round function F were to be linearized for lr rounds, revised F ′
could

be represented as:

F
′
= (N ◦ Cnr ◦ L) ◦ (N ◦ Cnr−1 ◦ L) ◦ · · · ◦ (N ◦ Cnr−lr ◦ L)

◦(L
′
◦ Clr ◦ L) ◦ · · · ◦ (L

′
◦ C1 ◦ L)

=
[
(N ◦ Cnr ◦ L) ◦ (N ◦ Cnr−1 ◦ L) ◦ · · · ◦ (N ◦ Cnr−lr ◦ L)

◦(L
′
◦ Clr ◦ L) ◦ · · · ◦ (L

′
◦ C1)

]
◦ L (11)

Here L′
is a linearized version of N . The lemma mentioned above can be trivially

proved, by observing Eq (11)

Theorem 2. For an iterated SPN round function F , the relationship between
the upper bound on degree of Type-I and Type-II monomials will remain same
after linearization such that: d◦Fnr

Type-II ≤ d◦Fnr

Type-I − 1

Lemma 1, Lemma 3, and Theorem 2 can be used to easily prove this Theorem.

Corollary 2. With lr linearized rounds d◦F−fold vectorial derivative of F is a
function which is independent of round constants.

The symmetry will be retained by Corollary 2 when computing the d◦Xoodoo−fold
vectorial derivative of linearized Xoodoo with self-symmetric inputs. Section 5
provides the experimental outcome for theoretical claim.

Degree of freedom: There are 2384 Xoodoo states, that can be gener-
ated, out of which 2192 symmetric states are possible. Nevertheless, due to the
32 conditions given in Equation (10) that must be fulfilled to achieve 1-round
linearization, it drops to 2192−32 = 2160. Thus, 2160 is the DoF for these states.
Since there are four lanes of variables, each with a size of 32, we have 128 vari-
ables while fixing the constants. Due to symmetry, half of the variables should
be same as the others because of Equation (8) and (9) (one of them). However,
for 1 round of linearization of Xoodoo, 32 conditions are required. As a result,
we can have 2128−64−32 = 232 states that maintain 1-round linearization while
the input to Xoodoo is symmetric. Therefore, DoF of such states is 232.
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(a) Backward Direction (b) With Symmetric State

(c) Backward and Forward Direction with Symmetric State

Fig. 3: Linearization of Xoodoo

Linearization in Backward Direction The inside-out technique is widely
recognized in the most well-known classical distinguishing attack ZeroSum to
attack any permutation since it can start from the middle and move in both
directions. We have also explored linearization in the backward direction, as
shown in Fig. 3a. Instead of four lanes, we can use a single plane, as shown in
the figure. Furthermore, this linearization method can be applied to symmetric
states, as illustrated in Fig.3b.

Extending SymSum Distinguisher in Xoodoo Using the linearization tech-
nique symmetry property described in the preceding section can be extended to
1 additional round. We explain our approach by assuming symmetry along the
x−axis. However, other directions can also be applied. To linearize 1-round along
with fulfilling the essential condition for self-symmetry of Xoodoo, the input set
must satisfy the following criteria (for details, see section 4.3):

1. To maintain the input symmetry state should satisfy: HSx1
= HSx2

.
2. The constraint for linearization is A(2,1,∗) ⊕ A(1,1,∗) = C where ∗ define the

whole lane, and C is a 32 bit constant.

Given the circumstances mentioned above, this state has a dimension of 32.
As a result, this strategy can be used up to 6-round with a complexity of 232.
Furthermore, there are 160 constant bits, each with a value of either 0 or 1. So, we
can construct 2160 of such sets using various fixed values. Using linearization and
inside-out technique, we have 16 degree of freedom. As a result, we can attack up
to 10 (4−round backward + 1−round backward linearization + 1−round forward
linearization + 4−round forward) rounds with complexity 216. To simultaneously
visualize the linearization in a backward and forward direction, refer to Fig. 3c.

