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Abstract. Ring-LWE based homomorphic encryption computations in
large depth use a combination of two techniques: 1) decomposition of big
numbers into small limbs/digits, and 2) efficient cyclotomic multiplica-
tions modulo XN +1. It was long believed that the two mechanisms had
to be strongly related, like in the full-RNS setting that uses a CRT de-
composition of big numbers over an NTT-friendly family of prime num-
bers, and NTT over the same primes for multiplications. However, in
this setting, NTT was the bottleneck of all large-depth FHE computa-
tions. A breakthrough result from Kim et al. (Crypto’2023) managed
to overcome this limitation by introducing a second gadget decomposi-
tion and showing that it indeed shifts the bottleneck and renders the
cost of NTT computations negligible compared to the rest of the com-
putation. In this paper, we extend this result (far) beyond the Full-RNS
settings and show that we can completely decouple the big number de-
composition from the cyclotomic arithmetic aspects. As a result, we get
modulus switching/rescaling for free. We verify both in theory and in
practice that the performance of key-switching, external and internal
products and automorphisms using our representation are faster than
the one achieved by Kim et al., and we discuss the high impact of these
results for low-level or hardware optimizations as well as the benefits of
the new parametrizations for FHE compilers. We even manage to lower
the running time of the gate bootstrapping of TFHE by eliminating one
eighth of the FFTs and one sixth of the linear operations, which lowers
the running time below 5.5ms on recent CPUs.

1 Introduction

Homomorphic encryption allows computations on encrypted data without de-
crypting it. Since the first fully homomorphic encryption (FHE) scheme intro-
duced by Gentry in [21], several improvements, implementations and new de-
signs have been proposed. Most of them are based on the ring version of the
Learning-With-Error problem (RingLWE) defined in [33]. Among the most pop-
ular schemes today are BFV [20], BGV [7], CKKS [13], FHEW [19] and TFHE [14,15].
Subsequent work [6] has been done on the interoperability of TFHE with the other
two schemes (BFV and CKKS).

Most of the basic building blocks of the practical homomorphic encryption
schemes (e.g., homomorphic multiplication and relinearization, key switching,



automorphisms or bootstrapping) reduce to efficient homomorphic external prod-
ucts. The latter are basic operations that are combinations of decompositions
of one of the inputs into higher-dimensional tensor with entries of small norms
(gadget decompositions) and polynomial multiplications in order to control the
accumulation of noise in the ciphertexts and ensure correct decryption (see, e.g.,
[6, Defn.1] and [15, Defn.3.12] for typical examples of external product).

A major line of research has been undertaken on using Residue Number Sys-
tems (RNS) in the acceleration of the basic underlying polynomial multiplication
operations used for computing external products [22]. The full-RNS approach of
[4], originally introduced to accelerate BFV operations (see also [25]) and subse-
quently applied to other schemes too such as CKKS [12], allows for manipulating
large numbers using smaller machine-size moduli and expressing the homomor-
phic products (internal products) as well as the gadget decompositions of the
BFV and CKKS in the NTT domain. Subsequent hardware acceleration efforts have
been made to accelerate RNS-variants of NTT for GPU architectures [32,37] and
FPGA architectures [18,30,34,36].

One can thus conceptually differentiate two important aspects of optimiza-
tion of FHE operations: 1) efficient large integer arithmetic (frontend aspect)
that is addressed via mathematical techniques such as gadget decompositions;
2) cyclotomic arithmetic (backend aspects) - the need for efficient arithmetic on
the backend to support the basic cyclotomic operations - the choice of floating-
point arithmetic or integer arithmetic on the backend. Unfortunately, in most
practical implementations, the two aspects are often coupled together, thus,
limiting the flexibility for optimization techniques. For instance, by nature, the
full-RNS approach to gadget decomposition requires modular arithmetic opera-
tions on the backend and thus, is bound to NTT leaving little room for really
fast FFT-favored operations (such as the optical FFT approach undertaken in
[28]).

Note that there are essentially two classical approaches to 1): decomposition
in base 2K and CRT decomposition over primes of K bits. Assuming that single
elementary operations operate natively over K-bit numbers (e.g., 32-bit or 64-bit
integers or floating point numbers with 53-bits of mantissa), the fact that CRT
arithmetic is exempt from any carry propagation yields very efficient parallel
additions and multiplications of ℓ K-bit numbers in O(ℓ) operations, whereas the
base-2K counterpart would struggle between O(ℓ log ℓ) and O(ℓ2) multiplications
and force these elementary operations in sequential mode. For this reason, a
natural choice for homomorphic encryption was to prefer CRT representations
for efficient implementations of CKKS and BFV.

A recent breakthrough has been made by Kim et al. towards decoupling 1)
and 2) by an approach based on an auxiliary gadget decomposition that replaces
expensive modular arithmetic in the computation of the external product by pure
arithmetic with small integers via gadget decompositions based on RNS [26].

Note that the RNS-type approach to 1) often has the following drawbacks:

1. Arithmetic modulo different primes. The arithmetic has to be carried out
modulo different prime numbers of same size, even if they are selected to be
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as friendly as possible, numbers modulo which arithmetic is really efficient
are rare (e.g., Mersenne primes, Fermat primes). There is also a small loss
from hardware aspects such as the necessity to have one hardware multiplier
per prime.

2. Unfeasibility of bit extraction/coarse noise granularity. Bit extraction is not
possible in CRT domain modulo a product of small primes, the best gran-
ularity of HE noise levels is those of the primes: e.g., 16 to 40 bits. As
explained in the analysis of the Hecate compiler [29] this impacts negatively
the optimal use of homomorphic budget for CRT-based CKKS - one often
needs to re-scale the noise to the nearest available level before attempting
a homomorphic product after an operation producing less noise (such as a
sum, a small linear combination or a trace).

3. Sub-optimal memory usage with respect to truncations. Restrictions from
high-precision representations to low-precision representations are not simple
truncations of limbs (as in the natural base-2K representation), but require
a separate RNS representation.

The above-mentioned carry-less nature and efficiency of parallel CRT multi-
plications would have been perfect if most homomorphic operations were actual
ring operations. However, internal ring multiplications over large numbers never
come standalone: first of all, in a BFV or CKKS internal product they always come
in packs of N (giving a O(Nℓ) complexity to multiply two polynomials modulo
XN +1), and second, they are always followed by an external product that com-
prises at least ℓ NTTs (so at least O(ℓN(ℓ+ logN)) if we use the latest double
gadget decomposition of [26] and O(ℓ2N logN) before). In other words, since
N ≫ ℓ: typically, N is between 1024 and 65536 and ℓ is lower than 100, the
complexity of an internal BFV or CKKS product remains bounded both asymptot-
ically and practically by the complexity of its underlying external product. This
means that as long as we make the external product more efficient, we have some
margin to degrade the complexity of the internal multiplication of polynomials
up to O(Nℓ2) and still accelerating in almost all cases the running time of CKKS
and BFV operations.

It is thus desirable to extend the auxiliary gadget decomposition approach
of 1) to the natural 2K-base large integer representation to overcome the above
drawbacks.

Our contributions.

In this work, this is exactly what we achieve - we show how to adapt the auxiliary
gadget decomposition of [26] to the natural base-2K representation of numbers
and thus, obtain an external product that is simpler and faster.

Our starting point is a common plaintext representation space for all the
practical RingLWE-based schemes (BFV, CKKS and TFHE) described in [6], namely
the R-module TN [X] := R[X]/⟨XN + 1⟩/R where R = Z[X]/⟨XN + 1⟩ (also
thought of as formal polynomials of degree N − 1 whose coefficients are in the
torus T = R/Z). Inspired by the classical Schoenhage–Strassen algorithm for

3



large integer multiplication based on FFT [35], in Section 3, we propose a bi-
variate integral polynomial representation with small coefficients of these formal
polynomials where the evaluation on Y = 2−K (K is the limb size) yields a suffi-
ciently accurate approximation of the toric coefficients. Introducing the auxiliary
variable implicitly corresponds to having the second gadget decomposition: on
one hand, it yields the natural decomposition in base 2K of toric elements (eval-
uation at Y = 2−K); on the other hand, it provides a plenitude of choice of
bivariate polynomials to approximate the given toric polynomial. A careful nor-
malization and reduction yields a representative with small coefficients - the
bivariate polynomial representation that is used for efficient external product
(see Section 3.2), thus making it specifically tuned for TRLWE operations.

Since the space of TRLWE ciphertexts is TN [X]2, we express the external
product in terms of multiplications of bivariate polynomials with small integer
coefficients. It is this reduction that decouples 1) and 2) above - the multipli-
cation can be performed using either FFT or NTT backend arithmetic which
we explain in Section 6, thus, enabling optimal use of different architectures for
hardware optimization.

A major advantage of our representation is that it addresses challenges 1–3.
Indeed, our representation supports efficient sums, normalizations, reductions
modulo Z, left and right shifts in O(ℓ) and products in O(ℓ log ℓ) (only bilinear
expressions are needed, we do not need higher degree terms in FHE operations!),
bit-decompositions and bit-extraction. In addition, the prefix property of the
natural base-2K representation yields a memory-efficient way to pass from a
higher-precision representation to a lower precision representation. It provides
a single-bit noise granularity, thus, enabling efficient compositions as proposed
in [6]. The asymptotic complexity matches the best available full-RNS algorithms
for both external products of TFHE, and also internal products of CKKS and BFV.

The sequential nature of carry propagation is mitigated by the parallelism
induced by the fact that the operations in our external product occur in a SIMD
manner over N elements each time. We increase the complexities of the internal
multiplications from O(Nℓ) to O(Nℓ log ℓ), keeping them negligible compared
to an external product, and hence, due to the speed-up of the latter ones, also
accelerate internal products of CKKS and BFV, so that at the end of the day,
by not using any of the CRT of full-RNS techniques, and instead, applying the
double-gadget decomposition to old-school base-2K representations directly, we
end up speeding up all the existing homomorphic operations of TFHE, CKKS and
BFV.

Our practical experiments and benchmarks support the theoretical evidence:
first, Table 1 provides evidence for the number of elementary operations (SIMD
products and DFTs) in an external product computation in the context of the
various FHE building blocks (or more specifically, in the more efficient approach
via HalfRGSW introduced in Section 3.2). The experiments demonstrate that for
FHE parameters N = 65536, ℓ ∼ 100 and K ∼ 20, the cost of SIMD prod-
ucts largely dominates the cost of DFTs, an already strong indication of the
parallelization-friendly nature of our approach. Second, we compare our bivari-
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ate representation (using both FFT and NTT) to the approach from [26] to
demonstrate that, prior to any parallelization or hardware acceleration efforts,
we get a better performance (see Table 5). Finally, in Section 4 we even man-
age to lower the running time of the gate bootstrapping of TFHE by eliminating
12.5% of the FFTs and 16.6% of the linear operations.

Future directions.

One of the most important contributions of our work is the flexibility it provides
for future hardware acceleration efforts. Everything that we have done in this
work is single-core optimizations.

First of all, the normalization and reduction Algorithm 1 (and its exten-
sion presented in the appendix Section B) allows for fast AVX and GPU-friendly
implementations. The bivariate representation yields several advantages making
the parallelization very natural. First, as mentioned, it is directly inspired by the
Schoenhage–Strassen algorithm for large integer multiplication based on NTT
with complexity O(n log n log log n), where n is the number of binary digits of
the inputs [35]. In fact, the case of large integer multiplication is recovered di-
rectly from our bivariate representation by setting N = 1 via the evaluation map
R[Y ] → R given by f(Y ) 7→ f(2K). In this work, we use the opposite exponent
f(Y ) 7→ f(2−K), whose output is dense in RN [X], since we care more about high
precision approximations of products between bounded real-valued polynomials.
Note that the Schoenhage–Strassen is an NTT version of the DFT-based fast
polynomial multiplication. Even if the original Schoenhage–Strassen algorithm
is not completely easy to parallelize, the large degree N on the variable X makes
our bivariate polynomial multiplication friendlier for parallel architectures.

Second, a recursive version of DFT or more generally, a Cooley–Tukey trans-
form [16] allows for parallelization on both X and Y variables. The well-known
in-place and in-order variants of the Cooley–Tukey transform opens the door
for highly optimized memory usage as well. When the degree on Y is too small,
the alternative näıve multiplication, or single iteration of Karatsuba algorithms
discussed here can also be performed in-place.

As already mentioned, the trade-off of using FFT and NTT can benefit
from the various hardware acceleration initiatives such as GPU acceleration [32],
FPGA acceleration [30,36], optical computing [28] (particularly favorable for the
FFT approach), ASICs [17] as well as the outcome of the DPRIVE program [1],
especially the recent work [8].

Finally, our work opens up the possibility for an efficient implementation
of the scheme switching framework Chimera [6] that allows to mix TFHE, CKKS,
BFV arithmetic using continuous homomorphic levels. The original proposal was
suggesting the use of large numbers fixed-point arithmetic in order to perform
efficient additions, multiplication and bit-extraction. Unfortunately, none of the
available representations of big numbers in GMP, MPFR are sufficiently efficient
in practice, and a CRT representation would not allow efficient bit-extraction
either, thus leading to the same setbacks as Full-RNS. For these reasons, the early
attempts to implement Chimera were, thus, slow in practice for multiplicative
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levels ≥ 3. The efficient multi-precision arithmetic we propose in this work, while
being compatible with cyclotomic multiplication, bit extraction, and lazy carry
propagation make the whole concept practical.

In conclusion, our approach supports the following general principle: instead
of one trying to find a numerical representation (e.g., RNS representation) with a
gadget decomposition that is not too convoluted, it is more natural to start from
the gadget decomposition (e.g., base-2K representation) and take the output of
the gadget decomposition directly as the numerical representation.

