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Abstract. We present Owl, an augmented password-authenticated key
exchange (PAKE) protocol that is both efficient and supported by secu-
rity proofs. Owl is motivated by recognized limitations in SRP-6a and
OPAQUE. SRP-6a is the only augmented PAKE that has enjoyed wide
use in practice to date, but it lacks the support of formal security proofs,
and does not support elliptic curve settings. OPAQUE was proposed
in 2018 as a provably secure and efficient alternative to SRP-6a, and
was chosen by the IETF in 2020 for standardization, but open issues
leave it unclear whether OPAQUE will replace SRP-6a in practice. Owl
is obtained by efficiently adapting J-PAKE to an asymmetric setting,
providing additional security against server compromise yet with lower
computation than J-PAKE. Owl is provably secure, efficient and agile
in supporting implementations in diverse multiplicative groups and el-
liptic curve settings. To the best of our knowledge, Owl is the first aug-
mented PAKE solution that provides systematic advantages over SRP-6a
in terms of security, computation, message sizes, and agility.1

1 Introduction

Password authenticated key exchange (PAKE) allows two parties to establish
a high-entropy session key only based on a shared low-entropy secret (e.g., a
memorable password) [3]. In general, there are two types of PAKE protocols:
balanced and augmented (also resp. called symmetric and asymmetric PAKE).
In the former, two parties share a common secret (e.g., a password or a hash
of a password). In the latter, which is customized for a client-server setting, a
client holds a password but the server stores only a one-way transformation of it.
The idea is that reversing the transformation requires an offline search that pro-
ceeds by guessing through an enumeration of candidate passwords. Augmented
PAKE improves security (vs. balanced PAKE) in case of server compromise: in
a balanced PAKE, any plaintext credentials stolen from a server can be directly
used to impersonate clients, but in an augmented PAKE, to recover plaintext

1 A version of this paper will appear in the proceedings of FC 2024.



passwords requires an offline search. This is an easy way to make attacks more
expensive, without involving tamper-resistant hardware or multiple servers [19].

Many augmented PAKE protocols are available in the literature, but only
SRP-6a [28] has been widely implemented in practice, e.g., in iCloud, 1Password
and ProtonMail [14]. (It is the latest version of SRP-3, following a series of revi-
sions to patch weaknesses in the 1998 Secure Remote Password 3 protocol [30].)
Security concerns [20] have been raised related to its heuristic design. The pro-
tocol also requires working over the whole range of a multiplicative group Z∗

p

(where p is a safe prime, i.e., p = 2q+1 with q also prime). This makes modular
exponentiation relatively expensive—e.g., given a 3072-bit p, the exponent for
modular exponentiation is 3072 bits, and one exponentiation is 3072/256 = 12
times as costly as an exponentiation in 3072-bit DSA with 256-bit exponents.
Finally, SRP-6a does not support elliptic curve implementations.

OPAQUE is an augmented PAKE scheme proposed by Jarecki et al. in
2018 [20] and was selected by IETF for standardization in 2020. An advan-
tage promoted in its favor is so-called pre-computation security : if a server is
compromised, an attacker cannot use pre-computed tables to speed up offline
search. In contrast, for some augmented schemes, a single pre-computed table
can be used thereafter to efficiently recover many passwords. Compared to SRP-
6a, however, the advantage is less: if a server is compromised, while it is possible
for an attacker to speed up password guessing using a pre-computed table, a
unique table must be pre-computed per user (because of SRP-6a’s salt), signif-
icantly increasing attack costs in terms of memory used and pre-computation
time. OPAQUE also has formal security proofs (SRP-6a does not), and seems
to be much more efficient than others (for caveats, see §4).

However, OPAQUE has three limitations. First, it relies on a constant-time
hash-to-curve (H2C) function, which is non-trivial to implement [5]. Second,
the critical reliance on H2C renders the protocol unspecified in multiplicative
groups in the original paper. When OPAQUE is instantiated in such a group,
its performance advantages diminish (see §4). Third, in every login session of
OPAQUE, the server sends a pre-computed ciphertext using authenticated en-
cryption and a password-derived encryption key. When the password is changed,
the pre-computed ciphertext will change, hence revealing whether the password
has been changed from the last login [12]. Assume the credentials have been
stolen from a server. If a user diligently changes their password, their account
can remain safe. However, in OPAQUE, a passive attacker can monitor the login
sessions to identify users who have not changed the password and then prioritize
the brute-force attack against those. This attack does not apply to SRP-6a.

These above issues point to the need for an augmented PAKE scheme that
is efficient across both multiplicative and elliptic curve settings, is supported
by security proofs, and does not reveal information about password changes.
We address this therein through an approach distinct from previous augmented
PAKE designs. We efficiently adapt the symmetric J-PAKE scheme [13] to an
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asymmetric setting, yielding a new scheme: Owl.2 Compared with J-PAKE, Owl
provides additional security against server compromise with even lower compu-
tation overall. We show that Owl is secure based on the Computational Diffie-
Hellman (CDH) and Decision Diffie-Hellman (DDH) assumptions in the random
oracle model (§3). We evaluate the performance of Owl and show that Owl has
systematic advantages over SRP-6a in terms of security, computation, message
sizes, and cryptographic agility in implementations (§4).

