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Abstract. The Ascon cipher suite, offering both authenticated encryp-
tion with associated data (AEAD) and hashing functionality, has recently
emerged as the winner of the NIST Lightweight Cryptography (LwC)
standardization process. The AEAD schemes within Ascon, namely As-
con-128 and Ascon-128a, have also been previously selected as the pre-
ferred lightweight authenticated encryption solutions in the CAESAR
competition. In this paper, we present a tight and comprehensive security
analysis of the Ascon AEAD schemes within the random permutation
model. Existing integrity analyses of Ascon (and any Duplex AEAD
scheme in general) commonly include the term DT/2c, where D and
T represent data and time complexities respectively, and c denotes the
capacity of the underlying sponge. In this paper, we demonstrate that
Ascon achieves AE security when T is bounded by min{2κ, 2c} (where
κ is the key size), and DT is limited to 2b (with b being the size of the
underlying permutation, which is 320 for Ascon). Our findings indicate
that in accordance with NIST requirements, Ascon allows for a tag size
as low as 64 bits while enabling a higher rate of 184 bits, surpassing the
recommended rate.
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1 Introduction

The Sponge function, initially proposed by Bertoni et al. at the ECRYPT Hash
Workshop [3], serves as a mode of operation for variable output-length hash
functions and has gained significant popularity. This is evident from the nu-
merous Sponge-based constructions submitted in the NIST SHA-3 competition,
with Keccak [7] being the notable winner. At a high level, a Sponge construction
utilizes a fixed permutation π of size b and a b-bit state, which is divided into a
c-bit capacity and an r := (b− c)-bit rate for the Sponge. The Sponge construc-
tion begins by initializing the state to zero and padding the input message using
a padding function, followed by dividing it into r-bit blocks. Then, the absorp-
tion phase of the Sponge construction commences, where the message is XOR-ed
with the rate part of the sponge while interleaved with applications of π. Once
the absorption phase is complete, the squeezing phase begins. In this phase, the
first r bits of the state are outputted as output blocks, again interleaved with
applications of π.



The Duplex construction [4] is a variant of the Sponge construction and serves
as a widely used approach for constructing authenticated encryption schemes.
The Duplex construction maintains a state between calls and processes input
strings while producing output strings that depend on all previously received
inputs. At a high level, the Duplex mode is a stateful construction that com-
prises an initialization interface and a duplexing interface. Initialization creates
an initial state using the underlying permutation π, and each duplexing call to
π absorbs and squeezes r bits of data. The usage of keyed Duplex approach in
constructing authenticated encryption modes is evident from the numerous sub-
missions in competitions like CAESAR (including the winnerAscon [14,13]) and
the recently concluded NIST LwC competition (with 26 total Duplex-type sub-
missions, notably including the winner Ascon). The security analysis of keyed
Duplex-type AEAD modes involves considering two parameters: the data com-
plexity D (representing the total number of initialization and duplexing calls to
π) and the time complexity T (representing the total number of direct calls to
π).

1.1 Ascon

Ascon was initially introduced as a candidate in Round 1 of the CAESAR
competition [11]. Subsequent versions (v1.1 and v1.2) incorporated minor modi-
fications to the original design (version 1 [14]). The latest version (v1.2 [13]), de-
clared as the winner of the NIST Lightweight Cryptography (LwC) project [20],
includes the Ascon-128 and Ascon-128a authenticated ciphers, as well as the
Ascon-Hash hash function and the Ascon-Xof extendable output function.
All the schemes in the suite ensure 128-bit security and utilize a common 320-
bit permutation internally, enabling the implementation of both duplex-based
AEAD and sponge-based extendable-output hashing with a single lightweight
primitive.

The authenticated encryption mode of Ascon is based on the duplex con-
struction [4], specifically the MonkeyDuplex construction [6]. However, un-
like MonkeyDuplex, Ascon’s mode employs double-keyed initialization and
double-keyed finalization to enhance its robustness. For a detailed description of
the Ascon AEAD mode, please refer to Section 4.

1.2 Existing Security Analysis

It has come to our attention that previous analyses of Ascon predominantly
regard it as a variant of the Duplex construction (as indicated in [13]), with no
specific security analysis dedicated to Ascon available in the literature. Hence,
we briefly discuss the security bounds of generic Duplex constructions here. At a
high level, the Sponge construction is known to achieve 2c/2 bits security, where
c is the capacity of the Sponge. This security level has been extended to its
keyed variations, such as MonkeyDuplex. The first result which indicates that
the duplex-based modes can provide security beyond the birthday bound on the
capacity c, was by Bertoni et al. [5]. However, they could achieve this only when
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the time complexity (roughly, this is the number of permutation computations
an adversary does) remains well below 2c/2. In fact, the dominating term in their
security analysis was

D2 +DT

2c
,

where D is the data complexity and T is the time complexity. In 2014 [16], and
later in 2019 [17], Jovanovic et al. achieve an improved security of the form

(D + T )qd
2c

where qd is the number of decryption queries. Andreeva et al. [2] show that the
time complexity can be made close to 2c/µ where µ is the total multiplicity (i.e.,
the number of queries with a repeated nonce). As the nonce is allowed to repeat
in decryption queries, the µ can be as large as qd (the number of decryption
queries). Hence, their security bound is essentially of the form

qdT

2c
.

Considering full-state keyed Duplex, Daemen et al. [12] establish stronger
bounds for the Duplex mode of operation. These bounds are based on comparing
the Duplex mode to an Ideal Extendable Input Function (IXIF). They also do
this in a multi-user setting and take into account both respectful and misusing
adversaries. The results indicate that the data limit or key could potentially be
increased further. One of the dominating terms in their security bound is LT

2c

where L represents the number of construction queries that have some common
prefix to some prior query. So, an adversary can easily achieve L = qd (the
number of decryption queries) as nonce is allowed to repeat in decryption queries.
So, their bound essentially reduces to qdT

2c .
Recently, Chakraborty et al. [9] introduced a generic AEAD construction

called the Transform-then-Permute (TtP) construction. They demonstrated that
well-known constructions such as the keyed Sponge Duplex construction, Beetle
[8], and SpoC [1] can be viewed as specific examples of this generic construction.
In their work, they provided rigorous proof for a tight security bound of the
TtP construction in the form of µTD

2c + other smaller order terms, where µT is
a parameter defined in their paper [9]. For a special class of TtP constructions
where the decryption feedback function (defined in their paper) is invertible, they
showed that µT = O

(
max{T/2r, T/2τ , T 2/2b}

)
. This result indicates that these

constructions achieve security levels much higher than qdT/2
c when D (data

complexity) is significantly smaller than T (time complexity). Importantly, this
holds true for the upper limits of D and T as specified by the NIST guidelines for
Lightweight Cryptography (LwC). However, for other TtP constructions, such
as the keyed Sponge Duplex and Ascon constructions, where the decryption
feedback function is not invertible, bounding µT was left as an open problem for
future research.

