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Abstract. Chameleon hash (CH) is a trapdoor hash function. Gener-
ally it is hard to find collisions, but with the help of a trapdoor, find-
ing collisions becomes easy. CH plays an important role in converting
a conventional blockchain to a redactable one. However, most of exist-
ing CH schemes are too weak to support redactable blockchains. The
currently known CH schemes serving for redactable blockchains have
the best security of so-called “full collision resistance (f-CR)”, but they
are built either in the random oracle model or rely on heavy tools like
the simulation-sound extractable non-interactive zero-knowledge (SSE-
NIZK) proof system. Moreover, up to now there is no CH scheme with
post-quantum f-CR security in the standard model. Therefore, no CH can
support redactable blockchains in a post-quantum way without relying
on random oracles.

In this paper, we introduce a variant of CH, namely tagged chameleon
hash (tCH). Tagged chameleon hash takes a tag into hash evaluations
and collision finding algorithms. We define two security notions for tCH,
restricted collision resistance (r-CR) and full collision resistance (f-CR),
and prove the equivalence between r-CR and f-CR when tCH works in
the one-time tag mode. We propose a tCH scheme from lattices without
using any NIZK proof, and prove that its restricted collision resistance
is reduced to the Short Integer Solution (SIS) assumption in the stan-
dard model. We also show how to apply tCH to a blockchain in one-time
tag mode so that the blockchain can be compiled to a redactable one.
Our tCH scheme provides the first post-quantum solution for redactable
blockchains, without resorting to random oracles or NIZK proofs. Be-
sides, we also construct a more efficient tCH scheme with r-CR tightly
reduced to SIS in the random oracle model, which may be of independent
interest.

Keywords: Tagged chameleon hash · Lattice-based cryptography ·
Redactable blockchain.

1 Introduction
The chameleon hash (CH) was first introduced by Krawczyk and Rabin [25]
and it can be seen as a trapdoor collision resistant hash function. Informally,
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a CH is associated with a public parameter pp and a trapdoor td. With pp,
one can efficiently evaluate the hash value for any given message, and with
td, one can efficiently find collisions for any target hash value. The fundamental
security requirement of a chameleon hash, namely the collision resistance, assures
that any adversary cannot find collisions without the knowledge of td. Since its
introduction, chameleon hash has developed different security notions, serving
for a wide range of applications. There are mainly four kinds of security notions
for CH, as we summarized below.
Weak collision resistance. The weak collision resistance (w-CR) for CH is the
basic security requirement formalized in [25] and it assures the infeasibility of
finding a collision (h∗,m∗, r∗,m′∗, r′∗) s.t. m∗ ̸= m′∗ but h∗ = Hash(m∗; r∗) =
Hash(m′∗; r′∗) without the trapdoor. The w-CR CH is often used to construct
chameleon signatures [25] and lift non-adaptively secure signatures to adaptively
secure ones [23,28,31]. However, most of CH schemes with w-CR suffer from a so-
called key-exposure problem, that is, anyone can recover the trapdoor after seeing
only one collision with two different messages. A sequence of works [11,4,10] have
identified this problem and proposed different CHs with key-exposure freeness.
However, such CHs are still insufficient for the security requirements asked from
more complicated applications.
Enhanced collision resistance. The enhanced collision resistance (e-CR) was
first proposed by Ateniese et al. [3] as a strengthening of the weak collision
resistance. It assures the infeasibility of finding a collision (h∗,m∗, r∗,m′∗, r′∗) if
no collision for this specific h∗ has ever been revealed to the adversary before. A
chameleon hash with e-CR was suggested to construct a redactable blockchain
[3,24,38], but in fact, e-CR is still not strong enough to deal with attacks on a
redactable blockchain system as we will discuss later.
Standard collision resistance. The standard collision resistance (s-CR) was
introduced by Camenisch et al. [9] and it assures the infeasibility of finding a
collision (h∗,m∗, r∗,m′∗, r′∗) if no collision involving the target message m∗ has
ever been revealed to the adversary before. A CH with s-CR can be used to
construct sanitizable signatures [9] and redactable blockchains. However, s-CR
is still insufficient for the security requirements asked by a redactable blockchain.
Full collision resistance. The full collision resistance (f-CR) was introduced
by Derler, Samelin and Slamanig [13] as a combination of e-CR and s-CR3. It
assures the infeasibility of finding a collision (h∗,m∗, r∗,m′∗, r′∗) if no collision
for the target hash-message pair (h∗,m∗) has ever been revealed to the adversary
before. To the best of our knowledge, f-CR is the strongest one among all security
notions of a chameleon hash, and it is adequate for most of the applications of
chameleon hash, especially for redactable blockchain.

Redactable blockchain is an important application of a chameleon hash and
it has high requirements for CH. Recall that blockchain was originally designed
to satisfy immutability, i.e., the infeasibility of tampering the messages stored in
3 According to [13], e-CR and s-CR are incomparable, which means that neither e-CR

implies s-CR nor s-CR implies e-CR.
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the blocks. However, rigid immutability might not be friendly for healthy devel-
opments of blockchains. For example, once some illegal or malicious information
is stored in blocks, it is hardly to be erased any more. In fact, the European
General Data Protection Regulation (GDPR) has suggested the “right to be for-
gotten”. Therefore, researches on technical tools for changing or deleting sensitive
information stored in blocks draw more attentions in the academic society. This
yields the so-called redactable blockchain. In a redactable blockchain, immutabil-
ity becomes flexible in the sense that a trusted regulation party (or multi-parties)
can use a trapdoor to redact the chain by rewriting blocks in the chain according
to the well-accepted regulation rules. We refer readers to [3] for more discussions
about the necessity of a redactable blockchain.

Given the concept of redactable blockchain, how to do the redactions in
a secure and controlled way has become a critical problem to be solved. As
summarized by [39], there are four mechanisms to achieve redactable blockchains,
that is, the consensus-based, chameleon hash-based, mate-transaction-based, and
pruning-based. For the consensus-based mechanisms, redactions are performed
by on-chain voting, like the hard fork and [14,36]; for the mate-transaction-based
mechanisms, redactions are triggered by a special transaction called the mate-
transaction, like [34,17,16]; for the pruning-based mechanisms, redactions are
made by pruning transactions or blocks when some conditions are satisfied, like
[27,35]. Ateniese et al. [3] suggested to construct redactable blockchains with the
help of CH, that is, the chameleon hash-based redactable blockchains. In this
paper, we focus on this type of redaction mechanism.

Below we briefly describe the suggestion of constructing a redactable blockchain
from a chameleon hash in [3] and show the security requirements of CH.

Redactable blockchain from CH. A conventional blockchain can be con-
verted to a redactable one by replacing one of the hash functions used to con-
struct blocks with a chameleon one [3]. Let H = (Setup,Hash,Adapt) be a
chameleon hash, where the setup algorithm is used to generate the public pa-
rameter and trapdoor, i.e., (pp, td) ← Setup(1κ), the hash algorithm is used
to evaluate the hash value for a given message with some randomness, i.e.,
h ← Hash(m; r), and the adaptation algorithm is used to find a collision with
td, i.e., r′ ← Adapt(td, h,m, r,m′) s.t. h = Hash(m; r) = Hash(m′; r′).

For a CH-based redactable blockchain, a trusted regulation party is granted
to generate (pp, td) ← Setup(1κ) and then publish pp. A miner collects the
message m, evaluates h← Hash(m; r), constructs a valid block B containing the
triple (h,m, r) as well as other information required, and finally appends it to
the blockchain. When an adaptation is required from m to m′ in some block
B4, the trusted authority computes r′ ← Adapt(td, h,m, r,m′), replaces (m, r)
stored in B with (m′, r′) while keeping other information unchanged, and finally
publishes the redacted block. In this way, we obtain a redactable blockchain.

4 Here, adaptations are only allowed for blocks considered to be settled in the redact-
able blockchain system.
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Fig. 1: Possible attack on redactions in a redactable blockchain. The adversary
sees all grey blocks and tries to create the red one. The blocks link to a chain in
the way that previous hash value hi constitutes a part of message mi+1 in the
next block. The down-arrows in dark-blue denote authorized adaptations done
by the trusted regulation party and the arrow in red denotes an attack.

Security requirements of CH in redactable blockchain. In a redactable
blockchain, each block Bj records information of (hj ,mj , rj) and we denote it by
Bj = ⟨hj ,mj , rj⟩. Adaptations for block Bj result in multiple new adapted blocks
{Bi

j = ⟨hj ,m
i
j , r

i
j⟩}i∈[nj ] s.t. hj = Hash(mj ; rj) = Hash(mi

j ; r
i
j) for i ∈ [nj ]. Now

we consider the adversary’s attack on redactions in a redactable blockchain. The
adversary sees all original blocks B1, B2, B3, · · · and all corresponding adapted
blocks {Bi

1}i∈[n1], {Bi
2}i∈[n2], {Bi

3}i∈[n3], · · · , where each nj = poly(κ) denotes
the number of adaptations for block Bj . The aim of an adversary is to redact the
chain by adapting some block Bj = ⟨hj ,mj , rj⟩ to a new one B∗ = ⟨h∗,m∗, r∗⟩
s.t. h∗ = hj = Hash(mj ; rj) = Hash(m∗; r∗), where m∗ is the adapted message
satisfying m∗ /∈ {mj} ∪ {mi

j}i∈[nj ], in other words, (h∗,m∗) is fresh w.r.t. Bj

and {Bi
j}i∈[nj ]. Note that we do not exclude the possibility that m∗ belongs to

{mj′} ∪ {mi
j′}i∈[nj′ ]

with j ̸= j′. See Fig. 1.
Obviously, to make sure that the adversary succeeds in redacting blocks

with negligible probability, it suffices for a chameleon hash to be full collision
resistant. In contrast, e-CR and s-CR are not sufficient. Firstly, the adversary
can obtain multiple adapted blocks {Bi

j = ⟨hj ,m
i
j , r

i
j⟩}i∈[nj ] for the target hash

value hj = h∗, so, e-CR is not enough for CH. Secondly, the adversary may
obtain some adapted block Bi

j′ = ⟨hj′ ,m
∗, rij′⟩ with j ̸= j′, and hence s-CR is

not enough either.
To the best of our knowledge, only a CH with f-CR security is sufficient

to the security requirements of a redactable blockchain. However, existing CH
schemes with f-CR [12,13] are all generic constructions relying on some heavy
building blocks like the simulation-sound extractable non-interactive zero knowl-
edge (SSE-NIZK) proof system [13]. Besides, almost all instantiations of CH
with f-CR security are based on pairings or the discrete logarithm (DL) assump-
tion, and hence are not secure against quantum adversaries. The only known
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post-quantum instantiation is based on the learning parity with noise (LPN) as-
sumption in the random oracle (RO) model [12]. Then a natural question arises:

“Can we construct a post-quantum chameleon hash function serving for a
redactable blockchain in the standard model (especially without relying on a NIZK
proof system)?”

In this paper, we provide a new approach to this problem. We take into con-
siderations some nice properties of a redactable blockchain so that the security
requirements for CH can be weakened. That makes possible simpler construc-
tions of CH serving for a secure redactable blockchain. In more details, we have
the following three observations for a CH-based redactable blockchain.

• Observation 1. Each settled block can be uniquely indexed by a unique
identifier τ (like the timestamp, the hash value of its previous block or its
position in the chain). Taking τ into account results in blocks of the form
B = ⟨τ, h,m, r⟩.

• Observation 2. Each block has a chameleon hash value h and identifier τ ,
and adaptations towards that block keep h and τ unchanged. Together with
observation 1, we know that each tag τ is uniquely bound with one block
(and hence the chameleon hash value h).

• Observation 3. All adaptations towards a specific block are made with fresh
messages. In a redactable blockchain, this can be easily accomplished by
appending a unique (e.g. increasing) counter value to the adapted message.

Now we additionally take τ as input for chameleon hash evaluations and adap-
tations, and this results in a new variant of CH, namely the tagged CH (tCH).
Next we consider the full collision resistance for a tagged CH. The adversary can
see many tuples (τ, h,m, r) as well as their adaptations (τ, h,m′, r′), where m
is the original message and m′ is the adapted message s.t. h = Hash(τ,m; r) =
Hash(τ,m′; r′). Let Q record tuples (τ, h,m) and the adapted tuples (τ, h,m′).
The adversary wins if it finally comes up with a forgery (τ∗, h∗,m∗, r∗,m′∗, r′∗)
such that

h∗ = Hash(τ∗,m∗; r∗) = Hash(τ∗,m′∗; r′∗), m∗ ̸= m′∗, (τ∗, h∗,m∗) /∈ Q. (1)

Obviously, the full collision resistance of tCH is sufficient for a redactable
blockchain. But actually, the three observations can help to change the security
requirements of tCH to a weaker variant. Note that in (1.1), we have

(τ∗, h∗,m∗) /∈ Q
⇔
(
(τ∗, h∗,m∗) /∈ Q ∧ (τ∗, ·,m′∗) /∈ Q

)
∨
(
(τ∗, h∗,m∗) /∈ Q ∧ (τ∗, ·,m′∗) ∈ Q

)
⇔
(
(τ∗, ·,m∗) /∈ Q ∧ (τ∗, ·,m′∗) /∈ Q

)
∨
(
(τ∗, ·,m∗) /∈ Q ∧ (τ∗, h∗,m′∗) ∈ Q

)
,

where (τ∗, ·,m′∗) /∈ Q means that there exists no h such that (τ∗, h,m′∗) ∈ Q,
while (τ∗, ·,m′∗) ∈ Q means that there exists an h such that (τ∗, h,m′∗) ∈ Q.
Here “⇐” holds obviously, and “⇒” holds due to the observation 2. By obser-
vation 2, for any adapted blocks with (τ∗, h∗, ·, ·) we know that τ∗ is uniquely
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bound with h∗, so (τ∗, h∗,m∗) /∈ Q ⇒ (τ∗, ·,m∗) /∈ Q and (τ∗, ·,m′∗) ∈ Q ⇒
(τ∗, h∗,m′∗) ∈ Q (otherwise, τ∗ corresponds to both h∗ and some h ̸= h∗ in the
blockchain system, which is impossible).

Define a predicate Valid as Valid(τ∗, h∗,m∗,m′∗) = 1 if
(
(τ∗, ·,m∗) /∈ Q ∧

(τ∗, ·,m′∗) /∈ Q
)
∨
(
(τ∗, ·,m∗) /∈ Q ∧ (τ∗, h∗,m′∗) ∈ Q

)
. Now (1.1) becomes:

h∗ = Hash(τ∗,m∗; r∗) =Hash(τ∗,m′∗; r′∗), m∗ ̸= m′∗, Valid(τ∗, h∗,m∗,m′∗) = 1.