2 Protocol specification of Owl

Here we provide a specification of the Owl protocol. To ease comparison, we
reuse J-PAKE notation where possible, including x1, x2, x3 and x4 for J-PAKE’s
four ephemeral private keys. We modify J-PAKE by fixing x3 per user (thus
leveraging the server storage available in the asymmetric setting) and further-
more combine the modified J-PAKE with a compiler due to Hwang et al. [16],
achieving augmented security in an asymmetric setting. (By design a compiler
always adds cost for converting a balanced PAKE, but our method saves cost.)

2.1 Setup

We describe the protocol in a DSA-like group G (the specification works the
same in an elliptic curve setting). Let p and q be two large primes such that
q | p − 1. The protocol operates in the subgroup of Z∗

p of prime order q. Any
non-identity element in this subgroup can serve as a generator, denoted g. Un-
less specified otherwise, all modular operations are performed with reference
to the modulus p. Let t be a (low-entropy) user-specific secret, obtained by
t = H(username∥password) mod q, were H is a secure one-way function and ∥
denotes concatenation. We define π = H(t) mod q as a shared secret to be used
for authenticated key exchange and T = gt mod p as a password verifier to be
stored on the server. As in J-PAKE, we require π ̸= 0 mod q. As summarized
in Fig. 1, the protocol comprises two main phases: initial registration and login
(authenticated key exchange); for completeness, we also cover password update.

2.2 Initial registration

To register an account on a server, a user computes t = H(U∥w) mod q. Here
U denotes her username; w her (weak) password. She then computes π =
H(t) mod q, T = gt mod p, and sends (U, π, T ) to the server through a secure
channel (e.g., over TLS or out-of-band). The server chooses a random secret
x3 ∈R [1, q − 1], and computes a public key X3 = gx3 mod p together with a
zero-knowledge proof Π3 = ZKP{x3 : g,X3} to prove the knowledge of the ex-
ponent x3. When the context is clear, we shorten the notation to ZKP{x3}. A
2 Owls have asymmetric ears with one higher than the other. This asymmetry helps
owls pinpoint the source of a sound in darkness.
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Init registration

User (U,w) Server (S)

t = H(U∥w) mod q x3 ∈R [0, q − 1], X3 = gx3

π = H(t) mod q Π3 = ZKP{x3}
T = gt mod p U, π, T

−−−−−−−−−→
Stores {U : X3, Π3, π, T}

(Secure channel)

Login

User (U,w) Server (S, {U : X3, Π3, π, T})
t = H(U∥w) mod q
π = H(t) mod q

x1 ∈R [0, q − 1], X1 = gx1

Π1 = ZKP{x1}
x2 ∈R [1, q − 1], X2 = gx2

Π2 = ZKP{x2} U,X1, X2, Π1, Π2−−−−−−−−−−−−−−−→
Verify Π1, Π2, X2 ̸= 1

x4 ∈R [1, q − 1], X4 = gx4

Π4 = ZKP{x4}
β = (X1X2X3)

x4·π

Verify Π3, Π4, Πβ , X4 ̸= 1 S,X3, X4, Π3, Π4, β,Πβ←−−−−−−−−−−−−−−−−−−−
Πβ = ZKP{x4 · π}

α = (X1X3X4)
x2·π

Πα = ZKP{x2 · π}
K = (β/Xx2·π

4 )x2

h = H(K∥Transcript)
r = x1 − t · h mod q α,Πα, r−−−−−−−−−→

Verify Πα

K = (α/Xx4·π
2 )x4

h = H(K∥Transcript)
Verify gr · Th = X1

k = H(K) k = H(K)

Password update

User (U,w,w′) Server (S, {U : X3, Π3, π, T})
t′ = H(U∥w′) mod q
π′ = H(t′) mod q

T ′ = gt
′
mod p π′, T ′

−−−−−−−−−→
Replaces (π, T ) with (π′, T ′)

(Secure PAKE channel)

Fig. 1. The Owl protocol. U is the user’s identity, w her (weak) password.

concrete instantiation based on Schnorr [26] is given in Appendix A. The server
stores {U : X3, Π3, π, T} as the password verification file for U , and deletes x3.

We will use π as a shared secret to run a modified J-PAKE protocol by
using the pre-computed X3 and Π3 values instead of freshly generating them for
each login session as in the original J-PAKE protocol. This modification does not
affect the security of the session key, as we will show in §3. We define π as a secret
salted by a unique username. This is to ensure that upon server compromise if
an attacker wishes to use a pre-computed table to launch an offline dictionary
attack, he needs to build a unique pre-computed table for each user. In addition
to modifying J-PAKE, we adopt a method proposed by Hwang et al. to enable
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a client to securely prove the knowledge of t for T = gt based on a variant of
Schnorr non-interactive ZKP [16] with details below.

2.3 Login

The protocol runs between a client user (with unique identity U) and server (with
identity S). The user initiates the communication. Both sides check: U ̸= S.
There are three flows in the login process to perform authenticated key ex-
change as presented in Figure 1. The first two flows are the same as in J-
PAKE except that X3 is fixed per user. In the third flow, the computation
of r is based on a compiler proposed by Hwang et al. [16] to prove the knowl-
edge of t for gt in an asymmetric PAKE setting; here, we use X1 as a commit-
ment (which is included in Transcript). Our definition of Transcript herein
is a record of the items exchanged between U and S for computing a common
session key. Transcript = U∥X1∥X2∥Π1∥Π2∥S∥X3∥X4∥Π3∥Π4∥β∥Πβ∥α∥Πα.
If U and S have used the same passwords, they will derive a common ses-
sion key (for simplicity, using a one-way hash H as a key derivation function):
k = H(K) = H(g(x1+x3)·x2·x4·π). Optionally, they can perform explicit key con-
firmation by using standard methods (e.g., NIST SP 800-56A).

