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Abstract. Anonymous Credentials are an important tool to protect us-
er’s privacy for proving possession of certain credentials. Although var-
ious efficient constructions have been proposed based on pre-quantum as-
sumptions, there have been limited accomplishments in the post-quantum
and especially practical settings. This research aims to derive new meth-
ods that enhance the current state of the art.
To achieve this, we make the following contributions. By distilling pri-
or design insights, we propose a new primitive to instantiate signature
with protocols, called commit-transferrable signature (CTS). When com-
bined with a multi-theorem straight-line extractable non-interactive zero-
knowledge proof of knowledge (NIZKPoK), CTS gives a modular approach
to construct anonymous credentials. We then show efficient instantia-
tions of CTS and the required NIZKPoK from lattices, which are believed
to be post-quantum hard. Finally, we propose concrete parameters for
the CTS, NIZKPoK, and the overall Anonymous Credentials, based on
Module-SIS and Ring-LWE. This would serve as an important guidance
for future deployment in practice.
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1 Introduction

In an Anonymous Credential system [15, 17, 37, 38], users interact with orga-
nizations, obtain digital credentials from them, and prove possession of these
credentials anonymously and unlinkably. Anonymous Credentials are increas-
ingly important in practice: they have been implemented by industry leaders
such as IBM6 and Microsoft7, have found their way into industrial standards

6 https://idemix.wordpress.com/
7 https://www.microsoft.com/en-us/research/project/u-prove/



(such as the TCG standard), and underlined the policies that both the United
States government8 and the EU government9 have towards balancing privacy
and legitimate identification and authentication needs.

The advent of quantum computing threatens the security of all the prior
anonymous credential constructions whose efficiency was suitable for use in prac-
tice, since all of them require either the RSA or the discrete logarithm assump-
tion to hold (in fact, they need even stronger assumptions). The goal of this
paper is to give more efficient Anonymous Credentials based on standard lattice
assumptions, as they provide a plausible foundation against quantum attacks.
Moreover, we propose a modular approach so that each building block might be
improved individually for future work.

Anonymous Credentials from general-purpose crypto tools. The well-
known approach [16, 39] to giving Anonymous Credentials is to provide: (1) a
commitment scheme for committing to x representing a user’s private input,
e.g., her secret key; (2) a digital signature scheme for signing x (under the
commitment); (3) an efficient and secure two-party protocol between a user
and a signer to prove that the user’s (private) input x is consistent with the
commitment and then the protocol generates a signature of x; and finally (4) a
suite of efficient zero-knowledge proof systems that allow the user to prove (i)
knowledge of the commitment opening and (ii) knowledge of a signature from
the signer on the commitment opening.

Even though each of these general building blocks can be achieved under post-
quantum assumptions, however, realizing them efficiently is still a significant
and on-going research direction. Therefore, it is interesting and important to
determine a new approach for more efficient constructions.

Relevant Research. We notice that the research of Anonymous Credentials
has deep connections with the following two cryptographic objects: (1) Group
Signatures and (2) Blind Signatures. Conceptually for all these objects, there are
three roles – User, CA (certificate authority), Verifier, in the system, yet they post
different privacy requirements. Particularly, Group Signatures requires privacy
for User against Verifier, i.e., Verifier only knows the signature is output by some
one in the group, but does not know the concreted signer. Yet group signature
does not require privacy for User when getting a credential from CA. On the
other hand, Blind Signatures requires privacy for User against the CA, i.e., CA
signs a hidden message as the credential, but the verification step reveals the
message to Verifier. Finally, Anonymous Credentials requires privacy on both
sides – the User’s private input (e.g., her ID or messages) is hidden from both
CA and Verifier.

Our Approach. Our goal is to achieve an efficient lattice-based anonymous
credential, avoiding any heavy cryptographic machinery such as general secure
two-party computation and general zero-knowledge proofs in the above paradig-

8 https://www.nist.gov/news-events/events/2011/12/meeting-privacy-enhancing-
cryptography

9 https://abc4trust.eu/
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m. To achieve this goal, we first distill prior design insights, such as signature
with protocols in [16], from prior work that realized the above general diagram,
and then propose a primitive named as commit-transferable signature (CTS),
with special properties that are friendly for efficient instantiating from lattices.