According to observation 2 again, it is reasonable to assume that there do
not exist (τ, h, ·) and (τ, h′′, ·) with h ̸= h′′ among those tuples and adapted
tuples contained in Q. Furthermore, according to observation 3, we can require
that all adapted messages w.r.t. a block (and hence a unique τ) are distinct.

Hence for redactable blockchain, we arrive at a security requirement for tCH
which is weaker than the full collision resistance. We call such a security require-
ment restricted collision resistance since it has more restrictions on adversaries
compared with the full one (see Fig. 3 for their formal definitions). Now the
problem can be simplified as follows.

“Can we construct a post-quantum tagged chameleon hash function with re-
stricted collision resistance in the standard model (especially without relying on
a NIZK proof system)?”

1.1 Our Contributions

In this paper, we answer the above question in the affirmative and have made
the following three contributions.

New concept of tagged chameleon hash (tCH). We introduce a new
primitive, named tagged chameleon hash (tCH), which additionally takes as
input a tag τ for hash evaluations and adaptations. We provide two CR se-
curity notions for our tCH. One is the full collision resistance (f-CR) and the
other is the restricted collision resistance (r-CR). The full collision resistance
is defined similar to that of a tag-free CH [13]. That is, it is infeasible to find
(τ∗, h∗,m∗, r∗,m′∗, r′∗) s.t. m∗ ̸= m′∗ and h∗ = Hash(τ∗,m∗; r∗) = Hash(τ∗,m′∗;
r′∗) even if the adversary sees many adaptation outputs r′ by issuing queries
(τ, h,m, r,m′) of its choice. The only limitation is that (τ∗, h∗,m∗) does not
appear in its queries. Restricted collision resistance is weaker than the full one
in the sense that the adversary’s behaviors and winning conditions are further
restricted. Meanwhile, we also require statistical indistinguishability from tCH
which asks that the hash value and randomness are statistically close to the
adapted ones.

We show that if tCH works in the one-time tag mode, the two CR security
notions are equivalent to each other. Here the one-time tag mode requires that
each invocation of hash evaluation takes a fresh and distinct tag as input.

Constructions of tCH from lattices. We provide two constructions of tCH
from lattices and prove their r-CR security.
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• Our first tCH construction achieves the restricted collision resistance in the
standard model. The restricted collision resistance of our tCH is tightly re-
duced to the SIS assumption and the pseudorandomness of a pseudorandom
function (PRF). Given the LWE-based PRFs like [5], our construction yields
the first r-CR secure tCH from LWE and SIS in the standard model.

• Our second tCH construction achieves the restricted collision resistance in
the random oracle model. It is more efficient than the first one and is tightly
reduced to the SIS assumption.

According to the relation between f-CR and r-CR, both of our two tCHs can
provide security guarantee as good as f-CR when working in the one-time tag
mode. We stress that our tCH schemes are free of NIZK proof systems.

Application of tCH in redactable blockchain. Each settled block can be
uniquely indexed by a unique identifier τ in the redactable blockchain. So differ-
ent blocks have distinct identifiers τ . When a tCH is applied to the blockchain,
we can take τ as the tag of tCH to compute hash values for messages stored
in blocks, and hence each hash value (for a settled block) is computed from a
distinct tag. Note that, adaptations are made only for those settled blocks. In
this way, the tCH already works in the one-time tag mode for the redactable
blockchain. Therefore, our tCH schemes with restricted collision resistance serve
for redactable blockchains perfectly.

1.2 Related Works

Chameleon hash. Krawczyk and Rabin [25] proposed two CH constructions
with w-CR based on the claw-free trapdoor permutations [22] and the Peder-
sen’s commitment scheme [32] respectively. Chen, Zhang and Kim [11] proposed
the first key-exposure free CH from the computational Diffie-Hellman (CDH)
assumption based on the gap Diffie-Hellman (GDH) group. Ateniese and de
Medeiros [4] also proposed several key-exposure free CHs from various assump-
tions like the RSA and the discrete logarithm (DL) assumptions. Later in 2017,
Ateniese et al. [3] proposed a generic way to lift a CH from w-CR to e-CR with
helps of a CPA secure public key encryption (PKE) and a true-simulation ex-
tractable non-interactive zero knowledge (tSE-NIZK) proof system. Ateniese et
al. [3] instantiated the generic construction from the decisional Diffie-Hellman
assumption in the random oracle model, and from k-linear assumption in the
standard model, respectively. Since then, several efficient CH schemes with e-CR
have been proposed from various assumptions. Khalili, Dakhilalian and Susilo
[24] proposed two CHs with e-CR: one is constructed by combining a weak CH
with Groth-Sahai NIZK proof and Cramer-Shoup PKE, and the other is con-
structed with the ZK-SNARKs. Wu, Ke and Du [38] gave two CH schemes from
the lattice-based assumptions in the generic group model (GGM) and in the
random oracle model (ROM), respectively. As for s-CR, Camenisch et al. [9]
proposed an s-CR secure CH based on the one-more RSA assumption in the
random oracle model. Recently, Derler, Samelin and Slamanig [13] suggested
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f-CR as a more desirable security notion for a CH, and proposed a generic con-
struction of a f-CR secure CH with building blocks a CPA secure PKE and a
simulation-sound extractable non-interactive zero knowledge (SSE-NIZK) proof.
Derler, Samelin and Slamanig [13] provided instantiations of the generic con-
struction based on the DDH assumption in ROM, and based on the symmetric
external Diffie-Hellman (SXDH) assumption in the standard model, respectively.
Later, Deler et al. [12] proposed a relatively simpler generic f-CR secure CH con-
struction with building blocks a non-interactive commitment scheme and also
an SSE-NIZK. Deler et al. [12] instantiated the generic construction from the
DL assumption in ROM, and from the LPN assumption in ROM, respectively.

1.3 Technique Overview

In this subsection, we provide high-level ideas of our tCH constructions from
lattices. We propose two tCH schemes: one is in the standard model and the
other is in the random oracle model. Both of our tCHs are constructed and
proved following a partitioning proof strategy, which has been used in designing
advanced signatures and public-key encryptions [7,6,37]. To do the “partition-
ing”, our tCH in the standard model uses a pseudorandom function (PRF) and
homomorphic evaluation techniques [20,8,6,7], while our tCH in the ROM relies
on the re-programmable property of random oracles.

Here we provide a brief description of our tCH in the standard model. The
public parameter pp consists of a random matrix A ∈ Zn×m

q , a PRF’s secret key k

(only used for the security proof), and random matrices A1, . . . ,Ak, Â1, . . . , Âh ∈
Zn×w
q (which will be used for embedding k and messages to be hashed in the

security proof). The master trapdoor mtd is set as a trapdoor TA of A s.t. TA

is small and A ·TA = 0n×m.
To hash a message m = (m1, . . . ,mh) ∈ {0, 1}h w.r.t. a tag τ , we first

sample y uniformly at random, and then construct a circuit C[τ∥m,y](·) s.t.
C[τ∥m,y](k) returns 1 if PRF(k, τ∥m) = y, and returns 0 otherwise. We further
construct a matrix F := [A|Aprf ] ∈ Zn×(m+w)

q from pp, m and τ , where Aprf is
generated through homomorphic evaluations on C[τ∥m,y](·) with A1, . . . ,Ak.
The hash value is computed as h := F · e with e ∈ Zm+w a short integer vector
sampled from the discrete Gaussian distribution; the randomness r includes e,
y and other randomnesses used to generate F.

To find a collision r′ towards (τ,h,m, r,m′) so that (τ,m, r) and (τ,m′, r′)
both hash to h, we first construct F′ := [A|A′prf ] from pp, τ and m′. Then we
can find a short integer vector e′ s.t. h = F′ · e′ with the help of TA through
trapdoor delegation [33] and preimage sampling [19].

Now we are ready to sketch the security proof. In the security experiment
of r-CR, adversary A can make multiple adaptation queries and for each query
(τi,hi,mi, ri,m

′
i), the challenger responds A with a randomness r′i s.t. hi =

Hash(τi,mi; ri) = Hash(τi,m
′
i; r
′
i). Then in the challenge phase, A submits its

forgery (τ∗,h∗,m∗, r∗,m′∗, r′∗) and it wins if h∗ = Hash(τ∗,m∗; r∗) = Hash(τ∗,
m′∗; r′∗), m′∗ ̸= m∗ and Valid(τ∗,h∗,m∗,m′∗) = 1. The reduction algorithm



Tagged CH from Lattices and Application to Redactable Blockchain 9

(a) Case I (b) Case II

Fig. 2: A partition on tag-message pairs: those in blue dashed boxes with
PRF(k, τ∥m) = y, and those in red dashed boxes with PRF(k, τ∥m) ̸= y. Here
“(τ,mi)→(τ,mj)” with arrows in dark-blue means an adaptation from tuple
(τ,mi) to (τ,mj) made by the challenger during the adaptation query phase;
“(τ∗,m∗)∼(τ∗,m′∗)” means the forgery tuples submitted by the adversary.

can embed a SIS problem instance into the random matrix A, but then there
are two problems to be solved.

• Problem I: Since A is a SIS instance now, the trapdoor TA of A is un-
known to the reduction algorithm. In this case, how to find a collision for
(τi,hi,mi, ri,m

′
i) without TA upon the adversary’s adaptation queries?

• Problem II: How does the reduction algorithm derive a valid solution to
the SIS problem when A successfully finds a valid collision?

For expression simplicity, let’s introduce some facts for tCH first. Consider
all valid adaptation queries {(τi,hi,mi, ri,m

′
i)} submitted by A in the r-CR

security experiment, where τi is bound to a unique hi and Hash(τi,mi; ri) = hi.
Then all valid adaptation queries constitute a sequence of trees. Let τi index
the trees. Tree τi has a root (τi, m̃i) which is NOT an adapted tuple, and all
non-root nodes {(τi,m′i)} in the tree are adapted from their parent nodes. For
A’s forgery (τ∗,h∗,m∗, r∗,m′∗, r′∗), it requires that (τ∗,m∗) never appears in
adaptation queries, so (τ∗,m∗) does not belong to any adaptation tree. The
other tuple (τ∗,m′∗) either lies in some adaptation tree τi (Case I), or does not
belong to any adaptation tree (Case II). See Fig. 2 for a demonstration.

Now let us see how to solve the above two problems. We give an adaptive par-
tition of all tag-and-message tuples {(τi,mi), (τi,m

′
i)} in adaptation queries and

tuples (τ∗,m∗), (τ∗,m′∗) in the forgery according to whether PRF(k, τ∥m) = y,
where y is a randomness included in r.

• For the root node (τi, m̃i) in each tree (say tree τi), its corresponding ỹi

is chosen by the adversary who knows nothing about PRF(k, τi∥m̃i). Then
PRF(k, τi∥m̃i) ̸= ỹi due to the pseudorandomness of PRF, and hence C[τi∥m̃i,
ỹi](k) = 0.
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• For those non-root nodes in tree τi, they must be adapted tuples (τi,m
′
i).

We choose y′i s.t. y′i = PRF(k, τi∥m′i) and hence C[τi∥m′i,y′i](k) = 1.
• For the node (τ∗,m∗) in the forgery, it is submitted by the adversary and

does not belong to any adaptation tree, so PRF(k, τ∗∥m∗) ̸= y∗ and hence
C[τ∗∥m∗,y∗](k) = 0 due to the pseudorandomness of PRF.

• For the node (τ∗,m′∗) in the forgery, we consider two cases.
- Case I: (τ∗,m′∗) lies in some tree τi. Then it can be a root with
PRF(k, τ∗∥m′∗) ̸= y′∗ and C[τ∗∥m′∗,y′∗](k) = 0, or an adapted tuple
with PRF(k, τ∗∥m′∗) = y′∗ and C[τ∗∥m′∗,y′∗](k) = 1.

- Case II: (τ∗,m′∗) does not belong to any adaptation tree. Then PRF(k,
τ∗∥m′∗) ̸= y′∗ and C[τ∗∥m′∗,y′∗](k) = 0 due to the pseudorandomness
of PRF.

In conclusion, for those adapted tuples {(τi,m′i)}, they all satisfy C[τi∥m′i,y′i](k) =
1, see nodes in blue dashed boxes in Fig. 2. In Case I, we have (τ∗,m∗) and
(τ∗ = τi, m̃i) s.t. C[τ∗∥m∗,y∗](k) = C[τ∗∥m̃i, ỹi](k) = 0. In Case II, we have
(τ∗,m∗) and (τ∗,m′∗) s.t. C[τ∗∥m∗,y∗](k) = C[τ∗∥m′∗,y′∗](k) = 0. See nodes
in red dashed boxes in Fig. 2.

To implement the partitioning strategy, we embed the PRF’s key k in Ai,
that is, we generate Ai := ARi + kiG instead of Ai

$←− Zn×w
q , where Ri ∈

Zm×w
q is a randomly chosen short matrix and G ∈ Zn×w

q is the gadget ma-
trix [28]. This change is statistically indistinguishable to A due to the left-
over hash lemma. For each adaptation query (τi,hi,mi, ri,m

′
i), we compute

y′i := PRF(k, τi∥m′i) instead of y′i
$←− {0, 1}y, and these two ways of generat-

ing y′i are computationally indistinguishable due to the pseudorandomness of
PRF. Then C[τi∥m′i,y′i](k) = 1 and we have F′i := [A|A′prf,i] = [A|AR′prf,i +
C[τi∥m′i,y′i](k) ·G] = [A|AR′prf,i +G] through homomorphic evaluations. Note
that F′i · [−R

′⊤
prf,i|I⊤]⊤ = G, and hence R′prf,i is a gadget trapdoor [28] for F′i.

Given the gadget trapdoor R′prf,i, the reduction can also generate a delegated
trapdoor for F′i efficiently [28], and then find a collision for (τi,hi,mi, ri,m

′
i)

with the help of the delegated trapdoor. This solves the problem I. Then for
the problem II, as we analyzed before, there exist (τ∗,m∗) (the forgery tuple)
and some (τ∗, m̄) s.t. C[τ∗∥m∗,y∗](k) = 0 and C[τ∗∥m̄, ȳ](k) = 0. Hence we
have F∗ = [A|A∗prf ] = [A|AR∗prf + C[τ∗∥m∗,y∗](k) · G] = [A|AR∗prf + 0 · G]

and F̄ = [A|Āprf ] = [A|AR̄prf + C[τ∗∥m̄, ȳ](k) · G] = [A|AR̄prf + 0 · G] due
to homomorphic evaluations. If A wins, it holds that h∗ = [A|AR∗prf ] · e∗ =

[A|AR̄prf ] · ē, and then A · ([I|R∗prf ]e∗ − [I|R̄prf ]ē) = 0n×m. The short vector
v := ([I|R∗prf ]e∗ − [I|R̄prf ]ē) serves as a solution to the SIS problem.