2.4 Password update

After the successful authenticated key exchange process, both parties use the
session key k to create a secure channel. Through this secure channel, the user
can update the password by sending π′, T ′ to the server as shown in Fig. 1.
The server updates the password verifier file for U accordingly. One reason for a
user to update her password is suspicion that the old password was compromised.
Owl’s forward secrecy property (§3.2) ensures that a passive attacker who knows
the old password cannot learn the session key k, and hence cannot learn the new
password. Although OPAQUE and SRP-6a do not discuss this explicitly, they
can use a similar method to update the password.

3 Security analysis

Hwang et al. [16] proposed a compiler to convert a symmetric PAKE to an
asymmetric one based on a variant of Schnorr non-interactive ZKP and proved
its security in a universally composable (UC) model. We adopt the method of
Hwang et al. as part of our protocol (more specifically, proving the knowledge
of t for T = gt; see Fig. 1). As Hwang et al.’s compiler has been proven secure
in the UC model on the assumption that the session key from the symmetric
PAKE is secure, we focus on proving the security of the session key derived from
the modified J-PAKE.
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3.1 Security assumption

The security proof of Owl is based on the intractability of Multiple Decision
Diffe-Hellman (MDDH) [23] and Square Computational Diffie-Hellman (SCDH)
assumptions. We show that DDH and MDDH assumptions are equivalent. The
SCDH and CDH assumptions are also equivalent, as shown by Bao et al. [1].

Assumption 1 (DDH): For any PPT adversary A, AdvDDH
A (λ) ≤ negl(λ),

where,

AdvDDH
A (λ) =

∣∣∣∣Pr[A(g, ga, gb, gab) = 1
∣∣a, b $←− Zq]−Pr[A(g, ga, gb, gc)

∣∣a, b, c $←− Zq]

∣∣∣∣
Assumption 2 (MDDH): For n ∈ poly(λ), any PPT adversary A, the fol-
lowing two distributions are computationally indistinguishable.

R0 =
(
(g, ga, gbi , gabi) : i ∈ [1, n]

∣∣a, b1, b2, . . . , bn $←− Zq

)
R1 =

(
(g, ga, gbi , gci) : i ∈ [1, n]

∣∣a, b1, b2, . . . , bn, c1, c2, . . . , cn $←− Zq

)
We define the advantage of A in distinguishing between R0 and R1 as,

AdvMDDH
A (λ) =

∣∣∣∣Pr[A(R0) = 1]− Pr[A(R1) = 1]

∣∣∣∣
Hence, AdvMDDH

A (λ) ≤ negl(λ), for a PPT adversary A.

Lemma 1. Assumption 1 and Assumption 2 are equivalent.

Proof. (⇒): If there is an adversary A against Assumption 2, we could use it
to construct another adversary B against Assumption 1. This has been proved
in Lemma 4 by Kurosawa and Nojima [23]. (⇐): Let us assume that we have
an adversary B, against the DDH assumption. We use it to construct another
adversary A, against Assumption 2. A receives as input g, ga, and bi, Ωdi ∈
{ga·bi , Ri}, for i ∈ [1, n], where Ri

$←− G. It then invokes B with g, ga, gbk , and
Ωdk for some k ∈ [1, n]. B has to check if Ωdk = ga·bk or a random element in G.
If B is successful, so will be A. Hence, the result holds.

Assumption 3 (CDH): Given x, y
$←− Zq, and g

$←− G, define CDHg(g
x, gy) =

gxy. Consider the following security experiment ExpCDH
A (λ). In this experiment,

the challenger randomly chooses three elements g, X = gx, Y = gy from G.
Then the adversary A is invoked with these three as inputs. A has to com-
pute CDHg(X,Y ) from these parameters. The experiment is successful if A
can compute CDHg(X,Y ) correctly. The advantage of an adversary A, against
ExpCDH

A (λ) is given by

AdvCDH
A (λ) = Pr[ExpCDH

A (λ) = 1]

As such, for any PPT adversary A AdvCDH
A (λ) ≤ negl(λ).
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ExpCDH
A (λ)

g
$←− G

X
$←− G

Y
$←− G

C ← A(g,X, Y )

Return C
?
= CDHg(X,Y )

Assumption 4 (SCDH): Given x
$←− Zq, and g

$←− G, define SCDHg(g
x) =

gx
2

. Consider the following security experiment ExpSCDH
A (λ). In this experi-

ment, the challenger randomly chooses two elements g and X = gx from G.
Then the adversary A is invoked with these two as inputs. A has to compute
SCDHg(X) from these parameters. The experiment is successful if A can com-
pute SCDHg(X) correctly. The advantage of an adversary A, against ExpSCDH

A (λ)

ExpSCDH
A (λ)

g
$←− G

X
$←− G

C ← A(g,X)

Return C
?
= SCDHg(X)

is given by
AdvSCDH

A (λ) = Pr[ExpSCDH
A (λ) = 1].

As such, for any PPT adversary A AdvSCDH
A (λ) ≤ negl(λ).

Lemma 2. Assumption 3 and Assumption 4 are equivalent [1].