2 Preliminaries

Notation

Let T = R/Z be the real torus. For a ring A (e.g., A = Z,R,C), let AN [X] :=
A[X]/⟨XN + 1⟩ be the ring of polynomials modulo XN + 1 with coefficients in
A and N a power of 2. In particular, let R = ZN [X], which is also the ring of
integers of the cyclotomic field Q(ζ2N ).

Let TN [X] = RN [X]/R (a.k.a R[X] mod XN + 1 mod Z) which we view as
an R-module (it has no ring structure). Elements of this module can formally be

represented using notations borrowed from polynomials, i.e., a(X) =
∑N−1

i=0 aiX
i

where ai ∈ T. Since the coefficient space T is not a ring, we cannot evaluate these
polynomials over any non-integer value, nor multiply two such elements together.
However, the notation allows coefficient-wise addition/subtraction of polynomi-
als, projection from and lifts to the continuous ring RN [X], and most impor-
tantly, we often refer to the module action ofR on TN [X] as an external multipli-

cation of a by integer polynomial u(x) =
∑N−1

i=0 uiX
i ∈ R where ui ∈ Z via the

natural Cauchy product formula: (u · a)(X) =
∑2N−2

i=0

(∑i
j=0 uj · ai−j

)
Xi mod

XN + 1.
We denote by ∥.∥p and ∥.∥∞ the standard norms for scalars and vectors over

real field or over the integers. By extension, the norms ∥P (X)∥p and ∥P (X)∥∞
of a real or integer polynomial P are the norms of their coefficient vectors. The
norm of an element of TN [X] is the norm of its centered lift in RN [X] with
coefficients in [−1/2, 1/2).

2.1 TRLWE

TRLWE encrypts elements of a subset of the R-module TN [X] called the plaintext
space, and which can be finite (TFHE), a discrete subgroup (BFV) or a continuous
set of small elements (CKKS). The ciphertext of µ are of the form c = (a, b =
s ·a+µ+e), where s ∈ B is the secret key, a ∈R TN [X] is uniformly random and
the e ∈ TN [X] is chosen randomly from an error distribution with mean zero
and suitably chosen standard deviation. Without loss of generality, the keyset
B in this work can refer to binary, ternary keys or small keys. The decryption
procedure starts by evaluating the phase function on the ciphertext, that is, by
computing φs(a, b) := b−s ·a. Since φs(a, b) = µ+e, the plaintext µ is the mean
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of the phase (the mean being computed over the random coins in the generation
of the noise e during encryption).

– Parameters: A security level λ and a minimal noise parameter α.
– KeyGenTRLWE(λ, α): A uniformly random binary or ternary key s ∈ B ⊂ R.
– EncTRLWE(µ, s, α): Choose a uniform random element a ∈ TN [X] and a small

Gaussian error e ∈ TN [X] and return c = (a, b = s · a+ µ+ e)
– DecTRLWE(c, s): Compute the phase φs(c) and round φs(c) to the nearest

point in the plaintext space (when it is discrete), or returns a close approx-
imation (CKKS).

2.2 Approximate gadget decompositions and TRGSW ciphertexts

A common challenge with various FHE constructions (e.g., GSW) is the control on
the accumulation of noise after homomorphic operations. A general technique
from lattice-based cryptography to address this problem is a concept known
as flattening gadget or gadget decomposition, that is, a map that transforms a
ciphertext into a higher dimensional vector with small ∥.∥∞ while preserving
some linear-algebraic properties.

Two classical examples of gadget decompositions are numerical base rep-
resentations and RNS representations. Since most of the FHE literature uses
gadget decompositions on integral values, the decompositions themselves are ex-
act. A notable exception to this principle is TFHE where one uses floating point
arithmetic and therefore, an approximate gadget decomposition. Below we recall
the basic definition (see also [15, Defn.3.6]):

Definition 2.1 (approximate gadget decomposition for TRLWE samples).
We say that an algorithm DecompH,β,ϵ is a valid gadget decomposition on gadget

H ∈ (TN [X]2)2ℓ, quality (or ∥∥∞-bound), β and precision ϵ > 0 if for any input
v ∈ TN [X]2, it outputs an element u ∈ R2ℓ, ∥u∥∞ ≤ β such that ∥u·H−v∥∞ < ϵ.

As already mentioned in [15], there is a canonical approximate gadget de-
compositions coming from numerical base representations for any base Bg:

HT =

(
B−1

g . . . B−ℓ
g 0 . . . 0

0 . . . 0 B−1
g . . . B−ℓ

g

)
The above notion is important for two main reasons: 1) it allows us to define

TRGSW ciphertexts; 2) it allows us to define an external product between TRGSW

ciphertexts and TRLWE ciphertexts.
We first recall the TRGSW ciphertexts: the TRGSW encrypts elements of the ring

R with bounded infinity norm. Intuitively, the idea of the original GSW scheme
[23] is to encrypt a small plaintext µ ∈ Z into a ciphertext that is a matrix Cµ

such that the secret key s is an approximate eigenvector of Cµ with eigenvalue µ.
Such an encryption scheme leads to natural homomorphic addition and multipli-
cation operations that are simply matrix additions and matrix multiplications.
The näıve idea does not quite work without gadget decompositions since one
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cannot control the propagation of the errors in the approximate eigenvalues un-
der homomorphic multiplications. The schemes FHEW and TFHE use a ring-variant
of the original scheme, the last one with an approximate gadget decomposition:

Definition 2.2 (TRGSW ciphertexts). Let H ∈ (TN [X]2)2ℓ be a gadget and let
µ ∈ R be a plaintext with bounded ℓ∞-norm. The space of valid TRGSW ciphertexts
for µ as TRGSW(µ) := {Z + µH}, where each element of Z ∈ (TN [X]2)2ℓ is a
valid TRLWE ciphertext of zero.

2.3 External products, relinearization keys and internal products

For the purposes of the current work, we will need a relatively uniform treatment
of the various RLWE-based FHE frameworks, most notably, BFV, CKKS and TFHE,
as well as their internal products.

It is explained in [6, §2.5] (as well as the particular discussion of BFV and
CKKS in Sections 3 and 4, respectively, of loc.cit.) how to uniformize the plaintext
spaces for all these schemes and view them as various subgroups of theR-module
TN [X]. Once this is done, the homomorphic internal products of BFV and CKKS

are expressed in terms of the following basic primitive, the external product, a
major operation of interest in the current work:

Definition 2.3 (TFHE external product). Given a flattening gadget H and
an approximate gadget decomposition DecompH,β,ϵ, the external product in TFHE

is a map
⊡ : TRGSW× TRLWE → TRLWE

defined by
C ⊡ c := DecompH,β,ϵ(c) · C,

where C ∈ TRGSW(µ1) and c ∈ TRLWE(µ2).

One can show [15, Thm.3.13] that under certain specific noise conditions, the
above external product C ⊡ c is a valid ciphertext for µ1µ2.

Once we have defined this primitive, we use it to express the various internal
products, the major idea being the concept of relinearization and relineariza-
tion keys - we refer the reader to [6, pp.325–326] for a more detailed explana-
tion. The important point is that by using extra key material (relinearization
key), one can express the internal product of the BFV scheme in terms of the
above external product. More specifically, if we define3 the relinearization key
as RK = TRGSW(s), then for ⋆ ∈ {BFV, CKKS} the homomorphic internal prod-
uct ⊠ : TN [X]2 × TN [X]2 → TN [X]2 of two ciphertexts (a1, b1) and (a2, b2) of
plaintexts µ1 and µ2, respectively becomes

(a1, b1)⊠ (a2, b2) = (C1, C0)− RK⊡(C2, 0), (1)

3 There are many equivalent ways to define the relinearization key. Here, we use an
external product and a zero term in the TRLWE ciphertext, which can be propagated in
the algorithm and simplified, the original references of Fan–Vercauteren [20] present
a key-switching that substitute a key s2 by s.
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where C0 = b1 ⊗⋆ b2, C1 = a1 ⊗⋆ b2 + a2 ⊗⋆ b1, C2 = a1 ⊗⋆ a2, the important
point being that this ciphertext is a valid encryption of the plaintext µ1 ⊗⋆ µ2.
Here, ⊗⋆ : TN [X]×TN [X] → TN [X] indicates a certain product map (depending
on the scheme) whose restriction to the plaintext subgroup of TN [X] yields the
plaintext product.

For instance, if for • ∈ TN [X], •̃ ∈ R[X]/⟨XN + 1⟩ denotes the unique
lift with coefficients in the interval [−1/2, 1/2) then the BFV product ⊗BFV with
plaintext modulo p (Montgomery product) is:

⊗BFV : TN [X]× TN [X] → TN [X], (u, v) 7→ p · ũ ∗ ṽ. (2)

Similarly, CKKS plaintext products at input level Lin are:

⊗CKKS : TN [X]× TN [X] → TN [X],

(u, v) 7→ 2Lin · Round2−Lin (ũ) ∗ Round2−Lin (ṽ) (3)

In both formulas for (BFV and CKKS product), the symbol · is the external
product by an integer, and ∗ represents multiplication in RN [X]: the input co-
efficients are first lifted to the real interval [−1/2, 1/2) and in the second case,
also rounded to the nearest exact multiple of 2−L. None of these functions is an
actual product over the entire space - one needs to restrict the inputs to the sub-
groups p−1R/R and 2−LR/R of TN [X], respectively to obtain products. Yet,
the function ⊗BFV has the property that if u and v are close from i/p and j/p
where i and j are integers, their product is close to (ij mod p)/p, which is handy
to encode plaintext arithmetic modulo p. The product ⊗CKKS has the property
that if u and v are at distance ≤ 2L+1 away from i/2L and j/2L where i and
j are smaller than 2ρ, then their product is at distance 2L−ρ away from ij/2L,
which is good to encode fixed-point number arithmetic on ρ-bits numbers.

2.4 Table of symbols, orders of magnitudes

When reading the paper, different complexities shall intervene in the different
theorems. It is important to keep in mind the difference in orders of magnitude,
as for instance: having an arithmetic in O(N2) is prohibitive, and we must abso-
lutely stick to O(N logN), however O(ℓ2) is perfectly realistic in some scenario.

The parameters N , K and K̃ are set once and for all during parameter and
key generation, while L, ℓ, and ℓ̃ evolve during a homomorphic evaluation com-
putation, following the noise rate variations: They decrease across homomorphic
operations, and are reset to a large value after a bootstrapping.
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Variable Range Meaning
N [210, 216] Power-of-two polynomial modulus: XN + 1

K, K̃ [10− 60] Multi-precision representation of Torus elements consist
of K-bit limbs (so machine words have at least 2K bits
to handle products), and gadget decompositions produce

K̃-bit outputs. K̃ is in general equal to K, but can be
chosen smaller in rare circumstances, since K̃ intervenes
in the noise propagation of external products.

L [20− 2000] Targeted number of bits of precision of the multipreci-
sion arithmetic (to handle a RLWE ciphertext whose
noise rate is α ≈ 2−L). For a given cryptographic se-
curity parameter, each key dimension is associated to
a maximal noise level L: for 128-bit security, count
Lmax = 20, 880, 1761 for respectively N = 210, 215, 216

ℓ, ℓ̃, ℓ̃A [1-100] Number of limbs per coefficient in a RLWE ciphertext
(without tilde) or in a gadget decomposition (with tilde,
and/or subscript depending on the context). These ℓ can
be thought as ℓ ≈ L/K, it is the main asymptotic pa-
rameter in all the complexities, directly related to the
number of elementary vector operations. In practice, for
the key sizes and precision we consider above, all these
ℓ’s fall within the range [1, 100]

3 A Bivariate Polynomial Representation

We keep the notation and the setting from Section 2. Let K be a limb size. We
represent (rational) approximations of elements of R[X]/⟨XN + 1⟩ by elements
of the (discrete) quotient ring Z[X,Y ]/⟨XN +1⟩ (also equal to R[Y ], the polyno-
mials in Y over R) of the bivariate polynomial ring Z[X,Y ]. The representations
are obtained via the evaluation map (ring homomorphism) on the Y variable

ϕK : R[Y ] → RN [X], P (X,Y ) 7→ P (X, 2−K). (4)

More explicitly, the elements of R[Y ] are represented by bivariate integer
polynomials P (X,Y ) =

∑
ai,jX

iY j whose degrees in X are at most N − 1.
Since the ring homomorphism ϕK is clearly not injective, an element of RN [X]
can have multiple pre-images in R[Y ]. We will use this property in a crucial way
and will be particularly interested in representatives with small coefficients.

Definition 3.1. A bivariate polynomial P (X,Y ) =

N−1∑
i=0

∑
j≥0

ai,jX
iY j is called

K-normalized if ai,j ∈ [−2K−1, 2K−1) for all i = 0, . . . , N − 1 and j ≥ 1.

As we are mainly interested in representing elements of TN [X], that is, formal
polynomials over the torus, we often reduce the coefficients of real polynomials
to the real interval [−1/2, 1/2) and hence, we say that
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Definition 3.2. A bivariate polynomial P (X,Y ) =

N−1∑
i=0

∑
j≥0

ai,jX
iY j is K-

normalized and reduced if, in addition to being K-normalized, it satisfies ai,0 =
0 for all i = 0, . . . , N − 1.

We now approximate any element of the R-module TN [X] up to an arbitrary
precision with K-normalized and reduced bivariate polynomials from R[Y ]. The
proofs of the lemma and the corollary below are simple consequences of the
decomposition of the coefficients in base 2K .