4.4 Adapting the Distinguisher on Xoodyak-Hash

Xoodyak combines the Cyclist mode of operation with the Xoodoo permutation,
which is responsible for preparing the data before inputting it into Xoodoo and
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Table 3: Input to Xoodyak-Hashand intermediate state after cyclist operation
Input to Cyclist input to Xoodoo

0E2E0E2E 0AAE0AAE 0C440C44 018001 0E2E0E2E 0AAE0AAE 0C440C44 01800180
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000080

computing output according to required operation. For example, when calcu-
lating the digest in hash and keyed hash modes, domain separator value is set
to 0x01 and 0x03, respectively. Similarly, in other modes, the domain separator
values differ. However, this study focuses on Xoodyak-Hash mode, which absorbs
at most 16 bytes at a time, and 0x01 is added as a padding bit to indicate the
end of input. Thus, to ensure input state is symmetric, we need to input 15
bytes with a fixed value of 0x01. However, since we cannot control the capacity
bytes and the Cyclist mode adds domain separator in the capacity portion of
the state, our state cannot become fully symmetric and there will always be an
asymmetric byte in the state. Table 3 shows the input state before and after the
Cyclist mode. Xoodyak-Hash exhibits near-symmetry in its output when input
has a near-symmetric state, but the symmetry is lost as the number of rounds in-
crease. This property allows us to distinguish round-reduced Xoodyak-Hash with
just one input message. The operations that disturb symmetry are RCon addition
and domain separator. However, by corollary 1, d◦Xoodoo−vectorial derivative of
Xoodoo is independent of round-constant addition, allowing us to observe near-
symmetry in the (d◦Xoodoo)−fold vectorial derivative of Xoodyak-Hash when
using near-symmetric input states. Experimental results conforming to the the-
oretical justifications are presented in Section 5.

Degree of freedom: There are 2128 ways to generate Xoodyak-Hash states,
but only those satisfying at least one condition from Equation (3) result in a sym-
metric state. There are a maximum of 264 symmetric states due to 64 conditions
for symmetry generation. However, one additional condition is needed to handle
the padding byte, limiting the number of possible states to 256. Therefore, DoF
for Xoodyak-Hash symmetric states is 256, and corollary 1 requires (d◦Xoodoo)
vectorial derivatives. This distinguisher can be used on round-reduced Xoodoo
up to 5 rounds with a complexity of 232.

5 Experimental Verification

This section provides experimental proof for supporting the previous claims by
demonstrating 1-round linearization of 4-rounds Xoodoo. The degree for 4-rounds
is reduced to 24−1 = 8 due to 1-round linearization, and in line with Corollary
2, vectorial derivative of the 8th order will possess the SymSum property. Fig. 1
shows input state for Xoodoo.

Table 4 shows the input state subspace of Xoodyak-Hash. Here the subspace
is generated by setting all possible values to * while maintaining the symmetry
in the z−axis. The text in black is dependent on the text in blue, which means
that the first 16 slices are identical to the next 16 slices. This can be visualized
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Table 4: Representing Xoodoo/Xoodyak-Hash state and output Sum
Xoodyak-Hash State

Input State Output Sum
∗E35 ∗E35 ∗041 ∗041 ∗9B6 ∗9B6 ∗B80 ∗B80 B68E B68E B68E B68E B68E B68E B68E B68E
0000 0000 0000 0000 0000 0000 0000 0000 8C51 8C51 8C51 8C51 8C51 8C51 8C51 8C51
0000 0000 0000 0000 0000 0000 0000 0080 CA4F CA4F CA4F CA4F CA4F CA4F CA4F CA4F

Xoodoo State
Input State Output Sum

∗ ∗ ∗ ∗ ∗ ∗ ∗∗ 7E5B9440 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ 7E5B9440 B9D83814 96F1AF94 B9D83814 96F1AF94
† † † † † † †† 24A2A799 † † † † † † †† 24A2A799 A33C141F AB79F93C A33C141F AB79F93C
14DA894E 4642ACED 14DA894E 4642ACED B7ECCBF7 5A5C712F B7ECCBF7 5A5C712F

by left most figure in Fig. 1a. While for the linearized Xoodoo state, the subspace
is generated by setting all possible values to ∗ and † to maintain the parity of
columns while maintaining the symmetry in the x−axis, which means that the
first two sheets are identical to the next two sheets. In Table 4, text in blue is
identical to blacktext, which can be visualized by the middle figure in Fig. 1a.