There is a subtlety in above SIS solution v in the reduction. For valid solution,
we have to make sure that v ̸= 0m. To this end, we construct those F as [A|Aprf+∑

i miÂi] with public parameters Âi = AR̂i. This change does not influence
the correctness and the partitioning strategy. We refer readers to Subsect. 4.1
for a more detailed description.

We note that, by replacing the homomorphic evaluations related algorithms
with random oracles, namely F := [A|H(A, τ∥m)] and H is a hash function
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modeled as a random oracle, we obtain a tCH in the ROM. To see this, the
re-programmable properties of random oracles can also play the role of imple-
menting the partition strategy, and hence the above reduction still holds.

2 Preliminaries

Notations. In this paper, column vectors are denoted by bold lower-case letters
like x and the i-th component of x is denoted by xi. Specifically, let 0k denote the
k-dimensional zero vector (0, 0, . . . , 0)⊤ ∈ Zk

q . For two bit strings x1 ∈ {0, 1}n
and x2 ∈ {0, 1}m, let x1∥x2 ∈ {0, 1}n+m denote the concatenation of x1 and x2.
Matrices are denoted by bold upper-case letters like A and the i-th column of
A is denoted by ai. The transpose of A is denoted by A⊤. Let Ik ∈ {0, 1}k×k
denote the k-dimensional identity matrix. For matrices A ∈ Zn×m

q and B ∈
Zk×s
q , denote by A ⊗ B the Kronecker product of A and B. For a vector x =

(x1, x2, . . . , xn)
⊤ ∈ Zn, let ∥x∥ := (

∑
i∈[n] x

2
i )

1
2 denote the ℓ2 norm of x. For a

matrix A = (a1,a2, . . . , am) ∈ Zn×m with ai ∈ Zn, let ∥A∥ := maxi∈[m] ∥ai∥
denote the ℓ2 norm of A, Ã denote the Gram-Schmidt orthogonalization of A,
and s1(A) := max∥x∥=1 ∥Ax∥ the largest singular value of A.

For an integer n ∈ N, let [n] denote the finite set {1, 2, . . . , n}. For a distri-
bution (or a random variable) X, let x ← X denote the process of sampling x

according to X. For a finite set X , let x
$←− X denote the process of sampling x

from X uniformly at random.
Let κ denote the security parameter and poly(κ) denote the polynomial func-

tion. An algorithm is efficient if it runs in poly(κ)-time. Let negl : N→ R denote
the negligible function, i.e., for any polynomial poly(n), there exists an n′ ∈ N
s.t. for all n > n′, negl(n) < 1/poly(n). For a primitive XX and a security no-
tion YY, we denote by ExpYYXX,A(κ) ⇒ b a security experiment interacting with
adversary A and returning a bit b. Furthermore, we denote by AdvYYXX,A(κ) the
advantage of A in ExpYYXX,A(κ), and define AdvYYXX(κ) := maxPPTA AdvYYXX,A(κ).

Let X and Y be two random variables over support S, then the statistical
distance between X and Y is defined by SD(X,Y ) = 1/2 ·

∑
s∈S |Pr[X = s] −

Pr[Y = s]|. We say that X and Y are statistically indistinguishable and denote
it by X ≈s Y if SD(X,Y ) ≤ negl(κ). If SD(X,Y ) = 0, then X and Y has the
same distribution and we denote it by X ≡ Y .

Definition 1 (Average min-entropy[15]). Let X and Y be two random vari-
ables. The min-entropy of X is defined as H∞(X) := − log (maxx Pr[X = x]).
The average min-entropy of X given Y is defined as H̃∞(X | Y ) := − log [Ey←Y

(maxx Pr[X = x | Y = y])].

Lemma 1 ([15]). Let X,Y be two random variables and Y has at most 2ℓ

possible values, then H̃∞(X|Y ) ≥ H∞(X)− ℓ.
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2.1 Lattice Background

Let k, n,m, q be positive integers. Given n (n ≤ m) linearly independent basis
vectors a1, . . . , an ∈ Rm, construct a matrix A ∈ Rn×m as A⊤ := (a1, . . . , an).
Define the m-dimensional lattice generated by A as Λ(A) := {y ∈ Rm | y =
A⊤x,x ∈ Zn}. We also define the following m-dimensional q-ary integer lattices:
Λq(A) := {y ∈ Zm | y = A⊤x mod q,x ∈ Zn

q }; Λ⊥q (A) := {x ∈ Zm | Ax = 0n

mod q}. For any vector u ∈ Zn
q , define the coset (or shifted lattice) Λu

q (A) :=
{x ∈ Zm | Ax = u mod q}.

Definition 2 (Discrete Gaussian distribution). The Gaussian function with
parameter s and center c ∈ Rn is defined as ρs,c : Rn → R, ρs,c(x) :=
exp(−π∥x−c∥2/s2). For a countable set S ⊂ Rn, the discrete Gaussian distribu-
tion DS,s,c parameterized with s and c is defined as DS,s,c(x) := ρs,c(x)/

∑
x∈S ρs,c(x)

for x ∈ S and DS,s,c(x) := 0 for x /∈ S. Usually, s is omitted when s = 1 and c
is omitted if c = 0.

Lemma 2 (Randomness extraction [19,1]). Let q, n,m be positive integers
s.t. q is a prime and m ≥ 3n log q. Then:

• If A $←− Zn×m
q , s $←− {1,−1}m and u

$←− Zn
q , then SD((A,As), (A,u)) ≤ 2−n.

• If A
$←− Zn×m

q , s ← DZm,γ with Gaussian parameter γ ≥ ω(
√
logm) and

u
$←− Zn

q , then SD((A,As), (A,u)) ≤ 2−n.

In this paper, we consider two types of lattice trapdoors. Let q, n,m be inte-
gers and define w := n⌈log q⌉. Firstly, for a matrix A ∈ Zn×m

q , we consider a non-
singular square matrix TA ∈ Zm×m

q of short integer vectors such that ATA =
0n×m mod q, and call it a trapdoor of A. We also consider the G-trapdoor
(gadget trapdoor) proposed by Micciancio and Peikert [28]. A G-trapdoor for a
matrix A ∈ Zn×m

q is a matrix R ∈ Z(m−w)×w s.t. A · [−R⊤|I⊤w ]⊤ = G, where
G ∈ Zn×w

q is the gadget matrix (see Definition 3). Clearly, if A = [Ā|ĀR+G],
then R is the G-trapdoor for A. Below we recall some definitions and lemmas
related to afore-mentioned two trapdoors.

Lemma 3 (Trapdoor generation [2]). Let q, n,m be positive parameters s.t. q
is odd, q ≥ 3 and m = O(n log q). There exists a PPT algorithm TrapGen(1n, 1m, q)
that outputs matrices A ∈ Zn×m

q and TA ∈ Zm×m s.t. the distribution of A is
statistically close to a uniform rank n matrix in Zn×m

q and matrix TA is a
trapdoor for A satisfying ATA = 0n×m, ∥T̃A∥ ≤ O(

√
n log q) and ∥TA∥ ≤

O(n log q) with all but 2−n probability.

Lemma 4 (Preimage sampling [19]). Let q, n,m, γ be positive parameters
s.t. q ≥ 2. Let A ∈ Zn×m

q be a matrix with a trapdoor TA ∈ Zm×m. Let γ ≥
∥T̃A∥·ω(

√
logm). For any u ∈ Zn

q , there exists a PPT algorithm SamplePre(A,TA,
u, γ) that outputs s ∈ Zm

q with distribution statistically close to DΛu
q (A),γ .
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Lemma 5 (Trapdoor delegation [33]). Let q, n,m,m′, m̄ be positive param-
eters and m̄ = m + m′. Let A ∈ Zn×m

q and A′ ∈ Zn×m′

q be matrices and
TA ∈ Zm×m be a trapdoor for A. There exists a deterministic polynomial-time
algorithm TrapDel([A|A′],TA) that outputs a trapdoor TA|A′ ∈ Zm̄×m̄

q for the
matrix [A|A′]. Besides, it holds that ∥T̃A|A′∥ = ∥T̃A∥.

Definition 3 (Gadget matrix [28]). For any integer modulus q, the gadget
vector over Zq is defined as g⊤ := (1, 2, 4, . . . , 2⌈log q⌉−1) ∈ Z1×⌈log q⌉

q . Let w :=
n⌈log q⌉, the gadget matrix G with full row rank is defined as:

G = In ⊗ g⊤ =


g⊤ 0 0 0
0 g⊤ 0 0
...

... . . . ...
0 0 0 g⊤

 ∈ Zn×w
q .

Lemma 6 (G-to-Basis [28]). Let n,m, q be positive integers and define w :=
n⌈log q⌉. Let A ∈ Zn×m

q be a matrix with a G-trapdoor R ∈ Z(m−w)×w. There
exists a PPT algorithm GtoBasis(R) that returns a trapdoor TA ∈ Zm×m of A.
Moreover, the trapdoor TA satisfies ∥T̃A∥ ≤

√
5(s1(R) + 1).

We recall in Lemma 7 the results of homomorphic evaluations established
by a sequence of works [20,8,6,7] . Lemma 8 provides two statistically indistin-
guishable methods to generate (A,h, e) s.t. h = Ae, where h follows the uniform
distribution and e is short.

Lemma 7 (Homomorphic evaluation [20,8,6,7]). Let q, n,m, ℓ and k be
positive integers and define w := n⌈log q⌉. Let G ∈ Zn×w

q be the gadget matrix.
Given a NAND boolean circuit C : {0, 1}ℓ → {0, 1}k with circuit depth d, vector
x = (x1, . . . , xℓ)

⊤ ∈ {0, 1}ℓ, and matrices A ∈ Zn×m
q , (Ai ∈ Zn×w

q )i∈[ℓ] and
(Ri ∈ {±1}m×w)i∈[ℓ], there exist two efficient deterministic algorithms.

• Algorithm Evalpub(C,A, (Ai)i∈[ℓ]) takes as inputs the circuit C and matrices
A, (Ai)i∈[ℓ], and outputs a matrix AC ∈ Zn×kw

q .
• Algorithm Evalprv(C,A,x, (Ri)i∈[ℓ]) takes as inputs the circuit C, matrix A,

vector x and matrices (Ri)i∈[ℓ], and outputs a matrix RC ∈ Zm×kw.

Homomorphism. If Ai = ARi + xi · G ∈ Zn×w
q for all i ∈ [ℓ], AC ←

Evalpub(C,A, (Ai)i∈[ℓ]) and RC ← Evalprv(C,A,x, (Ri)i∈[ℓ]), then we have AC =

ARC + C(x)⊗G, where s1(RC) ≤ O(4d ·m 3
2 ). Particularly, when C is in the

circuit class NC1, i.e., C is of depth d = c log ℓ for some constant c, we have
s1(RC) ≤ O(ℓ2c ·m 3

2 ).

Lemma 8 ([19]). Let n,m, q be integers and γ > 2
√
n log q, then for all but

negligible probability over (A,TA)← TrapGen(1n, 1m, q), it holds that

{(A,h, e) | h $←− Zn
q , e← SamplePre(A,TA,h, γ)} ≈s

{(A,h, e) | e← DZm,γ ,h := Ae}.



14 Y. Li and S. Liu

2.2 Computational Assumption

Definition 4 (The SIS assumption). Let q, n,m be positive integers and β
be a positive real. The (homogeneous) short integer solution (SIS) assumption
SISn,q,β,m states that for any PPT adversary A, its advantage satisfies:

AdvSIS[n,q,β,m],A(κ) := Pr
[
A(A)→ e : Ae = 0n ∧ e ̸= 0m ∧ ∥e∥ ≤ β

]
≤ negl(κ),

where A
$←− Zn×m

q and 0n = (0, . . . , 0)⊤ ∈ Zn
q .

Lemma 9 (The hardness of SIS [30,19,29]). For any m = poly(n) and any
sufficiently large q ≥ β ·poly(n), solving SISn,q,β,m with non-negligible probability
is at least as hard as solving the decisional approximate shortest vector problem
GapSVPγ and the approximate shortest independent vector problem SIVPγ in the
worst case with overwhelming probability, for some γ = β · poly(n).

Since GapSVP and SIVP are well-studied worst-case hard problems on lattices,
the reduction from GapSVP and SIVP to SIS in Lemma 9 makes the SIS as-
sumption a widely-accepted post-quantum assumption.

2.3 Pseudorandom Function

Definition 5 (Pseudorandom function family [21]). A pseudorandom func-
tion family PRF := {F : K × X → Y} is equipped with two polynomial time
algorithms (Setup,PRF) defined below.

• Setup(1κ) takes as input the security parameter κ ∈ N and outputs a public
parameter pp.

• PRF(pp, k, x) takes as inputs the public parameter pp, key k ∈ K and message
x ∈ X , and outputs y ∈ Y. For simplicity, we will omit pp and just write it
as PRF(k, x) when the context is clear.

Pseudorandomness. Let RF : X → Y be a truly random function. For any
PPT adversary A, its advantage satisfies AdvpsePRF,A(κ) :=

∣∣Pr[AOPRF(·)(pp) ⇒
1] − Pr[AORF(·)(pp) ⇒ 1]

∣∣ ≤ negl(κ), where pp ← Setup(1κ), k
$←− K, oracle

OPRF(x) returns PRF(pp, k, x) and oracle ORF(x) returns RF(x).

