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Abstract. All modern lattice-based schemes build on variants of the
LWE problem. Information leakage of the LWE secret s ∈ Zn

q is usually
modeled via so-called hints, i.e., inner products of s with some known
vector.
At Crypto‘20, Dachman-Soled, Ducas, Gong and Rossi (DDGR) defined
among other so-called perfect hints and modular hints. The trailblazing
DDGR framework allows to integrate and combine hints successively into
lattices, and estimates the resulting LWE security loss.
We introduce a new methodology to integrate and combine an arbi-
trary number of perfect and modular in a single stroke. As opposed to
DDGR’s, our methodology is significantly more efficient in construct-
ing lattice bases, and thus easily allows for a large number of hints up
to cryptographic dimensions – a regime that is currently impractical in
DDGR’s implementation. The efficiency of our method defines a large
LWE parameter regime, in which we can fully carry out attacks faster
than DDGR can solely estimate them.
The benefits of our approach allow us to practically determine which
number of hints is sufficient to efficiently break LWE-based lattice schemes
in practice. E.g., for mod-q hints, i.e., modular hints defined over Zq, we
reconstruct Kyber-512 secret keys via LLL reduction (only!) with an
amount of 449 hints.
Our results for perfect hints significantly improve over these numbers,
requiring for LWE dimension n roughly n/2 perfect hints. E.g., we re-
construct via LLL reduction Kyber-512 keys with merely 234 perfect
hints. If we resort to stronger lattice reduction techniques like BKZ, we
need even fewer hints.
For mod-q hints our method is extremely efficient, e.g., taking total time
for constructing our lattice bases and secret key recovery via LLL of
around 20 mins for dimension 512. For perfect hints in dimension 512,
we require around 3 hours.
Our results demonstrate that especially perfect hints are powerful in
practice, and stress the necessity to properly protect lattice schemes
against leakage.
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1 Introduction

History of lattice schemes. Basing the (post-quantum) security of cryp-
tographic schemes on the hardness of lattice problems has been a big suc-
cess story in the last 25 years, resulting in the recent NIST standardization
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of Kyber [BDK+18], Dilithium [DKL+18] and Falcon [FHK+18]. Moreover,
Google [KMS22] currently chooses to secure its internal communication with
NTRU [HPS98].

As a historical curiosity, back in the 80s and early 90s lattices were mainly
considered a powerful cryptanalysis tool [JS98]. After the invention of the famous
Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm [LLL82], many cryp-
tosystems have been broken disastrously via lattice reduction. E.g., knapsack-
based cryptosystems [Odl90], which can be seen as an early predecessor of mod-
ern lattice schemes, were successfully attacked via lattices [CLOS91].

This led to a common belief that lattice reduction behaves much better than
theoretically predicted, and not few cryptographers thought that finding short
lattice vectors is feasible in general. This misunderstanding came from the design
of knapsack/lattice schemes in too small dimension, for which lattices do not
reveal their hardness.

The situation changed with Ajtai’s [Ajt96] NP hardness proof of the shortest
vector problem, and the construction of the Ajtai-Dwork cryptosystem [AD97]
with its cryptographically desirable worst- to average-case reduction.

While Ajtai-Dwork focussed on the hardness guarantees of lattice-based crypto,
the invention of the NTRU cryptosystem of Hoffstein, Pipher and Silverman [HPS98]
with its compact lattice bases as public keys was a cornerstone for the practi-
cality of lattice schemes.

Back on the provable security path, the introduction of the Learning with
Errors (LWE) problem together with Regev’s encryption scheme [Reg05] paved
the way to amazingly versatile lattice constructions in all areas of cryptogra-
phy. Eventually, a combination of the strong LWE security guarantees with the
practicality of the NTRU cryptosystem was achieved via formulating the Ring-
LWE [SSTX09,LPR10,PRS17] and Module-LWE [BGV14,LS15] variants.

LWE in Practice. In summer 2022, NIST announced the standardization of
Kyber [BDK+18] as a lattice-based encryption/key encapsulation mechanism,
and Dilithium [DKL+18] and Falcon [FHK+18] as lattice-based signature
schemes. Kyber can be considered a highly-optimized version of Regev encryp-
tion [Reg05], based on Module-LWE. Kyber encryption comes in a package,
called Crystals, with a corresponding signature scheme Dilithium [DKL+18],
also based on Module-LWE. The signature scheme Falcon [FHK+18] is based
on an NTRU-type security assumption.

Motivation of Hints. Given the importance of side-channel leakage in real-
world cryptography, NIST especially focused before its standardization decision
on vetting lattice candidates against secret key leakage.

An LWE public key (A,b, q) ∈ Zn×m
q × Zm

q × N satisfies the LWE relation
sA + e ≡ b mod q for some small-norm secret s ∈ Zn

q , and some error e ∈ Zm
q .

NTRU can be considered a special case with b = 0m.
LWE-based encryption schemes like Regev [Reg05] and Kyber [BDK+18]

only store the secret s, but not the error e. Decryption of a ciphertext c ∈ Zn
q
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is realized via computing the inner product ⟨c, s⟩. This computation may leak
information about s.

LWE/NTRU-based signature schemes like Dilithium [DKL+18] and Fal-
con [FHK+18] usually store both (s, e) as secret key. Dilithium computes for
a salted hash h := H(m, ·) of message m both inner products ⟨h, s⟩ and ⟨h, e⟩.
Falcon computes for a salted hash h = H(m, ·) a polynomial ring product
h · s ∈ Zq[X]/(Xn + 1), and later a ring product involving (s, e). As a conclu-
sion, all these computations may either leak information on s or e alone, or on
(s, e) together.

In order to model the effect of such a secret key leakage, Dachman-Soled,
Ducas, Gong, and Rossi [DDGR20] proposed a general lattice framework that
quantifies the LWE security loss when revealing a so-called hint (v,w, ℓ) ∈ Zn

q ×
Zm
q × Z satisfying

⟨(v,w), (s, e)⟩ = ℓ. (1)

The inner product computation of Equation (1) is usually performed in Zq, which
we call a mod-q hint. However, the authors of [DDGR20] also point out that fast
NTT-based schemes like Kyber, Dilithium and Falcon usually postpone the
reduction modulo q to the end of the computation for efficiency reasons. Thus,
a side-channel may as well leak the value of ℓ in Equation (1) before mod q
reduction, a so-called perfect hint.

The framework of [DDGR20] is more generally applicable, also allowing for
modular hints other than mod-q hints, and for so-called approximate hints. In
this work, we solely focus on perfect and modular hints, since they are especially
simple, and allow for tremendous speedups in practice. Additionally, we study
mod-q hints in more detail, as we consider them practically highly relevant for
cryptographic systems with mod-q arithmetic. It remains an interesting open
problem to provide similar speedups for the technically more involved approxi-
mate hints in the DDGR-framework.

As opposed to DDGR, our approach addresses hints for the secret s only,
i.e., hints (v, ℓ) with ⟨v, s⟩ = ℓ. We show that (at least) for mod-q hints this
is no limitation, and actually provides benefits. Additionally, for perfect hints
and general modular hints (i.e., not necessarily mod-q hints), this significantly
simplifies the analysis of the resulting lattice bases.

Too Many Hints. Any mod-q hint (v, ℓ) can be considered an error-free LWE
sample. If we obtain n hints (v1, ℓ1), . . . , (vn, ℓn) with linearly independent vi,
then we can solve for s via Gaussian elimination, even without A. Therefore,
clearly an amount of n (linearly independent) mod-q hints is sufficient to reach
a too many hints regime, in which we can attack LWE in polynomial time. Since
perfect hints can be reduced modulo q, the upper bound of n also trivially holds
for perfect hints.

Our goal in this work is to explore and expand the too many hints regime as
far as possible by determining the minimal number of hints that is required to
break LWE and its various cryptographic instances in practice, efficiently. This
includes the regime where we break LWE in polynomial time using LLL reduction
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only, as well as the regime where breaking LWE is still feasible in practice with
BKZ lattice reduction. In such a hint regime where BKZ reduction is feasible,
our algorithm yields practical LWE attacks, as opposed to the implementation
of the DDGR framework, in which the lattice construction (and therefore the
whole attack) is currently infeasible.

While [DDGR20] provides pioneering work on LWE hints and their effects,
the DDGR framework currently fails to let us explore the too many hints regime
in a satisfactory way. First, the implementation of DDGR includes hints suc-
cessively in a computationally intensive manner via the dual lattice, which in
practice does not allow us for integrating a number of hints in the order of n.
Second, since we cannot even construct the desired lattice bases, we especially
cannot test lattice reduction on real-world instances of lattice schemes.