In a concurrent work [18], Mennink and Lefevre also presented a dedicated
security analysis of Ascon. While they focus on a different setting (authenticity
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under nonce misuse and state recovery, multi-user security), they could show the
impact of strengthened initialization and finalization of Ascon in the case of
authenticity under state recovery. However, in the case of conventional single-
user nonce-based authenticity, their bounds reduce to qdT

2c .
As observed, a common constraint in the existing analyses of Ascon, as well

as other Duplex constructions, is the condition DT ≪ 2c, or similar variants
where D may be replaced by qd. It is important to note that no forgery attack
matching this bound has been discovered. Notably, the best-known attack on
Duplex constructions by Gilbert et al. [15] establishes a lower bound of the form
DT ≫ 23c/2.

1.3 Our Contribution

In this paper, motivated by the recently concluded NIST LwC competition, we
try to provide an improved security bound for the Ascon AEAD mode. As
already stated above, previous analyses of Ascon have treated it as a variant of
the Duplex construction, overlooking its unique key robustness features, namely
the double-keyed initialization and double-keyed finalization.

Our analysis establishes a tight security bound, considering the tag size τ
bits, key size κ bits, capacity c bits, and state size b bits. The derived bound is
given by

T

2min{κ,c} +
D

2min{τ,c} +
DT

2b
.

Comparing our result with the recent analysis by Gilbert et al. [15], it becomes
evident that Ascon surpasses other generic Duplex constructions in terms of
security, solidifying its status as a true champion. Notably, our proof leverages
the double-keyed finalization process of Ascon during tag generation, which
plays a vital role in achieving such a tight and improved security bound. It should
be emphasized that our proof methodology is not applicable to classical sponge
constructions, as they do not incorporate a key at the final stage. Furthermore,
the recent attack by Gilbert et al. [15] conclusively demonstrates that Ascon
consistently offers higher security than other sponge-based modes of operation.

Lastly, in the context of NIST LwC requirements (D ≤ 253, T ≤ 2112,
κ ≥ 128, τ ≥ 64), our conclusion is that a capacity size of c = 136 (given
b = 320) and τ = 64 is sufficient to ensure adequate security for Ascon. This
choice enables a higher rate of 184 bits, thereby significantly enhancing efficiency
without compromising security within the random permutation model. We be-
lieve this represents a substantial improvement compared to existing analyses.

1.4 Organization of the Paper

In section 2, we define the basic notations used in the paper. We give a brief
description of the AEAD security in the random permutation model, and also
briefly describe the H-coefficient technique. Additionally, in Section 3, we elab-
orate on function graph structures that play a crucial role in our subsequent
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analyses. Moving forward, in section 4, we present a detailed examination of
the Ascon AEAD scheme. We present our primary result, the security bound
of Ascon, and establish its significance in relation to the NIST LwC criteria.
To support our claims, we provide an interpretation of our findings within the
context of the NIST guidelines. In section 5, we present a rigorous proof of our
main theorem, using the H-coefficient technique. Finally, in Section 6, we discuss
the tightness of our bound, and conclude the paper.

2 Preliminaries

2.1 Notations

For all a ≤ b ∈ N, let [b] and [a, b] denote the sets {1, 2, . . . , b} and {a, a+1, . . . , b}
respectively. For n, k ∈ N, such that n ≥ k, we define the falling factorial (n)k :=
n(n− 1) · · · (n− k + 1). Note that (n)k ≤ nk.

Let {0, 1}n denote the set of bit strings of length n, and {0, 1}+ denote the
set of bit strings of arbitrary length. Let λ denote the empty string and we write
{0, 1}∗ = {λ} ∪ {0, 1}+. For any bit string x = x1x2 · · ·xk ∈ {0, 1}k of length
k, and for n ≤ k, we write ⌈x⌉n := x1 · · ·xn (resp. ⌊x⌋n := xk−n+1 · · ·xk) to
denote the most (resp. least) significant n bits of x. We use ∥ to denote the bit
concatenation operation. We also abuse the notation (x1, . . . , xr) to denote the
bit concatenation operation x1∥ · · · ∥xr where xi ∈ {0, 1}∗. So, if V := x∥z :=
(x, z) ∈ {0, 1}r × {0, 1}c then ⌈V ⌉r = x and ⌊V ⌋c = z. We use ⊕ to denote
bitwise xor operation.

Padding and Parsing a Bit String. Let r > 0 be an integer and X ∈ {0, 1}∗.
Let d = |X| mod r (the remainder while dividing |X| by r).

pad1(X) =

{
λ if |X| = 0

X∥1∥0r−1−d otherwise

and
pad2(X) = X∥1∥0r−1−d.

Given X ∈ {0, 1}∗, let x = ⌈ |X|+1
r ⌉. We define (X1, . . . , Xx)

r←∗ X where
X1∥ · · · ∥Xx = X, |X1| = · · · = |Xx−1| = r and

Xx =

{
λ if |X| = r(x− 1)

⌊X⌋|X|−r(x−1) otherwise
.

2.2 Authenticated Encryption with Associated Data: Definition
and Security Model

An authenticated encryption scheme with associated data functionality (called
AEAD in short), is a tuple of algorithms AE = (E,D), called the encryption and
decryption algorithms, respectively, and defined over the key space K, nonce
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space N , associated data space A, message space M, ciphertext space C, and tag
space T , where

E : K ×N ×A×M→ C × T and D : K ×N ×A× C × T →M∪ {rej}.

Here, rej indicates the tag-ciphertext pair is invalid and hence rejected. Further,
we require the correctness condition: D(K,N,A,E(K,N,A,M)) = M for any
(K,N,A,M) ∈ K×N ×A×M. For all key K ∈ K, we write EK(·) and DK(·) to
denote E(K, ·) and D(K, ·), respectively. In this paper, we have K = {0, 1}κ,N =
{0, 1}ν , T = {0, 1}τ and A,M = C ⊆ {0, 1}∗.

AEAD Security in the Random Permutation Model.

For a finite set X , X $← X denotes the uniform and random sampling of X from
X , and X

wor← X denotes without replacement sampling of X from X . Let Perm(b)
denote the set of all permutations over {0, 1}b and Func(N × A ×M,M× T )
denote the set of all functions from (N,A,M) to (C, T ) such that |C| = |M |.
Let

– Π
$← Perm(b),

– Γ
$← Func(N ×A×M,M×T ), and

– rej denotes the degenerate function from (N ,A,M, T ) to {rej}.
We use the superscript ± to denote bidirectional access to Π.

Definition 1. Let AEΠ be an AEAD scheme based on the random permuta-
tion Π, defined over (K,N ,A,M, T ). The AEAD advantage of an adversary A
against AEΠ is defined as

Advaead
AEΠ

(A ) :=

∣∣∣∣∣∣∣ Pr
K

$←K
Π±

[
A EK,DK,Π

±
= 1

]
− Pr

Γ,Π±

[
A Γ,rej,Π±

= 1
]∣∣∣∣∣∣∣ .