3 Tagged Chameleon Hash

In this section, we propose a new primitive named tagged chameleon hash (tCH),
which is characterized by four algorithms, the setup algorithm, hash algorithm,
adapt algorithm and check algorithm. The setup algorithm generates public
parameters pp along with a trapdoor td. The hash algorithm is a randomized
one used for evaluating the hash value of a message m w.r.t. a tag τ and it outputs
a randomness r serving as the witness of hashing relation among h,m and τ . For
simplicity, we just call h the hash value of (τ,m, r). Given (τ, h,m, r,m′), where
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ExpfcrtCH,A(κ):
(pp, td)← Setup(1κ), QAdapt := ∅
(τ∗, h∗,m∗, r∗,m′∗, r′∗)← AOAdapt(·,·,·,·,·)(pp)
If Check(τ∗, h∗,m∗, r∗) = Check(τ∗, h∗,m′∗, r′∗) = 1
∧m∗ ̸= m′∗ ∧ (τ∗, h∗,m∗) /∈ QAdapt, return 1

Otherwise, return 0

OAdapt(τ, h,m, r,m′): // m′ is the adapted message
If Check(pp, τ, h,m, r) = 0, return ⊥
r′ ← Adapt(td, τ, h,m, r,m′)
If r′ ̸= ⊥, QAdapt := QAdapt ∪ {(τ, h,m), (τ, h,m′)}
Return r′

ExprcrtCH,A(κ):
(pp, td)← Setup(1κ), QAdapt := ∅
(τ∗, h∗,m∗, r∗,m′∗, r′∗)← AOAdapt(·,·,·,·,·)(pp)
If Check(τ∗, h∗,m∗, r∗) = Check(τ∗, h∗,m′∗, r′∗) = 1
∧m∗ ̸= m′∗ ∧ Valid(τ∗, h∗,m∗,m′∗) = 1, return 1

Otherwise, return 0

Valid(τ∗, h∗,m∗,m′∗):
If (τ∗, ·,m∗) /∈ QAdapt ∧ (τ∗, h∗,m′∗) ∈ QAdapt, return 1
If (τ∗, ·,m∗) /∈ QAdapt ∧ (τ∗, ·,m′∗) /∈ QAdapt, return 1
Otherwise, return 0

OAdapt(τ, h,m, r,m′): // m′ is the adapted message
If Check(pp, τ, h,m, r) = 0, return ⊥
If ∃ (τ, h′′,m) ∈ QAdapt ∧ h′′ ̸= h, return ⊥

// τ is uniquely bound with hash value h
If ∃ (τ, ·,m′) ∈ QAdapt, return ⊥

// m′ is a fresh message w.r.t τ
r′ ← Adapt(td, τ, h,m, r,m′)
If r′ ̸= ⊥, QAdapt := QAdapt ∪ {(τ, h,m), (τ, h,m′)}
Return r′

Fig. 3: Experiments ExpfcrtCH,A and ExprcrtCH,A defining f-CR and r-CR for tCH.

h is the hash value of (τ,m, r) and m′ is a new message, the adapt algorithm uses
the trapdoor td to find a randomness r′ so that (τ,m, r) and (τ,m′, r′) collide at
the same hash value h. The check algorithm is used to decide whether h is the
hash value of a tag-message-randomness triple (τ,m, r). For a tCH, we define
the statistical indistinguishability, and provide two security notions: one is the
full collision resistance (f-CR) defined following [13], and the other is a weaker
one named the restricted collision resistance (r-CR). We show that when tCH
works in the one-time tag mode, f-CR and r-CR are equivalent.

Definition 6 (Tagged chameleon hash). LetM be the message space and T
be the tag space. A tagged chameleon hash (tCH) tCH consists of four polynomial
time algorithms tCH = (Setup,Hash,Adapt,Check) defined as follows.

• Setup(1κ) takes as input the security parameter κ ∈ N and returns a public
parameter pp and a trapdoor td.

• Hash(pp, τ,m) takes as inputs the public parameter pp, a tag τ ∈ T and a
message m ∈M, and returns a hash value h and a randomness r.

• Adapt(td, τ, h,m, r,m′) takes as inputs the trapdoor td, a tag τ ∈ T , a hash
value h, a message m ∈ M, a randomness r and a fresh target message
m′ ∈M, and returns a new randomness r′.

• Check(pp, τ, h,m, r) takes as inputs the public parameter pp, a tag τ ∈ T , a
hash value h, a message m ∈M and a randomness r, and returns a decision
bit b ∈ {0, 1}.

For expression simplicity, we will sometimes omit the “pp” part in the inputs
of Hash and Check, and just write them as Hash(τ,m) and Check(τ, h,m, r)
respectively when the context is clear.
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- Correctness. For all tag τ ∈ T and messages m,m′ ∈ M, for all (pp, td)←
Setup(1κ), (h, r)← Hash(pp, τ,m) and r′ ← Adapt(td, τ, h,m, r,m′), we have

Pr
[
Check(pp, τ, h,m, r) = Check(pp, τ, h,m′, r′) = 1

]
≥ 1− negl(κ).

- Statistical Indistinguishability. For all tag τ ∈ T and messages m,m′ ∈
M, and for (pp, td)← Setup(1κ), it holds that{

(h, r) | (h, r)← Hash(pp, τ,m)
}

≈s

{
(h, r) | (h, r′)← Hash(pp, τ,m′), r ← Adapt(td, τ, h,m′, r′,m)

}
.

- Full collision resistance (f-CR). For any PPT adversary A, its advantage
satisfies AdvfcrtCH,A(κ) := Pr[ExpfcrtCH,A(κ) ⇒ 1] ≤ negl(κ), where the experi-
ment ExpfcrtCH,A is described in Fig. 3 (left).

- Restricted collision resistance (r-CR). For any PPT adversary A, its
advantage satisfies AdvrcrtCH,A(κ) := Pr[ExprcrtCH,A(κ)⇒ 1] ≤ negl(κ), where the
experiment ExprcrtCH,A is described in Fig. 3 (right).

One-time tag mode for tCH. In this paper, we consider a special working
mode for tagged chameleon hash, where every invocation of hash evaluation
takes as input a distinct tag. The special working mode is named one-time tag
mode. Note that in a tCH-based redactable blockchain, tCH just works in this
mode when setting the unique identifier of the block (like the timestamp, hash
value of its previous block, or its position in the chain) as its tag.
Definition 7 (One-time tag mode). A tCH scheme tCH = (Setup,Hash,Adapt,
Check) works in the one-time tag mode if any Q = poly(κ) invocations of
Hash(pp, τi,mi) with i ∈ [Q], we have τk ̸= τj for any k, j ∈ [Q] and k ̸= j.

Next we show that f-CR is equivalent to r-CR in the one-time tag mode. It
is easy to see that f-CR implies r-CR. As for the other direction, we show in
Theorem 1 that r-CR implies f-CR when a tCH works in the one-time tag mode.
Theorem 1. If a tagged chameleon hash tCH satisfies the restricted collision
resistance, then it also satisfies the full collision resistance when it is used in the
one-time tag mode. More precisely, for any PPT adversary A, it holds that

AdvfcrtCH,A(κ) ≤ AdvrcrtCH(κ).

A high-level idea of proof for Theorem 1 has been described in the introduc-
tion, and see our full version [26] for the detailed proof.
Remark. Ateniese and de Medeiros considered a chameleon hash with labels
(abbrv., labeled CH) in [4]. Our tCH and labeled CH both take an extra tag/label
as input, but they have different syntax, security notions and applications.
• Syntax difference. Labeled CH involves an additional algorithm IForge, which

generates (m′′, r′′) given a collision pair (τ, h,m, r,m′, r′) s.t. h = Hash(τ,m′′;
r′′) = Hash(τ,m′; r′) = Hash(τ,m; r). In other words, anyone who obtains a
collision for (τ, h) can freely generate a new collision for the same (τ, h). In
contrast, our tCH can find a collision only with a secret trapdoor.
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• Security difference. Labeled CH requires a weaker security named the key-
exposure freeness, which assures the infeasibility of finding a collision (τ∗, h∗,
m∗, r∗,m′∗, r′∗) when no collision for the specific τ∗ has been revealed. In
contrast, our CR/fCR allows the adversary to see polynomial collisions for
the same target tag.

• Application difference. Labeled CH is usually used to construct chameleon
signature and it is not secure enough to be used in a redactable blockchain.
Note that adversaries in a redactable blockchain may obtain multiple colli-
sions towards one (τ, h). With labeled CH, any one is able to create collisions
for (τ, h) using algorithm IForge, and then redactable blockchain becomes in-
secure. In contrast, our tCH with f-CR security (or r-CR security in one-time
tag mode) serves for the security requirement from a redactable blockchain.

4 Lattice-Based Tagged Chameleon Hash

In this section, we propose two tCH constructions satisfying the restricted colli-
sion resistance based on the SIS assumption. In Subsect. 4.1, we propose a tCH
construction in the standard model. In Subsect. 4.2, we provide another tCH
scheme with tight security in the random oracle model.

4.1 tCH in the Standard Model

In this subsection, we propose a tCH construction from lattices, namely tCH, in
the standard model.

First we introduce the building blocks and some notations used in our tCH
construction. Let n, q,m be positive integers, and define w := n⌈log q⌉.

• A pseudorandom function PRF = (PRF.Setup,PRF) with key space {0, 1}k,
input space {0, 1}x and output space {0, 1}y.

• Define a circuit C[x,y] : {0, 1}k → {0, 1} w.r.t. PRF as below, where x ∈
{0, 1}x and y ∈ {0, 1}y are hard-wired to the circuit.

C[x,y](k) =

{
1 if PRF(k,x) = y,

0 otherwise.
(2)

Our tCH construction tCH is given in Fig. 4.
Parameter setting. Parameters of our tCH construction include the security
parameter κ, the dimension parameters k, x, y, t, h, the SIS parameters n,m, q, β
and the Gaussian parameter γ. Define w := n⌈log q⌉. The afore-mentioned pa-
rameters are required to satisfy the following conditions simultaneously.

• Let k, x, y, t, h = poly(κ) be positive integers and x = t+ h+ k.
• Let n, q,m, β be positive parameters, n,m, β, q = poly(κ) and β ·poly(n) ≤ q

so that the SIS problem is hard according to Lemma 9.
• Let γ ≥ O(κc) · ω(

√
m+ w) with some constant c and γ ≥ O(n log q) ·

ω(
√
m+ w) so that Lemma 4 can be applied.
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(pp, td)← Setup(1κ).

1. Generate ppprf ← PRF.Setup(1κ).
2. Generate (A,TA)← TrapGen(1n, 1m, q) with A ∈ Zn×m

q .
3. For i ∈ [k], sample Ai

$←− Zn×w
q . For i ∈ [h], sample Âi

$←− Zn×w
q .

4. Return pp := (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]) and td := (pp,TA).

(h, r)← Hash(pp, τ ∈ {0, 1}t,m ∈ {0, 1}h).

1. Parse pp = (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]) and m = (m1, . . . ,mh).
2. Sample z

$←− {0, 1}κ and set x := τ∥m∥z ∈ {0, 1}x.
3. Sample y

$←− {0, 1}y and construct the circuit C[x,y] as defined by (2).
4. Compute Cprf ← Evalpub(C[x,y](·),A, {Ai}i∈[k]) and Bprf :=

∑
i∈[h] miÂi.

5. Compute Aprf := Cprf +Bprf .
6. Sample e = (e1, e2)← DZm+w,γ with e1 ∈ Zm

q and e2 ∈ Zw
q s.t. e2 ̸= 0w.

7. Return h := [A|Aprf ] · e ∈ Zn
q and r := (z,y, e).

r′ ← Adapt(td, τ ∈ {0, 1}t,h,m ∈ {0, 1}h, r,m′ ∈ {0, 1}h).

1. Parse td = (pp,TA), pp = (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]), m′ = (m′
1, . . . ,m

′
h).

2. If Check(pp, τ,h,m, r) = 0, return ⊥. Otherwise, continue.
3. Sample z′

$←− {0, 1}κ and y′ $←− {0, 1}y.
4. Set x′ := τ∥m′∥z′ ∈ {0, 1}x and construct C[x′,y′] as defined by (2).
5. Compute C′

prf ← Evalpub(C[x′,y′](·),A, {Ai}i∈[k]) and B′
prf :=

∑
i∈[h] m

′
iÂi.

6. Compute A′
prf := C′

prf +B′
prf . Delegate TA|A′

prf
← TrapDel([A|A′

prf ],TA).
7. Sample e′ = (e′

1, e
′
2) ← SamplePre([A|A′

prf ],TA|A′
prf
,h, γ) with e′

1 ∈ Zm
q and

e′
2 ∈ Zw

q s.t. e′
2 ̸= 0w.

8. Return r′ := (z′,y′, e′).

0/1← Check(pp, τ ∈ {0, 1}t,h,m ∈ {0, 1}h, r).

1. Parse pp = (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]), m = (m1, . . . ,mh) and r = (z,y, e).
2. Set x := τ∥m∥z ∈ {0, 1}x and construct C[x,y] as defined by (2).
3. Compute Cprf ← Evalpub(C[x,y](·),A, {Ai}i∈[k]) and Bprf :=

∑
i∈[h] miÂi.

4. Compute Aprf := Cprf +Bprf .
5. Parse e = (e1, e2) with e1 ∈ Zm

q and e2 ∈ Zw
q . If h = [A|Aprf ]·e, ∥e∥ ≤ γ

√
m+ w

and e2 ̸= 0w, return 1; otherwise, return 0.

Fig. 4: Tagged chameleon hash tCH in the standard model.

• Let m = O(n log q) and γ · O(κc) ·
√
m+ w ≤ β with some constant c to

serve for our security proof.

Theorem 2. Let PRF be a pseudorandom function. Given parameters described
above, construction tCH in Fig. 4 is a tagged chameleon hash if the SISn,q,β,m
assumption holds. Furthermore, restricted collision resistance of tCH is tightly
reduced to the SIS assumption and the pseudorandomness of PRF:

Pr[ExprcrtCH,A(κ)⇒ 1] ≤ AdvSIS[n,q,β,m](κ) + 2AdvpsePRF(κ) + 2−O(κ).

Correctness of tCH. It follows directly from Lemma 5 (trapdoor delegation),
Lemma 4 (preimage sampling) and Lemma 7 (homomorphic evaluation), and
we omit the proof of it here.
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Proof of statistical indistinguishability for tCH. We prove that, given tag τ and
messages m,m′, the distribution of (h, r) generated by Hash is statistically close
to that generated by Hash-then-Adapt.

First consider the distribution of (h, r) generated by Hash, i.e., (h, r) ←
Hash(τ,m). It follows the distribution DH defined below:

DH :=

{
(h, r = (z,y, e))

∣∣∣∣∣ z $←− {0, 1}κ,y $←− {0, 1}y,
e← DZm+w,γ ,h = [A|Aprf ] · e

}
,

where Aprf is deterministically computed from τ,m, the public parameters (A,

{Ai}i∈[k], {Âi}i∈[h]) and uniformly chosen z,y (see algorithm Hash in Fig. 4).
Next consider the distribution of (h, r) generated by Hash-then-Adapt, i.e.,

first (h, r′ = (z′,y′, e′)) ← Hash(τ,m′) and then r ← Adapt(td, τ,h,m′, r′,m).
It follows the distribution DH&A defined below:

DH&A :=

{(
h, r = (z,y, e)

) ∣∣∣∣∣ z, z′
$←− {0, 1}κ , y,y′ $←− {0, 1}y , e′ ← DZm+ω,γ ,

h := [A|A′
prf ] · e′, e← SamplePre([A|Aprf ],TA|Aprf

,h, γ)

}

where Aprf is computed in the same way as above, and A′prf is generated similar
to Aprf but with m′, z′ and y′.