3.2 Session key indistinguishability

Impersonating the server First, we consider an active adversary impersonat-
ing the server without having the password verification file. We define a security
experiment ExpRNDKey

A (λ) to model the adversary impersonating the server.We
introduce a simulator SIM to interact with an adversary A. In this experiment,
SIM can replace the session key with the hash of a random element of G, and
it will not be possible for A to distinguish if the key it has received was the ac-
tual key or a randomly chosen key when the adversary had chosen an incorrect
password. If the passwords used by the two parties do not match, both sides end
up calculating different keys. In this attack scenario, the simulator responds to
the queries of the attacker impersonating the server to a legitimate client with-
out knowing the password verification file. The simulator follows the protocol
specifications and sends appropriate information to the attacker against all its
queries. In the end, the simulator calculates the session key. The simulator then
flips a coin and returns either the actual session key or a random one depending
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upon the outcome of the coin tossing. We show that the attacker will not be able
to distinguish between the two keys if the password chosen by the attacker w′ is
not the one (w) used by the simulator. So, if the session key is compromised, the
attacker will learn nothing about the actual password used by the simulator.

In the security experiment ExpRNDKey
A (λ), we define g as a random genera-

tor of the mathematical group G. D is a dictionary of passwords. |D| ∈ poly(λ).
H is a secure hash function (modelled as FRO). The adversary A = (A0,A1,A2)
is a three stage adversary. Here, CDHg(A,B) denotes the Computational Diffie-
Hellman of two elements A, and B with respect to g. Also SCDHg(A) denotes
the square Computational Diffie-Hellman of an element A with respect to g.
First, the challenger generates the public parameters. Then she chooses a gener-

ator g from G, and a password w from D. The challenger chooses X1, X2
$←− G,

and invokes A0 with the specific parameters as shown in the experiment. A0 out-
puts x2, x4 ∈ Z∗

q . Then the challenger computes R, and invokes A1. A1 outputs
a password guess w′ ∈ D and obtains π′ = H(H(U∥w′)). Then the challenger
calculates a raw key K0, and randomly samples K1 from G. The challenger
randomly chooses one of K0 and K1, and invokes A2 with its hash value. A2

has to identify whether H(K0) or H(K1) was passed to her as the input. The
experiment is successful if A2 can identify the correct challenge.

Note that if w = w′ (or π = π′), K0 will be equal to CDHg(X1, X2)
x4π ∗

Xx3x4π
2 . As such, A2 can distinguish between H(K0) and H(K1) easily. So,

we define the advantage of A as
∣∣Pr[ExpRNDKey

A (λ) = 1|π ̸= π′] − 1
2

∣∣. Now,

Pr[ExpRNDKey
A (λ) = 1] = Pr[ExpRNDKey

A (λ) = 1|π = π′] ∗ Pr[π = π′] +

Pr[ExpRNDKey
A (λ) = 1|π ̸= π′]∗Pr[π ̸= π′]. If π = π′, A2 can easily win the ex-

periment. Therefore, Pr[ExpRNDKey
A (λ) = 1|π = π′] = 1. So, Pr[ExpRNDKey

A (λ) =

1] = Pr[ExpRNDKey
A (λ) = 1|π ̸= π′] ∗ (1 − Pr[π = π′]) + Pr[π = π′] =

Pr[ExpRNDKey
A (λ) = 1|π ̸= π′](1− 1

|D| ) +
1

|D| . Now, A2 can always win with 1
2

probability by making a random guess. Therefore, Pr[ExpRNDKey
A (λ) = 1|π ̸=

π′] ≥ 1
2 . Let us assume that Pr[ExpRNDKey

A (λ) = 1|π ̸= π′] = 1
2+X, where X is

used to define the advantage ofA against ExpRNDKey
A (λ). So, Pr[ExpRNDKey

A (λ) =

1] = (X + 1
2 )(1 −

1
|D| ) +

1
|D| . Therefore, X = |D|

|D|−1 ∗ (Pr[ExpRNDKey
A (λ) =

1]− 1
|D| )−

1
2 = |D|

|D|−1 ∗(Pr[ExpRNDKey
A (λ) = 1]− 1

2|D| −
1
2 ). Since, |D| is poly(λ),

|D|
|D|−1 is a little higher than 1. So, we can eliminate the |D|

|D|−1 part in the above

expression. Therefore, we define the advantage of an adversary A against the
security experiment ExpRNDKey

A (λ) as below:

AdvRNDKey
A (λ) =

∣∣∣∣Pr[ExpRNDKey
A (λ) = 1]− 1

2|D|
− 1

2

∣∣∣∣
Theorem 1. Under the SCDH and DDH assumptions with access to FRO, for
any PPT adversary A = (A0,A1,A2), AdvRNDKey

A (λ) ≤ negl(λ).

Proof. We show that if there exists an adversary A against the security experi-
ment AdvRNDKey

A , we can use it to construct another adversary B, against the
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ExpRNDKey
A (λ)

(G,D, H)← Setup(1λ)

g
$←− G

w ←− D, π = H(H(U∥w))

X1, X2
$←− G

(x3, x4, state0)← A0(g,G,D, X1, X2)

R← (CDHg(X1, X2) ∗Xx3+x4
2 )π

(w′, state1)← A1(state0, R)
π′ = H(H(U∥w′))

K0 ← CDHg(X1, X2)
x4·π′

∗Xx3·x4·π′

2 ∗ SCDHg(X2)
x4·(π′−π)

K1
$←− G

d
$←− {0, 1}

Ω ← H(Kd)
d′ ← A2(state1, Ω)

Return (d
?
= d′)

security experiment ExpSCDH
A (λ). B receives as input A

$←− G. Its aim is to com-

pute SCDHg(A). It selects random x1
$←− Zq, and assignsX1 = gx1 , andX2 = A.