Here A EK,DK,Π
±
denotes A ’s response after its interaction with EK, DK, and Π±

respectively. Similarly, A Γ,rej,Π±
denotes A ’s response after its interaction with

Γ, rej, and Π± respectively.
In this paper, we assume that the adversary is adaptive, that is it neither

makes any duplicate queries nor makes any query for which the response is
already known due to some previous query. Let qe, qd and qp denote the number
of queries to EK,DK and Π± respectively. Let σe and σd denote the sum of
input (associated data and message) lengths across all encryption and decryption
queries respectively. Also, let σ := σe + σd denote the combined construction
query resources.

Remark 1. Here σ corresponds to the online or data complexity, and qp corre-
sponds to the offline or time complexity of the adversary. Any adversary that
adheres to the resource constraints mentioned above is called an (qp, σe, σd)-
adversary.
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2.3 H-coefficient Technique

Consider a deterministic and computationally unbounded adversary A trying
to distinguish the real oracle (say Ore) from the ideal oracle (say Oid). Let
the transcript ω denote the query-response tuple of A ’s interaction with its
oracle. Sometimes, at the end of the query-response phase of the game, if the
oracle chooses to reveal any additional information to the distinguisher, then the
extended definition of the transcript may also include that information. Let Θre

(resp. Θid) denote the random transcript variable when A interacts with Ore

(resp. Oid). The probability of realizing a given transcript ω in the security game
with an oracle O is known as the interpolation probability of ω with respect to
O. Since A is deterministic, this probability depends only on the oracle O and
the transcript ω. A transcript ω is said to be realizable if Pr [Θid = ω] > 0. In
this paper, Ore = (EK,DK,Π

±), Oid = (Γ, rej,Π±), and the adversary is trying
to distinguish Ore from Oid in AEAD sense.

Theorem 1 (H-coefficient technique [21,22]). Let Ω be the set of all re-
alizable transcripts. For some ϵbad, ϵratio > 0, suppose there is a set Ωbad ⊆ Ω
satisfying the following:

– Pr [Θid ∈ Ωbad] ≤ ϵbad;
– For any ω /∈ Ωbad,

Pr [Θre = ω]

Pr [Θid = ω]
≥ 1− ϵratio.

Then for any adversary A , we have the following bound on its AEAD distin-
guishing advantage:

Advaead
Ore

(A ) ≤ ϵbad + ϵratio.

A proof of Theorem 1 can be found in multiple papers including [22,10,19].

2.4 Expected Multicollision in a Uniform Random Sample

Let S := (xi)i∈I be a tuple of elements from a set T . For any x ∈ T , we define
mcollx(S) = |{i ∈ I : xi = x}| (the number of times x appears in the tuple).
Finally, we define multicollision of S as the mcoll(S) := maxx∈T mcollx(S). In
this section, we revisit some multicollision results discussed in [9].

For N ≥ 4, n = log2 N , we misuse the notation a bit, and define

mcoll(q,N) =


3 if 4 ≤ q ≤

√
N

4 log2 q
log2 log2 q if

√
N < q ≤ N

5n
⌈

q
nN

⌉
if N < q.

Lemma 1. [9] Let D be a set of size N ≥ 4, n = log2 N . Given random variables

X1, . . . ,Xq
$← D, we have E [mcoll(X1, . . . ,Xq)] ≤ mcoll(q,N).
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Remark 2. Similar bounds as in the above Lemma 1 can be achieved in the case
of non-uniform samplings. Let Y1, . . . ,Yq

wor← {0, 1}b and define Xi := ⌈Yi⌉r for
some r < b. If we take N = 2r for this truncated random sampling, then we have
the same result as above for multicollisions among X1, . . . ,Xq.

We also have the following general result:

Lemma 2 (general multicollision bound). Let A be an adversary which
makes queries to a b-bit random permutation Π± and τ -bit to τ -bit random
function Γ. Let (X1,Y1), . . . , (Xq1 ,Yq1) and (Xq1+1,Yq1+1), . . . , (Xq1+q2 ,Yq1+q2)
be the tuples of input-output corresponding to Π and Γ respectively obtained by
the A . Let q := q1 + q2 ≤ 2b and Zi := truncτ (Xi)⊕ truncτ (Yi) for i ∈ [q1] and
Zi := (Xi⊕Yi) for i ∈ [q1 +1, q] where truncτ represents some τ -bit truncation.
For τ ≥ 2,

E [mcoll(Zq)] ≤ mcoll(q, 2τ ).

3 Function Graph Structures

3.1 Partial Function Graph

A partial function L : {0, 1}b 99K {0, 1}c is a subset L = {(p1, q1), . . . , (pt, qt)} ⊆
{0, 1}b×{0, 1}c with distinct pi values. We call it an injective partial function if
qi’s are also distinct. We define

domain(L) = {pi : i ∈ [t]}, range(L) = {qi : i ∈ [t]}.

We write L(pi) = qi and for all p ̸∈ domain(L), L(p) = ⊥ (a special symbol to
mean that the value is undefined).1 For f : {0, 1}b 99K {0, 1}b, c ∈ [b − 1], we
define ⌊f⌋c : {0, 1}b 99K {0, 1}c such that ⌊f⌋c(x) = ⌊f(x)⌋c whenever f(x) ̸= ⊥.

Definition 2. Let L : {0, 1}b 99K {0, 1}c for r := b − c > 0. We associate a
labeled directed graph G := GL, called (labeled) partial function graph, over the
set of vertices

V := ⌊domain(L)⌋c ∪ range(L) ⊆ {0, 1}c

with the label set {0, 1}r and the following labeled edge set

E(G) := {u x−→ v | L(x∥u) = v}.

We call it (labeled) function graph if L is known to be a function.

We write a walk
u0

x1−→ u1
x2−→ · · · xl−1−→ ul−1

xl−→ ul

simply as u0
xl

−→ ul. It is easy to see that if u
x−→ v1 and u

x−→ v2 then v1 = v2
(this follows from the fact that L is a partial function).

1 A function is a partial function for which every output is defined.
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3.2 Sampling Process of a Labeled Walk

Let f : {0, 1}b 99K {0, 1}b, x = xk be a k-tuple label, k ≥ 0, and z0 ∈ {0, 1}c. We
now describe a process that extends the partial function f to f ′ so that there is
a walk

z0
x1−→ z1

x2−→ · · · xk−→ zk

in the graph G⌊f⌋c . The process we define below is denoted as

Rand Extnf (z0, x
k),

which randomly extends the elements of the partial function f whenever required
to complete the walk.

Rand Extnf (z0, x
k):

Initialize f ′ = f .
For j = 1 to k:

1. vj = f ′(xj , zj−1).
2. If vj = ⊥ then

– vj
$← {0, 1}b and

– f ′ ← f ′ ∪ {(xj∥zj−1, vj)}
3. zj = ⌊vj⌋c.

The described process provides a clear and effective method for successfully
completing a labeled walk. It operates based on a simple rule: when the current
value falls within the defined domain, we utilize the corresponding output to
progress further in the walk. In cases where the current value is outside the
domain, we employ a random sampling approach to determine the next output.
This ensures the completion of the walk.