First we show that h := [A|A′prf ] · e′ in DH&A is statistically close to the
uniform distribution over Zn

q . Note that

h := [A|A′prf ] · e′ = Ae′1 +A′prfe
′
2 ≈s u

′ +A′prfe
′
2 ≡ u,

where u′,u
$←− Zn

q , e′ = (e′1∥e′2) ← DZm+w,σ, e′1 ∈ Zm
q and e′2 ∈ Zw

q . The “≈s”
follows from Lemma 2 and “≡” follows from the uniformity of u′. Therefore, it
holds that DH&A ≈s D

′
H&A, where

D′
H&A :=

{(
h, r = (z,y, e)

) ∣∣∣∣∣ z
$←− {0, 1}κ,y $←− {0, 1}y,h $←− Zn

q ,

e← SamplePre([A|Aprf ],TA|Aprf
,h, γ)

}

Then according to Lemma 8, DH ≈s D′H&A. Therefore, DH ≈s DH&A by
triangle inequality and this proves the statistical indistinguishability of tCH. ⊓⊔

Proof of restricted collision resistance for tCH. We define a sequence of hybrid
games G0 ∼ G4, where G0 is identical to ExprcrtCH,A(κ) defined in Fig. 3. We show
that Gi and Gi−1 are indistinguishable for all i ∈ [4], and in G4, the adversary
wins with negligible probability. The differences between adjacent games are
highlighted in blue. Assume that A makes at most Q adaptation queries.

Game G0. Game G0 is identical to ExprcrtCH,A(κ) defined by Fig. 3.

0. The challenger C initializes set QAdapt := ∅.
1. During the setup phase, the challenger C proceeds as follows.

– Generate ppprf ← PRF.Setup(1κ).
– Generate (A,TA)← TrapGen(1n, 1m, q).
– Sample Ai

$←− Zn×w
q for i ∈ [k]. Sample Âi

$←− Zn×w
q for i ∈ [h].
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– pp := (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]), td := (pp,TA) and send pp to A.
2. Upon an adaptation query (τ,h,m, r,m′) from A, C proceeds as follows.

– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,
h,m, r) = 0 holds, return ⊥; otherwise, continue.

– Sample z′
$←− {0, 1}κ and set x′ := τ∥m′∥z′.

– Sample y′
$←− {0, 1}y and construct C[x′,y′] as defined by (2).

– C′prf ← Evalpub(C[x′,y′](·),A, {Ai}i∈[k]) and B′prf :=
∑

i∈[h] m
′
iÂi.

– Set A′prf := C′prf +B′prf . Delegate TA|A′
prf
← TrapDel([A|A′prf ],TA).

– e′ = (e′1, e
′
2)← SamplePre([A|A′prf ],TA|A′

prf
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′,y′, e′) to A and QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}.
3. On receiving the forgery (τ∗,h∗,m∗, r∗,m′∗, r′∗), C makes the following

checks, and returns 0 if any of them fails. Otherwise, C returns 1.
– Check if Check(τ∗,h∗,m∗, r∗) = Check(τ∗,h∗,m′∗, r′∗) = 1.
– Check if m∗ ̸= m′∗ and Valid(τ∗,h∗,m∗,m′∗) = 1.

By definition, we have Pr[G0 ⇒ 1] = Pr[ExprcrtCH,A(κ)⇒ 1].
Game G1. Game G1 is similar to G0 except for the generation of y′ in the
adaptation query phase. In G0, y′ is sampled uniformly at random for each
adaptation query. In G1, y′ is computed by PRF, i.e., y′ ← PRF(k,x′), where
key k

$←− {0, 1}k is sampled in the setup phase.

1′. During the setup phase, the challenger C proceeds as follows.
– Generate ppprf ← PRF.Setup(1κ) and sample k

$←− {0, 1}k.
– Generate (A,TA)← TrapGen(1n, 1m, q).
– Sample Ai

$←− Zn×w
q for i ∈ [k]. Sample Âi

$←− Zn×w
q for i ∈ [h].

– pp := (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]), td := (pp,TA) and send pp to A.
2′. Upon an adaptation query (τ,h,m, r,m′) from A, C proceeds as follows.

– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,
h,m, r) = 0 holds, return ⊥; otherwise, continue.

– Sample z′
$←− {0, 1}κ and set x′ := τ∥m′∥z′.

– Compute y′ ← PRF(k,x′) and construct C[x′,y′] as defined by (2).
– C′prf ← Evalpub(C[x′,y′](·),A, {Ai}i∈[k]) and B′prf :=

∑
i∈[h] m

′
iÂi.

– Set A′prf := C′prf +B′prf . Delegate TA|A′
prf
← TrapDel([A|A′prf ],TA).

– e′ = (e′1, e
′
2)← SamplePre([A|A′prf ],TA|A′

prf
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′,y′, e′) to A and QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}.

Lemma 10. Games G1 and G2 are computationally indistinguishable due to the
pseudorandomness of PRF, i.e., |Pr[G1 ⇒ 1]−Pr[G2 ⇒ 1]| ≤ AdvpsePRF(κ)+2−O(κ).

Proof of Lemma 10 (sketch). Note that z′
$←− {0, 1}κ is sampled uniformly at

random for each adaptation query, then all x′ = τ∥m′∥z′ constructed for the
adaptation queries are different from each other with probability 1−2−O(κ). Now
according to the pseudorandomness of PRF, we know that the distribution of
y′

$←− {0, 1}y is computationally indistinguishable from that of y′ ← PRF(k,x′)
and this proves Lemma 10. ⊓⊔
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Game G2. Game G2 is similar to G1 except for the generations of {Ai}i∈[k] and
{Âi}i∈[h] in the setup phase, and the computations of A′prf in the adaptation
query phase. In G1, Ai

$←− Zn×w
q and Âi

$←− Zn×w
q are sampled uniformly at

random in the setup phase, and A′prf is computed by Evalpub from Ai’s and
Âi’s when answering each adaptation query. In G2, Ai and Âi are computed by
Ai := ARi+kiG and Âi := AR̂i with Ri

$←− {±1}m×w and R̂i
$←− {±1}m×w in

the setup phase, and A′prf := AR′prf +G when answering each adaptation query
with R′prf computed by Evalprv from Ri’s and R̂i’s.

1′′. During the setup phase, the challenger C proceeds as follows.
– Generate ppprf ← PRF.Setup(1κ) and sample k

$←− {0, 1}k.
– Generate (A,TA)← TrapGen(1n, 1m, q).
– Sample Ri

$←− {±1}m×w and set Ai := ARi + kiG for i ∈ [k]. Sample
R̂i

$←− {±1}m×w and set Âi := AR̂i for i ∈ [h].
– pp := (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]), td := (pp,TA) and send pp to A.

2′′. Upon an adaptation query (τ,h,m, r,m′) from A, C proceeds as follows.
– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,

h,m, r) = 0 holds, return ⊥; otherwise, continue.
– Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′.
– Compute y′ ← PRF(k,x′) and construct C[x′,y′] as defined by (2).
– S′prf ← Evalprv(C[x′,y′](·),A,k, {Ri}i∈[k]) and P′prf :=

∑
i∈[h] m

′
iR̂i.

– Set R′prf := S′prf + P′prf and A′prf := AR′prf + G. Delegate TA|A′
prf
←

TrapDel([A|A′prf ],TA).
– e′ = (e′1, e

′
2)← SamplePre([A|A′prf ],TA|A′

prf
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′,y′, e′) to A and QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}.

Lemma 11. Games G1 and G2 are statistically indistinguishable and |Pr[G1 ⇒
1]− Pr[G2 ⇒ 1]| ≤ 2−O(κ).

Proof of Lemma 11. For each i ∈ [k], we have

Ai := ARi + kiG (in G2) ≈s Ui + kiG ≡ U′i =: Ai (in G1) ,

where Ri
$←− {±1}m×w and Ui,U

′
i

$←− Zn×w
q . The “≈s” follows from Lemma 2

(randomness extraction) and the triangle inequality. The “≡” holds due to the
uniformity of Ui. Similarly, we can prove that the distribution of {Âi}i∈[h] in
G1 is statistically indistinguishable from that of {Âi}i∈[h] in G2 by

Âi := AR̂i (in G2) ≈s Ui =: Â (in G1) ,

where Ri
$←− {±1}m×w and Ui

$←− Zn×w
q .

Next we show that A′prf computed by Evalpub from Ai’s and Âi’s in G1 is iden-
tical to that computed by Evalprv from Ri’s and R̂i’s in G2. Given Ai = ARi +
kiG for i ∈ [k], we have C′prf := AS′prf+C[x′,y′](k) ·G = AS′prf+G with C′prf ←
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Evalpub(C[x′,y′](·),A, {Ai}i∈[k]) and S′prf ← Evalprv(C[x′,y′](·),A,k, {Ri}i∈[k])
due to Lemma 7 (homomorphic evaluation) and the fact that y′ = PRF(k,x′).
Besides, given Âi = AR̂i, we have B′prf :=

∑
i∈[h] m

′
iÂi = A

∑
i∈[h] m

′
iR̂i =

AP′prf . Then it holds that A′prf := C′prf +B′prf = AS′prf +G+AP′prf = AR′prf +G
with R′prf = S′prf +P′prf . This completes the proof. ⊓⊔

Game G3. Game G3 is similar to G2 except for the generation of the trapdoor
TA|A′

prf
in the adaptation query phase. In G2, TA|A′

prf
is delegated from TA. In

G3, TA|A′
prf

is generated from a G-trapdoor of [A|A′prf ].

2′′′. Upon an adaptation query (τ,h,m, r,m′) from A, C proceeds as follows.
– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,

h,m, r) = 0 holds, return ⊥; otherwise, continue.
– Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′.
– Compute y′ ← PRF(k,x′) and construct C[x′,y′] as defined by (2).
– S′prf ← Evalprv(C[x′,y′](·),A,k, {Ri}i∈[k]) and P′prf :=

∑
i∈[h] m

′
iR̂i.

– Set R′prf := S′prf + P′prf and A′prf := AR′prf + G. Generate TA|A′
prf
←

GtoBasis(R′prf).
– e′ = (e′1, e

′
2)← SamplePre([A|A′prf ],TA|A′

prf
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′,y′, e′) to A and QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}.

Lemma 12. Games G2 and G3 are statistically indistinguishable and |Pr[G2 ⇒
1]− Pr[G3 ⇒ 1]| ≤ 2−κ.

Proof of Lemma 12. Note that the changes in G3 only influence the sampling of e′
during the adaptation query phase, then it suffices to show that the distribution
of e′ in G3 is identical to that in G2. In G2, TA|A′

prf
is delegated from TA and

of norm ∥T̃A|A′
prf
∥ = ∥T̃A∥ ≤ O(

√
n log q) according to Lemma 5 (trapdoor

delegation). Together with Lemma 4 (preimage sampling) and the parameter
setting that γ > O(

√
n log q) · ω(

√
m+ w), the vector e′ sampled in G2 follows

the distribution DΛh
q (A),γ . In G3, we have A′prf = AR′prf + G, and hence R′prf

is a G-trapdoor for [A|A′prf ] according to [28]. Then according to Lemma 6 (G-
to-basis), TA|A′

prf
generated from the G-trapdoor R′prf is also a trapdoor for

[A|A′prf ] with norm ∥T̃A|A′
prf
∥ =

√
5(s1(R

′
prf) + 1) ≤ O(κc) for some constant

c. Together with Lemma 4 (preimage sampling) and the parameter setting that
γ ≥ O(κc) ·ω(

√
m+ w), the vector e′ sampled in G3 also follows the distribution

DΛh
q (A),γ . This completes the proof. ⊓⊔

Game G4. Game G4 is similar to G3 except for the generation of A in the setup
phase. In G3, A is generated by algorithm (A,TA)← TrapGen(1n, 1m, q). In G4,
A

$←− Zn×m
q is sampled uniformly at random.

1′′′. During the setup phase, the challenger C proceeds as follows.
– Generate ppprf ← PRF.Setup(1κ) and sample k

$←− {0, 1}k.
– Sample A

$←− Zn×m
q .
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– Sample Ri
$←− {±1}m×w and set Ai := ARi + kiG for i ∈ [k]. Sample

R̂i
$←− {±1}m×w and set Âi := AR̂i for i ∈ [h].

– pp := (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]), td := (pp,⊥) and send pp to A.

Lemma 13. Games G3 and G4 are statistically indistinguishable and |Pr[G3 ⇒
1]− Pr[G4 ⇒ 1]| ≤ 2−κ.

Lemma 13 holds directly from Lemma 3 (trapdoor generation).

Next we show that any PPT adversary A wins in G4 with negligible proba-
bility. To do this, we classify the adversaries into two types, A(I) and A(II).

• Type I: A(I) finally submits a forgery (τ∗,h∗,m∗, r∗,m′∗, r′∗) satisfying the
first Valid condition, i.e., (τ∗, ·,m∗) /∈ QAdapt ∧ (τ∗,h∗,m′∗) ∈ QAdapt.

• Type II: A(II) finally submits a forgery (τ∗,h∗,m∗, r∗,m′∗, r′∗) satisfying
the second Valid condition, i.e., (τ∗, ·,m∗) /∈ QAdapt ∧ (τ∗, ·,m′∗) /∈ QAdapt.

Next we show in Lemma 14 that A(I) and A(II) hardly win in G4.

Lemma 14. For any PPT adversary A(T ) with T ∈ {I, II}, it holds that
Pr[G4 ⇒ 1] ≤ AdvpsePRF(κ) + AdvSIS[n,q,β,m](κ) + 2−κ.

Proof of Lemma 14. We consider A(I) and A(II) separately.
First, we prove that if there exists a PPT A(I) that wins in G4, then we

construct a PPT algorithm B(I) to solve the SIS problem.

Algorithm B(I). Given an SIS instance A ∈ Zn×m
q , B(I) aims to obtain a non-

zero short vector v ∈ Zm
q s.t. Av = 0n. It proceeds as follows.

0. The algorithm B(I) initializes sets QAdapt := ∅ and Qr := ∅.
1. During the setup phase, the challenger B(I) proceeds as follows.

– Generate ppprf ← PRF.Setup(1κ) and sample k
$←− {0, 1}k.

– Sample Ri
$←− {±1}m×w and set Ai := ARi + kiG for i ∈ [k]. Sample

R̂i
$←− {±1}m×w and set Âi := AR̂i for i ∈ [h]. (Note that A is the SIS

instance.)
– Send pp = (ppprf ,A, {Ai}i∈[k], {Âi}i∈[h]) to A(I).

2. Upon an adaptation query (τ,h,m, r,m′) fromA(I), B(I) proceeds as follows.
– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,

h,m, r) = 0 holds, return ⊥; otherwise, continue.
– Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′.
– Compute y′ ← PRF(k,x′) and construct C[x′,y′] as defined by (2).
– S′prf ← Evalprv(C[x′,y′](·),A,k, {Ri}i∈[k]) and P′prf :=

∑
i∈[h] m

′
iR̂i.