Briefly, the high level idea of the prior framework of signature with protocols is
the following – for an efficient signature scheme, we would identify a commitment
scheme and an efficient zero-knowledge proof of knowledge system, such that they
can be elegantly combined, yielding a protocol for signing a committed value, and
a zero-knowledge proof of knowledge of the signature. This work takes another
perspective – by blending a signature scheme with a proper commitment scheme
as one object, we are able to see better lattice insights, leading to more efficient
lattice-based instantiation and thus more practical anonymous credentials.

Particularly, CTS encompasses both a non-interactive commitment algorithm
Commit and a signature scheme (KeyGen,Sign,Verify), with the following prop-
erties. Our first key property is that, in a CTS scheme, it is possible to compute a
signature directly on the commitment value comm, where comm← Commit(x).
This way, instead of designing a secure two-party protocol as described in (3)
above, it is sufficient to simply require that the user performs a zero-knowledge
proof of knowledge of the opening of comm. Once the signer verifies this proof,
it can compute the signature σ on input comm. Moreover, it is possible to verify
a signature σ through inputting the commitment comm rather than the value
x; therefore, to prove possession of a signature on the opening of comm, it is
sufficient to reveal σ and prove knowledge of the opening of comm.

Our second key property is to require that, from the signature σ of the com-
mitment comm← Commit(x), the user will be able to compute a new signature
σ′ for a new commitment comm′ ← Commit(x). That requires two additional al-
gorithms: Randomize to randomize comm into comm′, and Transfer to transform
the signature σ into a new signature σ′ with respect to the new commitment
comm′. It is important that the resulting pair (comm′, σ′) is unlinkable to the
original pair (comm, σ). Thus, in order to prove that the contents of comm′ were
signed, it is sufficient to just reveal σ′. More technical details and the formulation
on CTS are deferred to Section 1.3.

From CTS to Anonymous Credentials and More. Using a CTS scheme and
an appropriate (non-interactive) zero-knowledge proof of knowledge (NIZKPoK),
we can construct Anonymous Credentials and the other related object, name-
ly, Group Signatures and Blind Signatures. We first elaborate on the case of
Anonymous Credentials.

Suppose User whose secret key is x needs to obtain a credential from some
CA. First, it forms a commitment comm← Commit(x) and proves to CA that he
knows the opening to the commitment by using a NIZKPoK. Next, CA runs the
Sign algorithm on input comm, obtains the signature σ, and returns it to the user.
After the signature is obtained, suppose that the user wants to prove possession
of this credential, he uses the Randomize(·) and Transfer(·) algorithms to obtain
a new commitment comm′ to x and the issuer’s signature σ′ on comm′. Now, the
user sends the resulting (comm′, σ′) to the verifier as a credential. As (comm′, σ′)
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is unlinkable to the original (comm, σ), we achieve the important property of
unlinkability. We can further prove that it is computationally infeasible to forge
a σ∗ with respect to comm∗ = Commit(x∗) that a signature of commitment of
x∗ has never been issued.

By instantiating a half-fledged CTS (which might allow more efficient instan-
tiations), we can achieve Group Signatures and Blind Signatures. Particularly,
for Group Signatures, User only needs to send x in the clear at the first stage,
i.e., viewing x as the trivial commitment, as the privacy of User is not required in
this phase. After obtaining σ, User runs Randomize(·) and Transfer(·) to produce
a hiding comm′ and a corresponding signature σ′.10 On the other hand, for Blind
Signatures, User follows the first half of the Anonymous Credential construction,
yet later modify the randomized algorithm as: comm′ just reveals x. Again this
is not an issue as the privacy of Blind Signatures is not required against Verifier.
In fact, the constructions of [21,22] can be viewed as realizing the half-fledged of
our notion of CTS. Besides, as CTS is essentially a non-interactive version of “sig-
nature with protocols”, this notion may be useful for other privacy-preserving
applications related to “signature with protocols”.