3.3 Partial XOR-Function Graph

Now, consider a partial function P : {0, 1}b 99K {0, 1}b and r ∈ [b−1]. We define
a new partial function P⊕ : {0, 1}b×{0, 1}r 99K {0, 1}b as follows. Let u = u′∥u′′
where u′ ∈ {0, 1}r. Now,

P⊕(u, x) = P((u′ ⊕ x)∥u′′).

Note that the above may not be defined, in which case we define the output ⊥ as
before. We similarly define partial function graph G⊕ := GP

⊕
with label edges

denoted as u
x−→⊕ v (whenever P⊕(u, x) = v). A walk

u0
x1−→⊕ u1

x2−→⊕ · · ·
xl−1−→⊕ ul−1

xl−→⊕ ul

is denoted as u0
xl

−→⊕ ul. Similar to Rand Extnf Algorithm, we now define
a randomized extension algorithm for P⊕, denoted as xorRand ExtnP(v0, x

k),
v0 ∈ {0, 1}b, xi ∈ {0, 1}r.
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xorRand ExtnP(v0, x
k):

Initilaize P ′ = P.
For j = 1 to k:

1. vj = P ′(vj−1 ⊕ (xj∥0c)).
2. If vj = ⊥ then

– vj
$← {0, 1}b and

– P ′ ← P ′ ∪ {vj−1 ⊕ (xj∥0c), vj)}

After this process, we obtain a modified partial function P ′ : {0, 1}b 99K
{0, 1}b for which we have the following walk:

v0
x1−→⊕ v1

x2−→⊕ · · ·
xk−1−→⊕ vk−1

xk−→⊕ vk

4 Ascon AEAD

In this section, we define the Ascon AEAD [13] construction. Note that the
Ascon AEAD is a simple variation of the Duplex construction. Let b denote the
state size of the underlying permutation Π and 0 < r < b be the number of bits
of associated data/message processed per permutation call. We call r the rate of
the Ascon construction, and c = b− r is called the capacity. Let κ, ν, τ denote
the key size, nonce size, and tag size respectively such that

– τ ≤ κ < c,
– κ+ ν ≤ b,
– κ+ r ≤ b.
We fix an IV ∈ {0, 1}b−κ−ν . The AEAD uses a permutation π (Ascon per-

mutation), modeled to be the random permutation while we analyze its security.

Encryption Algorithm. It receives an input of the form (N,A,M) ∈ {0, 1}ν×
{0, 1}∗ × {0, 1}∗ and a key K ∈ {0, 1}κ. Broadly we divide the encryption al-
gorithm into three phases: (i) initialization, (ii) associated data and message
processing, and (iii) tag generation, run sequentially.

Initialization. In this phase, we first apply the following function

Initπ(K,N) = π(IV ∥K∥N)⊕ (0b−κ∥K) := V0.

Before we process associated data and messages, we first parse them:

(A1, . . . , Aa)
r← pad1(A), (M1, . . . ,Mm)

r← pad2(M).

Note that a can be zero in which case it is parsed as an empty string. But m ≥ 1.
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Associated Data and Message Processing. Using the XOR-function graph
corresponding to the function π⊕, we obtain a walk

V0
A1−→⊕ V1

A2−→⊕ · · ·
Aa−→⊕ Va, Va ⊕ 0∗1

M1−→⊕ Va+1 · · ·
Mm−1−→ ⊕ Va+m−1.

We define the ciphertext as follows:

Ci = ⌈Va+i−1⌉r ⊕Mi, ∀i ∈ [m], C = ⌈C1∥ · · · ∥Cm⌉|M |.

We denote the above process as

AM Procπ(V0, A,M)→
(
C,F := Vt−1 ⊕ (Mm∥0r)

)
.

Tag Generation. Finally, we compute

T := Tagπ(K,F ) = ⌊π
(
F ⊕ (0r∥K∥0c−κ)

)
⌋τ ⊕ ⌊K⌋τ

The Ascon AEAD returns (C, T ).

Remark 3. The Ascon construction uses two different permutations, pa and pb,
where a and b indicate the specific rounds used for the underlying permutation p
(called the Ascon permutation). In the Ascon implementation, pa is employed
during the initialization phase and for tag generation and verification. On the
other hand, pb is utilized for processing associated data, messages, and cipher-
text. For instance, in the Ascon-128 construction, a is set to 12, while b is set
to 6.

When modeling Ascon in the random permutation model, there are two op-
tions: either using the same permutation π = pa = pb, or utilizing independent
permutations π1 and π2. Our analysis focuses on the assumption that the per-
mutations are the same, which is generally more challenging to prove compared
to assuming independent random permutations. A similar analysis (with bounds
of the same order) can be made for the independent random permutation model.

Verification Algorithm. The decryption algorithm performs a verification pro-
cess to ensure the correctness of the ciphertext and tag pair. If the verification
is successful, the algorithm proceeds to generate the corresponding message.
While the details of message computation are omitted in this analysis, readers
can refer to [13] for a comprehensive explanation. It is important to note that
our focus lies primarily on the verification process itself, rather than the spe-
cific steps involved in message computation. On receiving an input of the form
(N,A,C, T ) ∈ {0, 1}ν × {0, 1}∗ × {0, 1}∗ × {0, 1}τ and a key K ∈ {0, 1}κ, the
steps of the verification process is outlined below: .

1. (A1, . . . , Aa)
r← pad1(A) and (C1, . . . , Cl)

r← pad2(C).

11



2. Compute V0 := Initπ(K,N).

3. We compute the walk for the permutation π

V0
A1−→⊕ V1

A2−→⊕ · · ·
Aa−→⊕ Va

4. Let Cl = C ′l∥10∗ for some C ′l (may be the empty string) and |C ′l | = d. Let
za = ⌊Va⌋c.

– Case l = 1: We define F = C ′l ∥ (⌊Va⌋b−d ⊕ 10∗1).

– Case l ≥ 2: We compute

za ⊕ 0∗1
C1−→ za+1

C2−→ · · · Cl−2−→ za+l−2

We define F = C ′l ∥ (⌊π(Cl−1∥za+l−2)⌋b−d ⊕ 10∗).

5. Rejects if T ̸= Tagπ(K,F ), otherwise, it accepts.

Remark 4. τ ≤ κ is necessary to mask the entire tag. κ must also be strictly
lesser than c, since if κ = c, then in the special case when we have only one
message block and no associated data, the keys in the output of the finalization
phase and the input of the finalization phase cancel each other out.

4.1 Security bound of Ascon

Theorem 2 (Main Theorem). Consider a nonce-respecting AEAD adversary
A making qp permutation queries, qe encryption queries with a total number of
σe data blocks, and qd decryption queries with a total number of σd data blocks.
Define σ := σe + σd. Then, we can upper bound the AEAD advantage of A
against Ascon as follows:

AdvAEAD
Ascon (A ) ≤ 2qd

2τ
+

σ2
e

2b
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)(σd + qp)

2c

+
qp + σ

2κ
+

mcoll(qe, 2
τ )qd

2c
+

qeqd + (qe + qd)(σ + qp)

2b

+
mcoll(σ + qp, 2

τ )qd
2κ

+
mcoll(qe, 2

r+c−κ)(σ + qp)

2κ
+

qe(σ + qp)

2b
.