– Set R′prf := S′prf + P′prf and A′prf := AR′prf + G. Generate TA|A′
prf
←

GtoBasis(R′prf).
– e′ = (e′1, e

′
2)← SamplePre([A|A′prf ],TA|A′

prf
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′,y′, e′) toA(I). SetQAdapt := QAdapt∪{(τ,h,m), (τ,h,m′)}
and Qr := Qr ∪ {(τ,h,m, r), (τ,h,m′, r′)}.
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3. Upon a forgery tuple (τ∗,h∗,m∗, r∗,m′∗, r′∗), if A(I) wins, it holds that
m∗ ̸= m′∗, Check(τ∗,h∗,m∗, r∗) = Check(τ∗, h∗,m′∗, r′∗) = 1 and (τ∗, ·,m∗) /∈
QAdapt∧(τ∗,h∗,m′∗) ∈ QAdapt. Find (τ∗,h∗, m̄) ∈ QAdapt s.t. (τ∗,h∗, m̄, r̄) ∈
Qr, Check(τ∗,h∗, m̄, r̄) = 1 and m̄ is never queried to OAdapt as the adapted
message w.r.t. tag τ∗. Then B(I) computes a SIS solution as follows.

– Parse r̄ = (z̄, ȳ, ē) and r∗ = (z∗,y∗, e∗).
– Set x̄ := τ∗∥m̄∥z̄ and x∗ := τ∗∥m∗∥z∗. Construct C[x̄, ȳ] and C[x∗,y∗].
– C̄prf ← Evalpub(C[x̄, ȳ](·),A, {Ai}i∈[k]) and B̄prf :=

∑
i∈[h] m̄iÂi.

– S̄prf ← Evalprv(C[x̄, ȳ](·),A,k, {Ri}i∈[k]) and P̄prf :=
∑

i∈[h] m̄iR̂i.
– Set Āprf := C̄prf + B̄prf and R̄prf := S̄prf + P̄prf .
– C∗prf ← Evalpub(C[x∗,y∗](·),A, {Ai}i∈[k]) and B∗prf :=

∑
i∈[h] m

∗
i Âi.

– S∗prf ← Evalprv(C[x∗,y∗](·),A,k, {Ri}i∈[k]) and P∗prf :=
∑

i∈[h] m
∗
i R̂i.

– Set A∗prf := C∗prf +B∗prf and R∗prf := S∗prf +P∗prf .
– Compute and return v := [Im|R∗prf ]·e∗−[Im|R̄prf ]·ē to its own challenger.

We show the existence of tuple (τ∗,h∗, m̄) ∈ QAdapt in step 3. The adversary
may issue multiple adaptation queries centered around (τ∗,h∗), but there must
be a root tuple (τ∗,h∗, m̄, r̄) such that all other tuples (τ∗,h∗, ·, ·) are adapted
from it directly or indirectly. According to the specification of OAdapt, all the tar-
get new messages w.r.t. τ∗ are different from the root message m̄. Consequently,
tuple (τ∗,h∗, m̄, r̄) satisfies (τ∗,h∗, m̄, r̄) ∈ Qr, Check(τ∗,h∗, m̄, r̄) = 1 and m̄
is never queried to OAdapt as the adapted message w.r.t. τ∗.

Next we show that v is a valid solution to the SIS problem. Note that
(τ∗, ·,m∗) /∈ QAdapt is never queried to the adaptation oracle, then nothing
about PRF(k,x∗) with x∗ = τ∗∥m∗∥z∗ is revealed to A(I). For y∗ chosen by
A(I), y∗ = PRF(k,x∗) hardly holds due to the pseudorandomness of PRF. Then
with overwhelming probability, C[x∗,y∗](k) = 0 and

A∗prf = AR∗prf + C[x∗,y∗](k) ·G = AR∗prf + 0 ·G = AR∗prf .

Besides, since (τ∗,h∗, m̄) ∈ QAdapt and m̄ is never queried to QAdapt as a target
new message under tag τ∗ before, we know that (τ∗,h∗, m̄, r̄) is generated by
A(I) itself and PRF(k, x̄) with x̄ = τ∗∥m̄∥z̄ is never obtained by A(I). Through
an analogous analysis, we know that with overwhelming probability,

Āprf = AR̄prf + C[x̄, ȳ](k) ·G = AR̄prf + 0 ·G = AR̄prf .

Furthermore, since Check(τ∗,h∗,m∗, r∗) = Check(τ∗,h∗, m̄, r̄) = 1, we have

[A|A∗prf ] · e∗ = h∗ = [A|Āprf ] · ē ⇔ [A|AR∗prf ] · e∗ − [A|AR̄prf ] · ē = 0n

⇔ A ([Im|R∗prf ] · e∗ − [Im|R̄prf ] · ē)︸ ︷︷ ︸
=:v∈Zm

q

= 0n,

where e∗ = (e∗1, e
∗
2), ∥e∗∥ ≤ γ

√
m+ w, e∗2 ̸= 0w, ē = (ē1, ē2), ∥ē∥ ≤ γ

√
m+ w

and ē2 ̸= 0w. Together with our parameter setting that γ ·O(κc) ·
√
m+ w ≤ β,

we have ∥v∥ ≤ O(κc) · γ
√
m+ w ≤ β for some constant c.
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It remains to show that v = ([Im|R∗prf ] · e∗ − [Im|R̄prf ] · ē) ̸= 0m. Denote by
r∗i (resp., r̄i, s∗i , p∗i and {r̂j,i}j∈[h]) the i-th column of R∗prf (resp., R̄prf , S∗prf ,
P∗prf and {R̂j}j∈[h]), and e∗2,i the i-th item of e∗2. Recall that r∗i = s∗i + p∗i =
s∗i +

∑
j∈[h] m

∗
j r̂j,i. Since (τ∗, ·,m∗) /∈ QAdapt and (τ∗,h∗, m̄) ∈ QAdapt, we know

that m̄ ̸= m∗ and hence there must exist some index ι ∈ [h] s.t. m̄ι ̸= m∗ι .
W.l.o.g., let m̄ι = 0 and m∗ι = 1. Besides, since e∗2 ̸= 0w, there must exist some
index ν ∈ [w] s.t. e∗2,ν ̸= 0. Now we show that v = 0m holds with negligible
probability. Note that

v = e∗1 +R∗prfe
∗
2 − ē1 − R̄prf ē2 = 0m

⇔ r̂ι,ν = (ē1 + R̄prf ē2 − e∗1 −
∑

i ̸=ν
r∗i e
∗
2,i)/e

∗
2,ν − s∗ν −

∑
j ̸=ι

m∗j r̂j,ν︸ ︷︷ ︸
=:W

. (3)

Recall that r̂ι,ν is sampled uniformly from {1,−1}m and the only information
of r̂ι,ν revealed to A(I) is u = Ar̂ι,ν ∈ Zn

q . Together with Lemma 1 and the
parameter setting that m ≥ O(n log q), H̃∞(r̂ι,ν |u) ≥ H∞(r̂ι,ν) − n log q =
m−n log q ≥ κ and r̂ι,ν still has high entropy. Further since “W” in equation (3)
is independent of r̂ι,ν , we have r̂ι,ν = W with probability 2−κ. Then equation (3)
holds with a negligible probability and v = 0m holds with negligible probability.

Now we have proved that v is a valid solution for SIS and Pr[G4 ⇒ 1|A(I)] ≤
AdvpsePRF(κ) + AdvSIS[n,q,β,m](κ) + 2−κ.

Next, we prove that if there exists a PPT A(II) that wins in G4, then we
construct a PPT algorithm B(II) to solve the SIS problem. The algorithm B(II)
is similar to B(I) except for the step 3, as described below.

3. Upon a forgery tuple (τ∗,h∗,m∗, r∗,m′∗, r′∗), if A(II) wins, it holds that
m∗ ̸= m′∗, Check(τ∗,h∗,m∗, r∗) = Check(τ∗, h∗,m′∗, r′∗) = 1 and (τ∗, ·,m∗) /∈
QAdapt∧ (τ∗, ·,m′∗) /∈ QAdapt. Then B(II) computes a SIS solution as follows.

– Parse r∗ = (z∗,y∗, e∗) and r′∗ = (z′∗,y′∗, e′∗). Set x∗ := τ∗∥m∗∥z∗ and
x′∗ := τ∗∥m′∗∥z′∗. Construct C[x∗,y∗] and C[x′∗,y′∗].

– C∗prf ← Evalpub(C[x∗,y∗](·),A, {Ai}i∈[k]) and B∗prf :=
∑

i∈[h] m
∗
i Âi.

– S∗prf ← Evalprv(C[x∗,y∗](·),A,k, {Ri}i∈[k]) and P∗prf :=
∑

i∈[h] m
∗
i R̂i.

– Set A∗prf := C∗prf +B∗prf and R∗prf := S∗prf +P∗prf .
– C′∗prf ← Evalpub(C[x′∗,y′∗](·),A, {Ai}i∈[k]) and B′∗prf :=

∑
i∈[h] m

′∗
i Âi.

– S′∗prf ← Evalprv(C[x′∗,y′∗](·),A,k, {Ri}i∈[k]) and P′∗prf :=
∑

i∈[h] m
′∗
i R̂i.

– Set A′∗prf := C′∗prf +B′∗prf and R′∗prf := S′∗prf +P′∗prf .
– Compute and return v := [Im|R∗prf ] · e∗− [Im|R′∗prf ] · e′∗ to its challenger.

Then we show that v is a valid solution to the SIS problem. Note that
(τ∗, ·,m∗) /∈ QAdapt and (τ∗, ·,m′∗) /∈ QAdapt are not queried to the adapta-
tion oracle, so nothing about PRF(k,x∗) and PRF(k,x′∗) with x∗ = τ∗∥m∗∥z∗
and x′∗ = τ∗∥m′∗∥z′∗, has ever been revealed to A(II), and hence PRF(k,x∗)
and PRF(k,x′∗) are pseudorandom due to the pseudorandomness of PRF. As a
consequence, neither y∗ = PRF(k,x∗) nor y′∗ = PRF(k,x′∗) holds except for
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negligible probability, where y∗ and y′∗ are chosen by A(II), and this leads to
C[x∗,y∗](k) = 0 and C[x′∗,y′∗](k) = 0. Therefore,

A∗prf = AR∗prf + C[x∗,y∗](k) ·G = AR∗prf + 0 ·G = AR∗prf

A′∗prf = AR′∗prf + C[x′∗,y′∗](k) ·G = AR′∗prf + 0 ·G = AR′∗prf .

Through an analogous analysis as before, v := [Im|R∗prf ] · e∗ − [Im|R′∗prf ] · e′∗
is a valid SIS solution with overwhelming probability. Now we obtain Pr[G4 ⇒
1|A(II)] ≤ AdvpsePRF(κ) + AdvSIS[n,q,β,m](κ) + 2−κ. ⊓⊔

From Lemma 14, we have

Pr[G4 ⇒ 1] = Pr[G4 ⇒ 1|A(I)] Pr[A(I)] + Pr[G4 ⇒ 1|A(II)] Pr[A(II)]

≤ AdvpsePRF(κ) + AdvSIS[n,q,β,m](κ) + 2−O(κ). (4)

Finally combining Lemmas 10, 11, 12, 13 and (4), it holds that

Pr[ExprcrtCH,A(κ)⇒ 1]

≤
∣∣Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]

∣∣+ ∣∣Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]
∣∣

+
∣∣Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]

∣∣+ |Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]|+ Pr[G4 ⇒ 1]

≤ AdvSIS[n,q,β,m](κ) + 2AdvpsePRF(κ) + 2−O(κ). (5)

By (5), it is easy to see that the r-CR security of tCH can be tightly reduced to
the SIS assumption and the pseudorandomness of PRF. Given the concrete PRF
schemes [5], our tCH enjoys r-CR based on the SIS and LWE assumptions. ■

4.2 tCH with Tight Security in ROM

In this subsection, we provide another lattice-based tCH construction, namely
tCH′, with r-CR security proved in the random oracle model. Compared with
tCH in Fig. 4, our second tCH construction replaces the underlying homomorphic
evaluations and PRF with a hash function (which is modeled as a random oracle),
and hence achieves better efficiency and tightness. Let H : Zn×m

q × {0, 1}x →
Zn×w
q be a hash function. Our tCH scheme tCH′ is given in Fig. 5.

Parameter setting. Parameters of tCH′ include the security parameter κ, the
dimension parameters x, t, h, the SIS parameters n,m, q, β and the Gaussian
parameter γ. Define w = n⌈log q⌉. The afore-mentioned parameters are required
to satisfy the following restrictions simultaneously.

• Let x, t, h = poly(κ) be positive integers and x = t+ h+ κ.
• Let n, q,m, β be positive parameters, n,m, β, q = poly(κ) and β ·poly(n) ≤ q

so that the SIS problem is hard according to Lemma 9.
• Let γ ≥ ω(

√
m(m+ w)) so that Lemma 4 can be applied.

• Let m = O(n log q) and 2γ
√
m(m+ w) ≤ β to serve for our security proof.
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(pp, td)← Setup(1κ).

1. Generate (A,TA)← TrapGen(1n, 1m, q) with A ∈ Zn×m
q .

2. Return pp := A and td := (pp,TA).

(h, r)← Hash(pp, τ ∈ {0, 1}t,m ∈ {0, 1}h).

1. Parse pp = A.
2. Sample z

$←− {0, 1}κ and set x := τ∥m∥z ∈ {0, 1}x.
3. Compute Ah = H(A,x) with Ah ∈ Zn×w

q .
4. Sample e = (e1, e2)← DZm+w,γ with e1 ∈ Zm

q and e2 ∈ Zw
q s.t. e2 ̸= 0w.

5. Return h = [A|Ah] · e ∈ Zn
q and r = (z, e).

r′ ← Adapt(td, τ ∈ {0, 1}t,h,m ∈ {0, 1}h, r,m′ ∈ {0, 1}h).

1. Parse td = (pp,TA) and pp = A.
2. If Check(pp, τ,h,m, r) = 0, return ⊥. Otherwise, continue.
3. Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′ ∈ {0, 1}x.
4. Compute A′

h = H(A,x′) with A′
h ∈ Zn×w

q .
5. Delegate TA|A′

h
← TrapDel([A|A′

h],TA).
6. Sample e′ = (e′

1, e
′
2)← SamplePre([A|A′

h],TA|A′
h
,h, γ) with e′

1 ∈ Zm
q and e′

2 ∈
Zw
q s.t. e′

2 ̸= 0w.
7. Return r′ = (z′, e′).

0/1← Check(pp, τ ∈ {0, 1}t,h,m ∈ {0, 1}h, r).

1. Parse pp = A and r = (z, e). Set x := τ∥m∥z ∈ {0, 1}x.
2. Compute Ah = H(A,x) with Ah ∈ Zn×w

q .
3. Parse e = (e1, e2) with e1 ∈ Zm

q and e2 ∈ Zw
q . If h = [A|Ah] ·e, ∥e∥ ≤ γ

√
m+ w

and e2 ̸= 0w, return 1; otherwise, return 0.

Fig. 5: Tagged chameleon hash tCH′ in the random oracle model.