Lemma 3.1. For every integer L > 0 and every polynomial Q ∈ RN [X], there
exists a K-normalized polynomial P (X,Y ) ∈ R[Y ] of degree ≤ ⌈L/K⌉ in Y such
that ∥ϕK(P )−Q∥∞ ≤ 2−L.

Corollary 3.1. For all elements Q ∈ TN [X], there exists a normalized and
reduced polynomial P ∈ R[Y ] such that

∥ϕK(P ) mod R−Q∥∞ ≤ 2−L.

Note that the above approximation of the elements Q ∈ TN [X] via bivariate
polynomials P (X,Y ) ∈ R[Y ] is reminiscent to a gadget decomposition in classical
lattice-based cryptography. Intuitively, the presence of the redundant variable
Y corresponds to representing a vector in higher-dimensional space with lower
∥.∥∞-norm - a key technique necessary for the design of various FHE schemes
(e.g., GSW [24] and TFHE [14]).

The following lemma whose proof is rather formal shows that for any limb
size K and any polynomial in P ∈ R[Y ], there is a unique K-normalized and
reduced polynomial Q with the same image under ϕK .

Lemma 3.2. For any limb size K and any polynomial P (X,Y ) ∈ R[Y ], there
exists a unique normalized polynomial Q(X,Y ) of the same degrees in both X and
Y such that ϕK(P ) = ϕK(Q). Additionally, there exists a unique K-normalized
and reduced polynomial Q(X,Y ) such that ϕK(P ) = ϕK(Q) mod R.

We are now interested in an efficient algorithm for normalization and reduc-
tion of polynomials.

Lemma 3.3. Let K be a limb size and let L > 0 be a specified precision.
Given a polynomial A(X,Y ) ∈ R[Y ] satisfying ∥A∥∞ < 2M for some M , Algo-
rithm 1 outputs a K-normalized and reduced polynomial R(X,Y ) ∈ R[Y ] such
that ∥(ϕK(A)− ϕK(R)) mod R∥ ≤ 2−L in O ((L+M)/K) element-wise opera-
tions (additions/subtractions or binary shifts) on N -length vectors of integers in(
−2M+1, 2M+1

)
.

A proof of this lemma is given in appendix Section A. Using a parameter
value M such that M + 1 < 64, Algorithm 1 allows for efficient AVX and GPU-
friendly implementations.
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Algorithm 1 Normalization and Reduction

Input: A target precision of L bits (that represents 2−L) and a limb size K

Input: An input polynomial A(X,Y ) =
∑
k≥0

Ak(X)Y k satisfying ∥A∥∞ < 2M

Output: A K-normalized and reduced polynomial R(X,Y ) =
∑ℓ

k=1 Rk(X)Y k of de-
gree ℓ = ⌈L/K⌉ in Y such that ∥ϕK(R)− ϕK(A)∥∞ ≤ 2−L.

1: acc(X) = 0
2: for k = ⌈(L+M)/K⌉ downto 1 do
3: acc(X)← acc(X) +Ak(X)
4: Rk(X)← centermod2K (acc(X))
5: acc(X)← (acc(X)−Rk(X))/2K

6: end for
7: Return R(X,Y ) =

∑ℓ
k=1 Rk(X)Y k

Since the representations that occur throughout a FHE computation can
be parameterized with different limb sizes, we are going to present the general
theorems using two limb sizes K and K̃ that are not necessarily the same. This
is why in appendix Section B we present a slightly more general algorithm that
converts a K-representation into a normalized K̃-representation. Even if slightly
more complex than Algorithm 1, it has the same performance.

3.1 Evaluation of external products

Most homomorphic operations reduce to efficient evaluations of Lipschitz func-
tions. Recall that a function f : TN [X] → TN [X] is called κ-Lipschitz for some
parameter κ > 0 if ∥f(x)− f(y)∥∞ ≤ κ ∥x− y∥∞ for all x, t ∈ TN [X]. Most of
the time, the Lipschitz functions used in homomorphic evaluation are, in addi-
tion,R-module homomorphisms. Since HomR(TN [X],TN [X]) ≃ R, all Lipschitz
functions that are R-module homomorphisms are external products by a fixed
element of R, that is, fu : TN [X] → TN [X], x 7→ u · x. We thus explain how to
evaluate efficiently external products. The lemma below formalizes the following
simple fact: evaluating fu up to a certain target precision 2−L amounts to eval-
uating the reduced and K-normalized representations of the external products

u · 2−K , . . . , u · 2−K̃ℓ̃ for sufficiently large ℓ̃.
The following technical lemma enables us to compute a sufficiently good

K-normalized and reduced representation of the external product u · • with a
prescribed target precision of L bits by providing (in a precomputation) suf-
ficiently good approximations of the external product of u with the negative
powers 2−Kj .

Lemma 3.4. Let u ∈ R be an integer polynomial and consider a target pre-
cision of L > 0 bits. Let K and K̃ be two positive integers (limb sizes). Let

B1(X,Y ), . . . , Bℓ̃(X,Y ) be K-normalized and reduced representations of u·2−K̃ , u·
2−2K̃ , . . . , u · 2−K̃ℓ̃ with precision (ℓ̃N)−12−(K̃+L−1). For any K̃-normalized and
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reduced bivariate polynomial A(X,Y ) =
∑ℓ

i=1 Ai(X)Y i ∈ R[Y ],

C(X,Y ) =

ℓ̃∑
i=1

Ai(X)Bi(X,Y ) (5)

is a (non-reduced) K-representation of u · ϕK̃(A) of precision 2−L, i.e.,∥∥ϕK(C)− u · ϕK̃(A))
∥∥
∞ ≤ 2−L and ∥C∥∞ ≤ ℓ̃N2K+K̃−2.

Proof. The second bound on ∥C∥ comes from the fact that A and B are resp K

and K̃-normalized, thus each ∥Ai∥∞ and ∥Bi∥∞ are bounded by resp. 2K−1 and

2K̃−1. ϕK(C) =
∑ℓ̃

i=1 AiϕK(Bi) =
∑ℓ̃

i=1 Ai(u · 2−K̃i + ei) where by definition,

each ∥ei∥∞ ≤ (ℓ̃N)−12−(K+L−1). Therefore, ϕK(C) = u · ϕK̃(A) +
∑ℓ̃

i=1 Aiei,

so the first inequality becomes
∥∥∥∑ℓ̃

i=1 Aiei

∥∥∥ which is ≤
∑ℓ̃

i=1 N ∥Ai∥∞ ∥ei∥∞ ≤
2−L.

If we expand further the right-hand side of (5) viaBi(X,Y ) =
∑ℓ

j=1 Bi,j(X)Y j

for ℓ ≤ L + 1 + K̃ + log2 ℓ̃, we obtain C(X,Y ) =
∑ℓ

j=1

∑ℓ̃
i=1 Ai(X)Bi,j(X)Y j

that can be computed using

– ℓℓ̃ internal polynomial products over R with inputs of infinity norm bounded

by 2K̃−1 and 2K−1, respectively and output of norm bounded by N ·2K̃+K−2.
– ℓℓ̃ additions of polynomials whose norm is bounded by Nℓ̃ · 2K̃+K−2.

In most FHE operations with GSW ciphertexts such as key switching, relin-
earization, automorphisms and bootstrapping, u ∈ R depends only on the secret
key and is thus known in advance of the homomorphic operation. Anything that
depends only on u can thus be precomputed in an offline phase (in general dur-
ing the key generation) and only the cross-terms must be evaluated in an online
phase (HE evaluation). With this in mind, should we decide to use DFT over
only X, all the multiplications between Ai(X) and Bi,j(X) become element-wise
products on the DFT space and are performed separately for each power of Y .
Therefore, we obtain a nice offline/online phase separation:

Offline Phase (most often during keygen)
– ℓℓ̃ bounded DFT’s of Bi,j(X) precomputed and given as input

Online Phase
– ℓ̃ bounded DFT’s of Ai(X)
– ℓℓ̃ element-wise multiplications in DFT domain
– ℓℓ̃ element-wise additions in DFT domain
– ℓ bounded DFT’s for the results Cj(X)
– O(ℓ) element-wise additions, shifts or masks to normalize the result (if

needed)

Even if we have ℓ2 products to evaluate, the online phase requires only a
linear number of DFT’s instead of a quadratic number. Fundamentally, it is the
exact same root cause that lead [26] to its new asymptotic speedup compared
to full-RNS. The main advantage here is that we obtain the representation in a
natural way from the normalized gadget decomposition on TN [X].
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3.2 External products by secret polynomials over TRLWE

TRGSW ciphertexts have traditionally been used to multiply TRLWE ciphertexts by
a secret integer polynomial u ∈ R, which is the TRGSW-TRLWE external product
from [15]. As noted in [6, p.326], the homomorphic evaluation of the external
product v → s · v where s is the small TRLWE secret key could be used as an
alternative to the traditional relinearization of the quadratic term s2 originally
used in the CKKS and BFV products. This is done via a relinearization key RK =
TRGSWs(s) using an external product of the form RK ⊡ (a, 0) (see [6, Defn.3]).
However, once we propagate the zeros in this formula, we realize that the latter
requires only half of a TRGSW ciphertext and half of the running time. Also (a, 0)
has to be treated as a noiseless ciphertext, which seems a bit arbitrary. These
points are better formally explained below via a concept that we call HalfRGSW
ciphertext4. The latter can be used to multiply a secret u ∈ R with a public
v ∈ TN [X] via the secret-public external product operation:

HalfRGSW(u) v → TRLWE(u · v)

rather than via the ⊡ and the full TRGSW ciphertext of s2.
For a secret u ∈ R and ℓ TRLWE ciphertexts of zero Z := (A|B) ∈ TN [X]ℓ×2,

the HalfRGSW is defined as

HalfRGSW(u) :=
(
A,B + u(B−1

g , . . . , B−ℓ
g )

)
∈ TN [X]2×ℓ,

Note that for all valid TRLWE encryption (a, b) ∈ TN [X]2 of v the element
HalfRGSW(u) b − HalfRGSW(us) a ∈ TN [X]2 is a valid TRLWE cipher-
text (under s) of the plaintext u · v. That yields a more flexible computation
of a ciphertext of u · v instead of computing the traditional external product
TRGSW(u)⊡ (a, b), thus, justifying the principle that two halves make a whole. As
a bonus, a speed-up can be achieved by using different parameters for the two
halves, especially in small levels as in the bootstrapping of TFHE.

Definition 3.3 (bivariate RLWE ciphertexts). Let K be a limb size, a bivRLWE
ciphertext C under a small key S ∈ ZN [X] of the message m ∈ TN [X] is mate-
rialized by a tuple (A,B) ∈ R[Y ]2 of K-normalized and reduced representations
whose phase φS,K(A,B) =

def
ϕK(B)−S ·ϕK(A) is equal to m+e where e ∈ TN [X]

is a small Gaussian error. We will note bivRLWES,K,2−L(m) such bivariate RLWE

encryption of m with error bound 2−L

Note that bivRLWE ciphertexts satisfy the following prefix property : a higher
precision ciphertext with small error yields a lower precision one by simply re-
stricting the representation to the first few limbs (prefix). For instance, when
restricting a high precision ciphertext (A,B) of error norm ≤ 2−L+1 to degrees
ℓB = ⌈(L+2)/K⌉ and ℓA = ⌈(L+2+log2 ∥S∥1)/K⌉ in B and A, respectively, we

4 We could also name this ciphertext RK(u) since it has the shape of a relinearization
key. However the GSW name better depicts the fact that it is a ciphertext not some
key material, and most importantly, the morphism is half of the ⊡ operation.
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obtain an encryption of the same plaintext with error ≤ 2−L. The importance
of the prefix property is that it is a computation-free version of modulus switch-
ing. We assume throughout that all bivRLWE ciphertexts of precision 2−L are
instantiated with degrees ℓA, ℓB in Y . We also consider the bivariate HalfRGSW

counterpart:

Definition 3.4 (bivariate HalfRGSW encryptions). Let K, K̃ be limb sizes,
let u ∈ R be a small polynomial of norm ∥u∥1 ≤ κ and let S ∈ R be a small
key. We define bivHalfRGSWS,K,K̃,2−L(u) (bivariate half RingGSW encryption of
u under S with precision L) to be a family of bivRLWES,K,2−L ciphertexts of

u · 2−K̃ , u · 2−2K̃ , . . . , u · 2−ℓ̃K̃ . The family can be restricted to its first ℓ̃ = ⌈(L+
2+ log2 κ)/K̃⌉ ciphertexts. If the bivHalfRGSW encryption is given in DFT basis,
we denote it by bivHalfRGSWDFT.

These ciphertexts also satisfy an even stronger prefix property: from any
bivHalfRGSW ciphertext C of high precision ≤ 2−(L+1), the truncations to de-
grees ℓA, ℓB above of its first ℓ̃ = ⌈(L + 2 + log2(κ))/K̃⌉ bivRLWE ciphertexts
form a bivHalfRGSW of the same message with lower precision ≤ 2−L.

Because of the prefix property, these ciphertexts can be passed to any func-
tion that require a lower precision level L′ < L: in this case, the function will
only access the terms of degree ℓ′A ≤ ℓA and ℓ′B ≤ ℓB from the first ℓ̃′ ≤ ℓ̃ ele-
ments. This property holds both on paper and also in efficient implementations,
where ciphertexts are passed by pointers.