4.2 Interpretation of Theorem 2

We interpret our bound in light of the requirements proposed by NIST for the
LwC competition, and the choices of the parameters, namely rate (and hence
capacity) and tag size.Ascon operates with a state size (size of the permutation)
b = 320 bits. We assume qp ≤ 2112 and rσ ≤ 253 as prescribed by NIST.

We give upper bounds to mcoll(σe, 2
r), mcoll(qe, 2

τ ), and mcoll(σ + qp, 2
τ ),

depending on the choice of r and τ . Note that mcoll(qe, 2
r+c−κ) ≤ mcoll(σe, 2

r),
so we do not need to bound it separately.
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π
IV ∥K∥N

+

0b−k∥K

Initπ(K,N)

V0

⌈V0⌉r

⌊V0⌋c

+

A1

π

⌈V1⌉r

⌊V1⌋c
π

+

Aa

⌈Va−1⌉r

π

⌊Va−1⌋c
Va

⌈Va⌉r

⌊Va⌋c ⊕ 0c−1∥1

+

M1

π

C1

π

⌈Va+1⌉r

⌊Va+1⌋c

+

Mm−1

⌈Vt−2⌉r

π

⌊Vt−2⌋r

Cm−1

+

Mm

⌈Vt−1⌉r
⌈F ⌉r

⌊F ⌋c
⌊Vt−1⌋r

Cm

AM Procπ(V0, A,M)

F

F
an

ou
t

π +

K2

T
+

+

K1K2

F1 r
|

F4 c−κ
|

|
⌊⌋τ

κ−τ
|

τ
|

F2

F3

Tagπ(K,F )

Fig. 1. Encryption inAsconAEAD. The final ciphertext is C = ⌈C1∥ · · · |Cm⌉|M|. Here
t := a+m, K1 = ⌈K⌉κ−τ , K2 = ⌊K⌋τ . The Fanout operation parses F = F1∥F2∥F3∥F4

such that |F1| = r, |F2| = κ − τ , |F3| = τ and |F4| = c − κ. It is easy to follow that
in the decryption protocol, the permutation input generated after processing C1 is
simply Ci∥⌊Va+i−1 ⊕ 0b−1∥1⌋b−r. Similarly after the i-th ciphertext processing where
1 < i ≤ m − 1 , the permutation input is simply Ci∥⌊Va+i−1⌋b−r. For processing the
last block, the |C| − r(m − 1) most significant bits of Mm are calculated using Vt−1

and Cm and then pad2 is applied to determine the remaining bits of Mm. Finally, this
Mm is used in the same way as the encryption protocol to generate F .

First, from the definition of mcoll(q,N), we have

mcoll(σe, 2
r) ≤ 3 ∀r ≥ 128.
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Now, we fix two choices for tag size τ : 64 bits (the minimum tag size required
by NIST) and 128 bits (the tag size recommended by the designers of Ascon).
Again, from the definition of mcoll(q,N), we have

– For τ = 64:

mcoll(qe, 2
τ ) ≤ 4 log2 σ

log2 log2 σ
< 40, and mcoll(σ + qp, 2

τ ) ≤ 5(qp + σ)

2τ
.

Here we assume qp ≫ 2τ .

– For τ = 128:

mcoll(qe, 2
τ ) ≤ 3, and mcoll(σ + qp, 2

τ ) ≤ 4 log2(qp + σ)

log2 log2(qp + σ)
< 75.

So, if r ≥ 128, τ = 64, we have

AdvAEAD
Ascon (A ) ≤ 2qd

2τ
+

σ2
e

2b
+

σd(qp + σd)

2b
+

3(σd + qp)

2c
+

40qd
2c

+
4(qp + σ)

2κ
+

qeqd + 2(qe + qd)(σ + qp)

2b
+

5(qp + σe)qd
2κ+τ

= O(
qd
2τ

) +O(
σqp
2b

) +O(
qp
2κ

) +O(
qp
2c

)

(assuming σ ≤ qp).

If r ≥ 128, τ = 128, we have

AdvAEAD
Ascon (A ) ≤ 2qd

2τ
+

σ2
e

2b
+

σd(qp + σd)

2b
+

3(σd + qp)

2c
+

3qd
2c

+
4(qp + σ)

2κ
+

qeqd + 2(qe + qd)(σ + qp)

2b
+

75qd
2κ

= O(
qd
2τ

) +O(
σqp
2b

) +O(
qp
2κ

) +O(
qp
2c

).

Thus, in terms of order, a tag size of 64 bits yields the same security as a tag
size of 128 bits. Given that the key size κ is at least 128 bits (required by NIST),
we can see that Ascon is secure even when c = 136 (one byte larger than the
key size), and τ = 64. This implies a rate of 184 bits.

5 Proof of Theorem 2

5.1 Description of the Real World

The real-world samples K
$← {0, 1}κ and a random permutation Π. All queries

are then responded to honestly following Ascon AEAD as defined above (in-
cluding direct primitive queries to Π). A transcript in the real world would be
of the form

Θre,on =
(
(Ni,Ai,Mi,Ci,Ti)i∈[qe], (N′i,A

′
i,C
′
i,T
′
i,M

′
i)i∈[qd], P

)
14



where P represents the query responses for primitive queries (represented in
terms of the partial function for Π). When the i-th decryption query is rejected
we write M ′i = rej (we keep this as one of the necessary conditions for a good
transcript in the ideal world). After all queries have been made, all inputs-
outputs used in Π for all encryption and decryption queries have been included
in the offline transcript. Let Pfin denote the extended partial function and clearly,
all encryption and decryption queries are determined by Pfin. Note that the key
K is also determined from the domain of Pfin. It is implicitly understood that
the domain and range elements of Pfin are given in order of the execution of the
underlying permutation to compute all encryption and decryption queries. Let

Θre =
(
(Ni,Ai,Mi,Ci,Ti)i∈[qe], (N′i,A

′
i,C
′
i,T
′
i,M

′
i)i∈[qd], Pfin

)
denote the extended real world transcript. For any real world realizable transcript
θ =

(
(Ni, Ai,Mi, Ci, Ti)i∈[qe], (N ′i , A

′
i, C
′
i, T
′
i ,M

′
i)i∈[qd], Pfin

)
,

Pr(Θre = θ) = Pr(Pfin ⊆ Π) = 1/(2b)|Pfin|

5.2 Description of the Ideal World

Now we describe how the ideal oracle behaves with the adversary A . This de-
scription consists of two primary phases: (i) the online phase, which encompasses
the actual interaction between the adversary and the ideal oracle, and (ii) the
offline phase, which occurs after the online phase and involves the ideal oracle
sampling intermediate variables to ensure compatibility with the Ascon con-
struction.

The offline phase is further segmented into several stages, each dependent on
events defined over the preceding stages. In the event of a bad event occurring
at any stage, the ideal oracle has the option to either abort or exhibit arbitrary
behavior. To effectively analyze the situation, we aim to establish an upper bound
on the probability of all such bad events. Consequently, at any given stage, we
assume that all prior bad events have not occurred. To simplify notation, we
utilize the same notations for the transcripts in both the real and ideal worlds.