Theorem 3. Let H : Zn×m
q × {0, 1}x → Zn×w

q be a hash function modeled as
a random oracle. Given parameters described above, construction tCH′ in Fig.
5 is a tagged chameleon hash if the SISn,q,β,m assumption holds. Furthermore,
restricted collision resistance of tCH′ enjoys tight security:

Pr[ExprcrtCH′,A(κ)⇒ 1] ≤ AdvSIS[n,q,β,m](κ) + 2−O(κ).

The correctness of tCH′ follows directly from Lemma 5 (trapdoor delegation)
and Lemma 4 (preimage sampling). Proofs of statistical indistinguishability and
restricted collision resistance for tCH′ are similar to those for tCH, and we provide
them in our full version [26].

5 Application of tCH to the Redactable Blockchain

In this section, we show how to apply our tCH in constructing redactable
blockchain. In Subsect. 5.1, we introduce some notations of a redactable blockchain.
In Subsect. 5.2, we show how to redact a blockchain with a tCH. In Subsect. 5.3,
we provide a security analysis of our redactable blockchain.
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Fig. 6: An illustration of a redactable blockchain from tCH. All parts with light-
grey background constitutes a block. Parts with white background are conceptual
and shown for better presentation. Blocks link to a chain in a way that a previous
hash value si−1 for block Bi−1 is stored in the “PreHash” part of block Bi.
Take an adaptation from tr2 to tr∗ as an example, the corresponding hash-
randomness pair (h2, r2) will be changed accordingly to (h2, r

∗), where r∗ is
computed by Adapt of tCH. The changed parts in the adapted block are decorated
with dark-grey background. The down-arrow in dark-blue denotes the authorized
adaptation done by the trusted regulation party.

5.1 Redactable Blockchain

We follow notations of blockchain and redactable blockchain introduced in [18,3].
According to [3], a redactable block uses two hash functions, one is a crypto-
graphic hash and the other is a chameleon hash. Now we replace the chameleon
hash with our tCH, and additionally introduce a unique identifier (like the times-
tamp, previous hash or position of the block in the chain) into each block to serve
as the “tag τ” of tCH. See Fig. 6 for a pictorial presentation.

Let H : {0, 1}∗ → N be a cryptographic hash function and tCH = (Setup,Hash,
Adapt,Check) be a tCH. In a redactable blockchain, each block B is of the form

B =
〈
nonce, τ, s, tr︸︷︷︸

m

, (h, r)
〉
,

where nonce ∈ N denotes the nonce value, τ ∈ {0, 1}t denotes a unique identifier,
s ∈ N is a hash value computed by H, tr ∈ {0, 1}x denotes the information
stored in a block, (h, r) is a hash-randomness pair computed by Hash from m :=
(s∥tr) ∈ {0, 1}h w.r.t. τ , i.e., (h, r)← Hash(τ,m). We say that a block B is valid
if ValidRBD

q (B) = 1 with

ValidRBD
q (B) :=

(
H(nonce∥h∥τ) < D

)
∧
(
Check(τ, h,m, r) = 1

)
∧
(
nonce < q

)
,

where D ∈ N is the block’s difficulty level and q ∈ N denotes the maximum
allowed number of hash queries in a round.
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Algorithm 1: Blockchain Redacting Algorithm
Input: The public parameter and trapdoor (pp, td) of tCH.

A blockchain C with len(C) = n.
A sequence of target indices I = (ι1, . . . , ιk) ⊆ [n].
A sequence of target messages M = (tr∗ι1 , . . . , tr

∗
ιk ).

Output: A redacted blockchain C′ with len(C′) = n

1 for i = 1, . . . , n do
2 if i ∈ I then
3 Parse the i-th block Bi of C as Bi = ⟨noncei, τi, si, tri, (hi, ri)⟩;
4 Compute r∗i ← Adapt(td, τi, hi, si∥tri, ri, si∥tr∗i );
5 Set B∗

i := ⟨noncei, τi, si, tr∗i , (hi, r
∗
i )⟩;

6 Set C := C⌈n−i+1 ∥ B∗
i ∥ i⌉C;

7 return C

A redactable blockchain C is a sequence of valid blocks. The head of chain C,
denoted by head(C), is the rightmost block in it. The length of chain C, denoted
by len(C), is the number of blocks contained in it. Let C = ε if chain C is empty.

Any chain C′ with head head(C′) = ⟨nonce′, τ ′, s′, tr′, (h′, r′)⟩ can be extended
to a longer one by appending a new valid block B = ⟨nonce, τ, s, tr, (h, r)⟩ sat-
isfying s = H(nonce′∥h′∥τ ′), and then the head of the extended chain C = C′∥B
is changed to head(C) = B. In case C′ = ε, any valid block B can append to it.

For a chain C with length len(C) = n and any nonnegative integer k ≤ n, we
denote by C⌈k the chain resulting from removing the k rightmost blocks of C,
and denote by k⌉C the chain resulting from removing the k leftmost blocks of C.

5.2 Redacting Blocks

In this subsection, we provide a blockchain redacting algorithm to redact blocks.
Let n, k be positive integers s.t. k ≤ n. The algorithm takes as inputs the public
parameter and trapdoor of a tagged chameleon hash tCH, a blockchain C of length
n, k target indices that represent the positions of blocks in C to be redacted, and
k corresponding adapted messages for blocks to be redacted, and finally returns
a redacted blockchain C′. The detailed description is given in Algorithm 1.

5.3 Security Analysis

In this subsection, we provide a security analysis for the resulting redactable
blockchain given a tCH with r-CR security. Note that tCH works in the one-
time tag mode in the redactable blockchain since the tCH hash value w.r.t. each
settled block is computed with a unique tag and authorized adaptations are made
only for those settled blocks. Then f-CR of tCH is equivalent to r-CR according
to Theorem 1. Therefore, all we need to do is to prove that the redactable
blockchain is secure as long as tCH has f-CR security.
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As we described in Subsect. 5.1, each block B in the chain is of the form
B = ⟨nonce, τ, s, tr, (h, r)⟩. For expression simplicity, we only consider the tCH-
related parts of each block and briefly write B as B = ⟨τ, h,m, r⟩ (note that m =
s∥tr). Recall that in a redactable blockchain system, the adversary sees all orig-
inal blocks B1, B2, B3, · · · and adapted blocks {Bi

1}i∈[n1], {Bi
2}i∈[n2], {Bi

3}i∈[n3],
· · · , where each nj = poly(κ) denotes the number of adaptations for block Bj .
The aim of an adversary is to redact the chain by adapting some block Bj =
⟨τj , hj ,mj , rj⟩ to a new one B∗ = ⟨τj , hj ,m

∗, r∗⟩, such that hj = Hash(τj ,mj ; rj) =
Hash(τj ,m

∗; r∗) and m∗ /∈ {mj} ∪ {mi
j}i∈[nj ] w.r.t. those Bj and {Bi

j}i∈[nj ].
We show that if there exists an adversary A performing the above attack suc-

cessfully, then we can break the full collision resistance of tCH. If A wins, it must
hold that hj = Hash(τj ,mj ; rj) = Hash(τj ,m

∗; r∗) and m∗ is fresh w.r.t. (τj , hj).
In this case, we find a tuple (τj , hj ,m

∗, r∗,mj , rj) s.t. hj = Hash(τj ,mj ; rj) =
Hash(τj ,m

∗; r∗) and (τj , hj ,m
∗) is fresh, and hence break the f-CR of tCH.

Therefore, the security of the resulting redactable blockchain is reduced to
the f-CR security of tCH. Given the equivalence of f-CR and r-CR in the scenario
of redactable blockchain, we know that, the redactable blockchain is secure as
long as the underlying tCH has r-CR security.

Finally with Theorems 2 and 3, both our tCHs in Subsect. 4.1 and Sub-
sect. 4.2 can serve as secure compilers converting a conventional blockchain to
a redactable one.
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A Proof of Theorem 1

Theorem 1 If a tagged chameleon hash tCH satisfies the restricted collision
resistance, then it also satisfies the full collision resistance when it is used in the
one-time tag mode. More precisely, for any PPT adversary A, it holds that

AdvfcrtCH,A(κ) ≤ AdvrcrtCH(κ).

Proof of Theorem 1. Let tCH work in the one-time tag mode. We show that if
there exists an adversary A breaking the f-CR security of tCH, then we can
construct an algorithm B breaking the r-CR security of tCH as shown below.

Algorithm B. B is given the public parameter pp from its own challenger C and
has access to the adaptation oracle OAdapt.

1. During the setup phase, B sets QAdapt := ∅ and sends pp to A.
2. On receiving an adaptation query (τ, h,m, r,m′) from A, B sends it to OAdapt

as its own query and receives r′ from C. Note that, since tCH works in the
one-time tag mode, each tag τ is hashed only once and should be uniquely
bound with a hash value h. Hence there does not exist triple (τ, h′′,m) in
QAdapt s.t. h′′ ̸= h. Due to a similar reason, given (τ, h,m′) /∈ QAdapt

5, we
know that (τ, ·,m′) /∈ QAdapt (otherwise, τ is bound with both h and some
h′′ ̸= h). In this case, query (τ, h,m, r,m′) is valid for r-CR security if it is
valid for f-CR security. Then B sets QAdapt := QAdapt ∪ {(τ, h,m), (τ, h,m′)}
and returns r′ to A.

3. On receiving the forgery (τ∗, h∗,m∗, r∗,m′∗, r′∗), B sends (τ∗, h∗,m∗, r∗,m′∗,
r′∗) to C as its own forgery.

Now we prove that if A wins, then B wins when tCH is used in the one-
time tag mode. According to the definition of f-CR, we know that (τ∗, h∗,m∗) /∈
QAdapt. Then we consider the following two cases.

• Case 1. (τ∗, h∗,m∗) /∈ QAdapt ∧ (τ∗, ·,m′∗) ∈ QAdapt. Since tCH works in the
one-time tag mode, tag τ∗ is uniquely bound with h∗. Then (τ∗, h∗,m∗) /∈
QAdapt implies (τ∗, ·,m∗) /∈ QAdapt, and (τ∗, ·,m′∗) ∈ QAdapt implies (τ∗, h∗,m′∗) ∈
QAdapt (otherwise, τ∗ corresponds to both h∗ and some h ̸= h∗, which is
impossible). In this case, the forgery (τ∗, h∗,m∗,m′∗) satisfies (τ∗, ·,m∗) /∈
QAdapt ∧ (τ∗, h∗,m′∗) ∈ QAdapt, and hence Valid(τ∗, h∗,m∗,m′∗) = 1.

• Case 2. (τ∗, h∗,m∗) /∈ QAdapt ∧ (τ∗, ·,m′∗) /∈ QAdapt. For the similar reason,
(τ∗, h∗,m∗) /∈ QAdapt implies (τ∗, ·,m∗) /∈ QAdapt. Hence this case also implies
Valid(τ∗, h∗,m∗,m′∗) = 1.

According to the above analysis, we know that if (τ∗, h∗,m∗, r∗,m′∗, r′∗) is a
valid forgery for f-CR security, then it is also a valid forgery for r-CR. In this
case, B wins whenever A wins. This completes the proof. ⊓⊔
5 W.l.o.g., we assume that for each adaptation query (τ, h,m, r,m′), the adapted mes-

sage m′ is fresh w.r.t. (τ, h) (see observation 3).
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B Security Proofs for tCH′

Proof of statistical indistinguishability for tCH′. We prove that, given tag τ and
messages m,m′, the distribution of (h, r) generated by Hash is statistically close
to that generated by Hash-then-Adapt. According to our construction, (h, r)
generated by Hash follows the distribution DH, and (h, r) generated by Hash-
then-Adapt follows the distribution DH&A, where

DH :=
{
(h, r = (z, e)) | z $←− {0, 1}κ, e← DZm+w,γ ,h := [A|Ah] · e

}
,

DH&A :=

{
(h, r = (z, e))

∣∣∣∣∣ z, z′
$←− {0, 1}κ , e′ ← DZm+w,γ , h := [A|A′h] · e′,

e← SamplePre([A|Ah],TA|Ah
,h, γ)

}
.

Here Ah is deterministically computed from A, τ,m and z, and A′h is generated
similar to Ah but with m′ and z′.

Similarly, we can prove DH&A ≈s D′H&A by Lemma 2 (randomness extrac-
tion), where

D′H&A :=

{
(h, r = (z, e))

∣∣∣∣∣ z
$←− {0, 1}κ,h $←− Zn

q ,

e← SamplePre([A|Ah],TA|Ah
,h, γ)

}
,

According to Lemma 8, DH ≈s D′H&A. Therefore, DH ≈s DH&A by triangle
inequality and this proves the statistical indistinguishability of tCH′. ⊓⊔

Proof of restricted collision resistance for tCH′. We define a sequence of hybrid
games G0 ∼ G3, where G0 is identical to ExprcrtCH′,A(κ) defined in Fig. 3 (note that
in ROM, A has an additional access to the random oracle OH). We show that
games Gi and Gi−1 are indistinguishable for all i ∈ [3], and in G3, the adversary
wins with negligible probability. The differences between adjacent games are
highlighted in blue. Assume that A makes at most Q adaptation queries.

Game G0. Game G0 is identical to ExprcrtCH′,A(κ) defined by Fig. 3.

0. The challenger C initializes a set QAdapt := ∅ and a list Lh := ∅.
1. During the setup phase, the challenger C proceeds as follows.

– Generate (A,TA)← TrapGen(1n, 1m, q).
– Set pp := A and td := (pp,TA), and send pp to A.

2. On receiving a hash query (H,xh), the challenger C proceeds as follows.
– If there exists Ah s.t. (H,xh,Ah,⊥) ∈ Lh, send Ah to A.
– Otherwise, send Ah

$←− Zn×w
q to A and append (H,xh,Ah,⊥) to Lh.

3. Upon an adaptation query (τ,h,m, r,m′) from A, C proceeds as follows.
– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,

h,m, r) = 0 holds, return ⊥; otherwise, continue.
– Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′ s.t. (A,x′, ·, ·) /∈ Lh (note
that this holds with probability 1− 2−O(κ) since z′ is sampled uniformly
at random).

– Sample A′h
$←− Zn×w

q and append (A,x′,A′h,⊥) to Lh.
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– Delegate TA|A′
h
← TrapDel([A|A′h],TA).

– e′ = (e′1, e
′
2)← SamplePre([A|A′h],TA|A′

h
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′, e′) to A and QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}.
4. On receiving the forgery tuple (τ∗,h∗,m∗, r∗,m′∗, r′∗), C makes the following

checks, and returns 0 if any of them fails. Otherwise, C returns 1.
– Check if Check(τ∗,h∗,m∗, r∗) = Check(τ∗,h∗,m′∗, r′∗) = 1.
– Check if m∗ ̸= m′∗ and Valid(τ∗,h∗,m∗,m′∗) = 1.

By definition, we have Pr[G0 ⇒ 1] = Pr[ExprcrtCH′,A(κ)⇒ 1].