Our results. Our new approach resolves these issues, and provides us with
real-world data on standardized schemes, rather than security estimates.

Idea of our Method. In comparison to DDGR, our method is less lattice-centric
and more LWE-centric. That is, whereas DDGR starts with a basis, which is suc-
cessively transformed by each hint, we first process all hints, and then integrate
them into a lattice basis.

From the trivial upper bound n argument for the too many hints regime we
already see that every mod-q hint reduces the subspace of all possible s by one
dimension. Thus, one can view mod-q hints as a dimension reduction method,
as it was, e.g., used in the recent analysis of NTRU in the more restricted attack
setting of secret key bit leakage [EMVW22]. Hence, we expect that k mod-q
hints leave us with the hardness of an (n− k)-dimensional LWE problem.

Since, e.g., LWE with Kyber-like parameters is solvable with LLL reduction
in dimension around n = 63, we would expect that 512−63 = 449 modular hints
are sufficient for extracting Kyber-512 secret keys. We show that this is indeed
the case.

Efficiency of Lattice Basis Construction. For mod-q hints we propose a simple,
and extremely efficient linear algebra approach that in the presence of k hints
reduces the LWE dimension from n to n− k. Even in cryptographic dimensions,
our lattice basis construction takes only a matter of seconds.

For perfect hints our lattice basis construction is technically more involved.
We first construct a matrix solely involving our hints, then use LLL for dimension
reduction, and eventually integrate the reduced hints together with the LWE
samples into a lattice basis. This construction is still efficient, but significantly
slower than our mod-q hint method. Lattice basis construction takes, e.g., 3
hours for LWE dimension n = 512, and up to one week for n = 1024.

The case of generalmodular hints is (essentially) reduced to the case of perfect
hints, making their lattice basis construction as efficient as in the perfect hint
case.

Our lattice basis construction methodology does not only allow to integrate
different types of hints separately, but also to freely combine them.
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Quality of Lattice Basis. It goes without saying, that a construction method
for a lattice basis that incorporates hints should be efficient. But of even larger
importance is the quality of the resulting basis, meaning from a cryptanalyst’s
perspective that the information provided by the hints has been fully exploited,
and the resulting lattice requires reduction methods as weak as possible to reveal
the LWE secret.

We thoroughly analyze the characteristics of our constructed lattices, in terms
of the three main criteria lattice dimension, lattice determinant, and length of
the desired secret short vector. Our analysis shows that the quality of our lattice
bases for all types of hints is identical to the quality achievable with the DDGR
framework.

Our Experimental Results. A rough outline of our experiments is provided in
Table 1.

Kyber Falcon NTRU-HRSS Kyber Dilithium
512 512 701 768 1024

mod-q 449 (88%) 452 (88%) 622 (89%) 702 (91%) 876 (85%)
Time 20 mins 20 mins 45 mins 35 mins 10 hours

perfect 234 (46%) 233 (46%) 332 (47%) 390 (51%) 463 (45%)
Time 3 hours 3 hours 11 hours 1 day 7 days

Table 1. Minimal amount k of mod-q/perfect hints required for solving instances with
LLL. Time includes both lattice basis construction and LLL reduction.

In the case of mod-q hints, we require for LWE dimension n roughly k ≈
0.9n hints too reach the too many hints regime, in which we can solve via LLL
reduction, see Table 1. Recall that our mod-q approach directly constructs an
LWE problem in dimension n− k ≈ 0.1n.

Notice that for Kyber-512, Falcon-512, and Kyber-768 we have 60 ≤
n− k ≤ 66. NTRU-HRRS allows for larger LWE dimension n− k = 79, since it
has larger q and smaller secret vector norm. As one would expect, Dilithium’s
very large q enables LLL-only attacks for the largest LWE dimension n−k = 148.

We would like to stress that Table 1 only provides the number of hints, for
which we can solve via simple LLL reduction. E.g. we also solved Kyber-512
instances with 440 mod-q hints with stronger BKZ reduction of block-size 3 in
less than an hour. Thus, Table 1 basically provides the number of hints for which
we obtain minimal attack time. The attack time in the mod-q scenario is almost
exclusively spend on LLL reduction, since our lattice basis construction can be
performed in a matter of seconds.

In the case of perfect hints, we require for LWE dimension n rougly k ≈ n/2
hints. We find such a small number of hints quite remarkable!

Interestingly, in contrast to the mod-q setting, run time in the perfect hint
setting is almost exclusively spend on lattice basis construction. Recall that our
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construction process first uses the hints only, uses LLL reduction for dimension
reduction, and eventually integrates the LWE samples. It seems that LLL reduc-
tion of the hints only already yields an overall well-reduced lattice basis. Hence,
after our lattice basis construction step we could almost always directly read off
the desired secret lattice vector, and therefore solve LWE.

Our Software. We provide a highly efficient open-source Python implementa-
tion of our framework. The source code is available together with an extensive
documentation at

https://github.com/juliannowakowski/lwe_with_hints.

At the heart of our implementation lies the class LWELattice, which allows to
easily construct lattice bases for attacking LWE – with or without hints. The
class LWELattice also provides an implementation of the (progressive) BKZ
algorithm, based on the fpylll library [dt21]. Our implementation also ships with
key generation algorithms for Kyber, Falcon, NTRU-HPS, NTRU-HRSS and
Dilithium, as well as for Kyber-like and Falcon-like toy instances in small
dimensions.

Lattice Attacks go Practice. Classical public-key schemes like RSA encryp-
tion and DSA signatures have experienced extensive studies on hint vulnera-
bilities, starting with the seminal works of Boneh and Venkatesan [BV96] and
Coppersmith [Cop97]. This led to critical security issues in real world application
like [HDWH12]. We see our work as a step towards making hint vulnerabilities
also practical in the lattice world.

Organisation of the Paper. In Section 2, we provide some background on
lattices and LWE. Section 3 introduces our highly efficient LWE transformation
for mod-q hints. Section 4 is devoted to our technically more involved lattice ba-
sis construction for perfect hints. In Section 5, we show how to integrate general
modular hints in the aforementioned lattice basis construction. Section 6 pro-
vides a runtime comparison of our method with DDGR, and demonstrates how
significant we improve in efficiency. Our experiments are presented in Section 7.

Acknowledgements. We are grateful to Carl Richard Theodor Schneider and
Martin R. Albrecht for help with and bug-fixing in fpylll. We thank the anony-
mous reviewers for their detailed comments, that helped to improve our work.

Both authors are funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – grant 465120249. Alexander May is additionally
supported by grant 390781972.
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2 Preliminaries

2.1 Linear Algebra

Vectors are denoted by lower-case bold vectors, matrices are denoted by upper-
case bold vectors. We use row notation for vectors and write B = [b1, . . . ,bn]
for a matrix B with rows bi. To denote a matrix B with columns bT

i , where
(·)T denotes the transpose, we write B = (bT

1 | . . . |bT
n ). The i-th vector of the

standard basis of Rn is denoted by ei, e.g., e1 = (1, 0, . . . , 0). The n-dimensional
identity matrix is denoted by In, all-zero (n×m)-matrices are denoted by 0n×m,
and the n-dimensional all-zero vector is denoted by 0n. If the dimensions are clear
from the context, we drop the indices from 0n×m and 0n. The Euclidean norm
and the Euclidean inner product are denoted by ∥ · ∥ and ⟨·, ·⟩, respectively.

Lemma 2.1. Let v = (v1, . . . , vn) ∈ Rn be a vector, whose coordinates are i.i.d.
random variables with zero mean and standard deviation σ < ∞. Then it holds
that

E[∥v∥] ≤ σ
√
n.

Asymptotically, the upper bound is sharp, i.e.,

E[∥v∥] ∼ σ
√
n

as n→∞.

A proof for Lemma 2.1 is given in the full version of the paper [MN23].
For v ∈ Rn, we denote by v⊥ the subspace orthogonal to v. More generally,

for a linear subspace U ⊆ Rn, we denote by U⊥ the orthogonal complement
of U . The orthogonal projection of v onto U is denoted by πU (v).

2.2 Lattices

For a matrix B = [b1, . . . ,bn] ∈ Qn×m, we denote by

L(B) := Zn ·B = {α1b1 + . . .+ αnbn | αi ∈ Z}

the lattice generated by the rows of B.1 If the rows of B are linearly independent,
we call B a basis matrix of L(B). Two bases B1,B2 ∈ Rn×m generate the same
lattice if and only if there exists a unimodular matrix U ∈ Zn×n such that
B1 = U · B2. The number of rows in any basis matrix of some lattice Λ is
called the dimension of Λ and denoted by dimΛ. Equivalently, the dimension
of Λ is defined as the dimension of the linear subspace spanR(Λ). A lattice with
quadratic basis matrix is called a full-rank lattice.