Online Phase. The adversary can make three types of queries in an interleaved
manner without any repetition: (i) encryption queries (ii) decryption queries, and
(iii) primitive queries.

– On i-th Encryption Query (Ni,Ai,Mi), ∀i ∈ [qe], respond randomly:

Ci
$← {0, 1}|Mi|, Ti

$← {0, 1}τ , return(Ci,Ti).

– On i-th Decryption Query (N′i,A
′
i,C
′
i,T
′
i), i ∈ [qd], reject straight-

away: Ideal oracle returns rej for all decryption queries (here we assume that
the adversary does not make any decryption query that is obtained from a
previous encryption query).
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– On i-th Primitive Query (Qi, diri) ∈ {0, 1}b × {+1,−1}, i ∈ [qp], re-
spond honestly: We maintain a list P of responses of primitive queries,
representing the partial (injective) function of a random permutation Π. Ini-
tially, P = ∅.
1. If diri = +1, we set Ui = Qi. Let Vi

$← {0, 1}b \ range(P), P ← P ∪
{(Ui,Vi)}, return Vi.

2. If diri = −1, we set Vi = Qi. Let Ui
$← {0, 1}b \ domain(P), P ← P ∪

{(Ui,Vi)}, return Ui.

After all queries have been made we denote the online transcript (visible to
the adversary) as

Θid,on =
(
(Ni,Ai,Mi,Ci,Ti)i∈[qe], (N′i,A

′
i,C
′
i,T
′
i, rej)i∈[qd], P

)
Bad Event. We set bad1 = 1, if

(Ni,Ai,Ci,Ti) = (N′j ,A
′
j ,C
′
j ,T
′
j), i ∈ [qe], j ∈ [qd]

for which the encryption query is made later. It is important to note that the
adversary is not allowed to make a decryption query that matches a previous
encryption query. However, there is a possibility that a decryption query acciden-
tally matches an encryption query made subsequently. This situation is referred
to as a “bad event” and is of concern. Since the adversary has the capability to
make nonce-respecting encryption queries only, we can establish an upper bound
for the probability of bad1 as given in the Lemma below. Although the proof for
this is omitted here, it can be straightforwardly derived from the description of
the ideal world for encryption queries (by looking at the randomness of the tag
values).

Lemma 3. Pr(bad1 = 1) ≤ qd
2τ

.

Offline Phase. The offline phase is divided into three stages, performed se-
quentially: (i) setting internal states of encryption queries, (ii) setting internal
states of decryption queries, and (iii) sampling a key, and verifying compatibility
with the online phase.

First, we set the input-output pairs for all permutations used in processing
associated data and message part of each encryption query. For i ∈ [qe] (i.e., for
i-th encryption query) we perform the following:

1. We first parse all data we have in the online transcript.

(Ai,1, . . . ,Ai,ai
)

r← pad1(Ai)

(Mi,1, . . . ,Mi,mi
)

r←∗ Mi

(Ci,1, . . . ,Ci,mi
)

r←∗ Ci
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2. Let ti = ai +mi, di = |Mi,mi
| = |Ci,mi

|. We now sample

Vi,0, . . . ,Vi,ai−1
$← {0, 1}b

Zi,ai , . . . ,Zi,ti−1
$← {0, 1}c, δ∗i

$← {0, 1}r−di

The values of Vi,j would determine all inputs and outputs for associate data
processing. Similarly, Ci,Zi,j , δ

∗
i would determine the input and outputs for

message processing.

3. We now set all inputs and outputs of the permutation used in associate data
and message processing. Note that while ai = 0 is possible, mi ≥ 1.

If ai > 0, we define the following:
– Ui,j = Vi,j−1 ⊕ (Ai,j∥0c), ∀j ∈ [ai].

– Vi,ai = (Ci,1 ⊕Mi,1)∥Zi,ai .

If mi ≥ 2:
– Ui,ai+1 = Ci,1∥(Zi,ai

⊕ 0c−11).

– Ui,ai+j = Ci,j∥Zi,ai+j−1, 2 ≤ j ≤ mi − 1.

– Vi,ai+j = (Ci,j+1 ⊕Mi,j+1)∥Zi,ai+j−1, ∀j ∈ [mi − 2].

– Vi,ti−1 = (Ci,mi ⊕Mi,mi)∥δ∗i ∥Zi,ti−1.

– Fi = Ci,mi
∥δ∗i ∥Zi,ti−1.

Otherwise:
– Fi = Ci,m1∥δ∗i ∥(Zi,ai ⊕ 0c−11).

We define PE to be the partial function mapping Ui,j to Vi,j for all i ∈ [qe],
j ∈ [ti − 1], provided all Ui,j ’s are distinct. In this case, it is easy to see that

Vi,0
Ai,1−→⊕ Vi,1

Ai,2−→⊕ · · ·
Ai,ai−→⊕ Vi,ai

;Vi,ai
⊕0b−11 Mi,1−→⊕ Vi,ai+1 · · ·

Mi,mi−1−→ ⊕ Vi,ti−1.

Moreover, PE would be an injective partial function if Vi,j ’s are all distinct.

Bad Event: PE is Not an Injective Partial Function. We set

1. bad2 = 1 if for some (i, j) ̸= (i′, j′), either Ui,j = Ui′,j′ or Vi,j = Vi′,j′ ,
2. bad3 = 1 if for some i ̸= i′ ∈ [qe], Fi = Fi′ (if this happens then it would

force Ti = Ti′ to hold).

Lemma 4. Pr(bad2 = 1 ∨ bad3 = 1) ≤ σ2
e

2b
.

Proof. The proof of the above statement is straightforward as it is easy to see
that Vi,j ’s are randomly sampled and Ui,j ’s are defined through a bijective map-
ping of Vi,j−1 values. The same applies to Fi values. Given that we have at most(
σe

2

)
choices for inputs and outputs, we get the above bound by simply using the

union bound. □
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Contingent on the condition that none of the aforementioned bad events
occur, we would like to set the input-output pairs for all permutations used in
associated data and ciphertext processing for all decryption queries. Here, we
only use P to run the randomized extension. Later, we set a bad event if it is
not disjoint (both from the domain and the range) with PE. This would ensure
the compatibility of P1 ⊔ PE (where P1 is the randomized extension of P) and
would also help later in upper bounding the forging probability of a decryption
query. For i ∈ [qd] (i.e., for the i-th decryption query) with ti ≥ 2, we perform
the following:

We first parse all data as we have done for encryption queries:

(A′i,1, . . . ,A
′
i,a′

i
)

r← pad1(A
′
i)

(C′i,1, . . . ,C
′
i,ci)

r←∗ C′i

Let t′i = a′i + ci, d
′
i = |Ci,ci |. Now, we define pi indicating the length of the

longest common prefix of the i-th decryption query and an encryption query.

Definition of pi, i ∈ [qd].