6 Conclusion

The current work thoroughly investigated the algebraic structure of SPN ci-
pher with varying RCon ordering relative to the linear and non-linear layers
of an SPN round-function. We also showed how our findings can be used in
practice by mounting the SymSum distinguisher on Xoodoo/Xoodyak-Hash while
achieving one of the most efficient distinguishers reported on Xoodyak-Hash
so far - 5 rounds with 232. We demonstrated how symmetry propagation in
Xoodoo/Xoodyak-Hash allows us to identify attacks with only one symmetric
state for up to two rounds. Furthermore, regardless of the degree of nonlinear op-
eration, we provided theoretical proof that the SymSum distinguisher outperforms
the ZeroSum distinguisher by a factor of two. Finally, we applied linearization on
Xoodoo, which resulted in a 10−round SymSum distinguisher with a complexity of
216 leveraging the inside-out technique. Our research expands the understanding
of SPN ciphers with regards to the relation of their algebraic structure and the
influence of RCon on the highest degree monomials which we believe provides
valuable insights for designing future cryptographic algorithms.
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A Xoodoo Permutation [12]

Daemen et al. presented Xoodoo, a 48-byte cryptographic permutation at ToSC
2018, inspired by Keccak [9] and Gimli [7]. It operates on a 3D array of size
4 × 3 × 32, where row, column, and lane refer to 1D arrays in the x, y, and
z directions respectively. Slices, sheets, and planes illustrate the 2D arrays in
(x, y), (y, z), and (x, z) planes. These arrays are 12−bits, 96−bits, and 128−bits
in size. Fig. 4 depicts all the terms described above.

X-Axis

Y-axiz

Z-Axis

Row Column Lane Plane Sheet Slice

Fig. 4: The state displayed is of size 3×4×4 bytes, achieved by combining 8 cells
into 1 for brevity, resulting in each cell of the state being of size 1 byte.

The Xoodoo permutation is a sequence of iterations on a 3D Xoodoo state
using five different mappings: X = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ. The θ mapping
is responsible for diffusing the state linearly, while ρwest and ρeast rotate the
bits of the planes in the x and z directions by specific values for each plane.
Depending on the round number, the ι mapping adds a unique RCon to the first
lane of plane A0. The only non-linear function that operates on the plane is χ.
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All the sub-functions of the Xoodoo round-function are listed below.

θ :


Ay = Ay ⊕ E where y ∈ {0, 1, 2}
E = P ≪ (1, 5)⊕ P ≪ (1, 14)

P = A0 ⊕A1 ⊕A2

ρwest :

{
A1 = A1 ≪ (1, 0)

A2 = A2 ≪ (0, 11)

ι :
{
A0 = A0 ⊕RCi

χ :

{
Ay = Ay ⊕By where y ∈ {0, 1, 2}
By =∼ Ay+1 mod 3 ·Ay+2 mod 3

ρeast :

{
A1 = A1 ≪ (0, 1)

A2 = A2 ≪ (2, 8)

B Xoodyak-Hash [13]

Xoodyak-Hash, one of the ten NIST-LWC finalists, is a versatile cryptographic
primitive combining sponge structure and Xoodoo permutation based on an op-
erational mode termed Cyclist. The number of rounds in Xoodyak-Hash is 12,
which provides the designed primitive with a sufficient safety margin against all
potential attacks. Both hash and keyed modes are available in Xoodyak-Hash.
The block sizes for the hash, the input, and the output in keyed modes are set,
respectively, by the Rhash, Rkin, and Rkout block sizes to the mode of operation
Cyclist, which depends on cryptographic permutation.

The hash mode consumes input strings and squeezes digests. Depending on
the input string length, the absorbing function is called more than once because
it can only absorb up to 16 bytes at once, and depending on the data absorbed so
far, Squeeze(l) outputs an l-byte, where l = 128 bits. The Xoodyak-Hash offers
128-bit security and, as a result, it generates 256-bits (32 bytes) of the digest by
performing considerable squeeze operations, as seen in Fig. 5
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Absorbing Squeezing

Fig. 5: This construction absorbs a variable input size and produces a 32-byte
digest.
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