The determinant of a lattice Λ with basis matrix B is defined as

detΛ :=
√
det(BBT ).

1 We restrict ourselves to rational matrices, because for irrational B with linearly
dependent rows, the resulting set L(B) might not be a lattice.
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Notice that the determinant does not depend on the choice of basis. The i-th
successive minimum of Λ is defined as

λi(Λ) := min {r > 0 | Λ contains i linearly independent vectors of length ≤ r} .

A lattice vector v ∈ Λ of length ∥v∥ = λ1(Λ) is called a shortest vector of Λ.

Heuristic 2.2 (Gaussian Heuristic). Let Λ be an n-dimensional lattice. The
Gaussian heuristic predicts that λ1(Λ) equals

gh(Λ) :=

√
n

2πe
det(Λ)1/n.

A set of linearly independent lattice vectors {v1, . . . ,vk} ⊂ Λ is called primitive
(with respect to Λ), if it can be extended to a basis of Λ. Equivalently, the set
{v1, . . . ,vk} is called primitive, if Λ ∩ spanR({v1, . . . ,vk}) = L(v1, . . . ,vk).

For instance, {2e1, . . . , 2en} ⊂ Zn is not primitive with respect to Zn, since
Zn ∩ spanR({2e1, . . . , 2en}) = Zn, but L(2e1, . . . , 2en) = 2Zn.

Lemma 2.3. Let V = [v1, . . . ,vk] ∈ Zk×n. The set {v1, . . . ,vk} ⊂ Zn is prim-
itive with respect to Zn if and only if L(VT ) = Zk.

A proof for Lemma 2.3 is given in the full version of the paper [MN23].

Lemma 2.4 (Adapted from [MRW11, Proposition 1]). Let 1 ≤ k < n be
integers. Let B ∈ Zn×k be a matrix, whose entries are independent and uniformly
distributed over {−B, . . . , B − 1} for some B ∈ N. Then it holds that

Pr[L(B) = Zk] > (1− 22+k−n) + o(1),

as B →∞.

A proof for Lemma 2.4 is given in the full version of the paper [MN23].
The dual of a lattice Λ is defined as

Λ∗ := {w ∈ spanR(Λ) | ∀v ∈ Λ : ⟨w,v⟩ ≡ 0 mod 1}.

For every lattice Λ it holds that (Λ∗)∗ = Λ. If Λ ̸= {0}, then it holds that

det(Λ) · det(Λ∗) = 1. (2)

The integer lattice Zn is self-dual, i.e., (Zn)∗ = Zn.

Lemma 2.5 ([Mar13, Proposition 1.3.4]). Let Λ ⊂ Rn be a full-rank lattice
and let U ⊆ Rn be a linear subspace. Then it holds that Λ ∩ U = (πU (Λ

∗))∗.

Lemma 2.6 ([Mar13, Proposition 1.2.9]). Let Λ ⊂ Rn be a full-rank lattice
and let U ⊂ Rn be a d-dimensional linear subspace with 0 < d < n, such that
Λ ∩ U is a d-dimensional lattice. Then it holds that

det(πU⊥(Λ)) =
detΛ

det(Λ ∩ U)
.
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2.3 LWE

Definition 2.7 (LWE). Let n, m and q be positive integers, and let χ be a
distribution over Z. The LWE problem or more precisely the LWE problem
with short secrets for parameters (n,m, q, χ) is defined as follows: Given

- a uniformly random matrix A ∈ Zn×m
q , and

- a vector b ≡ sA+ e mod q, where s← χn, e← χm,

find s ∈ Zn
q . The vector s is called the secret, e is called the error. The tuple

(A,b, q) is called an LWE instance. A tuple (aTi , bi), where aTi is the i-th column
of A and bi = ⟨ai, s⟩+ ei is the i-th coordinate of b, is called an LWE sample.

We note that in Regev’s original definition of LWE [Reg05], the coordinates
of the secret and the error do not follow the same distribution. Most practical
LWE-based schemes, however, use the short secret variant from Definition 2.7.
We further note that for efficiency purposes most practical LWE-based schemes
do not sample the matrix A uniformly at random, but instead use A’s, which
can be stored more compactly. Most importantly, in so-called Ring-LWE and
Module-LWE variants one encodes ring-/module structure into A. This allows
to store A with only k · n elements from Zq, where k ≪ n is a small integer,
typically 1 ≤ k < 10. The NTRU problem [HPS98] can be considered as a special
variant of (Ring-)LWE, where the vector b is fixed to 0.

An overview of parameters used in practice is given in Table 2.

Scheme n m q σ ≈ E[∥(e,s)∥]√
m+n

Variant

Kyber-512 512 512 3329 1.22 Module-LWE

Kyber-768 768 768 3329 1.00 Module-LWE

Kyber-1024 1024 1024 3329 1.00 Module-LWE

Dilithium-1024 1024 1024 8380417 1.41 Module-LWE

Dilithium-1280 1280 1536 8380417 2.58 Module-LWE

Dilithium-1792 1792 2048 8380417 1.41 Module-LWE

Falcon-512 512 512 12289 4.05 NTRU

Falcon-1024 1024 1024 12289 2.87 NTRU

NTRU-HPS-509 509 509 2048 0.76 NTRU

NTRU-HPS-677 677 677 2048 0.72 NTRU

NTRU-HPS-821 677 677 4096 0.80 NTRU

NTRU-HRSS 701 701 8192 0.99 NTRU

Table 2. Parameters of practical LWE-based schemes.
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Remark 2.8. For Kyber and Dilithium we calculated the standard deviation
of the coordinates of (e, s), and then used Lemma 2.1 to approximate E[∥(e,s)∥]√

m+n

in Table 2. For NTRU, we could not apply Lemma 2.1, because NTRU-HRSS
and NTRU-HPS keys do not meet the requirements of the lemma. Instead, we
determined the value of E[∥(e, s)∥] experimentally by calculating the average
over 100 random keys each. Falcon keys, on the other hand, follow a discrete

Gaussian distribution with standard deviation σ = 1.17
√

q
m+n , allowing us to

compute E[∥(e, s)∥] = 1.17
√
q exactly.

2.4 The Primal Lattice Reduction Attack

Definition 2.9 (LWE Lattice). For an LWE instance (A,b, q), where A ∈
Zn×m, we define the corresponding LWE lattice ΛLWE as the lattice generated by
the rows of the following basis matrix

BLWE :=

qIm 0 0

A In 0

b 0 1

 . (3)

Equivalently, ΛLWE is defined as

ΛLWE :=
{
(x,y, t) ∈ Zm × Zn × Z | x ≡ yA+ tb mod q

}
.

One can easily verify that the LWE lattice contains the vector

t := (−e, s,−1) ∈ ΛLWE. (4)

Since the coordinates of s and e follow in practice a distribution with zero mean
and small standard deviation σ, we have by Lemma 2.1

E[∥(e, s)∥] ≤ σ
√
m+ n.

For typical parameters (see Table 2), the expected norm of t is therefore signifi-
cantly shorter than what the Gaussian heuristic gh(ΛLWE) predicts for λ1(Λ

LWE).
Accordingly, t is likely a shortest vector of ΛLWE.

The primal lattice reduction attack solves the LWE problem by running the
BKZ algorithm [Sch87] on BLWE to search for a shortest vector of ΛLWE.

Complexity. The complexity of the primal lattice reduction attack is usually
measured in the Core-SVP model, as introduced in [ADPS16]. In this model,
one only estimates the so-called BKZ-blocksize at which BKZ will successfully
recover t from ΛLWE. The blocksize is the most important parameter for the
runtime of BKZ. Running the algorithm with blocksize β takes time at least

20.292β+o(β).
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Worth noting, for β = 2 the BKZ algorithm is (essentially) identical to the
famous LLL algorithm [LLL82].

Estimating the exact required blocksize is still an active area of research.
The current state of the art is heavily based on heuristics and experimental
observations. We refer the reader to the survey of Albrecht and Ducas [AD21] for
a nice overview. The Leaky-LWE estimator from [DDGR20] currently provides
the most accurate estimates for the required blocksize.

For our purposes, it suffices to know that the complexity of BKZ for finding a
shortest vector v in a lattice Λ mainly depends on the following two parameters:

1. the lattice dimension dimΛ,

2. the so-called gap ∥v∥
gh(Λ) .