For the NIZKPoK system, the recent work [21] identified a necessary property,
i.e., the system needs to be multi-theorem straight-line extractable, as otherwise,
the security proof of the whole system (Blind Signatures or Anonymous Creden-
tials) would incur an exponential loss.11 It is important to determine efficient
multi-theorem straight-line extractable proof systems from lattices for the par-
ticular commitment relation in the CTS construction.

Focus of This Work. Our main goal is to construct an efficient Anonymous
Credential based on some standard lattice assumptions. As discussed before, this
can be achieved by determining the following questions.

(Main Questions) Can we design an efficient full-fledged CTS from
standard lattice assumptions? Can we construct an efficient straight-line
extractable NIZK for the commitment relation of the CTS?

1.1 Our Contributions

To address the main questions, we make the following contributions.

– We formalize the notion of CTS and its security requirements. Together
with a straight-line extractable NIZK, CTS gives a simple way to construct
Anonymous Credentials and other useful privacy preserving tools, such as
Group Signatures and Blind Signatures.
Moreover, the CTS-based Anonymous Credentials can be extended to the
attribute-based setting, by further embedding attributes to the committed
message and designing proper NIZK to prove the message relation satisfying
a certain policy.

10 To be able to open the group signature scheme, we still need to add a verifiable
encryption to the signature.

11 We also notice that an exception for this requirement in the current work [33]. We
will elaborate this technical difference in the following content.

4



– We show how to instantiate CTS from some well-studied lattices assumption-
s, i.e., the module learning with errors (M-LWE) and module short integer
solutions (M-SIS).

– We construct an efficient lattice-based straight-line extractable NIZKPoK
for our CTS commitment relation in the classical random oracle model. To
achieve this, we employ the encrypt-and-prove approach in [2].

– We determine parameters for all the required components for evaluating
concrete efficiency.

Below we present our concrete parameters and findings, and defer the detailed
analysis on the asymptotical size parameters in Sections C and D.6.

In the following tables, we show concrete parameters of Anonymous Cre-
dentials of various security levels. Particularly, our simple yet selectively secure
CTS (in Section 4) can derive selectively secure Anonymous Credentials, whose
concrete parameters are presented in Table 1. By scaling up the security param-
eter and applying the complexity leveraging argument, we can derive adaptively
secure Anonymous Credentials with concrete parameters12 in Table 2. Alter-
natively, we also directly construct an adaptively secure CTS as in Section D,
implying asymptotically efficient adaptively secure Anonymous Credentials with
concrete parameters in Table 3. For the currently used security levels (say 128
bit-security) however, the scheme via the complexity leveraging (as Table 2) is
much more efficient. We leave it as an interesting open problem to optimize such
directly adaptive CTS and the derived Anonymous Credential.

1.2 Comparison with Recent Progress

Here we present a comparison between our contributions and relevant recent
works, for a clear identification of our advancements over the state of the art.

Anonymous Credentials. Several earlier works [18, 26, 36, 52] have made at-
tempts to construct lattice-based anonymous credentials, yet their approaches
have various drawbacks and thus unsatisfactory. Particularly, the work [18] only
achieved a weaker notion called anonymous attribute token system, where user
anonymity is protected only against verifiers, but not the CA. The schemes [18,36]
are not concretely efficient, and the schemes [26,52] do not achieve the important
property – unlinkability. Thus, all these approaches are not suitable for scenarios
that require the full-fledged anonymous credentials.

Concurrent Works. Very recently, two independent and concurrent work-
s [12, 33] have constructed efficient lattice-based anonymous credentials. Here

12 Here we consider 128 bits for the User ID length, and scale up the selectively se-
cure scheme to roughly 256-bit security. This implies an adaptively secure scheme
of 128 bit-security after applying the complexity leveraging argument. Particular-
ly, our technical route is that: first construct a CTS with 256-bit selective security
and 128-bit message space, then achieve 128-bit adaptive security through complex-
ity leveraging the message space. Based on this, we just need to combine a multi-
theorem straight-line extractable NIZKPoK with 128-bit security to obtain the final
anonymous credentials system with 128-bit security.
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PP PK SK Pseudonym Signature Credential Bit-security

Params 1 25.49MB 276.5KB 10.5KB 1.25 MB 117.85KB 192.85KB 128

Table 1. Our selective Anonymous Credentials from Ring-LWE and Modulus-SIS.
Here, we denote PP as public parameter, PK as public key, SK as secret key. All
values in this table are computed from the example parameters of Params 1 in the
Tables 11 and 10.