It invokes A0 and receives x3, and x4. Then B computes R = X
(x1+x3+x4)π
2 .

B invokes A1 and receives w′, thus π′ = H(H(U∥w′)). If π′ = π, B aborts
and outputs a random element from G. Else, B samples a random string from
{0, 1}λ, and assigns this to Ω. When A0,A1 or A2 makes an oracle query to
H, B answers them. For each such query, B samples a random string and re-
turns it. If a query is repeated, B returns the same string it had returned
earlier. B keeps a log of all query-response pairs. After A2 has returned, B
checks all the queries made by A1 or A2. It randomly selects one query-response

pair ⟨K0, k0⟩ where K0 =
(
(X1X2X3)

x4·π′
/Xx4·π

2

)x2

= CDHg(X1, X2)
x4·π′ ∗

Xx3·x4·π′

2 ∗ SCDHg(X2)
x4·(π′−π) represents the raw keying material computed

by A and k0 the session key. B computes C = (K0/(CDHg(X1, X2)
x4π

′ ∗
Xx3∗x4π

′

2 ))1/(x4(π
′−π)) = SCDHg(X2) and outputs C. Let us now calculate the

success probability of B. B wins if the following events happen together:

– π ̸= π′

– A queries H(K0).

Since H is modelled as a random oracle FRO, A2 cannot identify d without
querying H(K0). Thus, the probability that A queries H(K0) is at least equal to

Pr[ExpRNDKey
A (λ) = 1] − 1

2 . Now, the probability that H(K0) will be queried

and K0 will have the term SCDHg(X2) as a factor is Pr[ExpRNDKey
A (λ) =

1] − Pr[π=π′]
2 − 1

2 . First, we calculate the value of Pr[π = π′]. If A can guess
the value of π from R, then the probability of this event happening could be
as high as 1. However, the probability that A can guess the value of π from
R is bounded by AdvDDH

A (λ) (i.e., distinguishing CDHg(X1, X2) from ran-
dom). Thus, Pr[π = π′] ≤ 1

|D| + AdvDDH
A (λ). Hence, the probability that A
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will query K0 is at least Pr[ExpRNDKey
A (λ) = 1] − 1

2|D| −
1
2AdvDDH

A (λ) − 1
2 .

Now, B randomly picks a query and computes SCDHg(A) on the basis of
that. So if there are Q queries to H, the probability that B will pick the cor-
rect one is 1/Q. Thus, AdvSCDH

B (λ) ≥ (1/Q) ∗ (Pr[ExpRNDKey
A (λ) = 1] −

1
2|D| −

1
2AdvDDH

A (λ) − 1
2 ) = (1/Q)(AdvRNDKey

A (λ) − 1
2AdvDDH

A (λ)). Hence,

AdvRNDKey
A (λ) ≤ Q ∗AdvSCDH

B (λ) + 1
2 ∗AdvDDH

A (λ).

Impersonating the client Next, we consider an active adversary impersonat-
ing the client without knowing the password. We consider a security experiment
ExpRNDKey1

A (λ), which emulates the event when the attacker tries to imper-
sonate the user to a legitimate server without knowing the password. In this
experiment, we introduce an oracle O that can be queried by the adversary.
This oracle models the event that the adversary can exploit the fact the server
uses the same value of X3 across all the executions of the protocol. So, the adver-
sary can try to impersonate the client and execute the protocol with the server
multiple times and can receive the second-flow messages from the server for dif-
ferent values of X4, but a single value of X3. In the end, the goal of the adversary
is to distinguish between the session key computed by an honest instance and
a random string. Similar to the case of ExpRNDKey

A (λ), the advantage of the

adversary A, against the security experiment ExpRNDKey1
A (λ) (which models

an attacker impersonating the user) is defined as

AdvRNDKey1
A (λ) =

∣∣∣∣Pr[ExpRNDKey1
A (λ) = 1]− 1

2|D|
− 1

2

∣∣∣∣
ExpRNDKey1

A (λ)
(G,D, H)← Setup(1λ)

g
$←− G

w ←− D, π = H(H(U∥w))
X3, X4

$←− G

d
$←− {0, 1}

(x1, x2)← AO(g,G,D,X3, X4)
R ←− (CDHg(X3, X4) ∗
X4

x1+x2)π

w′ ← A(R)
π′ = H(H(U ||w′))

B0 ← CDHg(X3, X4)
x2·π′ ∗

Xx1·x2·π′

4 ∗ SCDHg(X4)
x2(π

′−π)

B1
$←− G

d′ ← A(H(Bd))

return d
?
= d′

O()
X

$←− G
(x1, x2)← A(X)
R←− (CDHg(X3, X) ∗Xx1+x2)π

Return R

Theorem 2. Under the SCDH and MDDH assumptions with access to FRO,
for any PPT adversary A, AdvRNDKey1

A (λ) ≤ negl(λ).
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Proof. We can show that if there exists an adversary A against the security ex-
periment ExpRNDKey1

A (λ), we can use it in the construction of another adversary
B again the experiment ExpSCDH

A (λ). The proof is almost the same as the proof
of Theorem 1. The only difference is that because of the use of a fixed X3 value
across the sessions, we use Assumption 2 instead of Assumption 1. All other argu-
ments are the same. Thus, we substitute the DDH assumption of Theorem 1 with
Assumption 2, and have AdvRNDKey1

A (λ) ≤ Q∗AdvMDDH
A (λ)+ 1

2 ∗AdvSCDH
A (λ).

Hence, the result follows.