The smaller the above two parameters get, the smaller is the necessary blocksize
for BKZ to recover v from Λ, i.e., BKZ performs the better, the smaller the
dimension and the length of v get, and the larger the determinant of Λ gets.

The Embedding Factor. In the typical setting, where both secret and error
follow a distribution with zero mean and (known) standard deviation σ, one
can slightly improve the lattice basis BLWE by replacing the so-called embedding
factor, i.e., the 1 in the bottom right of BLWE, by σ. (This slightly decreases the
gap of ΛLWE.) Additionally, if the distribution has a non-zero mean µ ̸= 0, then
the vectors b and 0 in the last row of BLWE should be replaced by b− µm and
µn, respectively, where µi := (µ, . . . , µ) ∈ Zi.

2.5 Ignoring LWE Samples

By removing columns from the LWE matrix A and accordingly updating the
lattice basis BLWE, we can easily decrease the dimension of ΛLWE, while still
keeping the secret s in the lattice. In the literature, this technique is commonly
known as ignoring LWE samples.

For typical parameters, the current estimators suggest that applying this
technique decreases the required blocksize for the primal attack. For instance,
for Kyber-768, the leaky LWE estimator suggests that ignoring 70 samples
minimizes the required blocksize.

However, as discussed in [DDGR20, Remark 30], it is not the case that (man-
ually) ignoring samples actually decreases the required blocksize in practice. In
fact, when adding too many samples, the estimators simply start to overesti-
mate the required blocksize, but the actual blocksize necessary in practice will
not increase. (See Figure 1 for an illustration of this phenomenon.)

This is caused by the fact that the estimators currently do not capture
the phenomenon that BKZ can ignore unnecessary samples on its own. (See
again [DDGR20, Remark 30] for an explanation.) For simplicity, one can there-
fore always use all available LWE samples, i.e., keep A unchanged, and let BKZ
perform the optimization on its own.
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Fig. 1. Required blocksize for the primal attack on 32 random Kyber-like LWE
instances with n = 128, q = 3329, ∥(e, s)∥ ≈ 1.22 ·

√
m+ n and varying m ∈

{128, . . . , 200}. For all m ≥ 157 we require an average blocksize of roughly 43.

2.6 LWE Hints

In this section we recall the definition of LWE hints, as first introduced by
Dachman-Soled, Ducas, Gong and Rossi (DDGR) in [DDGR20].

Definition 2.10 (LWE Hints). Let s ∈ Zn
q be an LWE secret. We define the

following LWE hints for s.

1. A tuple v = (v, ℓ) ∈ Zn × Z with

⟨v, s⟩ = ℓ

is called a perfect hint.

2. A tuple v = (v, ℓ,m) ∈ Zn × Z× N with

⟨v, s⟩ ≡ ℓ mod m

is called a modular hint. If m = q, we call v a mod-q hint.

As discussed in the introduction, we slightly deviate from the original definition
in the DDGR framework.

First, the DDGR framework defines hints more generally for both LWE error
and secret. However, we restrict ourselves to secret-only hints. Second, DDGR
also define a noisy variant of perfect hints, called approximate hints. It is an open
problem to adapt our framework for this type of hints. Third, DDGR define a
fourth type of hints, called short vector hints. However, short vector hints hints
are of a very different nature than perfect, modular and approximate hints. In
particular, as noted in [DDGR20, Section 4.5], these are not expected to be
obtained via side channels, but rather by design. For integrating approximate
and short vector hints we do not propose any new techniques.

12



3 Integrating Mod-q Hints

Let us first restrict ourselves to modular hints v = (v, ℓ, q), which we call mod-q
hints. The case of general modular hints is analyzed in Section 5.

Since all operations in LWE-based schemes are performed modulo q, we con-
sider leakage of mod-q hints practically highly relevant. Therefore, mod-q hints
deserve a more in-depth analysis.

The downside of the simple methodology introduced in this section is that
it cannot easily be combined with the perfect hint framework from Sections 4.
If one obtains mod-q and perfect hints together, then one has to use the more
powerful general modular hint approach from Section 5.

Secret-only hints. Recall that in our work we use secret-only hints (v, ℓ, q) sat-
isfying ⟨v, s⟩ ≡ ℓ mod q. In contrast, [DDGR20] uses secret-error hints (v,w, ℓ, q)
satisfying ⟨(v,w), (s, e)⟩ ≡ ℓ mod q. In the full version of the paper [MN23], we
show that the more general secret-error hints form in the mod-q case equivalence
classes with the following two properties.

(1) Each equivalence class contains exactly one representative with w = 0, i.e.,
a secret-only hint.

(2) Integrating more than one hint from the same equivalence class does not
improve the resulting lattice basis.

By Property (1), we may work in the mod-q setting without loss of generality
with secret-only hints. By Property (2), it is also advised to exclude secret-error
hints in the mod-q setting for avoiding useless hints.

Transforming LWE. Suppose we are given mod-q hints vi = (vi, ℓi, q), i =
1, . . . , k for some LWE instance (A,b, q) ∈ Zn×m

q × Zm
q ×N with n-dimensional

secret s = (s1, . . . , sn) ∈ Zn
q and error e ∈ Zm

q . Then we construct via linear

algebra an LWE instance (Â, b̂, q) ∈ Z(n−k)×m
q × Zm

q × N with

– (n− k)-dimensional secret ŝ = (sk+1, . . . , sn),
– and the same error e ∈ Zm

q .

In particular, we decrease the dimension by k, while leaving the number of
samples m unchanged, thereby increasing the sample/dimension ratio from m/n
to m/(n − k). Other works that addressed mod-q hints to reduce the LWE-
dimension either addressed the restrictive case of standard unit vectors (that
directly provide coordinates of s and therefore also can be considered as perfect
hints) [EMVW22], or transformed into a large norm secret [WWX22], unsuited
for lattice reduction.

In lattice language, our mod-q hint transformation of the LWE instance im-
proves the primal lattice reduction attack from Section 2.4 by

(1) decreasing the dimension of ΛLWE by k,

13



(2) decreasing the length of the secret vector t from Equation (4),

(3) while preserving the determinant of ΛLWE.

Remark 3.1. As in the DDGR framework, we assume throughout this work that
our hints v1, . . . ,vk are linearly independent. In particular, we assume k ≤ n.
We would like to stress that linear independence is a very natural restriction. If
there was a framework that could improve the primal lattice reduction attack
via linearly dependent hints, then LWE would not be hard, since after guessing
one initial perfect/modular hint an attacker can easily generate arbitrarily many
linearly dependent hints.

3.1 Mod-q Hints Provide LWE Dimension Reduction

Throughout this section, we assume that q is prime, which is true for all LWE-
based schemes addressed in this work, only NTRU uses a power-of-two q. At the
end of the section, we discuss in Remark 3.4 the small necessary adaptation for
NTRU.

Let us begin by defining some useful matrix notation.

Definition 3.2 (Hint Matrix). Let vi = (vi, ℓi) ∈ Zn×Z, where i = 1, . . . , k.
We define the corresponding hint matrix as

Hint
(
v1, . . . ,vk

)
:=


| |
vT
1 . . . vT

k

| |
ℓ1 · · · ℓk

 =

(
V

ℓ

)
∈ Z(n+1)×k

q . (5)

Idea of Dimension Reduction. The hint matrix from Definition 3.2 satisfies

(s,−1) ·

V

ℓ

 ≡ 0k mod q. (6)

Since the hint vectors v1, . . . ,vk are linearly independent, there exists a full rank
k × k submatrix of V. For ease of notation, we assume that the first k rows of
V form a full rank matrix V1. This can always be achieved by row permutation
of V, where s has to be permuted accordingly.

Let V−1
1 be the inverse of V1 in Fk×k

q . Multiplying Equation (6) by V−1
1

gives

(s,−1) ·

 Ik

V2V
−1
1

ℓV−1
1

 ≡ (s,−1) ·

V

ℓ

 ·V−1
1 ≡ 0k mod q. (7)

14



Let (A,b, q) ∈ Zn×m
q × Zm

q × N be an LWE instance with secret s and error e.
Write

A =

(
A1

A2

)
with A1 ∈ Zk×m

q ,A2 ∈ Z(n−k)×m
q .

Then

(s,−1) ·

 Ik

V2V
−1
1

ℓV−1
1

A1

A2

b

 ≡ (0k,−e) mod q.