Theorem 3.1 (half external product (secret×public)). Let u ∈ R be a
small polynomial of norm ∥u∥1 ≤ κ for some κ > 0, let a ∈ TN [X] and let L
an output precision parameter. Let Lα, Lβ ≥ L be parameters satisfying 2−Lα +

2−Lβ ≤ 2−L and let L1 = Lα+log2 κ, ℓ̃ = ⌈L1/K⌉ and L2 = Lβ+K̃+log2(Nℓ̃).
If Cf = (c1, . . . , cℓ̃) is a bivHalfRGSWDFT

S,K,K̃,2−L2 encryption of u with precision ≤

2−L2 and A(X,Y ) =
∑ℓ̃

i=1 Ai ·Y i is a K̃-normalized and reduced representation
of a ∈ TN [X] up to 2−L1 then the ciphertext

Cf a = normalizeReduce

iDFT

 ℓ̃∑
i=1

DFT(Ai) · ci


is a bivRLWES,K,2−L encryption of u · a. Homomorphic evaluation of such an

external product with ℓ̃ = ⌈L1/K̃⌉ and ℓ = ⌈(L2 + log2 N + 2)/K⌉ requires

– ℓ̃ bounded DFT’s of the A′
is of norm ≤ 2K̃−1,

– 2ℓℓ̃ element-wise addmul’s in DFT domain for polynomials of norm ≤ Nℓ̃2K̃+K−2,

– 2ℓ bounded DFT’s for the results Cj(X) with norm bound Nℓ̃2K̃+K−2,
– 2ℓ element-wise additions/shifts/masks to normalize and truncate the result.

Proof. Letting e = a−
∑ℓ̃

i=1 Ai · 2K̃i, we have ∥e∥∞ ≤ 2−L1 . If c′i = iDFT(ci) for

i = 1, . . . , ℓ̃ then φS,K(c′i) = u · 2−K̃i + ei where ∥ei∥∞ ≤ 2−L2 . Since Cf a =
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normalizeRed(
∑ℓ̃

i=1 Ai.c
′
i), it follows that φS,K(Cf a) =

∑ℓ̃
i=1 Ai.φS,K(c′i) =

u ·
(∑ℓ̃

i=1 Ai · 2−K̃i
)
+

∑ℓ̃
i=1 Ai · ei, and therefore, ∥φS,K(Cf a)− u · a∥∞ ≤

∥u · e∥∞ +
∑ℓ̃

i=1 ∥Ai · ei∥∞ ≤ 2−Lα + 2−Lβ ≤ 2−L. The rest of the theorem is a
simple count of operations, the degrees of ci being bounded by ℓ.

The above theorem applies to the traditional key switching, automorphisms
and relinearization operations. To recover the traditional homomorphic prod-
uct of a secret u by a bivRLWE encrypted ciphertext (a, b) ∈ R[Y ]2 under a
small key s ∈ ZN [X], we can use one bivHalfRGSW ciphertext Cu of u and
one bivHalfRGSW ciphertext Csu of su, and call the pair C = (Cu, Csu) a full
bivRGSW(u). The full external product is then

C ⊡ (a, b) = Cu b− Csu a. (6)

Note that since the norms ∥u∥1 and ∥su∥1 in the two halves are distinct, The-
orem 3.1 suggests the use of distinct parameters for each half. This reflects the
natural property that in a RingLWE ciphertext (a, b), it suffices to provide the
term b up to a lower precision compared to the term a. In the next section, we
show that this speeds up the bootstrapping of TFHE by removing 12.5% of the
FFTs and 16.7% of the products and decompositions.

We also merge the final normalizations of the two half-products together to
obtain the following

Corollary 3.2 (full external product (secret×secret)). Let K, K̃, K̃ ′ be
limb sizes, let u ∈ R be a small polynomial, let v ∈ TN [X] be a message, let s ∈ R
a small key and and 2−L > 0 be a target output precision. For all Lα, Lβ , Lγ ≥ L

satisfying 2−Lα+2−Lβ+2−Lγ ≤ 2−L, let L1 = Lα+log2 ∥u∥1, ℓ̃B = ⌈(L1+2)/K̃⌉,
ℓ̃A = ⌈(L1 +2+ log2 ∥s∥1)/K̃ ′⌉, L2 = Lβ + K̃ + log2(Nℓ̃B) and L′

2 = Lγ + K̃ ′ +

log2(Nℓ̃A). If (A,B) ∈ R[Y ]2 is a bivRLWEs,K of v ∈ TN [X] with noise ≤ 2−L1 ,
if Cu = (c1, . . . , cℓ̃) is a bivHalfRGSWs,K,K̃ encryption of u with precision 2−L2

and if Csu = (d1, . . . , dℓ̃) is a bivHalfRGSWs,K̃′ encryption of su with precision

2−L′
2 then

(Cu, Csu)⊡ (a, b) =normalizeRed

iDFT

 ℓ̃B∑
i=1

DFT(Bi) · ci −
ℓ̃A∑
i=1

DFT(Ai) · di

 ,

is a bivRLWES,K,2−L encryption of u · v. Here, A and B have been K̃ ′ and K̃-
normalized, respectively. In addition, computing this encryption with ℓ = ⌈(L′

2+
log2 N + 2)/K⌉ requires at most

– ℓ̃A + ℓ̃B bounded DFT’s of the Ai, Bi’s of norm ≤ 2K̃−1,
– 2ℓ(ℓ̃A+ ℓ̃B) element-wise addmul’s in DFT domain for polynomials of norm

≤ 2Nℓ̃2K̃+K−2,

– 2ℓ bounded DFT’s for the results Cj(X) with norm bound 2Nℓ̃2K̃+K−2,
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– ℓ̃A+ℓ̃B+2ℓ element-wise additions/shifts or masks to normalize and truncate
the input ciphertext and the final result.

Proof. Let d′i = iDFT(di) and c′i = iDFT(ci), by the same proof as in Theorem 3.1,

φS,K(
∑ℓ̃B

i=1 Bi · c′i) = u · ϕK̃(B) + e1 where ∥e1∥∞ ≤ 2−Lβ and φS,K(
∑ℓ̃A

i=1 Ai ·
d′i) = su · ϕK̃′(A) + e2 where ∥e2∥∞ ≤ 2−Lγ . Therefore, φS,K(C ⊡ (A,B)) is the
difference u · (ϕK̃(B) − s · ϕK̃(A)) + e1 − e2 = u · φS,K(A,B) + e1 − e2. Since
φS,K(A,B) = v + e where e ≤ 2−L1 , we have ∥φS,K(C ⊡ (A,B))− u · v∥∞ ≤
2−Lα + 2−Lβ + 2−Lγ ≤ 2−L.

3.3 Public linear combinations

The main difference and advantage of the bivariate representation, over the more
classical base-2K representation is the ability to decouple and delay carry prop-
agation, which leaves the opportunity to do a lot of linear algebra between two
normalizations. The bivariate representation is linear over Z and ZN [X], so linear

combinations
∑k

i=1(λi.mi) of ciphertexts can primarily be evaluated termwise.
From a normalized representation, if the intent of normalization is to maintain
the base arithmetic bounded, e.g. by O(ℓ.N.22K) like in the external product, it
leaves enough room to evaluate more than ℓ.N.2K (so more than 100000) simple
additions and subtractions before a single normalization is needed. To evaluate
linear combinations with larger coefficients, where ∥λi∥∞ are larger than 2K , we
can use the same strategy as for the external product: decompose the integer
coefficients λi in base 2K to represent them under the form

∑p
j=1 ej2

Kj , and
precompute the DFT of the ej ’s. (p = 2 or 3 terms are sufficient to represent
the constant coefficients λi that appear in a BFV or CKKS bootstrapping).
The linear combination is then easy to apply under this form, and requires only
O(pℓ) element-wise products, which is still negligible compared to the cost of an
external product.

3.4 Automorphisms in BFV and CKKS

Unlike external products that can operate with very short keys and large noise,
BFV and CKKS arithmetic usually operate on much larger parameters, where a
single limb is in general the optimal choice. For the rest of the section, we will
therefore consider that there is a unique limb size K (i.e. K = K̃).

Automorphisms of TN [X] are R-module homomorphisms. These are the ro-
tation/conjugation functions σk : TN [X] → TN [X] that substitutes the variable
X with Xk where k is odd. σk(a) can be computed efficiently in coefficient space
over the bivariate representations Z[X,Y ]/⟨XN + 1⟩ by treating each power of

Y independently and mapping
∑ℓ

i=1 Ai(X)Y i to
∑ℓ

i=1 σk(Ai(X))Y i.

Over ciphertexts, we just need to observe that σ(b − sa) = σ(b) − σ(s) ·
σ(a), so given an bivHalfRGSW encryption of σ(s), we recover the well known
homomorphic evaluation:
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Lemma 3.5 (Automorphism in BFV and CKKS). Let K be a limb size, let
v ∈ TN [X] be a message, let σ be an automorphism of TN [X] and let L be an
output precision parameter. For all Lα, Lβ ≥ L that satisfy 2−Lα +2−Lβ ≤ 2−L,
if (a, b) ∈ R[Y ]2 is a bivRLWEs,K encryption of v ∈ TN [X] with noise 2−Lα and
Cσ(s) is a bivHalfRGSWs,K,K of σ(s) with noise 2−Lβ , then

σ ((a, b)) = (0, σ(b))− Cσ(s) σ(a)

is a bivRLWEs,K encryption of σ(v) with noise ≤ 2−L. Note that we can omit
the normalizeReduce operation of the operation in Theorem 3.1 and compute
it at the end, after the subtraction. Computing this operation with ℓ̃ = ⌈Lα/K⌉
and ℓ = ⌈(Lβ + log2 N + 2)/K⌉ requires, as in Theorem 3.1,

– ℓ̃ bounded DFT’s of the A′
is, of norm ≤ 2K−1,

– 2ℓℓ̃ element-wise addmul’s in DFT domain for polynomials of norm ≤ Nℓ̃22K−2,
– 2ℓ bounded DFT’s for the results Cσ(s)(X) with norm bound Nℓ̃22K−2,
– 2ℓ element-wise additions/shifts/masks to normalize and truncate the final

result,
– (in addition to the computations in Theorem 3.1), 2ℓ evaluations of σ over

the input Ai and Bi, of norm bound 2K .

Proof. We first verify that φs,K ( σ ((a, b))) is close to σ(v). We compute the
noise level of the output as ∥φs,K ( σ ((a, b))− σ(v))∥∞ = ∥ϕK(σ(b))−φs,K(Cσ(s)

σ(a)) − σ(v))∥∞ = ∥σ(ϕK(b))) − σ(v) − σ(sϕk(a)) + σ(sϕk(a)) − φs,K(C
σ(a))∥∞ ≤ ∥σ(ϕK(b)− sϕK(a)− v)∥∞ +

∥∥σ(sϕK(a))− φs,K(Cσ(s) σ(a))
∥∥
∞.

Per the LWE definition, and because σ is an isometry, ∥σ(ϕK(b)− sϕK(a)− v)∥∞ =
∥σ(e)∥∞ = ∥e∥∞ ≤ 2−Lα . Per Theorem 3.1, the second term is a (half) exter-
nal product noise bounded by

∥∥σ(s)σ(ϕK(a))− φs,K(Cσ(s) σ(a))
∥∥
∞ ≤ 2−Lβ .

Summing the two, the output noise is bounded by 2−Lα + 2−Lβ ≤ 2−L.

3.5 Internal products in BFV and CKKS

In the previous section, we showed how to efficiently compute homomorphic ex-
ternal products and automorphisms using leveled-FFT. We now discuss how to
efficiently compute homomorphic internal products between two TRLWE cipher-
texts as defined in Section 2 and in [6].

Using the notation of Section 2, to evaluate a BFV or CKKS product between
two RingLWE ciphertexts, we first apply (6) to the relinearization term of (1):

TRGSW(s)⊡ (P2, 0) = bivHalfRGSW(s) 0− bivHalfRGSW(s2) P2

After substituting the expression in (1), the internal product becomes

(a1, b1)⊠ (a2, b2) = (P1, P0) + bivHalfRGSW(s2) P2, (7)

where P0 = b1⊗⋆ b2, P2 = a1⊗⋆ a2, P1 = a1⊗⋆ b2+ b1⊗⋆ a2 for ⋆ = {BFV, CKKS}
depending on whether one computes the BFV product (2) or the CKKS product
(3).
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We compute the internal product using that formula by first approximating
the inputs by bivariate polynomials via the evaluation ring homomorphism (4).
Lifts from the torus to the real fields come for free, and rounding in CKKS is a
simple truncation and bit masking operation on the last limb. We then use DFT
bivariate polynomial multiplication (in X and Y ) to evaluate the products ⊗⋆

and hence, compute approximations of P0, P1 and P2. We use DFT overX and Y
for the latter which runs in asymptotic complexity O(ℓ log2 ℓ) SIMD operations
on vectors of size N . This computation is asymptotically negligible compared to
the half TRGSW product in (7) that requires 2ℓ2 such SIMD operations. In prac-
tice, even for smaller dimensions where one may use polynomial multiplication
that is quadratic in ℓ, the run-time of computing ⊗⋆ never exceeds 75% of the
run-time of computing . We summarize the complexity in the theorem below
and provide detailed discussion of the optimizations in appendix Section C.

Theorem 3.2 (CKKS/BFV product complexity). The homomorphic CKKS or
BFV product between two bivRLWE ciphertexts (a1, b1) and (a2, b2) ∈ R[Y ]2 with
a relinearization key RK = bivHalfRGSW(s2) where s is the secret key requires:

– 8ℓ DFT/IDFTs in X (including 3ℓ of them for the external product)
– 2ℓ2+min

(
7ℓ log2 ℓ+ 9ℓ, 3

2ℓ(ℓ− 1) + 4ℓ
)
SIMD operations (add, mul, addmul

or twiddle factors) on vectors of size N (including 2ℓ2 for the external prod-
uct).

– 3ℓ SIMD rounding/normalization operations on vectors of size N (including
2ℓ of them in the external product).