Session key exposure The following experiment ExpKeyExp
A (λ) models the

event where the attacker gets hold of an actual session key after the key is
derived. We will show that the actual session key is indistinguishable from a
random key in the view of the attacker even with the knowledge of the password
(i.e., forward secrecy [13]). This can happen if AdvKeyExp

A (λ) is negligible, where

AdvKeyExp
A (λ) =

∣∣∣∣Pr[ExpKeyExp
A (λ) = 1]− 1

2

∣∣∣∣.

ExpKeyExp
A (λ)

(G,D, H)← Setup(1λ)

g
$←− G

X4
$←− G

(π, state)← A0(G,D, H, g,X4)

X1, X2, X3
$←− G

α← CDHg(X1 ∗X3 ∗X4, X2)
π

β ← CDHg(X1 ∗X2 ∗X3, X4)
π

K0 ← H(CDHg(X1 ∗X3, X2)
π·logg X4)

K1
$←− {0, 1}∗

d
$←− {0, 1}

d′ ← A∞(state,X1, X2, X3, α, β, Cd)

return d
?
= d′

Theorem 3. Under the DDH and SCDH assumptions with access to FRO, for
any PPT adversary A, AdvKeyExp

A (λ) ≤ negl(λ).

Proof. We show that if there exists an adversary A against the experiment
ExpKeyExp

A (λ), it could be used in the construction of another adversary B
against the security experiment ExpSCDH

B (λ). The adversary B works as fol-

lows: it receives as input an X4
$←− G, and it needs to compute SCDHg(X4).

The adversary B proceeds as follows: It selects x1
$←− Zq, x2, a

$←− Z∗
q and

sets X1 = gx1 , X2 = gx2 , and X3 = X4 ∗ ga. That is, B implicitly sets
x3 = logg X3 = a + logg X4. Let A = (A0,A1) be a two-stage adversary. When

11



A0 is invoked with the corresponding parameters, it outputs the password π
from the dictionary D. B can compute α = (gx1x2 ∗ X2x2

4 ∗ gx2a)π. B samples

random β
$←− G. Now, B samples a string {0, 1}∗, and assigns this to Cd. A1

is then invoked with all the necessary parameters. If A0 can identify d, it will
have to query CDHg(X1 ∗X3, X2)

π·logg X4 . B checks all the queries made by A1.
From all the queries made by A1, B randomly picks one query ∆, and outputs

SCDHg(X4) =
(∆1/x2π)

X
(x1+a)
4

. Now, we calculate the advantage of the adversary B.
Note that in this experiment we replace β with a random element from G. Ac-
cording to the DDH assumption, CDHg(X1 ∗X2 ∗X3, X4) is indistinguishable
from random. Therefore, replacing it with a random element will reduce the ad-
vantage of A by a factor of AdvDDH

A (λ). Let us assume that A1 makes Q queries
to H. B selects one query made by A1 to H, and calculates SCDHg(X4) on the

basis of this. Thus, AdvSCDH
B (λ) ≥ 1/Q ∗ (AdvKeyExp

A (λ)−AdvDDH
A (λ)). That

is, AdvKeyExp
A (λ) ≤ AdvDDH

A (λ) +Q ∗AdvSCDH
B (λ). Hence, the result holds.

4 Related work and comparison

Many augmented PAKE schemes have been proposed in the past three decades.
Hao and van Oorschot [14] categorize PAKE schemes according to whether they
require an ideal cipher, a hash-to-group function, or a trusted setup (see Fig. 2).
KHAPE [9],OKAPE [6] and aEKE [4] are examples that rely on an ideal cipher,
an abstract building block that is assumed to not leak any information about the
encryption content even when the encryption key has low entropy (e.g., using
a password as the key) [2]. However, how to instantiate such an ideal cipher
has remained an open problem [14]. VTBPEKE [25], KC-SPAKE2+ [27] and
Bradley et al.’s scheme [5] rely on a trusted setup but a compromise in this setup
will break key exchange sessions for all users [25]. PAK-Z+ [8], AuCPace [10]
and OPAQUE [20] rely on a hash-to-group (also called hash-to-curve in an EC
setting) function, which is assumed to map a password to a random generator of
a designated group in constant time3. However, instantiating this function is not
easy as we will explain later. SRP-6a does not depend on an ideal cipher, a hash-
to-group function or a trusted setup, which has contributed to its wide adoption
in real-world applications [14]. AMP and AugPAKE follow a similar design as
SRP with the aim of better efficiency. AMP has been repeatedly revised to patch
vulnerabilities [24]. AugPAKE has not been published in a peer-reviewed paper
(it is described in an IETF RFC), and its security proof is questioned [20].

In this section, we focus on comparing Owl with SRP-6a and OPAQUE. We
chose SRP-6a because it is the only augmented PAKE that has been widely
used in practice. Although many provably secure augmented PAKE schemes
have been proposed (see Figure 2), they generally rely on assumptions of an
ideal cipher, a trusted setup or a hash-to-group function; however, difficulties
in the realization of such assumptions have hindered the deployment of these

3 A non-constant-time mapping could leak the password through timing attacks [29].
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A-PAKE IC?

[4, 6, 9]

Yes

TS?
No

[5, 25, 27]

Yes

H2G?
No

[8, 10, 20]

Yes

SRP-6a,
Owl

No

Fig. 2. Overview of selected Augmented PAKE (A-PAKE) schemes and dependence on
various assumptions. IC: Ideal Cipher. TS: Trusted Setup. H2G: Hash-to-Group (also
called Hash-to-Curve in an EC setting). SRP-6a and Owl do not require any ideal
cipher, trusted setup or hash-to-group functions.

schemes [14]. We chose OPAQUE because it was selected by the IETF as a
candidate for standardization and a possible replacement for SRP-6a.