Using column operations, we now use the identity matrix Ik to eliminate A1,
i.e., we eliminate the first k rows of A. Notice that since our k modular hints
are error-free, this operation does not increase the error vector e. We obtain

(s,−1) ·

 Ik

V2V
−1
1

ℓV−1
1

0

Â

b̂

 ≡ (0k,−e) mod q.

Eventually, (Â, b̂, q) is our new LWE instance with the (n − k)-dimensional
secret ŝ = (sk+1, . . . , sn). Thus, we used our k mod-q hints to eliminate the first
k coordinates of s.

Reconstruction of s. Our transformation of s to ŝ eliminates the first k coor-
dinates (s1, . . . , sk). By Equation (7) we have

(s1, . . . , sk) ≡ −ŝV2V
−1
1 + ℓV−1

1 mod q,

which allows us to easily reconstruct the remaining k coordinates when given ŝ.

The following theorem details all required linear algebra transformations in
our LWE dimension reduction.

Theorem 3.3. Let (A,b, q) ∈ Zn×m
q × Zm

q × N be an LWE instance with n-
dimensional secret s = (s1, . . . , sn) ∈ Zn

q and error e ∈ Zm
q . Let v1, . . . ,vk be

mod-q hints with hint matrix Hint
(
v1, . . . ,vk

)
= [V, ℓ] ∈ Z(n+1)×k

q . Let us denote

A = [A1,A2],V = [V1,V2] with A1 ∈ Zk×m
q ,V1 ∈ Zk×k

q . Then (Â, b̂, q) ∈
Z(n−k)×m
q × Zm

q × N with

Â ≡ A2 −V2V
−1
1 A1 mod q,

b̂ ≡ b− ℓV−1
1 A1 mod q

is an LWE instance with secret ŝ = (sk+1, . . . , sn) ∈ Zn−k
q and error e ∈ Zm

q .
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Proof. Let s = (s1, s2) with s2 = ŝ ∈ Zn−k
q . We have to show that ŝÂ ≡

b̂− e mod q. Using the definition of Â we obtain

ŝÂ ≡ s2A2 − s2V2V
−1
1 A1 mod q.

By Equation (7) we have sVV−1
1 ≡ ℓV−1

1 . Since also sVV−1
1 ≡ s1 + s2V2V

−1
1 ,

we obtain s2V2V
−1
1 ≡ ℓV−1

1 − s1. This implies

ŝÂ ≡ s2A2 − (ℓV−1
1 − s1)A1 ≡ s1A1 + s2A2 − ℓV−1

1 A1 mod q

≡ sA+ b̂− b ≡ b̂− e mod q. ⊓⊔

Remark 3.4. For the NTRU case with power-of-two q, we require that some k×k
submatrix V1 of V is invertible over F2, which implies invertibility over Zq. For
k ≪ n this happens with overwhelming probability.

4 Integrating Perfect Hints

Suppose we are given k perfect hints vi = (vi, ℓi) ∈ Zn × Z, i = 1, . . . , k. In
this section, we introduce our new approach for incorporating perfect hints, that
improves the primal lattice reduction attack by

(1) decreasing the dimension of the LWE lattice ΛLWE by k (Section 4.1),

(2) increasing its determinant by a factor detL(v1, . . . ,vk) (Section 4.2), while

(3) preserving the length of the secret vector t from Equation (4) (Section 4.1).

Additionally, we show that the effect of the integration of perfect hints is the ex-
act same as in the original DDGR framework (Section 4.2). However, in contrast
to DDGR’s approach, our novel and simplified view allows for a highly efficient
implementation (Section 4.3). We provide a run time comparison with DDGR
in Section 6.

4.1 Decreasing the Dimension of ΛLWE, while Preserving ∥t∥

Embedding Hints into ΛLWE. Let us first embed the perfect hints into our
lattice basis. Let (A,b, q) ∈ Zn×m

q × Zm
q × N be an LWE instance with secret

s ∈ Zn
q . The main idea behind our new approach is to view the perfect hints

ℓi = ⟨vi, s⟩

as error-free LWE samples without reduction modulo q. A very natural approach
for embedding the perfect hints into our lattice is then to construct a hint matrix
H = Hint(v1, . . . ,vk) = (V, ℓ) (Definition 3.2) and to generalize the definition
of the LWE lattice ΛLWE (Definition 2.9) as follows.
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Definition 4.1 (Hint Lattice). Let (A,b, q) be an LWE instance, where A ∈
Zn×m, and let H = (V, ℓ) ∈ Z(n+1)×k be a hint matrix. The corresponding hint
lattice ΛLWE

H is defined as the lattice generated by the following matrix:

BLWE
H :=

qIm 0 0 0

A V In 0

b ℓ 0 1

 ∈ Z(m+n+1)×(m+k+n+1). (8)

Notice that we did not change the lattice dimension yet: Even though the hint
lattice ΛLWE

H lies in the larger vector space Rm+k+n+1 (as opposed to ΛLWE lying
in Rm+n+1), the dimension of the lattice remains

dimΛLWE
H = dimΛLWE = m+ n+ 1.

Decreasing dimension of ΛLWE
H . By definition of the hint matrix H = (V, ℓ),

the LWE secret s satisfies

(s,−1) ·

V

ℓ

 =
(
⟨v1, s⟩ − ℓ1, . . . , ⟨vk, s⟩ − ℓk

)
= 0k.

From that, it easily follows that the hint lattice ΛLWE
H contains the short vector

tH := (−e,0k, s,−1),

which has the same length as the original secret vector t, defined in Equation (4).

To reduce the dimension of our lattice by k, we now simply use the fact that
the coordinates of tH at positions m+1 to m+ k are zero. Instead of searching
for tH in ΛLWE

H , we simply search in the (m+ n+1− k)-dimensional2 sublattice
ΛLWE
H,k ⊂ ΛLWE

H as defined below:

ΛLWE
H,k :=

{
(v1, . . . , vn+m+k+1) ∈ ΛLWE

H | vm+1 = . . . = vm+k = 0
}

= ΛLWE
H ∩ e⊥m+1 ∩ . . . ∩ e⊥m+k.

4.2 Perfect Hints Increase detΛLWE by detL(v1, . . . , vk)

To integrate k perfect hints v1, . . . ,vk, DDGR suggest to intersect the LWE
lattice ΛLWE with the subspace orthogonal to all vi’s, i.e., to work with the
lattice

ΛDDGR
v1,...,vk

:= ΛLWE ∩ (0m,v1)
⊥ ∩ . . . ∩ (0m,vk)

⊥.

2 Here we require the hints to be linearly independent. More generally, we have
dimΛLWE

H,k = n+m+ 1− rankR(H).
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As shown by DDGR, this reduces the dimension of the lattice by k and increases
the determinant by a factor of roughly ∥v1∥ · . . . · ∥vk∥.3

At first glance, the DDGR approach may seem complementary to our ap-
proach, where we first construct the hint lattice ΛLWE

H (lying in a different vector
space than ΛDDGR

v1,...,vk
) and then intersect it with the subspace orthogonal to the

standard basis vectors em+1, . . . , em+k.
While we already showed that our approach also reduces the lattice dimension

by k, it is not so obvious, how the determinant of our lattice ΛLWE
H,k compares with

that of ΛDDGR
v1,...,vk

. In particular, it is unclear whether one lattice performs better
than the other.

Interestingly, our Theorem 4.2 below shows, however, that our new lattice
has the exact same determinant as DDGR’s. In fact, Theorem 4.2 even shows
something slightly stronger: The lattices ΛDDGR

v1,...,vk
and ΛLWE

H,k are isometric, i.e.,
there is an isomorphism between them, that preserves their geometries. Hence,
the lattices ΛDDGR

v1,...,vk
and ΛLWE

H,k have the exact same quality from a cryptanalytic
perspective.

More importantly, we show in Theorem 4.3 that our restriction to secret-only
hints allows us to precisely estimate the determinant. We prove under a mild as-
sumption that the determinant increases exactly by a factor of detL(v1, . . . ,vk),
as opposed to DDGR’s rough estimation of ∥v1∥ · . . . · ∥vk∥.

Theorem 4.2. Let v1, . . . ,vk be perfect hints with hint matrix H = Hint
(
v1, . . . ,vk

)
.

There exists an isometry from the hint sublattice ΛLWE
H,k to ΛDDGR

v1,...,vk
. In particular,

dimΛLWE
H,k = dimΛDDGR

v1,...,vk
, and

detΛLWE
H,k = detΛDDGR

v1,...,vk
.