This lemma shows that as ℓ grows, the asymptotic complexity of an internal
product is exactly the same as that of the underlying external product (i.e.
O(ℓ2N)) and the overhead induced by the rest of the operations is negligible.
In practice, since the SIMD operations dominate, the run-time is at most 1.75
times the running time of the underlying external product for small values of ℓ.

We conclude this section with Table 1, which recalls the number of N -
dimensional DFT’s and the number of SIMD operations over vectors of N/2
complexes, for one half external product (so either one keyswitch or one au-
tomorphism), as well as the number of such operations in one CKKS or BFV

product. Although the maximal levels for L for 128-bit security are 1761 and
880 for N = 65536 and 32768 respectively, we use L = 1729 and L = 865 as in
the implementation provided by the authors of [26] to facilitate the comparison
with their work. The table confirms that the larger we can choose the limb size
K, the less elementary operations are required. We will show in the following
sections that each choice of backend naturally comes with one maximal value
of K it can process: for instance, the double floating points FFT is limited to
K = 19, but other 128-bit constructions can afford larger limb sizes, which we
explain in Section 6 together with some benchmarks.

The dominant part of the computation is spent in the SIMD products (or
assimilated), the cost of the DFTs remains very small.K = 19 is the largest limb-
size achieved via float64 FFT whereas K = 52 is achieved via 120-bit NTT.
Because elementary operations are faster in the first case, it compensates the
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Table 1. Number of operations in one half-external product (i.e. one relinearization,
one keyswitch, or one automorphism) and in one BFV/CKKS internal product (IP).

N = 65536, L = 1729 N = 32768, L = 865

K ℓ # DFTs
# SIMD # IP # IP SIMD

ℓ # DFTs
# SIMD # IP # IP SIMD

prods DFTs prods prods DFTs prods

16 109 327 23762 763 30278 55 165 6050 385 8927
19 91 273 16562 637 22889 46 138 4232 322 7016
22 79 237 12482 553 18683 40 120 3200 280 5600
...
46 38 114 2888 266 5054 19 57 722 133 1263
49 36 108 2592 252 4536 18 54 648 126 1134
52 34 102 2312 238 4046 17 51 578 119 1011

additional number of operations, and the two backends end up give similar final
running time: SIMD products for N = 65536 are micro-benchmarked at 27µs
in the float64 scenario, whereas the equivalent counterpart for 120-bit NTT
take 93µs. The number of SIMD products per internal product in Table 1 is an
upper-bound that considers the best choice between the naive multiplication in
3ℓ(ℓ − 1)/2 and the DFT one in O(ℓ log2(ℓ)). Because ℓ has to be rounded up
to the next power of two, some nodes in the resulting Cooley-Tuckey recursion
would compute zeros: these nodes have been eliminated from the count in this
table.

4 Accelerating TFHE Gate Bootstrapping

In this section, we show how the concept of halfTRGSW can speed-up the TFHE

library [2]. One TFHE gate bootstrapping is computing n = 630 successive TRGSW-
TRLWE external products. We defer to the noise propagation analysis in [14] and
the lattice estimator [3] for the explanations on lattice security but in summary,
there are two constraints on the external products:

– Lattice security constraint. Any TRLWE or TRGSW ciphertext encrypted with
an N = 1024 dimensional key (binary or ternary) must have a noise vari-
ance parameter of at least VGSW = 2−50 (stdev 2−25) to provide 128-bits of
security.

– Correctness of bootstrapping constraint. Each individual external product
output shall make the noise variance grow by at most ∆max = 8.4961.10−8

to ensure that the final ciphertext is decryptable.

Since the ratio between ∆max/VGSW is very small, we have to pick the ex-
ternal product parameters with extreme care. For instance, it is unrealistic to
try to take K = K̃, instead, the choice in TFHE is to decrease K̃ as much as
needed to contain the noise growth of TRGSW ciphertexts, and maintain K to a
fixed value 32, so that TRLWE use a single limb of 32-bits, and correspond to our
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bivRLWE with ℓ = 1. Also, the worst-case bounds on noise amplitude increase
too fast compared to the reality: as it is shown in LWE, we can use the average-
case noise propagation formula, which essentially transcriptions of the worst-case
theorems where all noises are assimilated to independent Gaussian samples and
the theorem operates on their variance instead of their infinity norm.

With this in mind, in TFHE, the noise propagation of a TRGSW-TRLWE external
product (adapted to use the notations of this paper), between a TRGSW ciphertext

of error variance VTRGSW for a decomposition in ℓ̃ limbs of K̃ bits, and an input
TRLWE ciphertext of noise variance Vin, is:

Vout − Vin ≤ 2ℓ̃N4K̃−1VGSW + (1 + N︸︷︷︸
∥S∥2

2

)4−K̃ℓ̃−1. (8)

The choices of K̃, ℓ̃ in TFHE library are 7 and 3, which correspond to a variance
growth of 2.2410.10−8 < ∆max per external product. As we know that the run-
ning time of TFHE is proportional to the number of FFTs per external products,
this number is 2ℓ̃+ 2 = 8.

We can also see that any attempt to reduce the number of FFTs by setting
ℓ̃ = 2 for instance fails, as no more limb size K̃ exists that makes Vout − Vin in
Eq. (8) smaller than∆max. That’s precisely where the concept of HalfRGSW helps:
if the input TRLWE is (A,B), and we are allowed to pick different parameters and

dimensions K̃A, ℓ̃A and K̃B , ℓ̃B , the variance growth bound of Eq. (8) becomes,
by analogy with our Corollary 3.2:

(
ℓ̃AN4K̃A−1VGSW +N · 4−K̃Aℓ̃A−1

)
+

(
ℓ̃BN4K̃B−1VGSW + 1 · 4−K̃B ℓ̃B−1

)
Not unsurprisingly, the term in K̃A, ℓ̃A is already tight, so the value (7, 3)

remains optimal. However the absence of the factor N in the second term (ana-
logue of ∥s∥1 in worst-case formulae, which only affects the half external product

term in A) gives us much more flexibility on the choices of K̃B , ℓ̃B . It turns out

that we can finally reduce ℓ̃B to 2 and use K̃B = 8. We indeed obtain the fol-
lowing variance growth: 2.986053.10−8 for the half external product in A and
1.1234.10−8 for the one in B, and we verify that the sum 4.10946.10−8 stays
≤ ∆max, and is thus suitable for bootstrapping.

Because of that improvement, the number of FFTs in TFHE decreases to
ℓ̃A + ℓ̃B +2 = 7 instead of 8 per external product (so 12.5% less FFTs), and the
other linear operations, decompositions, and matrix multiplications also drop by
16.6%, since the outer loop has only 5 iterations instead of 6.

We first implemented this concept as a simple patch to the original TFHE
library by overriding the tGswExternMulToTLwe function and removing the last
iteration of the loop. On a n2-standard Xeon, we already witnessed a decrease
of the NAND gate bootstrapping by 3ms which matches the expected theoretical
speedup. In order to compare our proof-of-concept to the fastest CPU bootstrap-
ping whose reference implementation is the TFHE-rs library [38], we then ex-
tracted and re-implemented the entire blindrotate woKS loop obtaining another
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Table 2. Performance comparison of gate bootstrapping with a n2-standard GCP
instance with 64GB of RAM and a 12-th Gen i7-1260p laptop with 64GB of RAM. All
the benchmarks are single core.

Library Instruction set n2-standard 12-Gen i7-1260p

TFHE-lib, spqlios-fma AVX2 22.4ms 10.4ms

TFHE-rs, TFHE LIB PARAMETERS
AVX2 18.2ms 8.6ms
AVX512 14.4ms not supported

TFHE-rs, DEFAULT PARAMETERS
AVX2 14.4ms 7.6ms
AVX512 13.7ms not supported

Our work, halfTRGSW AVX2 11.2ms 5.3ms

2x speedup by back-porting the following engineering improvements: from the
TFHE-rs optimizations, we used the fast AVX floating-point flooring, conversions
to and from integer and bit-decompositions that work on bounded floating-point
numbers that are never infinite, NaN, or subnormal. We also dropped completely
the round-trip to the int32/int64 and reduced the numbers modulo Z directly
over their floating point bits, so that the entire blind rotate procedure operates
solely on the double-floating point precision domain. Finally, we incorporated the
latest improvements from fast implementations of Falcon to the complex FFT
described in [31, sec.5]: namely instead of evaluating the log2(N/2) iterations of
the FFT circuit one after the other, we execute them two by two and thus save
half of the memory accesses. The last four iterations, that operate contiguously
on vectors of 16 complex numbers are run entirely on registers. We did however
not backport the DEFAULT PARAMETERS optimization of TFHE-rs that consists of
trading the ring dimension N against an increase of the module dimension, nor
any AVX512 optimizations. Our prototype uses therefore only AVX2 instructions.
Finally, since we did not have access to a Xeon Platinum, we have run our ex-
periments on two different architectures: one ”slow” cloud instance, which is a
GCP n2-standard Xeon CPU Cascade Lake at 2.8GHz with 4 cores, 8vCPU and
64GB of RAM (left column of Table 2), and one ”fast” laptop with a AlderLake
Core i7-1260P at 4.7GHz with 64GB of RAM (right column of Table 2). The
fast laptop does not have AVX512, whose support was discontinued by Intel, but
it has a much higher cache and memory access rates than the Cascade Lake
counterpart, so timings on this machine are often very close to those published
with a bare metal server with a Xeon Platinum: overall, Table 2 gives a neat
intuition of the range of performance we can expect depending on the CPU. The
combination of the half external product and all the other engineering optimiza-
tions described in this paragraph make our new bootstrapping running time as
low as 5.3 milliseconds per NAND gate, which is the new single core record, even
though it sticks to a traditional ring-lwe parameter-set and does not use any
AVX512 instructions.
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5 Frontend and Large Number Arithmetic: Bivariate
versus CRT Representations

The main idea in both [26] and the present work is the decoupling of the cy-
clotomic arithmetic (the backend representation) from the large number arith-
metic (the frontend representation) in BFV, CKKS, TFHE and Chimera which, in
turn, allows to fully benefit from the small polynomial coefficients produced
by the gadget decomposition. Taking one step further, both works suggest a
frontend/backend separation where TRLWE ciphertexts are represented non-
uniquely by their gadget decomposition: a vector of small polynomials ∈ (ZN [X])ℓ.
The content of the vector being the coefficients in Y for the bivariate representa-
tion, the centered and reduced coefficients mod qi for CRT representations, and
in general any other gadget-decomposed representation. Similarly, half-TRGSW
ciphertexts would correspond to a matrix of ℓ×2ℓ small integer polynomials. The
most complex operation that arises in the external product is an efficient vector
× matrix product, where the matrix is preprocessed in an offline phase. The
online phase of the product is carried out by the backend API using the appro-
priate DFTs. Cheaper operations are of course, element-wise additions, scaling,
rotations and automorphisms, as well as normalization whose role is to keep the
representation small. Depending on the frontend, the bivariate approach bene-
fits from the fact that modulus rescaling just requires a prefix truncation of the
normalized representation, but has a O(ℓ. log2(ℓ)) ⊗⋆ products. CRT frontends
have a more expensive modulus rescaling, but faster O(ℓ) internal products.
With the operations described in Section 3.2, the bivariate and CRT frontends
can be instantiated on the same backend API and offer similar performance. CRT
frontends should be preferred for use-cases involving large homomorphic matrix
products, as the external products and modulus rescaling can in these cases be
amortized, and the frontend benefits from the faster ⊗⋆ products. On the oppo-
site, the bivariate frontend is preferred when the use cases have fewer internal
products and rely on lookup-tables, trace algorithms, circuit bootstrappings or
when the homomorphic internal products are sequential. These use cases benefit
from the fact that ⊗CKKS can be instantiated at any noise level L on the bivariate
frontend, rather than at integer multiplicative levels (multiples of log2(qi)) in the
CRT frontend. A more in-depth comparison is provided in appendix Section F.
Finally, since the external product is fast on both frontends (the CRT one via
[26], and the bivariate one from Section 3.2), it is easy to switch dynamically
between both on more complex use cases, which is also interesting from a scheme
switching perspective.

6 Backend Arithmetic and Cyclotomic Multiplications:
Approximate FFT or NTT

At a low level, we need efficient arithmetic (additions and multiplications) in
the cyclotomic ring R where the coefficients of the polynomials are integers
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bounded by B′
worst = 2ℓN2K+K̃−2 in the worst case. We can get a tighter av-

erage case bound if we pay closer attention to the expressions present in the
previous section. We then notice that it is sufficient for such arithmetic to be
able to successfully evaluate, with overwhelming probability, expressions of the
form

∑2ℓ
i=1 ai(X) · bi(X) where a, b have their coefficients computationally in-

distinguishable from uniformly distributed in respectively [−2K−1,−2K−1) and

[−2K̃−1,−2K̃−1). Indeed, these inputs are base-2K decompositions of LWE ci-
phertexts or fresh GSW ciphertexts, and any computational bias against the uni-
form distribution would form an attack on these schemes. In other words, if we
randomize bivRLWE ciphertexts during normalization (e.g. we can always mask
them with random ciphertexts of zero), with an overwhelming probability 1− ε
the arithmetic just needs to handle elements of size B′

avg = Cε

√
2ℓN2K+K′−2

instead of the worst case B′
worst = 2ℓN2K+K′−2. We will use Cε = 17 in this

section, that corresponds to an error probability ε < 2−40.

We present two equivalently good ways of handling such arithmetic: floating
point or fixed-point approximations of the continuous FFT on backends whose
mantissa can store B′, or NTT over a friendly modulus larger than B′. The
underlying arithmetic must be sufficiently atomic to be considered as native
operations, therefore we will limit ourselves to 64-bit or 128-bit B′.