Hash-to-group/hash-to-curve. In the original OPAQUE paper [20], the
authors specify the protocol only in an EC setting, not in any multiplicative
group (MODP). The rationale was however not explained. To provide insights
into this design choice, we first need to clarify the hash-to-group (H2G) and
hash-to-curve (H2C) functions. OPAQUE relies on H2C to map a password to a
random prime-order generator on an elliptic curve in constant time. H2G is the
equivalent function in a MODP group. The original idea of using H2G in PAKE
is from Jablon’s 1996 design of SPEKE [18]. More concretely, SPEKE defines a
safe prime p = 2q + 1 as the modulus, i.e., q is also prime. The H2G function
with input a is defined as f(a) = a2 mod p, which forms the basis of SPEKE
as standardized in IEEE 1363.2 [17]. However, using a safe prime as modulus
makes modular exponentiations costly. Extending this construction to a DSA
group (which uses short exponents) and EC proves harder than it seems.

– DSA. For a DSA group (p, q, g), IEEE 1363.2 defines the H2G function with
input a as: f(a) = a(p−1)/q [17]. This function has two known issues: 1) it is
costly due to the long exponent; 2) it may return an identity element (called
an ‘invalid’ output). IEEE 1363.2 does not define any handling for ‘invalid’
outputs; handling such exceptions can forfeit the constant-time property.

– EC. To do the equivalent of H2G in EC, IEEE 1363.2 defined an H2C func-
tion based on a trial-and-increment method. The IEEE function guarantees
the output is a prime-order generator (no ‘invalid’ output) and works with
general curves, but is vulnerable to timing attacks [29]. IEEE 1363.2 was
officially withdrawn in 2019. In 2023, IETF summarized custom-built H2C
functions for selected curves [15], but existing functions do not exclude low-
order (i.e., ‘invalid’) points by design and may not work with future curves.
Excluding invalid points at the output can break the constant-time property.

Computational performance. SRP-6a mandates the use of a safe prime
p = 2q + 1 where q is also a prime as the modulus. This leaves the protocol
undefined for a multiplicative group with short exponents such as DSA, as well
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Scheme Flows KC
MODP (safe prime) MODP (DSA) Elliptic Curve

Client Server Client Server Client Server

SRP-6a 3/4 Exp 2(x12)+1 2(x12)+1 – – – –

OPAQUE 3/2 Imp 4.5(x12) 3.5(x12) 1(x11)+6.5† 5.5† 4.5+H2C‡ 3.5
Owl 1/3 Imp – – 14 13 11 10

Table 1. Comparison among selected PAKE schemes. The flows column gives the
number of flows for registration/login respectively. Computational cost columns give
the number of exponentiation in the MODP setting, assuming a 3072-bit modulus for
concreteness. 2(×12) denotes that the cost of one exponentiation (3071-bit exponent) is
about the same as 12 typical 3072-bit DSA group exponentiations (256-bit exponent).
The hash-to-group function in OPAQUE requires an exponentiation with a 2816-bit
exponent (co-factor), which has cost equal to 11 exponentiations with 256-bit exponent
in DSA. H2C denotes (yet unknown) cost of a hash-to-curve function. † denotes having
concerns about ‘invalid’ output. ‡ denotes having concerns about computational cost,
‘invalid’ output and agility. KC: key confirmation. Exp: explicit. Imp: implicit.

as for an elliptic curve setting. OPAQUE is built on two building blocks: 1)
authenticated key exchange (AKE) and 2) hash-to-curve. After OPAQUE was
selected by IETF, its designers modified the protocol by using 3DH instead
of HMQV to instantiate AKE in an IETF Internet draft [22]. Here, we will
evaluate the performance of OPAQUE based on using HMQV as specified in
the original paper [20]. (The performance will decrease when 3DH is used). The
OPAQUE paper assumes a H2C function to map a password to a generator of the
prime-order (sub)group on an elliptic curve, which leaves the protocol undefined
for the MODP setting. We fill this gap by using two known H2G functions as
defined for SPEKE and PAK in IEEE 1363.2 [17] to do the equivalent of hash-
to-curve in two MODP settings respectively: 1) using a safe-prime modulus; 2)
using DSA groups. Table 1 summarizes the comparison results (see Hao and
van Oorschot [14] for a detailed breakdown of cost for SRP-6a and OPAQUE;
also note that the elliptic curve implementation of Owl has a fewer number of
scalar multiplications than modular exponentiations in the DSA implementation
because the public key validation in the EC setting incurs a negligible cost whilst
in the DSA setting, it requires one full modular exponentiation). Owl has clear
advantages over SPR-6a in terms of flows, computation, and agility to work with
both MODP and EC settings. Implementing OPAQUE in DSA gives a lower
computation cost than using a safe-prime modulus (at the expense of having the
‘invalid’ output issue). In the DSA setting, the client requires more computation
than Owl, but the server requires less. A direct comparison between the two in
the EC setting is difficult due to the cost of H2C yet unclear (aside from the
‘invalid’ output and the agility issues that need to be addressed).