1. If there does not exist any j ∈ [qe] such that Nj = N′i, we define pi = −1.
2. Otherwise, there exists a unique j for which Nj = N′i (since the adversary

is nonce-respecting and hence every nonce in encryption queries is distinct).
Define pi denote the length of the largest common prefix of
– (A′i,1, . . . , (A

′
i,a′

i
, ∗),C′i,1, . . . ,C′i,ci) and

– (Aj,1, . . . , (Aj,aj
, ∗),Cj,1, . . . ,Cj,mi

).
Here ∗ is used to distinguish associate data blocks and ciphertext blocks.

Now, for each i ∈ [qd], depending on the value of pi, we perform the following:

Associated Data and Ciphertext Processing.

1. For i = 1 to qd with pi = −1:
– If N ′i = N ′j for some j ∈ [i− 1], V ′i,0 := V ′j,0. Otherwise, V′i,0

$← {0, 1}b.
– If a′i > 0, run xorRand ExtnP (V′i,0, (A

′
i,1, . . . ,A

′
i,a′

i
)) to obtain a walk

V′i,0
A′
i,1−→⊕ V′i,1

A′
i,2−→⊕ · · ·

A′
i,a′

i−→⊕ V′i,a′
i
.

– If ci > 1, run Rand ExtnP (V′i,ai
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−1) to obtain a walk

V′i,a′
i
⊕ 0∗1

C′
i,1−→ V′i,a′

i+1

C′
i,2−→ · · ·

C′
i,ci−1−→ V′i,a′

i+ci−1.

2. For i = 1 to qd with 0 ≤ pi ≤ a′i:
– V′i,pi

:= Vj,pi
, where j ∈ [qe] such that N ′i = Nj .

– If a′i > pi, run xorRand ExtnP (V′i,pi
, (A′i,pi+1, . . . ,A

′
i,a′

i
)) to obtain a walk

V′i,pi

A′
i,pi+1−→ ⊕ V′i,pi+1

A′
i,pi+2−→ ⊕ · · ·

A′
i,a′

i−→⊕ V′i,a′
i
.
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– If ci > 1, run Rand ExtnP (V′i,ai
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−1) to obtain a walk

V′i,a′
i
⊕ 0∗1

C′
i,1−→ V′i,a′

i+1

C′
i,2−→ · · ·

C′
i,ci−1−→ V′i,a′

i+ci−1.

3. For i = 1 to qd with a′i < pi < ti:
– V′i,pi

:= Vj,pi
, where j ∈ [qe] such that N ′i = Nj .

– If pi < ti − 1, run Rand ExtnP (V′i,pi
,C′i,pi−a′

i+1∥ . . . ∥C′i,ci−1) to obtain a

walk

V′i,pi

C′
i,pi−a′

i
+1

−→ V′i,pi+1

C′
i,pi−a′

i
+2

−→ · · ·
C′
i,ci−1−→ V′i,a′

i+ci−1.

4. For i = 1 to qd with pi = ti:
– V′i,a′

i+ci−1 := Vj,a′
i+ci−1, where j ∈ [qe] such that N ′i = Nj .

For all the cases above, we define

F′i =

{
C′i,ci∥10

∗∥⌊V′i,a′
i+ci−1⌋c if ci ≥ 2

C′i,ci∥10
∗∥(⌊V′i,a′

i+ci−1⌋c ⊕ 0c−11) if ci = 1
.

Note that for each i ∈ [qd], P is updated by both the randomized extension
algorithms, and although we start with a permutation, the resulting extended
function P1 need not be injective.

Bad Event: P1 is Not an Injective Partial Function. We define bad4 =
1 if there exist (X,Y ) and (X ′, Y ′) in the set P1 such that Y = Y ′. It is important
to note that P is an injective partial function, and thus this bad event can only
occur when at least one of the values Y or Y ′ is obtained during the offline
phase. Considering that both inputs and outputs are uniformly sampled, the
probability of bad4 can be straightforwardly bounded using the union bound.

Lemma 5. Pr(bad4 = 1) ≤ σd(qp + σd)

2b
.

Bad Event (Permutation Compatibility of PE and P1). We now set
bad5 = 1 if

domain(P1) ∩ domain(PE) ̸= ∅ or range(P1) ∩ range(PE) ̸= ∅.

Given that this bad event does not hold, PE ⊔ P1 is an injective partial function
that is desired for a random permutation.

Lemma 6. Pr(bad5 = 1) ≤ mcoll(σe, 2
r)× (σd + qp)

2c
.

Proof. Let ρ1 (and ρ2) denote the multicollision on the values of ⌈x⌉r, for all
x ∈ domain(PE) (and for all x ∈ range(PE) respectively). Then, by the random-
ness of the randomized extension process and randomized xor-extension process,
Pr(bad5 = 1 | max{ρ1, ρ2} = ρ) ≤ ρ(σd + qp)/2

c. Hence, using the expectation
of max{ρ1, ρ2}, and applying Lemma 1 and Remark 2, we get the above bound.
□
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Bad Event (Correctly Forging). We now set bad events whenever we
have a correct forging in the ideal world based on the injective partial function
P2 := P1 ⊔ PE constructed so far. We set bad6 = 1 if

(F′i,T
′
i) = (Fj ,Tj), i ∈ [qd], j ∈ [qe].

This is similar to bad3 as this would force a decryption query to be valid.

Lemma 7. Pr(bad6 = 1) ≤ mcoll(qe, 2
τ )qd

2c
.

Proof. We divide this into two cases. First, consider pi = t′i − 1 and T′i = Tj .
Then F′i ̸= Fj , and hence bad6 does not occur.

Next, we assume pi ̸= t′i−1. Let ρ3 denote the number of multicollision of Tj

values. By using the randomness of Zj,ti−1 and using the multicollision we have,
Pr(bad6 = 1 | ρ3 = ρ) ≤ ρqd

2c . Hence, using the expectation of ρ3, and applying
Lemma 1, we have the above bound. □

We also have to consider some other ways to become a valid forgery. Now,
we reach the time to sample the key

K = (K1,K2)
$← {0, 1}κ, K2 ∈ {0, 1}τ .

Let
J = {j ∈ [qd] : N

′
j ̸= Ni ∀i ∈ [qe]}.

Now, we can define the input-outputs for the underlying permutation used in
the initialization phase as follows:

1. For all i ∈ [qe], Ii := IV ∥K∥Ni, Oi := Vi,0 ⊕ 0b−κ∥K,

2. For all j ∈ J , I′j := IV ∥K∥N′j and O′j := V′j,0 ⊕ 0b−κ∥K.

3. For all other j ∈ [qd], there exists i ∈ [qe] such that N′j = Ni, and we define
I′j := Ii, O

′
j := Oi.

Define Pinit =
(
(Ii,Oi)i∈[qe], (I′j ,O

′
j)j∈J

)
.

Bad Event (Permutation Compatibility of Pinit and P2). We define
bad7 = 1 if one of the following holds:

1. Ii, I
′
j ∈ domain(P2) for some i ∈ [qe], j ∈ [qd].

2. Oi = O′j for i ∈ [qe] and j ∈ [qd] such that Ni ̸= N′j .
3. Oi,O

′
j ∈ range(P2) for some i ∈ [qe], j ∈ [qd].