In a nutshell, the main result is that each choice of backend is bound to a
precision B′ and lead to a maximal limb size K: for all practical HE dimensions,
the float64 backend corresponds to K ≤ 19, the float128 backend (or fixed-
point backends via 104-bit arithmetic in AVX IFMA) would correspond to K ≤ 49,
doing NTT over a 60-bits modulus corresponds toK ≤ 22, andK ≤ 52 for a 120-
bit modulus. And the key takeaway is that the most important success factor for
a backend to be FHE friendly is to support the largest machine-word arithmetic;
it is much less important if that arithmetic is modulo a power of two (fixed-point
FFT), modulo a user-friendly prime number (NTT), or floating point (FFT).

6.1 Floating point backends

The first choice when it comes to FFT on bounded numbers is floating point
backends. This algorithm is well studied and has been successfully used in
the TFHE library since its origins. A näıve application of the formula B′

avg =

Cε

√
2ℓN2K+K̃−2 for K = K̃ and provided that we can use the 52 bits of

mantissa without loss would bound K around 19. However, a lot of interme-
diate floating point operations occur between the start of the FFT, the prod-
ucts, the inverse FFT and we have to guarantee that the final error remains
bounded by 1/2 to be recoverable by rounding. We decided to treat the problem
experimentally, by sampling uniformly random polynomials A(X), B(X) ∈ R
with coefficients ∈ [−2K−1, 2K−1), multiplying these two polynomials via C =
iFFT (FFT (A) ∗ FFT (B)) using 64-bit double-precision floats, and measuring
the amplitude and the standard deviation of the error C −AB, as a function of
N and K. From these measurements, we estimate the probability that a sum of
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such terms satisfy
∥∥∥∑2ℓ

i=1 Ci −AiBi

∥∥∥
∞

< 1/2, which is sufficient to recover the

actual result by rounding.

Lemma 6.1. Let ℓ,N ∈ N and ε > 0. The maximal value of σ such that with
probability ≥ 1− ε, the sum v =

∑2ℓ
i=1 vi of 2ℓ independent real vectors vi ∈ RN

with independent Gaussian coordinates of mean 0 and stdev σ is bounded by

∥v∞∥ < 1/2 is σ ≤ 1/
(√

16ℓerfinv
(
(1− ε)

1/N
))

.

For a target probability error ε = 2−40, N = 65536 and ℓ = 100, the max-
imum σ is 0.00414. Experimentally we have observed that for those values the
largest limb size we can choose is K = 19 for 64-bit words. We obtain the same
result with N = 32768. For completeness, we have run the same experiment with
128-bit words (float128) that have a mantissa of 112 bits. In this case we see
that we can choose K = 48, however the obtained σ is very close and we could
even choose K = 49 given that ℓ is going to be much smaller than 100 due to
the constraints outlined in Table 1.

Table 3 shows the results of these experiments for different values of K and
N for 64-bit (double) and 128-bit (float128) words. The objective is to find
the largest value of K for a given error boundary.

Unfortunately, to this date, float128 is not a primitive type on x86 archi-
tectures and it’s not available in all targets either. GCC supports float128

operations via the quad-precision math library libquadmath, which is shipped
along since version 4.6 of GCC, however, float128 operations provide a poor
performance compared to AVX accelerated doubles. Our experiment shows that
due to the increased limb size K, large precision floats have potential, but with-
out any dedicated hardware support, quad floats are not performant enough
for our homomorphic backends. As an opening, we could however investigate
the newer AVX-IFMA extensions set, whose instructions are already available on
most recent commodity CPUs. These instructions allow to easily emulate 104-bit
fixed-point arithmetic, and seems to be a perfect hardware-accelerated candidate
for FFT computations, on a large limb sizes.

Table 3. Experimental standard deviation of floating point errors after a sum of FFT
products for given N and varying K with 64 and 128-bit floats.

N 64-bit representation 128-bit representation

64K
17 18 19 20 21 47 48 49 50 51 K

0.0002 0.0008 0.0031 0.0124 0.0498 0.0003 0.0011 0.00416 0.0169 0.067 σ

32K
17 18 19 20 21 47 48 49 50 51 K

0.0001 0.0005 0.0021 0.0085 0.034 0.0002 0.0007 0.0028 0.0112 0.0448 σ
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6.2 NTT backends over a fixed modulus

As an alternative to FFT over the complex numbers, it is well known that
cyclotomic multiplications can also be carried out by NTT, which has been the
default choice of in the Full-RNS representation and later in [26]. All we need is
a choice of one modulus or a product of moduli larger than B′ that are NTT-
friendly (unlike the frontend-ones in the CRT-representation) and replace all
DFTs by NTT. NTT over moduli that are products of 30-bit or 60-bit primes
can be accelerated on processors supporting AVX2 extensions of x86 architectures.
Note that due to the overhead necessary for modular reductions as well as the
missing support for native 64-bit SIMD integer multiplication on AVX25, one
NTT on a 30-bit modulus requires the same number of clock cycles as one FFT
on 64-bit floating points. Similarly, all NVIDIA GPUs provide native support
for only 32-bit SIMT integer multiplication, thus, requiring emulation for larger
(64-bit or more) SIMT integer multiplication.

Therefore, the best trade-off we have under the above constraints is to target
120-bit modulus NTT since the larger supported limb size K = 52 reduces
the number of elementary operations in an external product: 120-bit NTT with
K = 52 that has approximately the same running time as the 64-bit floating
point FFT counterpart with K = 19 (the evidence for the latter can be deduced
by combining the data from Table 1 with the micro-benchmarks from Table 4
below).

Comparative micro-benchmarks between floating point and NTT elementary
operations are provided in Table 4: one DFT/iDFT operation is either an FFT
or an NTT on a consecutive array of N elements. The float64 and float128

FFT operations are self-explanatory, whereas in 60-bit or 120-bit NTT, an ele-
ment x is represented by two or four (lazily-reduced) 64-bit integers equal to x
modulo (q1, q2) or (q1, q2, q3, q4), respectively. One SIMD addmul/twiddle con-
sists of either one operation r = r+ ab over vectors in CN/2 or (Z/QZ)N or one
twiddle-factor (a, b) → (a+ω ·b, a−ω ·b) where ω is a fixed (general) root of unity,
whichever is slower. For N = 32K or 64K, the twiddle factor is in general 10%
faster than the addmul, despite the fact that the it contains one more subtrac-
tion, which indicates that these operations are memory-bound. float64, and the
two NTTs use AVX2 instructions, whereas float128 is powered by libquadmath

and does not benefit from any particular acceleration except for automorphisms
that use only copy and sign-bit flipping.

We also provide benchmarks of homomorphic elementary operations in Ta-
ble 5. We used the same parameter sets: (N = 65536, L = 1729) and (N =
32768, L = 865) as in [26]. The fast CKKS-RNS benchmarks have been run
from the source code provided in [26] on the same machine as our own bench-
marks. We evaluated the performance on the same machines as in Section 4:

5 Originally, AVX2 was supporting mainly floating point operations with 32-bit floats
and 64-bit doubles - it was much later that integer operations were introduced.
Today, not all 64-bit integer operations are supported - e.g., it was only recently
that SIMD multiplications of vectors of 64-bit integers were introduced in AVX512

and recently, Intel has disabled AVX512 in AlderLake processors.
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one n2-standard GCP instance with 64GB of RAM, and one 12-th Gen i7-1260p
laptop with 64GB of RAM (Top and Down parts of Table 5). We expect that
the performance numbers in these tables will be in constant evolution, as new
hardware tend to support larger precision arithmetic. However, unlike what was
commonly believed so far, any chip or device that can: either efficiently approx-
imate the complex FFT with reasonable precision, or execute NTT on even just
one single NTT-friendly modulus of reasonable size, is suitable for fast homo-
morphic computations at any depth. The efficiency of such device is directly
related to the number of bits of mantissa or modulus it natively supports.

Table 4. DFT and SIMD arithmetic operations on a Xeon 2.8GHz n2-standard with
64GB of RAM instance. All benchmarks are single core.

backend float64 FFT float128 FFT 60-bit NTT 120-bit NTT

K 19 49 22 52

N 64K 32K 64K 32K 64K 32K 64k 32k

DFT/iDFT 125µs 57µs 60.3ms 28.4ms 534µs 243µs 1342µs 541µs
SIMD addmul/twiddle 27µs 9µs 2.17ms 1.07ms 49µs 28µs 93µs 48µs

automorphism 58µs 29µs 68µs 33µs 68µs 33µs 92µs 45µs

Table 5. Total running time per homomorphic operation over RLWE ciphertexts: CRT
representations for full-RNS and [26], bivariate representations in our case. We recall
that we use L = 1729 and L = 865 as in the implementation provided by the authors
of [26].

Operation Keyswitch Automorphism CKKS product

Size
N = 64k N = 32k N = 64k N = 64k
L=1729 L=865 L=1729 L=1729

Hardware n2-standard VM Xeon(R) CPU @ 2.8GHz, 64GB RAM

- Full-RNS (best r) 3.111s 0.359s 3.279s 3.311s
- [26] (best r) 0.965s 0.161s 1.134s 1.155s
- ours: biv + fft-f64 (K = 19) 0.589s 0.086s 0.602s 0.862s
- ours: biv + ntt120 (K = 52) 0.541s 0.073s 0.547s 0.777s

Hardware Laptop with Intel Core i7-1260P @ 4.7GHz, 64GB RAM

- Full-RNS (best r) 1.598s 0.192s 1.796s 1.759s
- [26] (best r) 0.521s 0.085s 0.578s 0.598s
- ours: biv + fft-f64 (K = 19) 0.228s 0.027s 0.233s 0.335s
- ours: biv + ntt120 (K = 52) 0.218s 0.029s 0.221s 0.314s
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Conclusion

In this paper we extend the key decomposition techniques from [26] by using
a simpler and more natural base-2K representation. It allows a better under-
standing of the parametrization of TFHE, CKKS and BFV schemes, which in turn
speeds-up not only the main operations in CKKS and BFV schemes, but also low-
depth computations in TFHE. In the Appendix D we also discuss how this speedup
would impact the CKKS bootstrapping.
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A Normalization and reduction lemma proof

Proof of Lemma 3.3. Let n = ⌈(L + M)/K⌉ be the number of algorithm it-
erations. Let acc(i) be accumulator value after step 3 of iteration i and let
acc(n+1) = 0. At iteration i, n ≥ i ≥ 1, we have:

acc(i) = Ai + ϵi+1 and Ri = acc(i) − ϵi2
K , (9)

here ϵi =
⌊
acc(i)2−K

⌋
and has integer values.

The evaluation of result polynomial at 2−K gives:

ϕK (R) =

ℓ∑
i=1

Ri2
−iK =

ℓ∑
i=1

(
Ai + ϵi+1 − ϵi2

K
)
2−iK

Expanding the sum and simplifying common expressions we obtain:

ϕK (R) =

ℓ∑
i=1

Ai2
−iK + ϵℓ+12

−ℓK − ϵ1

Now, we will prove that ∥(ϕK(A)− ϕK(R)) mod R∥∞ is smaller than 2−L.
We have:

ϕK(A)− ϕK(R) = A0 +
∑
ℓ<i

Ai2
−iK − ϵ(ℓ+1)2

−ℓK + ϵ1.

Observe that terms A0 and ϵ1 are integers and are reduced by modR operation,
we obtain:

(ϕK(A)− ϕK(R)) mod R =
∑
ℓ<i

Ai2
−iK − ϵℓ+12

−ℓK .

From (9) it is easy to see that Ai−ϵi2
K ≡ Ri−ϵi+1. Using previous relations

we have:

(ϕK(A)− ϕK(R)) mod R =

=2−(ℓ+1)K(Aℓ+1 − ϵℓ+12
K) +

∑
ℓ+1<i

Ai2
−iK

=2−(ℓ+1)KRℓ+1 +
∑

ℓ+1<i

Ai2
−iK − ϵℓ+22

−(ℓ+1)K

= . . .

=

n∑
i=ℓ+1

Ri2
−iK +

∑
n<i

Ai2
−iK
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Looking at the infinity norm we have:

∥(ϕK(A)− ϕK(R)) mod R∥∞ =

∥∥∥∥∥
n∑

i=ℓ+1

Ri2
−iK +

∑
n<i

Ai2
−iK

∥∥∥∥∥
∞

<

∥∥∥∥∥
n∑

i=ℓ+1

2−iK+K +
∑
n<i

2−iK+M

∥∥∥∥∥
∞

≤ 2−ℓK+1 ≤ 2−L

Element-wise operations are on integers in interval
(
−2M+1, 2M+1

)
The accumulator variable acc (at step 3) has the largest values during al-

gorithm execution. We will prove that its magnitude (i.e. infinity norm) never
exceeds 2M+1.

Algorithm step 3 increases accumulator value by at most 2M and step 5
divides the new value by 2K . After the first iteration, we have

∥∥acc(n)∥∥∞ < 2M ,

after second iteration
∥∥acc(n−1)

∥∥
∞ < 2M−K + 2M and so on until the last

iteration where we have
∥∥acc(1)∥∥∞ <

∑
0≤i<n 2

M−iK , which is the maximum
accumulator magnitude attained during algorithm execution. We can rewrite the
last expression as:∥∥∥acc(1)∥∥∥

∞
<

∑
0≤i<n

2M−iK = 2M ·
∑

0≤i<n

2−iK < 2M · 2 = 2M+1,

which proves the accumulator bound.
Complexity Algorithm steps 3-5 are executed ⌈(L + M)/K⌉ times. In each

iteration 5 operations are performed: an addition (step 3), 3 shifts (2 in step 4 and
1 in step 5) and a subtraction (step 4). The overall complexity of the algorithm
is 5 · ⌈(L+M)/K⌉ element-wise operations.