Round efficiency. Owl only requires one flow in the registration process,
fewer than others. Between Owl and OPAQUE, OPAQUE seems to have the
advantage of needing only two flows in the login process; Owl needs three. The
(theoretical) advantage of a two-flow OPAQUE is that it allows the server to
be authenticated in the second flow (based on explicit key confirmation) before

14



Schemes MODP (safe prime) MODP (DSA) Ellipic Curve

SRP-6a 768 B – –

OPAQUE 2688 B 2336 B† 225 B‡

Owl – 2720 B 609 B

Table 2. Comparison of message sizes in bytes (B) among selected PAKE schemes.
The ‘MODP (safe prime)’ column gives the size in a MODP setting, assuming a 3072-
bit safe-prime modulus. The ‘MODP (DSA)’ column gives the size in a MODP setting,
assuming a 3072-bit DSA group with a 256-bit exponent. The “Elliptic Curve” column
gives the size in an EC setting, assuming a 256-bit prime-order EC group. † denotes
having concerns about ‘invalid’ output. ‡ denotes having concerns about computational
cost, ‘invalid’ output and agility.

the client is authenticated. However, doing so is dangerous as it will expose the
server to an undetectable online dictionary attack [21], in which a malicious client
does not send the third flow and it is impossible for the server to distinguish
the authentication failure from a drop-out. (In an asymmetric setting, the server
is always online, and hence is more vulnerable to online guessing attacks than
a client.) Preventing this attack requires the client to be authenticated first.
Hence, OPAQUE actually requires the same three flows as Owl in the login.4

Message size. We now compare the message size among the three protocols.
For simplicity, we only consider the login phase and focus on public-key crypto-
graphic data (excluding auxiliary data such as user identities). Furthermore, we
only consider implicit key confirmation, hence excluding explicit key confirma-
tion strings that apply to all schemes. Table 2 summarizes the result. SRP-6a [28]
involves exchanging two group elements in the login process (we omit the salt).
Assume a 3072-bit safe-prime modulus is used. The total size is 3072×2 = 6,144
bits = 768 bytes. OPAQUE [20] involves exchanging four group elements and
an encrypted string using an authenticated encryption scheme (containing two
group elements and a private key generated from the registration phase). Assume
OPAQUE uses the same 3072-bit safe-prime modulus as SRP-6a. The total size
is approximately 3072× 6 + 3071 = 21,503 bits = 2,688 bytes (we omit the size
of the IV and the message authenticated code). If a 3072-bit DSA group is used
instead, the total size is 3072× 6+ 256 = 18,688 bits = 2,336 bytes. Assume an
EC setting where the group has a prime order of 256 bits. We assume a group
element requires 257 bits in a compressed form. Hence, the size of the messages
is 257×6+256 = 1,798 bits = 225 bytes. Owl involves sending 6 group elements,
6 Schnorr ZKP and a short response in the key exchange process. In a 3072-bit
DSA group, the size of each ZKP (h, r) is 512 bits (see App. §2.1). Hence, the
total size is 3072 × 6 + 512 × 6 + 256 = 21,760 bits = 2,720 bytes. In an EC
setting, the size is 257× 6 + 512× 6 + 256 = 4,870 bits = 609 bytes. Although
Owl involves sending more group elements than SRP-6a, it can actually use less
bandwidth because of its agile support for EC implementations. In the same EC

4 The original conference paper describes OPAQUE as a two-flow scheme, but the full
version has updated the specification requiring three flows in the login [20].
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setting, the size of the messages in Owl is bigger than that in OPAQUE, but Owl
is more flexible to work with any elliptic curve that is suitable for cryptography
while OPAQUE is restricted by the availability of a constant-time and correct
(no ‘invalid’ output) H2C function on that curve.

5 Conclusion

In this paper, we present a new augmented PAKE protocol called Owl. Our de-
sign strategy is to utilize Schnorr non-interactive zero-knowledge proof to enforce
every party to follow the protocol specification honestly. We prove the security
of Owl based on the standard DDH and CDH assumptions in the random oracle
model. Through a thorough evaluation, we show Owl provides systematic advan-
tages over SRP-6a in terms of provable security, computation, bandwidth and
agility for implementation in versatile group settings. Owl’s agility is attributed
to the fact that it utilizes only the most basic addition/multiplication operations
on an elliptic curve (equivalently, multiplication/exponentiation in MODP) plus
a standard one-way hash function for implementation without depending on any
ideal cipher, trusted setup, hash-to-group functions or special group character-
istics (such as the mandated use of a safe-prime modulus in SRP-6a).
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Appendix

A Schnorr non-interactive zero-knowledge proof

Given a private key x ∈R [0, q − 1] and the corresponding public key X =
gx mod p, we use Schnorr non-interactive zero-knowledge (NIZK) proof to convey
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the knowledge of the exponent x without revealing its value [11]. Specifically, to
generate a zero-knowledge proof for ZKP{x : g,X}, the prover chooses a random
secret v ∈R [0, q−1], computes V = gv mod p, and outputs (h, r) as the “proof”,
where h = H(g∥V ∥X∥ProverID) and r = v − x · h mod q. ProverID represents
the prover’s unique identity. H(·) is a secure one-way hash function which serves
to transform an interactive ZKP into a non-interactive one based on the Fiat-
Shamir heuristics [7]. Verification of the ZKP requires that the verifier check:
1) X has the correct prime order; and

2) h
?
= H(g∥gr ·Xh∥X∥ProverID), where h is the received value.

Note: In the original J-PAKE protocol [13], the Schnorr ZKP contains (V, r)
while we use (h, r). The two are equivalent [11, §4] with the same computation
cost, but the latter has a more compact size in a MODP setting.
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