Proof. Let u = (u1,u2) ∈ Zm × Zn+1 and let

x := u ·BLWE ∈ ΛLWE,

y := u ·BLWE
H ∈ ΛLWE

H ,

where BLWE and BLWE
H are defined as in Equations (3) and (8), respectively. From

the shapes of BLWE and BLWE
H it easily follows that

x = (w,u2), (9)

y = (w,u2 ·H,u2), (10)

for some w ∈ Zm. Comparing the definitions of ΛDDGR
v1,...,vk

and ΛLWE
H,k with Equa-

tions (9) and (10), we obtain the following chain of equivalences:

x ∈ ΛDDGR ⇐⇒ ⟨u2,vi⟩ = 0, for all i = 1, . . . , k

⇐⇒ u2 ·H = 0k

⇐⇒ y ∈ ΛLWE
H,k .

3 The DDGR estimate is correct under some primitivity condition (see [DDGR20,
Section 4.1]) and the assumption that the hints are not too far from orthogonal
(see [DDGR20, Remark 25]).
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This, in turn, implies that

φ : ΛDDGR
v1,...,vk

→ ΛLWE
H,k , (x1, . . . , xm+n+1) 7→ (x1, . . . , xm,0k, xm+1, . . . , xm+n+1)

is an isometry, which proves the theorem. ⊓⊔

Theorem 4.3. Let v1, . . . ,vk be (secret-only) perfect hints with hint matrix
H = Hint

(
v1, . . . ,vk

)
. Suppose L(H) = Zk. Then it holds that

detΛLWE
H,k = detΛDDGR

v1,...,vk
= detΛLWE · detL(v1, . . . ,vk).

Proof. The proof uses the technique from [DDGR20, Lemma 12]. Let U :=
v⊥
1 ∩ . . . ∩ v⊥

k . From the shape of the basis matrix BLWE (see Equation (3)), it
easily follows that4

detΛDDGR
v1,...,vk

= qm · det(Zn+1 ∩ U) = det(ΛLWE) · det(Zn+1 ∩ U). (11)

Using Lemma 2.5 and the fact that Zn+1 is self-dual, we obtain

Zn+1 ∩ U = (πU (Zn+1))∗,

which together with Equation (2) and Lemma 2.6 gives

det(Zn+1 ∩ U) =
1

det(πU (Zn+1))
=

det(Zn+1 ∩ U⊥)

det(Zn+1)
= det(Zn+1 ∩ U⊥). (12)

By assumption, the rows ofH span the integer lattice Zk. Together with Lemma 2.3
and the definition ofH (Definition 3.2) this implies that {v1, . . . ,vk} is primitive
with respect to Zn+1, and thus

Zn+1 ∩ U⊥ = Zn+1 ∩ spanR(v1, . . . ,vk) = L(v1, . . . ,vk). (13)

Combining Equations (11), (12) and (13), we obtain

detΛDDGR
v1,...,vk

= det(ΛLWE) · detL(v1, . . . ,vk),

which together with Theorem 4.2 proves the theorem. ⊓⊔

The condition L(H) = Zk. Theorem 4.3 requires the hint matrix H to
generate the integer lattice Zk. In practice, we can expect that H behaves like a
random matrix. If k is signifcantly smaller than n, then Lemma 2.4 shows that
L(H) = Zk holds with very high probability. Hence, we expect that Theorem 4.3
typically applies in practice.

In the case of a single perfect hint, i.e., k = 1, the condition L(H) = Zk

simply requires that the greatest common divisor of the entries of v1 equals 1.
From the shape of the basis matrix BLWE (Equation (3)), it is easy to see that
for a secret only hint this is equivalent to requiring that v1 is primitive with
respect to the dual (ΛLWE)∗. Hence, for the case of k = 1, our new Theorem 4.3
boils down to DDGR’s original result.

4 Equation (11) would become false, if we would allow secret-error hints.
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Corollary 4.4 ([DDGR20, Lemma 12]). Let v1 be a (secret-only) perfect
hint with hint matrix H = Hint

(
v1

)
. Suppose v1 is primitive with respect to the

dual lattice (ΛLWE)∗. Then it holds that

detΛLWE
H,1 = ΛDDGR

v1
= detΛLWE · detL(v1) = detΛLWE · ∥v1∥.

4.3 Computing a basis for ΛLWE
H,k

To be able to search for the secret vector tH in the sublattice ΛLWE
H,k ⊂ ΛLWE

H ,

we of course first have to compute a basis for ΛLWE
H,k . To this end, we intro-

duce our new algorithm Construct-Sublattice (Algorithm 1). The runtime
of Construct-Sublattice is dominated by one call to LLL in dimension n+1,
and by multiplying two matrices in dimensions (n+1)× (n+1) and (n+1)×m
– making the algorithm highly practical.

Algorithm 1: Construct-Sublattice

Input: An LWE instance (A,b, q), where A ∈ Zn×m, a hint matrix
H := Hint

(
(v1, . . . ,vk)

)
∈ Z(n+1)×k, and a scaling parameter c > 0.

Output: A basis of ΛLWE
H,k or Fail.

1 Multiply the first k columns of H by ⌈2
n
2 · c⌉. Denote the resulting matrix by

H̃.
2 Run the LLL algorithm on (H̃ | In+1) to obtain a reduced basis

HLLL ∈ Z(n+1)×(n+k+1) and a unimodular matrix U ∈ Z(n+1)×(n+1), such that

HLLL = U · (H̃ | In+1).

3 if the upper-left (n+ 1− k)× k block of HLLL is non-zero then
4 Return Fail.
5 else

6 Compute a matrix Ã as follows:

Ã := U ·

(
A

b

)
.

7 Construct the following matrix:

B :=

(
qIm 0

Ã HLLL

)
∈ Z(m+n+1)×(m+k+n+1).

8 Delete the last k rows of B.
9 Return the resulting matrix.

The main idea behind our algorithm is to appropriately scale the basis matrix
BLWE

H of ΛLWE
H by some scaling parameter c, such that LLL can only find lattice
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vectors in ΛLWE
H , which have zeros in the coordinates m+1 to m+k. Additionally,

we exploit the fact that the q-vectors (i.e., the first m rows of BLWE
H , as defined

in Equation (5)) already belong to the sublattice ΛLWE
H,k .

In Theorem 4.5 below, we prove a rigorous – yet impractical – bound on
the scaling parameter, for which Construct-Sublattice provably returns a
basis for ΛLWE

H,k . Building on the theorem, we then derive a heuristic bound on
the scaling parameter, that works well in practice.

Theorem 4.5. Let H := Hint
(
v1, . . . ,vk

)
be a hint matrix. Let U := e⊥1 ∩

. . . ∩ e⊥m ⊂ Rm+k+n+1 be the subspace orthogonal to the first m standard ba-
sis vectors. If we call Construct-Sublattice with scaling parameter c ≥
λn+1−k(πU (Λ

LWE
H,k )), then the algorithm outputs a basis of ΛLWE

H,k .

Proof. Let us first show that on input c ≥ λn+1−k(πU (Λ
LWE
H,k )), the algorithm

does not output Fail. Let c′ := ⌈2n
2 · c⌉. By construction, every row hi of HLLL

is of the form

hi = (c′ · hi,1, . . . , c
′ · hi,k, hi,k+1, . . . , hi,n+k+1). (14)

Since HLLL is LLL-reduced, it holds that

∥hi∥ ≤ 2
n
2 · λi(L(H̃)), (15)

see [LLL82, Proposition 1.12].
From the shape of the basis matrix BLWE

H (Equation (8)) and the definition
of ΛLWE

H,k , it easily follows that the (n + 1 − k)-dimensional lattice πU (Λ
LWE
H,k ) is

(isometric to) a sublattice of L(H̃). Together with Equation (15), this yields

∥hi∥ ≤ 2
n
2 · λi(πU (Λ

LWE
H,k )) ≤ 2

n
2 · λn+1−k(πU (Λ

LWE
H,k )) ≤ c′, (16)

for every i = 1, . . . , n+ 1− k.
Since by Equation (14), the first k coordinates of hi are multiples of c′, Equa-

tion (16) implies that these coordinates are, in fact, equal to zero. In particular,
the upper-left (n + 1 − k) × k block of HLLL is non-zero. Hence, the algorithm
does not output Fail.

It remains to show that the matrix returned in Step 9 indeed is a basis matrix
for ΛLWE

H,k . Let U be the unimodular matrix produced by Step 2. One can easily
verify that the matrix B, produced by Step 7 of the algorithm, is given by

B =

(
Im 0

0 U

)
·BLWE

H ·

Im 0 0

0 c′Ik 0

0 0 In+1

 .