B Normalization and Conversion of Limb Sizes

In this section we introduce Algorithm 2, a general conversion and normaliza-
tion with two limb size K and K̃. This algorithm is a slightly more complex
than Algorithm 1 with K = K̃, since it must handle additional binary shifts to
synchronize the limb sizes, and thus, the for loop on a single index k is replaced
by two while loops and two indexes k, k̃ that decrease at their respective speed.
Besides that, it follows the same principle as the single-limb normalization.

C Optimized internal products in BFV and CKKS

Here, we provide some of the details on the optimizations as well as the complex-
ity analysis (Theorem 3.2) of the efficient computation of the internal product
from Section 3.5.
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Algorithm 2 Conversion, Normalization and Reduction (from K to K̃).

Input: A target precision of L bits, an input limb size K and an output limb size K̃
Input: An input polynomial A(X,Y ) =

∑
k∈Z≥0

Ak(X)Y k satisfying ∥A∥∞ ≤ 2B

Output: A K̃-normalized and reduced polynomial R(X,Y ) of degree ≤ ⌈L/K̃⌉ in Y
such that ∥ϕK̃(R)− ϕK(A)∥∞ ≤ 2−L.

1: k = ⌈(L+B)/K⌉, k̃ = ⌈(L+B)/K̃⌉
2: acc(X) = ⌊Ak(X) · 2k̃K̃−kK⌉
3: while k̃ ≥ 1 do
4: while (k̃ − 1)K̃ < (k − 1)K do

5: acc(X)← acc(X) +Ak−1(X) · 2(k−1)K−(k̃−1)K̃

6: k ← k − 1
7: end while
8: Rk̃(X)← centermod

2K̃
(acc(X))

9: acc(X)← (acc(X)−Rk̃(X))/2K̃

10: k̃ ← k̃ − 1
11: end while
12: Return R(X,Y ) =

∑⌈L/K⌉
k=1 Rk(X)Y k

Recall that the ∗ operator is the multiplication over RN [X] and that the
coefficients of normalized and reduced bivariate representations of (u, v) are
automatically lifted to the real interval [−1/2, 1/2) as (ũ, ṽ). Unlike for CRT
representations, the rounding to the nearest multiple of 2−Lin at the start of the
CKKS product (3) is easy to achieve in the bivariate base-2K representation of
the coefficients by simply truncating the representation to degree ℓ = ⌈Lin/K⌉
and rounding the last limb to the nearest multiple of 2Lin mod K . At the end of
the products ⊗⋆ for ⋆ = {BFV, CKKS}, the multiplication by the small integers p
(in the case of BFV) or the large power of two 2Lin (for CKKS) are also straight-
forward to express in limbs. The major part of the computation remains the
multiplication ∗ over RN [X]. Fortunately, as already mentioned in Section 3.5,
the bivariate representation is a ring isomorphism between R[Y ] and RN [X],
so the product of two bivariate representations corresponds to the product in
RN [X].

In the full-RNS that is based on CRT-representations, products are carry-
less and have complexity O(ℓN). Unfortunately, our bivariate representation do
not have such an analogue, so we have to multiply two representations over
Z[X,Y ]/⟨XN + 1⟩ of degree ≤ ℓ− 1 and obtain a result of degree ≤ 2ℓ− 2. The
fastest multiplication algorithms for such polynomials involve a double DFT
on the variables X and Y and have asymptotic run-time O(ℓN log2(ℓN)) =
O(ℓN(log2 ℓ+ log2 N)), that is, a logarithmic factor above the carry-less multi-
plication. Note, however, that this operation is not the bottleneck: an internal
product over ciphertexts require at least one external product in O(ℓ2N) for the
relinearization, so asymptotically, an internal product over bivRLWE ciphertexts
has the same cost as its underlying external relinearization product.
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To multiply two K-normalized and reduced bivariate polynomials a and b of
degree ℓ we first perform the DFTs on the X variable to obtain N/2 univariate
polynomials (A1(Y ), . . . , AN/2(Y )) and (B1(Y ), . . . , BN/2(Y )), each in CN [X] of
degree ≤ ℓ − 1. We then simultaneously multiply each Ai(Y ) × Bi(Y ) to form
N/2 univariate polynomials (C1(Y ), . . . , CN/2(Y )) of degree at most 2ℓ−2 using
the fastest algorithm in practice between the näıve multiplication, Karatsuba
multiplication, or DFT over Y . This takes the form of a SIMD computation,
where all the elementary steps necessary to compute the first product C1 =
A1 ×B1 are replicated coordinate-wise on a vector of N/2 complex coordinates
for the other products. Finally, we apply the inverse DFT on X to recover the
result.

The SIMD part of the computation can be sped-up by the observation that
the BFV product requires computing only the ℓ terms of lower degree since higher
degree terms in Y represent a negligible quantity. Similarly, in CKKS, the final
multiplication by 2Lin eliminates all the low-degree terms after reduction modulo
Z, so we only need the ℓ terms of higher degree. The initial DFTs only need to be
computed once per input, and two of the final inverse DFTs and normalizations
can be postponed until after the external product.

With these optimizations in mind, we are ready to prove Theorem 3.2 and
thus, obtain the final complexities:

Proof of Theorem 3.2. All our inputs a1, b1, a2, b2 are given in coefficient space,
so 4ℓ DFT’s on the variable X are consumed to bring them in DFT-space. To
compute P0, P1 and P2, we apply three strategies:

Naive product: for one plaintext internal product we have exactly ℓ(ℓ − 1)/2
addmul operations to obtain either the the ℓ coefficients of lowest degree (BFV)
or the ℓ coefficients of highest degree (CKKS). In the internal homomorphic en-
cryption we have 4 products (to compute P0, P1 and P2). This yields a baseline
of 4ℓ(ℓ− 1)/2 products.

Karatsuba product: The first iteration of Karatsuba is quite interesting, as it uses
the fact that P2 is in fact (close to) (a1+a2)⊗⋆(b1+b2)−P1−P2 so three products
plus four additions/subtractions are needed instead of four products in the naive
algorithm, thus, 3ℓ(ℓ − 1)/2 products and 4ℓ additions. Pursuing the recursion
would end-up executing less multiplications than the näıve approach (the number
of multiplications would be in O(ℓlog2 3)), however, one machine word addition
often has the same throughput as one multiplication (which is the case of floating
point and int64 operations on a CPU), and if we take additions into account, the
number of binary operations follows the recursion U(ℓ) = 1 if ℓ = 1, otherwise
3U(ℓ/2)+6ℓ, which is super-quadratic. Moreover, the subsequent recursive calls
to Karatsuba algorithm cannot be performed in-place anymore which requires
expensive memory allocation. At the end, Karatsuba has to be limited to a single
iteration to achieve 3ℓ(ℓ− 1)/2 + 4ℓ operations.
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FFT product: we evaluate each polynomial on at least 2ℓ− 1 points, which is a
DFT in Y , multiply those evaluations and compute the inverse DFT. The most
efficient choice is to take the 2ℓ′-th roots of unity, where ℓ′ is the smallest power
of two larger or equal to ℓ. Because Ai have degrees lower or equal to ℓ′, each of
the four direct DFT has ℓ′ log2 ℓ

′ twiddle factors, and each of the three output
DFT that have degree 2ℓ have ℓ′(log2 ℓ

′ + 1) twiddle factors. That is a total of
7ℓ′ log2 ℓ

′ + 9ℓ′ operations. This count is exact when ℓ = ℓ′ is a power of two,
however, in the other cases, we would in theory have to consider that ℓ′ can grow
up to 2ℓ. In practice, since both the input and output polynomials are padded
with zero coefficients, we can smooth the resulting complexity by propagating
these known zero positions across the twiddle factors and eliminate those that
are trivial.

Once the products P0, P1, P2 are computed, we need to inverse the DFT in
X and normalize the result: for P2, this normalization needs to happen before
the external product, however for P0 and P1, this iDFT and normalization can
be delayed and merged with the ones at the output of the external product, on
the very final result. Therefore we count only 4ℓ additional DFT’s.

Remark 1. We can decrease the number of DFTs inX from 8 to 6 for the internal
product and from 3 to 2 for the external product under the assumption that the
default representation for a bivRLWE ciphertext is in DFT space (bivRLWEDFT)
rather than in coefficient space. In the present case, since DFTs are not the
limiting factor, it only has a small effect on the overall complexity and becomes
less natural if the external product uses multiple limb sizes K, K̃. Also, unlike
the Full-RNS case where reduction mod Q can be done in NTT space as well, all
the normalizations in this work and also in [26] require a round-trip to coefficient
space.

D CKKS bootstrapping in the bivariate representation

In this section, we verify that the speed-ups obtained on external products, inter-
nal products and linear combinations presented on the bivariate representation
are very likely to extend to more complex constructions, like the CKKS and BFV

bootstrappings, without changing those algorithms.
CKKS bootstrapping [11] and improved variants [10,9,5,27] rely on the follow-

ing steps, to bootstrap a high noise ciphertext (a, b), that encodes µ:

1. Start from the ciphertext (centerlift(a)/2L, centerlift(b)/2L). By definition,
it encodes P (X) = µ/2L + I(X)/2L where I is an integer polynomial of
norm ∥I∥∞ = O(

√
N).

2. Apply the coeffsToSlots operation, which consists in multiplying the slots by
the complex inverse FFT matrix modulo XN/2 − i. The slots now contain
the coefficients of P .

3. Evaluate (an approximation of) x → 2−L.centermod(2L.x), to eliminate I,
so that the slots contain the coefficients of µ.2−L
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N = 65536, L = 1729 N = 32768, L = 865

K ℓ #DFTs
#SIMD #IP #IP SIMD

ℓ #DFTs
#SIMD #IP #IP SIMD

prods DFTs prods prods DFTs prods

13 133 399 35378 931 49058 67 201 8978 469 15053
16 109 327 23762 763 30278 55 165 6050 385 8927
19 91 273 16562 637 22889 46 138 4232 322 7016
22 79 237 12482 553 18683 40 120 3200 280 5600
25 70 210 9800 490 15908 35 105 2450 245 4287
28 62 186 7688 434 10640 31 93 1922 217 3203
31 56 168 6272 392 9161 28 84 1568 196 2744
34 51 153 5202 357 8037 26 78 1352 182 2366
37 47 141 4418 329 7211 24 72 1152 168 2016
40 44 132 3872 308 6635 22 66 968 154 1694
43 41 123 3362 287 5883 21 63 882 147 1543
46 38 114 2888 266 5054 19 57 722 133 1263
49 36 108 2592 252 4536 18 54 648 126 1134
52 34 102 2312 238 4046 17 51 578 119 1011

Table 6. Number of operations in one half-external product (i.e. one relinearization,
one keyswitch, or one automorphism) and in one BFV/CKKS internal product (IP). Com-
plete version of Table 1.

4. Apply slots2coeffs, which consists in multiplying the slots by the FFT matrix
modulo XN/2 − i. It yields a low-noise ciphertext of µ.2−L.

Under the bivariate representation, step 1 is entirely free! It suffices to con-
sider that all the most significant limbs are equal to zero.

Steps 2 and 4 can use the usual radix-r fast-FFT tradeoff, that decomposes
the N/2×N/2 FFT matrix into a product of logr(N/2) sparse matrices with at
most 2r−1 non-zero diagonals of norm 1. Evaluating one of such matrix product
boils down to a public linear combination with 30-60-bits coefficients, between
2
√
r automorphisms, and the speed-up covered in Section 3.4 and Table 5 apply.
Step 3 usually remarks that the function we evaluate over the slots only

needs to coincide with the centermod function at a very close proximity of exact
multiples of 2−L. In practice, the function x → sin(2π2L.x) has been tradi-
tionally mentioned as a good candidate. It has a fast convergent Taylor Series,
which gives a moderate degree polynomial approximation. It can even be fac-

tored as Im(exp(2iπx)2
L

), which allows further running-time vs. depth by re-
peated squaring of lower degree approximations. In general, evaluating a degree
d polynomial boils down to O(d) internal CKKS products at depth O(log2(d)),
followed by public linear combinations, which remain negligible compared to the
squaring effort. The performance and speed-up of the bivariate representation
on underlying CKKS internal product is covered in Section 3.5 and Table 5.

Overall, complex constructions like CKKS (and BFV) bootstrappings are solely
expressed in terms of automorphisms and internal products, a smaller amount
of public linear combinations, and nothing else. These algorithms are agnostic of
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the backend arithmetic, and they are therefore very likely to be directly impacted
by the same performance gains as those depicted in our benchmarks section.

E Forward noise propagation theorems

All the theorems about the external products in the main Section have been
provided in a backward propagation direction, which is the most useful for com-
pilation purposes: we consider the full plaintext circuit and assign nodes and
levels to each elementary operation one by one starting from the end. Each
time, we start from the targeted output noise, and deduce the (larger) minimal
required noise levels for the products. Whenever the level become too high (i.e.
not efficient, or noise too small to be secure) , we can place a bootstrapping and
continue backwards at a lower level.

In a more traditional interpreted language scenario, we already have existing
ciphertexts and pre-existing relinearization keys, that we must just feed-in as
input to a homomorphic product, at their current level of noise. In this case,
we can use forward propagation formulae to deduce the output noise. In a real
circuit, these forward-propagation formulae end-up forming a large system of
constraints that is usually non-linear, and are quite hard to optimize by fhe
compilers, compared to their backward-propagation counterpart. However, they
are in general also easier to understand for a human being, so we provide them
in this section.