PP PK SK Pseudonym Signature Credential Bit-security

Params 2 24.66MB 440KB 15KB 2.01MB 236.56KB 372.56KB 128

Table 2. Our adaptively secure Anonymous Credentials by applying the com-
plexity leveraging argument to the selectively secure scheme. All values in this
table are computed from the example parameters of Params 2 in the Tables 11
and 10.

PP PK SK Pseudonym Signature Credential Bit-security

Params 3 321.4GB 205.4MB 1.17MB 530.96MB 16.32MB 24.77MB 128

Table 3. Our adaptive secure Anonymous Credentials from a direct construction
of adaptively secure CTS. All values in this table are computed from the example
parameters of the Table 16.

we undertake a comparative analysis of the findings, highlighting the unique
merits of our approach despite the existence of these concurrent works.

First, the work [33] instantiates the necessary building blocks following the
approach of “signature with protocols”, and then derives an anonymous cre-
dential system based on the M-LWE and M-SIS assumptions. In efficiency, the
credential size of their protocol is about 639 KB for 128 bit-security.

The other work [12] takes a different approach to construct non-interactive
lattice-based solutions in the random oracle model. Their scheme exhibits a high-
ly competitive level of concrete efficiency. E.g., the size of credentials is about
122 - 133 KB for 128 bit-security, or 26 - 29 KB under another new assump-
tion. However, there are two important caveats to consider. First, their efficient
scheme only achieves a very basic anonymous credential system without incor-
porating pseudonyms, which can be desirable for enabling some useful features,
e.g., selective tracking of holders [14,39]. Second, security of all their schemes [12]
depends on some new variations of ideal lattice problems.

Even though these two issues can be handled in theory, it remains chal-
lenging to derive a system with comparable efficiency under their paradigm. In
particular, resolving the first issue would require additional commitments and
proofs on top of their basic schemes, e.g., proving equality between committed
and signed values, yet the concrete blowup needs to be re-evaluated. The second
issue presents a tougher challenge, as adapting their approach to rely on more
well-studied assumptions (e.g., RLWE) appears to necessitate proving knowledge
of pre-images for random oracles. Unfortunately, there is currently no efficient
lattice-based proof technique available to fulfill this need.

Considering the insights gained from the current post-quantum standardiza-
tion process [9,19,44,51], a cautious and conservative approach would always be
necessary and valuable. By building schemes under more well-studied hardness
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foundations, we can mitigate the risks associated with unforeseen weaknesses in
the new assumptions, ensuring better confidences in the overall security.

Besides, there are obvious differences on the unforgeability model among
this paper and [12, 33]. Particularly, for the unforgeability, [33] directly proves
the well-formedness of the commitment (or pseudonym) through using NIZK
systems, rather than NIZKPoK. But, [12] and ours use NIZKPoK systems to prove
the well-formedness of the commitment. In fact, both choices are reasonable,
relying on different proof strategies or underlying assumptions.

Overall, when just using NIZK proof systems to prove the well-formedness,
[33] can directly use Fiat-Shamir heuristic to obtain non-interactive protocol.
However, in the case of using NIZKPoK systems to prove the well-formedness of
the commitment, such as [12] and ours, multi-theorem straight-line extractability
will be unavoidable for non-interactive settings.

Summary. Our work, along with the two concurrent works, possesses unique mer-
its in different aspects. In summary, both our work and the work [33] achieve
anonymous credential systems with pseudonyms under the more extensively s-
tudied assumptions (i.e., M-SIS and M-LWE). However, our work offers advan-
tages over [33] in terms of smaller credential size.