The matrix B is thus obtained by scaling the columns m+1 to m+ k of a basis
matrix of ΛLWE

H by c′. Since by construction the first m+n+1− k rows are zero
in the columns m+1 to m+ k, this shows that the matrix returned in Step 9 is
a basis for ΛLWE

H,k , as required. ⊓⊔
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To use Construct-Sublattice in practice, Theorem 4.5 shows that we need to
efficiently compute an upper bound c on the (n+1−k)-th successive minimum of
πU (Λ

LWE
H,k ). Unfortunately, we can not hope to rigorously prove any useful upper

bound on λn+1−k(πU (Λ
LWE
H,k )).

5 However, we may heuristically assume that

λ1 ≈ λ2 ≈ . . . ≈ λn+1−k

and then use the Gaussian heuristic6

gh(πU (Λ
LWE
H,k )) =

√
n+m+ 1− k

2πe
·
(
detπU (Λ

LWE
H,k )

)1/(n+m+1−k)

=

√
n+m+ 1− k

2πe
·

(
detΛLWE

H,k

qm

)1/(n+m+1−k)

(17)

as an upper bound on λn+1−k(πU (Λ
LWE
H,k )). Making the additional assumption

that L(H) = Zk (which is justified by Lemma 2.4), we obtain by Theorem 4.3

detΛLWE
H,k = detΛLWE · detL(v1, . . . ,vk) = qm · detL(v1, . . . ,vk),

which then yields the following heuristic:

Heuristic 4.6. Let H := Hint
(
v1, . . . ,vk

)
be a hint matrix. If we call Construct-

Sublattice with scaling parameter

c =

√
n+m+ 1− k

2πe
· detL(v1, . . . ,vk)

1/(n+m+1−k),

then the algorithm outputs a basis of ΛLWE
H,k .

We experimentally confirm correctness of Heuristic 4.6 in Section 7.

Remark 4.7. Instead of LLL-reducing (H̃ | In+1) in Step 2 of the algorithm, we

could first reduce only H̃, and after that apply the corresponding transformation
matrix to the (n+1)-dimensional identity matrix. (Similarly, as we do with [A,b]

in Step 6.) However, using (H̃ | In+1) has the benefit that the identity matrix

forces LLL to take small linear combinations of the rows of H̃. In particular, it
increases the probability of LLL taking the particularly small linear combination
(s,−1) to create a zero in the first k coordinates. Whenever this happens, we can
immediately read off the LWE secret from the basis. As we show in Section 7,
in the regime of too many hints, this frequently occurs in practice.

Remark 4.8. More generally, given any lattice Λ ⊂ Rd and a collection of stan-
dard basis vectors {ei}i∈I , I ⊆ {1, . . . , d}, the ideas behindConstruct-Sublattice
can easily be adapted to efficiently compute a basis of Λ ∩ (

⋂
i∈I e

⊥
i ).

5 E.g., we cannot hope to upper bound λn+1−k(πU (Λ
LWE
H,k)) in terms of the determinant

of the lattice, since it is easy to construct examples, where λ2 is arbitrarily large,
while the determinant is small.

6 Equation (17) easily follows from the shape of BLWE
H (see Equation (8)).
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5 Integrating Modular Hints

Suppose we are given k modular hints vi = (vi, ℓi,mi) ∈ Zn × Z × N, for
i = 1, . . . , k. Our new algorithm for incorporating modular hints improves the
primal lattice reduction attack by

(1) increasing the determinant of ΛLWE by a factor of
∏k

i=1 mi,
(2) while leaving dimension of the lattice,
(3) and norm of the secret vector t from Equation (4) unchanged.

As in the perfect hint case, the effect of the integration of modular hints is thus
the exact same as in the DDGR framework. However, since our approach uses
our algorithm Construct-Sublattice (Algorithm 1) from Section 4.3, it is
significantly more efficient than DDGR’s. Yet, it is slightly less efficient than our
approach for mod-q hints from Section 3, which requires only elementary linear
algebra.

As we discuss in Section 5.2, an advantage of our general modular hint ap-
proach over our mod-q approach is, however, that it allows to easily combine
modular hints with perfect hints, and to integrate both types of hints very ef-
ficiently in one stroke. We give a more in-depth comparison with the approach
from Section 3 in Section 5.3.

5.1 Increasing detΛLWE, while Preserving dimΛLWE and ∥t∥

Let (A,b, q) ∈ Zn×m
q ×Zm

q ×N be an LWE instance with secret s ∈ Zn
q , and let

vi = (vi, ℓi,mi) ∈ Zn × Z× N be modular hints such that

⟨vi, s⟩ ≡ ℓi mod mi, (18)

for i = 1, . . . , k.
Our main idea from Section 4 for integrating perfect hints is to view our hints

as error-free LWE samples without reduction modulo q. For modular hints we
now follow a very similar approach: We simply view the hints as error-free LWE
samples with reduction modulo mi. Apart from some minor modifications, our
approach for modular hints then boils down to the perfect hint setting.

Embedding Hints into ΛLWE. Let v′
i := (vi, ℓi). Similarly as in Section 4,

we start by defining a hint matrix H = Hint(v′
1, . . . ,v

′
k) = (V, ℓ) ∈ Z(n+1)×k

(Definition 3.2). However, instead of usingH to directly construct the hint lattice
ΛLWE
H from Definition 4.1 (as we would in the perfect hint setting), we first define

an additional matrix

M :=


m1

. . .

mk

 ∈ Zk×k. (19)
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Then, closely following the definition of the hint lattice ΛLWE
H,k , we define the

following matrix

BLWE
M,H :=


qIm 0 0 0

0 M 0 0

A V In 0

b ℓ 0 1

 ∈ Z(m+k+n+1)×(m+k+n+1). (20)

Notice that BLWE
M,H naturally extends the definition of the original basis matrix

BLWE from Equation (3). Indeed, the columns m+ 1 to m+ k of BLWE
M,H simply

correspond to additional LWE samples, defined over Zmi , instead of Zq.

Increased Determinant. Let ΛLWE
M,H := L(BLWE

M,H). Since BLWE
M,H is triangular

and M is diagonal, we have

detΛLWE
M,H = qm · detM = qm ·

k∏
i=1

mi = detΛLWE ·
k∏

i=1

mi.

Hence, we already increased the determinant of ΛLWE by the desired factor.
Notice that the increase in determinant, though, comes at the cost of increas-

ing the lattice dimension by k.7 However, as we show below, the techniques,
that allow us to decrease the lattice dimension in the perfect hint setting to
n +m + 1 − k, now allow us to preserve our lattice dimension of n +m + 1 in
the modular hint setting.

Preserving dimΛLWE. Lifting Equation (18) to the integers, we obtain

⟨vi, s⟩ = ℓi − rimi,

for some unknown ri ∈ Z. Let r := (r1, . . . , rk). By construction, it then holds
that

(r, s,−1) ·

M

V

ℓ

 =
(
r1m1 + ⟨v1, s⟩ − ℓ1, . . . , rkmk + ⟨vk, s⟩ − ℓk

)
= 0k.

Hence, by Equation (20), ΛLWE
M,H contains the short vector

tH := (−e,0k, s,−1),

which has the same length as the original secret vector t, defined in Equation (4).

7 This is in contrast to the perfect hint setting, where embedding the hints does not
increase the lattice dimension.
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Completely analogous to the perfect hint setting, we now simply suggest to
search for tH in the following (m+ n+ 1)-dimensional sublattice of ΛLWE

M,H:

ΛLWE
M,H,k :=

{
(v1, . . . , vn+m+k+1) ∈ ΛLWE

M,H | vm+1 = . . . = vm+k = 0
}

= ΛLWE
M,H ∩ e⊥m+1 ∩ . . . ∩ e⊥m+k,

which has the same dimension as the original lattice ΛLWE.
Making again the assumption that our hint matrix H behaves like a random

matrix (as we already did in Section 4.2), Lemma 2.4 then suggests that with
high probability H generates the integer lattice Zk. In that case, the sublattice
ΛLWE
M,H,k also has the required determinant, as we show in the following theorem.

Theorem 5.1. Suppose L(H) = Zk. Then it holds that

detΛLWE
M,H,k = detΛLWE

M,H = detΛLWE ·
k∏

i=1

mi.