Also, the main section theorems use the worst-case propagation, based on
the infinity norm of the noise. These formulae are unconditionally true, but
predict a noise growth that is in bits twice as fast as the reality. As explained
in Section 4, the practical noise growth can be easily obtained if we use the
additional assumption that all bivRLWE noises are samples from independent
Gaussian distributions of same variance, and they remain independent. Such
independence can be enforced randomizing ciphertexts between each external or
internal product. In practice, a very mild randomization are in general sufficient
to turn exceptionally large correlations in dot products into the average-case
behaviour.

This is the analogue of Theorem 3.1 with forward average-case and worst-
case noise propagation:

Theorem E.1 (half external product - forward propatation (secret×public)).

Let K, K̃ be limb sizes and let s ∈ R a small key. Let Cu be a bivHalfRGSWDFT
s,K,K̃

of an integer polynomial u ∈ R, composed of ℓ̃ ciphertexts of ℓ limbs, satisfying
one of these two bounds:

– noise variance VGSW, (average case)
– noise infinity norm εGSW (worst-case)

and let a =
∑

(Ai)Y
i ∈ R[Y ]2 be K̃-normalized.

Cf ⊡ a = normalizeReduce

iDFT

 ℓ̃∑
i=1

DFT(Ai) · ci
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is a bivRLWEs,K of u · ϕK(a) with, depending on which input noise condition
above is satisfied:

– output noise variance Vout ≤ ℓ̃N22K̃−2VGSW + ∥u∥22 ε2Dec, (average case)

– noise infinity norm εout ≤ ℓ̃N2K̃−1εGSW + ∥u∥1 εDec (worst-case)

where εDec = 2−K̃ℓ̃−1 when the degree of a is ≤ ℓ̃ (approx decomposition), oth-
erwise zero (exact decomposition).

Such computation requires

– ℓ̃ bounded DFT’s of the A′
is of norm ≤ 2K̃−1,

– 2ℓℓ̃ element-wise addmul’s in DFT domain for polynomials of norm ≤ Nℓ̃2K̃+K−2,

– 2ℓ bounded DFT’s for the results Cj(X) with norm bound Nℓ̃2K̃+K−2,
– 2ℓ element-wise additions/shifts/masks to normalize and truncate the result.

And this is the analogue of Corollary 3.2, much closer to the traditional
presentation in [14], again with worst-case and average-case forward-propagation
of noise.

Corollary E.1 (full external product- forward propagation (secret×secret)).

Let K, K̃A, K̃B be limb sizes, let u ∈ R be a small polynomial, let v ∈ TN [X] be
a message, let s ∈ R a small key, and

– Let Cu be a bivHalfRGSWDFT
s,K,K̃B

of u ∈ R, composed of ℓ̃B ciphertexts of ℓ

limbs, and of noise variance (resp. amplitude) bounded by VA (resp. εA)
– Let Csu be a bivHalfRGSWDFT

s,K,K̃A
of su ∈ R, composed of ℓ̃A ciphertexts of ℓ

limbs, and of noise variance (resp. amplitude) bounded by VA (resp. εA)
– (A,B) ∈ R[Y ]2 is a bivRLWEs,K ciphertext, of noise variance (resp. ampli-

tude) bounded by Vin (resp. εin).

Then

(Cu, Csu)⊡ (a, b) =normalizeRed

iDFT

 ℓ̃B∑
i=1

DFT(Bi) · ci −
ℓ̃A∑
i=1

DFT(Ai) · di

 ,

is a bivRLWES,K,2−L encryption of u · v. Here, A and B have been K̃A and K̃B-

normalized, and truncated to degree respectively ℓ̃A and ℓ̃B.
Let εout and Vout denote the amplitude and variance of the output ciphertext,

these bounds are satisfied:

εout ≤ εin + ℓ̃AN2K̃A−1εA + ∥us∥1 2
−ℓ̃AK̃A−1 + ℓ̃BN2K̃B−1εB + ∥u∥1 2

−ℓ̃BK̃B−1

Vout ≤ Vin + ℓ̃AN4K̃A−1VA + ∥us∥22 4
−ℓ̃AK̃A−1 + ℓ̃BN4K̃B−1VB + ∥u∥22 4

−ℓ̃BK̃B−1

computing this encryption with ℓ = ⌈(L′
2 + log2 N + 2)/K⌉ requires at most

– ℓ̃A + ℓ̃B bounded DFT’s of the Ai, Bi’s of norm ≤ 2K̃−1,
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– 2ℓ(ℓ̃A+ ℓ̃B) element-wise addmul’s in DFT domain for polynomials of norm

≤ 2Nℓ̃2K̃+K−2,

– 2ℓ bounded DFT’s for the results Cj(X) with norm bound 2Nℓ̃2K̃+K−2,

– ℓ̃A+ℓ̃B+2ℓ element-wise additions/shifts or masks to normalize and truncate
the input ciphertext and the final result.

F Frontend and Large Number Arithmetic: Bivariate vs.
CRT Representations

The main idea in both [26] and the present work is the decoupling of the cy-
clotomic arithmetic from the large number arithmetic in BFV, CKKS, TFHE and
Chimera which, in turn, allows to fully benefit from the small polynomial coef-
ficients produced by the gadget decomposition. In our work, the large number
arithmetic corresponds to the bivariate representation we presented in Section 3,
which, in essence, is a base-2K decomposition into ℓ limbs with complexity
O(ℓ log2 ℓ). In [26], the large number arithmetic is performed via CRT repre-
sentation of big numbers. The parametrization is a bit more complex to grasp
since the various parameters d, r, pi, qi, Q, Q̃ appear for historical reasons and for
comparison to the former full-RNS algorithm. Yet, the parameters ℓ and B′ have
the same meaning as the ones in our work - large numbers of L bits are repre-
sented via their remainders modulo ℓ primes of size K bits each (which do not
need to be NTT-friendly) and the arithmetic has complexity O(ℓ). Therefore,
following the same steps as in Section 3, We could define the CRT representation
of TN [X] as:

– A sufficiently large family of K-bit prime numbers (qi)i∈I ,
– The space of CRT-representations (ui)i ∈ I ∈ RI (instead of R[Y ]), a rep-

resentation of degree ℓ has support over u1, . . . , uℓ only, the rest is zero. A
normalized representation satisfies ui ∈ [−(qi−1)/2, (qi−1)/2] (analogue to
Lemma 3.1).

– An R-module homomorphism ϕcrt : RI → RN [X] (the evaluation homomor-
phism) given by ϕcrt((ui)i∈I) :=

∑
i∈I ui/qi. Any element of TN [X] can be

approximated at distance ≤ 2−Kℓ by a degree-ℓ representation (analogous
to Lemma 3.3).

– crtRLWE of precision 2−Kℓ as RingLWE ciphertexts whose representation of
coefficients have degree ℓ. (analogue to Definition 3.3)

– crtHalfRGSW of precision 2−Kℓ as a family of ℓ RingLWE ciphertexts that
encrypt 1/qi with precision 2−Kℓ (analogue to Definition 3.4).

– Half external products, full external products, automorphisms work the same
on crtHalfRGSW and crtRLWE as in their bivariate counterparts and fol-
low the same noise propagation formula as in Theorem 3.1, Corollary 3.2,
Lemma 3.5, if we replace biv by crt. However, a few workarounds are needed
to define the internal products because φ is not a ring morphism.

The four main differences between the bivariate representation and the CRT-
representation are:
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– The CRT-representation does not have the prefix property: a last digit re-
moval procedure allows to recompute a weaker precision from a higher one,
this computation is relatively cheap, but not free.

– The CRT representation only has proper subrings of precision 2−Ki where i
is integer: the CKKS product must round to an exact multiple of 1/

∏i
j=1 qj ,

whereas the bivariate representation can afford any rounding to any 2−L bits
of precision.

– There is one different product per degree for which ϕcrt is a ring morphism:
namely x, y → q1, . . . , qℓ.xy in degree ℓ. It happens to be the product we
need for CKKS.

– If all half and full external products, keyswitches, relinearizations and au-
tomorphisms have exactly the same cost in both bivariate and CRT-cases
at a given precision, internal CKKS or BFV products would be a little bit
faster in the CRT representation, with a second order logarithmic differ-
ence in complexity: of 2ℓ2N + 5ℓN + ◦(ℓN) in the CRT-case instead of
2ℓ2N + 7ℓ log2(ℓ)N + ◦(ℓ log(ℓ)N) in the bivariate case.

In both cases, bivariate and CRT, the cost of an homomorphic operation is
dominated by the cost of a half external product in O(ℓ2N), that is included
in keyswitches, automorphisms and in BFV/CKKS products. All the big-number
arithmetic operations onK-bit limbs (whether these are base-2K digits or residue
modulo aK-bit prime) are carried out in parallel in DFT space onN -dimensions,
which makes the two approaches equally parallelizable or vectorizable even if the
big number arithmetic needs to propagate carries. Both approaches operate di-
rectly on normalized representations that come from a theoretical decomposition
of TN [X], and only require a linear number of DFTs per homomorphic opera-
tion (except the keygen that is done offline), which improve upon the quadratic
number in Full-RNS. In the next section about the backend, we will see that
for both the bivariate and the CRT approaches, these DFTs can be instantiated
with similar performance, as either approximated FFT over the complex field, or
NTT. And finally, both approaches require an additional normalization in coeffi-
cient space after every homomorphic operation to avoid unwanted wraparounds
or overflows on B′ bits.

We now point out some very important advantages of choosing the bivari-
ate representation over the CRT representation: how the freedom of picking any
input level Lin in the CKKS product allows to pack a larger number of homomor-
phic operations for a given level. We also show that the split of the full external
product in two halves lead to an acceleration of TFHE bootstrapping, due to a
better handling of the parameters.

F.1 Discrete vs. continuous levels in CKKS

The CKKS internal product formula (3) applies to all input bit precision parame-
ters Lin: for any fixed plaintext mantissa precision ρ, feeding TRLWE ciphertexts
with input noise rate 2−Lin to (3) yields a fixed-point product of output noise
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rate 2−Lin+ρ+log2 N that represents the ρ most-significant bits of the plaintext
product. By varying Lin, we obtain any desired output precision Lout.

Since it is unrealistic to go back-and-forth between the original large integer
coefficients and their full-RNS / CRT representations of CKKS, the number 2Lin

in (3) has to be replaced by one of the discrete products of Qi = q1, . . . , qi of
the CRT basis that is close to 2Lin . In full-RNS, each qi must be at least 18 bits
to be NTT friendly for N = 216, and more generally, even though the CRT-
representation in this section and in [26] raised the NTT-friendliness restriction,
using a smaller bitsizes K make the scheme less efficient; in practice, it is usual
to have K between 30-40 bits. If the noise of an input ciphertext is not close
to an exact multiple of K-bits, (usually refered as half-multiplicative level), it
has to be mod-rescaled to the next available one before a CKKS product can
be attempted. E.g. after a cheap homomorphic operation like the sum of 1000
ciphertexts, or after computing a trace, or just after a small linear combination
with coefficients between -30 and 30, the noise has only increased by 5 to 8 bits,
and to be able to start the next CKKS product, we need to multiply/rescale the
ciphertext by a factor 2K−8 to 2K−5 bits to come back to a (half-)level boundary.
This represents a considerable loss of homomorphic budget.

Our bivariate approach does not have this limitation: any input noise level
can be fed-in to Equation 3, or equivalently, any desired output noise level can be
attained without any penalty on the noise overhead, that stays ρ+log2(N) bits.
A bivRLWE ciphertext at one given level of noise will be able to support more
homomorphic operations before the noise is saturated. This statement is cor-
roborated by the current progresses in FHE compilers: whereas the first CKKS
compilers were operating on ”full” 40-bit levels, the recent Hecate compiler by
[29] was able to generate 27% more efficient CKKS circuits by considering ”half-
levels” of 20-bits. This line of work should continue to give more impressive
results using the ”continuous” single-bit levels and the simple noise propagation
rule Lout = Lin − ρ− log2 N during a product, and matches the BFV product.

While we are waiting for the next generation of CKKS compilers on con-
tinuous levels, our scheme is trivially backwards-compatible with CKKS com-
pilers that support discrete full-levels or half-levels only: we just need to set
Lin = 40.level, and as a bonus, the prefix-property of our representation implic-
itly relinearizes the input ciphertext for free!

F.2 Scheme switching: across schemes and representations

Chimera [6] introduced a few years ago a scheme switching concept that would
allow to switch back and forth between TFHE, BFV and CKKS representations,
however it did not provide a solution to efficiently deal with big numbers. At that
time, the construction remained under the assumption that it would be efficient
to do efficient multiprecision fixed-point FFT, and none of the experiments with
GMP and MPFR provided fast enough results for levels > 2 compared to the
full-RNS approach.
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In this paper, the bivariate representation (which we see as a direct conse-
quence of [26] second gadget decomposition), is in some sense the missing piece
that allows to instantiate Chimera’s scheme switching efficiently in practice.

In addition, the HalfRGSW product can efficiently convert not only between
schemes, but also back and forth between the crtRLWE and bivRLWE ciphertexts,
preserving the noise level and the plaintext: in the CRT to bivariate direction, all
we need is a family of K-normalized representations of each 1/qi, and in the bi-
variate to CRT direction, a family of normalized CRT-representations of 1/2−Ki,
both with precision 2−Kℓ. In both cases, Theorem 3.1 fulfills such conversion in
time O(ℓ2N).

This makes very efficient bridges between not only TFHE, CKKS and BFV ci-
phertexts, but for each scheme, between their CRT and bivariate representations.
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