Once again, if this bad event does not hold, P3 := P2⊔Pinit is an injective partial
function. By using the randomness of K, Vi,0 and V′i,0 we can easily bound the
probability of bad7 as stated below.

Lemma 8. Pr(bad7 = 1) ≤ qp + σ

2κ
+

qeqd + (qe + qd)(σ + qp)

2b
.
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Now, we settle tag computation for all encryption queries. For all i ∈ [qe], we

define Xi := Fi ⊕ 0r∥K∥0c−κ, Yi := αi∥(Ti ⊕K2), where αi
$← {0, 1}b−τ . Define

Ptag =
(
(Xi,Yi)i∈[qe]

)
.

Bad Event (Permutation Compatibility of Ptag and P3). We define
bad8 = 1 if either of the following holds:

1. domain(Ptag) ∩ domain(P3) ̸= ∅, or
2. range(Ptag) ∩ range(P3) ̸= ∅.

Given this bad event does not hold, P4 := P3⊔Ptag is once again an injective
partial function.

Lemma 9. Pr(bad8 = 1) ≤ mcoll(qe, 2
r+c−κ)(σ + qp)

2κ
+

qe(σ + qp)

2b
.

Proof. Let λi = ⌈Fi⌉r||⌊Fi⌋c−κ = ⌈Xi⌉r||⌊Xi⌋c−κ. Let ρ4 denote the multicolli-
sion of λi values. Then, by the randomness of K and using the multicollision,

we have Pr(domain(Ptag) ∩ domain(P3) ̸= ∅ | ρ4 = ρ) ≤ ρ(σ+qp)
2κ . So, using the

expectation of ρ4, and using Remark 2, we have

Pr(domain(Ptag) ∩ domain(P3) ̸= ∅) ≤
mcoll(qe, 2

r+c−κ)(σ + qp)

2κ
.

Using the randomness of αi and K, it can be easily seen that

Pr(range(Ptag) ∩ range(P3) ̸= ∅) ≤
qe(σ + qp)

2b
.

Hence, we get the above bound. □

Finally, we settle the tag computation of all decryption queries and we set bad
whenever a valid forgery occurs. For all i ∈ [qd], we define X

′
i := F′i⊕(0r∥K∥0c−κ).

If X′i ∈ domain(P4) then we define Y′i = P4(X
′
i). Else, Y

′
i

$← {0, 1}b.
Bad Event (Decryption Queries are Not Rejected). We divide this into
two cases depending on whether X′i ∈ domain(P4) or not:

– Let F′i = (β′i∥x′i∥γ′i), where |β′i| = r + κ − τ , |x′i| = τ and |γ′i| = c − κ. We
set bad9 = 1 if

∃i ∈ [qd], X′i ∈ domain(P4) ∧ ⌊P4(X
′
i)⌋τ ⊕K2 = T′i.

If bad9 = 1, then
(i) for some (βj∥xj∥γj) ∈ domain(P4), X

′
i = (βj∥xj∥γj), |βj | = r + κ − τ ,

|xj | = τ and |γj | = c− κ, and
(ii) xj ⊕ yj = T′i ⊕ x′i where yj = ⌊P4(βj∥xj∥γj)⌋τ .
Let ρ5 denote the multicollision on the values of (xa ⊕ ya)a varying over all
elements of P4. Hence, the number of choices of j is at most ρ5. Then, by
the randomness of K,

Pr(bad9 = 1 | ρ5 = ρ) ≤ ρqd
2κ

.

So, using the expectation of ρ5, and applying Lemma 2,we have
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Lemma 10. Pr(bad9 = 1) ≤ mcoll(σ + qp, 2
τ )qd

2κ
.

– X′i /∈ domain(P4). Let yi = ⌊Y′i⌋τ . We set bad10 = 1 if there exists i ∈ [qd]
such that yi ⊕K2 = T′i. Similarly, by the randomness of yi, we have

Lemma 11. Pr(bad10 = 1) ≤ qd
2τ

.

Let bad denote the union of all bad events, namely ∪10i=1badi. By Lemmas 3
through 11, we have shown that

Pr(bad = 1) ≤ 2qd
2τ

+
σ2
e

2b
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)× (σd + qp)

2c
+

qp + σ

2κ

+
mcoll(qe, 2

τ )qd
2c

+
qeqd + (qe + qd)(σ + qp)

2b
+

mcoll(σ + qp, 2
τ )qd

2κ

+
mcoll(qe, 2

r+c−κ)(σ + qp)

2κ
+

qe(σ + qp)

2b
.

If all these bad events do not occur, then all the decryption queries are
correctly rejected for the injective partial function P4.

Let Pfin := P4 ∪
(
(X′i,Y

′
i)i∈[qd]

)
. In the offline transcript, we provide all the

input-outputs of Pfin. Then,

Θid =
(
(Ni,Ai,Mi,Ci,Ti)i∈[qe], (N′i,A

′
i,C
′
i,T
′
i, rej)i∈[qd], Pfin

)
.

Let θ be a good transcript (no bad events occur). Note that we sample either
inputs or outputs of Pfin \ P uniformly. Thus,

Pr(Θid = θ) = Pr(P ⊆ Π)× 2−b(|Pfin|−|P|) ≤ 1/(2b)|Pfin| = Pr(Θre = θ)

By using the H-coefficient technique, we complete the proof of our main theorem.

6 Final Discussion

In this paper, we have proved a bound for Ascon AEAD, the winner of the
recently concluded NIST LwC competition. This mode follows a Sponge type
of construction. Notably, the inclusion of a key XOR operation during the Tag
Generation phase allows us to derive a bound in the following form:

qp
2κ

+
qp
2c

+
qd
2c

+
σ2
e

2b
+

σ2
d

2b
+

qd
2τ

+
qpσd

2b
+

qd
2κ

One can easily see that these bounds are tight:

–
qp
2κ ,

qd
2κ correspond to generic attacks which guess the key in primitive calls

or decryption queries.

– qd
2τ is also a generic attack that guesses the tag in decryption queries.
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– Attacks for the terms
σ2
e

2b
,
qp
2c ,

qd
2c ,

σ2
d

2b
and

qpσd

2b
can be constructed by observing

state collisions in the encryption, primitive and decryption queries.

Further, when τ ≤ min{κ, c}, the obtained security bound can be reduced to

T

2min{κ,c} +
D

2τ
+

DT

2b

where T is the time complexity and D is the data complexity of the adversary.
We would like to again emphasize that our analysis cannot be directly ap-

plied to general Sponge constructions without the double-keyed tag genera-
tion/verification protocol. Exploring the security of sponge constructions and
achieving improved security, considering the gap between the current known
security bounds and recent attacks [15], poses an interesting research problem.

Finally, in the multi-user setting, it is worth noting that our analysis indicates

that the first term in the bound for bad7 (Lemma 8) becomes
µ(qp+σ)

2κ , where
µ denotes the number of users. Therefore, our current result does not directly
extend to the multi-user setting, and a separate analysis would be required to
address it.
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