Proof. Let U := e⊥m+1 ∩ . . . ∩ e⊥m+k. By Lemma 2.6, we obtain

det(ΛLWE
M,H,k) = det(ΛLWE

M,H ∩ U) =
det(ΛLWE

M,H)

det(πU⊥(ΛLWE
M,H))

. (21)

For any subset A ⊆ Rk, let A∼ := {0}m ×A×{0}n+1 ⊂ Rm+k+n+1. Looking at
the shape of the basis matrix BLWE

M,H in Equation (20) and using U⊥ = (Rk)∼, it
easily follows that

πU⊥(ΛLWE
M,H) = L([M,H])∼ ⊇ L(H)∼ = (Zk)∼.

Together with πU⊥(ΛLWE
M,H) ⊆ (Zk)∼, this yields πU⊥(ΛLWE

M,H) = (Zk)∼, and thus

det(πU⊥(ΛLWE
M,H)) = 1. (22)

Plugging in Equation (22) into Equation (21), the theorem follows. ⊓⊔

We note that (as in the previous sections) we require our hints v′
i to be linearly

independent, see also Remark 3.1. If the hints were linearly dependent, we would
have L(H) ⊊ Zk, in which case Theorem 5.1 no longer applies, and we would
have detΛLWE

M,H,k < detΛLWE
M,H.

Efficiently Computing a Basis for ΛLWE
M,H,k. As discussed above, our new

lattice ΛLWE
M,H,k has the exact same quality as the original lattice of DDGR. How-

ever, since our lattice ΛLWE
M,H,k is obtained by intersecting ΛLWE

M,H with standard
basis vectors, we can compute a basis for our lattice much more efficiently than
DDGR, by simply using our algorithm Construct-Sublattice (Algorithm 1),
as discussed in Remark 4.8.
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5.2 Combining Modular and Perfect Hints

In a scenario, where we are given both modular hints vi = (vi, ℓi,mi), for i =
1, . . . , k, as well as perfect hints wi = (wi, ℓi), for i = k + 1, . . . , k + ℓ, our
approach has the additional advantage that we can easily integrate all hints
in one stroke. To this end, we simply construct a second hint matrix H′ :=
Hint(wk+1, . . . ,wk+ℓ) = (W, ℓ′), along with the following lattice basis

qIm 0 0 0 0

0 M 0 0 0

A V W In 0

b ℓ ℓ′ 0 1

 ,

and then search for the LWE secret in the sublattice, that has zeros in the
columns m+ 1 to m+ k + ℓ.

5.3 Comparison with Section 3

In our simple linear algebra approach from Section 3 for integrating k mod-q
hints, the hints eliminate k coordinates of the secret vector t, and decrease the di-
mension of ΛLWE by k, while leaving the determinant unchanged. At first glance,
this seems complementary to our more involved approach from Section 5.1, where
∥t∥ and dimension remain unchanged, while the determinant grows by a factor
qk.

Notice that after increasing the determinant by qk we may ignore, however,
up to k LWE samples, as explained in Section 2.5. Since every ignored LWE
sample decreases the dimension of the lattice by one, eliminates one coordinate
of t, and decreases the determinant by a factor q, our more involved approach
thus

(1) eliminates i coordinates of t,
(2) decreases the dimension of ΛLWE by i,
(3) and increases the determinant by qk−i,

for some freely choosable parameter 0 ≤ i ≤ k. As discussed in Section 2.5, the
BKZ algorithm can optimize the value of i on its own.

As one expects, this additional degree of freedom makes the more involved
approach from Section 5.1 slightly better than the approach from Section 3, in
the sense that it requires slightly smaller BKZ blocksizes to recover the secret.
Worth noting, in the regime of too many hints, where mere basis construction
dominates the runtime, the approach from Section 3 is, however, still preferable.

6 Runtime Comparison with DDGR

Instead of using Construct-Sublattice for constructing a basis for ΛLWE
H,k ⊂

ΛLWE
H (or ΛLWE

M,H,k ⊂ ΛLWE
M,H), we could also use the following slight modification
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of [DDGR20] for integrating perfect hints. Using the algorithm from [DDGR20,
Section 4.1] for computing a lattice slice, we first compute a basis for Λ1 :=
ΛLWE
H,k ∩ e⊥m+1, and then iteratively compute bases for Λi := Λi−1 ∩ e⊥m+i, with

i = 2, . . . , k, until we obtain a basis for Λk. Since

ΛLWE
H,k = ΛLWE

H ∩ e⊥m+1 ∩ . . . ∩ e⊥m+k = Λk,

we obtain a basis for ΛLWE
H,k .

While this approach runs in polynomial time, it is unfortunately too slow in
practice, because it is sequential. This is, in fact, precisely the issue that renders
DDGR’s implementation impractical in cryptographic dimensions.

Another inferior approach. As another alternative to compute a basis for
ΛLWE
H,k , we could also use the following standard approach for computing the

intersection of two lattices. Let d := m+k+n+1, define U := e⊥m+1∩. . .∩e⊥m+k ⊂
Rd, and let BU ∈ Z(d−k)×d be a basis matrix for the linear subspace U . (For
instance, BU may be obtained by taking the identity matrix Id, and removing
the (m+ 1)-th to (m+ k)-th rows.) We construct the following lattice basis(

BLWE
H BLWE

H

BU 0

)
∈ Z(2d−2k)×2d,

and compute its Hermite normal form (HNF). By a simple dimension counting
argument, it is easy to see that the HNF then has the following shape(

B1 B2

0d−k×d B3

)
,
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where B1 is a basis matrix of L(BLWE
H ) + L(BU ), and – more importantly – B3

is a basis matrix of ΛLWE
H ∩ U = ΛLWE

H,k .

However, this approach requires arithmetic on a 2(n + m + 1)-dimensional
lattice, whereas Construct-Sublatticemainly works on a (n+1)-dimensional
lattice. Therefore, it is also much slower than our approach.

As Figures 2 and 3 show, our new algorithm greatly improves over the runtime
of DDGR’s algorithm. For instance, to integrate 30 perfect hints into a Kyber-
512 instance, the DDGR algorithm requires more than 31 hours, whereas ours
requires less than 20 seconds.8

7 Experimental Results

We provide experimental data for our implementation of the mod-q hint ap-
proach as described Section 3, and the implementation of Construct-Sublattice
(Algorithm 1) from our perfect hint approach from Section 4.

Setup. In our experiments, we took hints vi = (vi, ℓi), respectively vi =
(vi, ℓi, q), where vi is drawn uniformly at random from {0, . . . , q}n. In the mod-q
hint setting, we generated 16 random keys per scheme. In the perfect hint set-
ting, we generated 32 random keys per scheme (with the exception of Dilithium,
where we used only 16 keys.)

Worth noting, we did not implement Construct-Sublattice exactly as in
the pseudocode from Algorithm 1, but added a minor tweak: Instead of directly
LLL-reducing the matrix (H̃ | In+1) (see Step 2 of the algorithm), we first re-
moved for every perfect hint one column from the (n + 1)-dimensional identity
matrix. (In other words, we projected the lattice ΛLWE

H,k against some more stan-
dard basis vectors.) Curiously, we observed that this slightly worsens the gap of
the lattice (the dimension remains unchanged), but BKZ finds the LWE secret at
slightly smaller blocksizes. Additionally, this decreases the practical runtime of
LLL, since the lattice lies in a smaller vector space. We leave it as an interesting
open question to further study this BKZ behavior.

Hardware. We performed all our experiments on an AMD EPYC 7763 with 1
TB of RAM, as well as on an AMD EPYC 7742 with 2 TB of RAM. Each EPYC
is equipped with 128 physical cores that with parallelization give 256 threads.
We used the high number of cores only to run multiple experiments in parallel,
but we did not use parallelism do speed up any single experiment.

8 We ran both the DDGR algorithm and Construct-Sublattice in Sage9.7, using
the latest patch to speed up fpylll, see https://github.com/fplll/fpylll/pull/

239.
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Results. Our results are depicted in Figures 4 to 13. In the mod-q setting,
BKZ blocksize 2 denotes LLL reduction. We see, e.g., that for Kyber-512 with
k ≥ 449 all instances could be solved via LLL, determining our too many hints
regime. In the perfect hint setting, we denote by blocksize 0 that after running
Construct-Sublattice we could already directly read off our secret vector,
without further reduction of the resulting hint lattice ΛLWE

H,k . We see, e.g., that we
are in the too many hints regime for perfect hints for Kyber-512 with k ≥ 233.

We choose a different format for displaying our Dilithium perfect hint re-
sults, because we were unable to run the BKZ algorithm on the hint lattice
ΛLWE
H,k for Dilithium, since we always encountered the infamous infinite loop

in babai error. Nevertheless, we still provide the data points, at which we could
already read off the LWE secret from the output of Construct-Sublattice.

As expected, Heuristic 4.6 was valid in every experiment.
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