When comparing our work to [12], we observe that their concrete parameters
are smaller, yet their efficient instantiation is for a basic anonymous creden-
tial system without pseudonyms, and moreover their security relies on new and
less-studied assumptions. Thus, we believe that these two works have incom-
parable advantages and both deserve attentions. Below we present Table 4 for
comparisons between our work and these concurrent works.

PP PK SK Pseudonym Signature Credential Assumption Security
[33] 0.27MB 9.56MB 10.59MB – 317KB 724KB M-LWE,M-SIS 128
[12] – – – ⊥ – 122KB ISISf 128
Ours 24.66MB 440KB 15KB 2.01MB 236.56KB 372.56KB M-LWE,M-SIS 128

Table 4. Comparison of efficiency estimates of Anonymous Credentials Systems
between ours, [33] (its Table H.4) and [12]. In [12,33], some of concrete values are
not explicitly listed, so we just use the symbol “-” for these columns. Besides,
as the current construction of [12] does not support pseudonym application
immediately, we just use the symbol ⊥ to represent its size. Moreover, here we
focus on the non-interactive version of the underlying assumptions, so we do not
list the efficiency of [12] based on the interactive ISISf assumption.

Straight-line Extractable Lattice-based NIZKPoK. Next we present rele-
vant works of straight-line extraction for lattice proofs. Generally, there are two
main approaches to achieve this notion for lattice proofs:

1. The technique of extractable linear homomorphic commitments, e.g., [12,21].
2. The instantiation of the well-known encrypt-and-prove paradigm from lat-

tices, e.g., [2, 10].

For practical parameters, recent works [2, 10] have focused on optimizing proof
sizes in the classical random oracle model (ROM), and currently, the second ap-
proach following encrypt-and-prove paradigm achieves much better proof sizes.
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This work follows the second, i.e., encrypt-and-prove approach. Particularly,
we first choose a variant of Regev encryption and set the related underlying ring
together with other parameters, such that all the necessary random vectors can
be encrypted with about 128 bit security. Secondly, we use the LNP approach
in [41] to prove the encrypted vectors satisfying certain relations together with
the well-formedness of Regev encryption. More details on the encrypted vectors
and the concreted relations are deferred to the following contents in Section 1.3.

It is worth noting that the first approach has an advantage in terms of extend-
ability of security analysis to the quantum random oracle model (QROM) [21],
though a significant efficiency overhead of add-ons is required under current tech-
niques. An interesting open problem is whether we can enhance the efficiency
and analysis in the QROM settings for either the first or second approach. As
further research is needed to explore potential improvements, we believe that
all of the aforementioned works, including our own contributions, would provide
valuable guidance and serve as stepping stones towards achieving this goal.

1.3 Technical Overview

We present an overview of our techniques of how to efficiently construct the
required CTS and straight-line extractable NIZKPoK from lattices. First we in-
formally describe the notion of CTS and then present our technical insight-
s. Next, we present the intuition of our efficient instantiation of mult-theorem
straight-line extractable NIZKPoK. These two pieces naturally give Anonymous
Credentials as we discussed above.

Commit-transferrable Signatures. Informally, a CTS is a combination of
a re-randomizable commitment and a signature, with the following algorithms
(Commit,Randomize,Sign,Transfer,Verify). Intuitively, a user can send comm←
Commit(x) to the signer, who will run the algorithm Sign to produce a signature
σ on the commitment comm. Later on, the user can re-randomize the com-
mitment comm′ ← Randomize(comm) and then derive a transferred signature
σ′ ← Transfer(comm, comm′, σ) with respect to the randomized commitment
comm′. For security, the CTS requires input privacy, signature unlinkability, and
unforgeability. These properties can be roughly captured by – (1) the signer does
not learn any information of x, (2) one cannot learn information about the orig-
inal commitment-signature pair (comm, σ) from the re-randomized-transferred
pair (comm′, σ′), and (3) an adversary cannot forge a valid σ′ with respect to
comm′ ← Commit(x∗), if any commitment of x∗ has not been signed by the
signer. Below we explain how to construct such a primitive from lattices.