Game G1. Game G1 is similar to G0 except for the computations of Ah for
each random oracle query (A,xh), and A′h for each adaptation query. In G0,
Ah

$←− Zn×w
q and A′h

$←− Zn×w
q are sampled uniformly at random. In G1, Ah is

computed by Ah := ARh with Rh
$←− {±1}m×w for each random oracle query

(A,xh), and A′h is computed by A′h := AR′h+G with R′h
$←− {±1}m×w for each

adaptation query.

2′. On receiving a hash query (H,xh), the challenger C proceeds as follows.
– If ∃ Ah s.t. (H,xh,Ah, ·) ∈ Lh, send Ah to A; otherwise, continue.
– If H ̸= A, sample Ah

$←− Zn×w
q , append (H,xh,Ah,⊥) to Lh, and send

Ah to A.
– Otherwise, sample Rh

$←− {±1}m×w, compute Ah := ARh, append
(H,xh,Ah,Rh) to Lh, and send Ah to A.

3′. Upon an adaptation query (τ,h,m, r,m′) from A, C proceeds as follows.
– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,

h,m, r) = 0 holds, return ⊥; otherwise, continue.
– Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′ s.t. (A,x′, ·, ·) /∈ Lh.
– Sample R′h

$←− {±1}m×w, set A′h := AR′h+G, and append (A,x′,A′h,R
′
h)

to Lh.
– Delegate TA|A′

h
← TrapDel([A|A′h],TA).

– e′ = (e′1, e
′
2)← SamplePre([A|A′h],TA|A′

h
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′, e′) to A and QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}.

Lemma 15. Games G0 and G1 are statistically indistinguishable and |Pr[G0 ⇒
1]− Pr[G1 ⇒ 1]| ≤ 2−O(κ).

Lemma 15 follows from Lemma 2 (randomness extraction).

Game G2. Game G2 is similar to G1 except for the generation of the trapdoor
TA|A′

h
in the adaptation query phase. In G2, TA|A′

h
is delegated from TA. In

G3, TA|A′
h

is generated from a G-trapdoor of [A|A′h].

3′′. Upon an adaptation query (τ,h,m, r,m′) from A, C proceeds as follows.
– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,

h,m, r) = 0 holds, return ⊥; otherwise, continue.
– Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′ s.t. (A,x′, ·, ·) /∈ Lh.
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– Sample R′h
$←− {±1}m×w, set A′h := AR′h+G, and append (A,x′,A′h,R

′
h)

to Lh.
– Generate TA|A′

h
← GtoBasis(R′h).

– e′ = (e′1, e
′
2)← SamplePre([A|A′h],TA|A′

h
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′, e′) to A and QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}.

Lemma 16. Games G1 and G2 are statistically indistinguishable and |Pr[G1 ⇒
1]− Pr[G2 ⇒ 1]| ≤ 2−κ.

Note that for each adaptation query (τ,h,m, r,m′), the corresponding A′h
is computed as A′h = AR′h+G. Hence R′h is a G-trapdoor for [A|A′h]. Now the
proof of Lemma 16 is analogous to that of Lemma 12.

Game G3. Game G3 is similar to G2 except for the generation of A in the setup
phase. In G2, A is generated by algorithm (A,TA)← TrapGen(1n, 1m, q). In G3,
A

$←− Zn×m
q is sampled uniformly at random.

1′. During the setup phase, the challenger C proceeds as follows.
– Sample A

$←− Zn×w
q .

– Set pp := A and td := (pp,⊥) and return pp to A.

Lemma 17. Games G2 and G3 are statistically indistinguishable and |Pr[G2 ⇒
1]− Pr[G3 ⇒ 1]| ≤ 2−κ.

Lemma 17 holds directly from Lemma 3 (trapdoor generation).

Next we show that any PPT adversary A wins in G3 with negligible proba-
bility. To do this, we classify the adversaries into two types, A(I) and A(II).

• Type I: A(I) finally submits a forgery (τ∗,h∗,m∗, r∗,m′∗, r′∗) satisfying the
first Valid condition, i.e., (τ∗, ·,m∗) /∈ QAdapt ∧ (τ∗,h∗,m′∗) ∈ QAdapt.

• Type II: A(II) finally submits a forgery (τ∗,h∗,m∗, r∗,m′∗, r′∗) satisfying
the second Valid condition, i.e., (τ∗, ·,m∗) /∈ QAdapt ∧ (τ∗, ·,m′∗) /∈ QAdapt.

Next we show in Lemma 18 that A(I) and A(II) hardly win in G3.

Lemma 18. For any PPT adversary A(T ) with T ∈ {I, II}, it holds that
Pr[G3 ⇒ 1] ≤ AdvSIS[n,q,β,m](κ) + 2−κ.

Proof of Lemma 18. We consider A(I) and A(II) separately.
First, we prove that if there exists a PPT A(I) that wins in G3, then we

construct a PPT algorithm B(I) to solve the SIS problem.

Algorithm B(I). Given an SIS instance A ∈ Zn×m
q , B(I) aims to obtain a non-

zero short vector v ∈ Zm
q s.t. Av = 0n. It proceeds as follows.

0. The algorithm B(I) initializes sets QAdapt := ∅, Qr := ∅ and a list Lh := ∅.
1. During the setup phase, the algorithm B(I) sends pp := A to A(I) (note that

A is the SIS instance).
2. Upon a hash query (H,xh), the algorithm B(I) proceeds as follows.
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– If ∃ Ah s.t. (H,xh,Ah, ·) ∈ Lh, send Ah to A(I); otherwise, continue.
– If H ̸= A, sample Ah

$←− Zn×w
q , append (H,xh,Ah,⊥) to Lh and send

Ah to A(I).
– Otherwise, sample Rh

$←− {±1}m×w, compute Ah := ARh, append
(H,xh,Ah,Rh) to Lh and send Ah to A(I).

3. Upon an adaptation query (τ,h,m, r,m′) fromA(I), B(I) proceeds as follows.
– If ∃ (τ,h′′,m) ∈ QAdapt ∧ h′′ ̸= h, or ∃ (τ, ·,m′) ∈ QAdapt, or Check(τ,

h,m, r) = 0 holds, return ⊥; otherwise, continue.
– Sample z′

$←− {0, 1}κ and set x′ := τ∥m′∥z′ s.t. (A,x′, ·, ·) /∈ Lh.
– Sample R′h

$←− {±1}m×w, set A′h := AR′h +G, append (A,x′,A′h,R
′
h)

to Lh.
– Generate TA|A′

h
← GtoBasis(R′h).

– e′ = (e′1, e
′
2)← SamplePre([A|A′h],TA|A′

h
,h, γ) s.t. e′2 ̸= 0w.

– Send r′ := (z′, e′) to A(I). Set QAdapt := QAdapt ∪ {(τ,h,m), (τ,h,m′)}
and Qr := Qr ∪ {(τ,h,m, r), (τ,h,m′, r′)}

4. Upon a forgery tuple (τ∗,h∗,m∗, r∗,m′∗, r′∗), if A(I) wins, it holds that
m∗ ̸= m′∗, Check(τ∗,h∗,m∗, r∗) = Check(τ∗, h∗,m′∗, r′∗) = 1 and (τ∗, ·,m∗) /∈
QAdapt∧(τ∗,h∗,m′∗) ∈ QAdapt. Find (τ∗,h∗, m̄) ∈ QAdapt s.t. (τ∗,h∗, m̄, r̄) ∈
Qr, Check(τ∗,h∗, m̄, r̄) = 1 and m̄ is never queried to QAdapt as the adapted
message w.r.t. tag τ∗. Then B(I) computes a SIS solution as follows.

– Parse r̄ = (z̄, ē) and r∗ = (z∗, e∗). Set x̄ := τ∗∥m̄∥z̄ and x∗ := τ∗∥m∗∥z∗.
– If (A,x∗, ·, ·) /∈ Lh, B(I) samples R∗h

$←− {±1}m×w, computes A∗h =
AR∗h, and appends (A,x∗,A∗h,R

∗
h) to Lh. Otherwise, B(I) retrieves A∗h

and R∗h from (A,x∗,A∗h,R
∗
h) ∈ Lh. Similarly, B(I) generates or retrieves

Āh and R̄h.
– Compute and return v := [Im|R∗h] ·e∗− [Im|R̄h] · ē to its own challenger.

The existence of such (τ∗,h∗, m̄) in QAdapt is proved exactly the same as that
in the proof of Lemma 14.

Next we show that v is a valid solution to the SIS problem. Since (τ∗, ·,m∗) /∈
QAdapt is never queried to the adaptation oracle, matrix A∗h = H(A,x∗) with
x∗ = τ∗∥m∗∥z∗ corresponding to the forgery (τ∗,h∗,m∗, r∗) cannot be gener-
ated during the adaptation query phase, and hence it must be computed by
A∗h = AR∗h. Besides, since (τ∗,h∗, m̄) ∈ QAdapt but m̄ is never queried to QAdapt

as the adapted message w.r.t. tag τ∗, we know that (τ∗,h∗, m̄, r̄) is generated by
A(I) itself, and hence the corresponding Āh = H(A, x̄) can only be computed by
Āh = AR̄h. Furthermore, since Check(τ∗,h∗,m∗, r∗) = Check(τ∗,h∗, m̄, r̄) = 1,
we have

[A|A∗h] · e∗ = h∗ = [A|Āh] · ē ⇔ [A|AR∗h] · e∗ − [A|AR̄h] · ē = 0n

⇔ A ([Im|R∗h] · e∗ − [Im|R̄h] · ē)︸ ︷︷ ︸
=:v∈Zm

q

= 0n,

where e∗ = (e∗1, e
∗
2), ∥e∗∥ ≤ γ

√
m+ w, e∗2 ̸= 0w, ē = (ē1, ē2), ∥ē∥ ≤ γ

√
m+ w

and ē2 ̸= 0w. Together with our parameter setting that 2γ
√
m(m+ w) ≤ β, we

have ∥v∥ ≤ 2γ
√

m(m+ w) ≤ β.
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It remains to show that v := [Im|R∗h] · e∗ − [Im|R̄h] · ē ̸= 0m. Denote by r∗i
(resp., r̄i) the i-th column of R∗h (resp., R̄h), and e∗2,i the i-th item of e∗2. Since
e∗2 ̸= 0w, there must exist some index ν ∈ [w] s.t. e∗2,ν ̸= 0. Now we show that
v = 0m holds with negligible probability. Note that

v =e∗1 +R∗he
∗
2 − ē1 − R̄hē2 = 0m

⇔ r∗ν =(ē1 + R̄hē2 − e∗1 −
∑

i ̸=ν
r∗i e
∗
2,i)/e

∗
2,ν︸ ︷︷ ︸

=:W

. (6)

Note that r∗ν is sampled uniformly and independently from {±1}m and the only
information of r∗ν revealed to A(I) is u = Ar∗ν ∈ Zn

q . Together with Lemma 1
and the parameter setting that m ≥ O(n log q), we have H̃∞(r∗ν |u) ≥ H∞(r∗ν)−
n log q = m−n log q ≥ κ, so r∗ν still has high entropy. Further since W in equation
(6) is independent of r∗ν , the probability that r∗ν = W , i.e., (6) holds, is at most
2−κ. Consequently, v = 0m holds with probability at most 2−κ. Hence v is a
solution to the SIS problem and Pr[G3 ⇒ 1|A(I)] ≤ AdvSIS[n,q,β,m](κ) + 2−κ.

Next, we prove that if there exists a PPT A(II) that wins in G3, then we
construct a PPT algorithm B(II) to solve the SIS problem. The algorithm B(II)
is similar to B(I) except for the step 4, as described below.

4. Upon a forgery tuple (τ∗,h∗,m∗, r∗,m′∗, r′∗), if A(I) wins, it holds that
m∗ ̸= m′∗, Check(τ∗,h∗,m∗, r∗) = Check(τ∗, h∗,m′∗, r′∗) = 1 and (τ∗, ·,m∗) /∈
QAdapt∧ (τ∗, ·,m′∗) /∈ QAdapt. Then B(II) computes a SIS solution as follows.

– Parse r∗ = (z∗, e∗) and r′∗ = (z′∗, e′∗).
– Set x∗ := τ∗∥m∗∥z∗ and x′∗ := τ∗∥m′∗∥z′∗.
– Check whether (A,x∗, ·, ·) ∈ Lh. If (A,x∗, ·, ·) /∈ Lh, B(II) samples R∗h

$←−
{±1}m×w, computes A∗h = AR∗h, and appends (A,x∗,A∗h,R

∗
h) to Lh. If

(A,x∗, ·, ·) ∈ Lh, B(II) retrieves A∗h and R∗h from (A,x∗,A∗h,R
∗
h) ∈ Lh.

In the same way, B(II) generates or retrieves (A,x′∗,A′∗h ,R
′∗
h ).

– Compute and return v := [Im|R∗h]·e∗−[Im|R′∗h ]·e′∗ to its own challenger.

Then we show that v is a valid solution to the SIS problem. Since (τ∗, ·,m∗) /∈
QAdapt ∧ (τ∗, ·,m′∗) /∈ QAdapt are never queried to the adaptation oracle, matri-
ces A∗h = H(A,x∗) with x∗ = τ∗∥m∗∥z∗ and A′∗h = H(A,x′∗) with x′∗ =
τ∗∥m′∗∥z′∗, corresponding to the forgery (τ∗,h∗,m∗, r∗) and (τ∗,h∗,m′∗, r′∗)
respectively, cannot be generated during the adaptation query phase. Hence
A∗h = AR∗h and A′∗h = AR′∗h . Now through an analogous analysis as before,
v := [Im|R∗h] · e∗− [Im|R′∗h ] · e′∗ is a valid SIS solution with overwhelming prob-
ability. Now we obtain Pr[G3 ⇒ 1|A(II)] ≤ AdvSIS[n,q,β,m](κ) + 2−κ. ⊓⊔

From Lemma 18, we have

Pr[G3 ⇒ 1] = Pr[G3 ⇒ 1|A(I)] Pr[A(I)] + Pr[G3 ⇒ 1|A(II)] Pr[A(II)]

≤ AdvSIS[n,q,β,m](κ). (7)
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Finally combining Lemmas 15, 16 and 17, and Equation (7), it holds that

Pr[ExprcrtCH′,A(κ)⇒ 1] ≤
∣∣Pr[G0 ⇒ 1]−Pr[G1 ⇒ 1]

∣∣+∣∣Pr[G1 ⇒ 1]−Pr[G2 ⇒ 1]
∣∣

+
∣∣Pr[G2 ⇒ 1]−Pr[G3 ⇒ 1]

∣∣+Pr[G3 ⇒ 1]

≤ AdvSIS[n,q,β,m](κ)+2−O(κ). (8)

By (8), it is easy to see that the CR security of tCH′ is tightly reduced to the
SIS assumption. ■
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