Warm Up. To achieve selectively secure CTS, intuitively, the first step is to
obtain a scheme that allows to sign on commitments, i.e., blending a commitment
scheme and signature scheme in an appropriate way. This can be achieved by
using ABB signature [1] and GSW commitment [32], as observed by the work [21,
22]. Briefly, the ABB scheme has public key of the form (A0,B0,u) (i.e., two
matrices and one vector), and the secret key is the trapdoor, i.e., TA0

, of the
matrix A0. The signature ofm is a short vector s, satisfying [A0|B0+mG]·s = u,
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where G is the gadget matrix of [46]. The GSW commitment uses a public matrix
A. To commit to a message m, it outputs A·R+mG, where R is a short random
matrix. To open, one just reveals the message and randomness. Next, we describe
the idea of [22] to blend these two together.

To sign on commitment C = A · R + mG, the signer first generates the
matrix F = [A0|B0 + C], and then generates a short vector σ := s that satisfies
F ·s = u. This can be achieved by using the trapdoor sampling technique of [46].
Suppose the commitment C does not need to be re-randomized, then the user
can simply generate a transferred signature σ′ by a ZK proof of knowledge that
she holds a short vector with respect to the lattice Λ⊥u (F) = {z : F · z =
u and z is short}. Intuitively, the zero-knowledge property guarantees that one
cannot learn information about the original signature σ from the transferred
one, i.e., σ′. The unforgeability follows from SIS using the ABB analysis of [1].

Handle Re-randomized Commitments. The above technique achieves a half
of the goal, which means just transferring the original signature s to one (i.e.,
ZK proof π) with respect to the same commitment C. To achieve the full-fledge
of our goal, we need to handle how to transfer signatures with respect to a
re-randomized commitment C′.

We observe that GSW commitment can be easily re-randomized, i.e., just
setting C′ = C + A ·R′ for some short random matrix R′. It is easy to show
that given (C,C′), one cannot determine whether the underlying messages are
related or not. Given this, we define another matrix for verification with respect
to C′ as F′ = [A0|B0 + C′|A]. So now our goal is to generate a short vector s′

such that F′ · s′ = u, and then set σ′ to be a ZK proof of knowing a short vector
in Λ⊥u (F′). By the security of GSW and ZK proof of knowledge, it is easy to
argue that one cannot learn information about (comm, σ) from the (comm′, σ′).

To achieve this, we first express F′ = [F|0] + [0|A · R′|A] = [A0|B0 +

C|0] + [0|A ·R′|A]. Then through denoting s =

[
s1

s2

]
, we observe, F′ ·

s1

s2

0

 =

[A0|B0+C]·
[
s1

s2

]
+A·R′ ·s2 = u+A·R′ ·s2, so if we can find a short z =

z1

z2

z3

 such

that F′ ·

z1

z2

z3

 = −A ·R′ ·s2, then s′ can be simply set to

[
s1

s2

0

]
+

[
z1

z2

z3

]
, fulfilling

our goal. By the special structure of F′, we can just set z =

 0
0

−R′ · s2

. Thus

the overall s′ =

 s1

s2

−R′ · s2

. It is not hard to verify all the prior steps, implying

that F′ · s′ = u.
Conceptually, the user can massage the randomness R′ (for the re-randomiza-

tion of the commitment) and the signature s obtained from the signer, to derive
a related witness, i.e., s′ for the related lattice Λ⊥u (F′). Thus, a ZK proof of
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knowledge can serve as the transferred signature σ′ for the re-randomized C′.
We notice that lattice-based ZK proofs for general NP languages exist in the
standard model [48] albeit poor efficiency. On the other hand, the particular
proof system we need can be instantiated efficiently in the random oracle mod-
el [28]. The whole approach can be further optimized by using ideal lattices, i.e.,
Ring-SIS/LWE, as identified by the work [5, 22,43].

We notice that we can further improve efficiency of the construction idea
above by using multiple BDLOP commitments on related messages [6], similar
to the work [21,22]. Thus in our main construction, we will present in the BDLOP
form, and our parameters are set with respect to this more efficient version.

Straight-line Extractable Proofs. The next important piece is to construct
an efficient multi-theorem straight-line extractable NIZKPoK, proving the well-
formedness of the commitment in CTS. Informally, for a multi-theorem straight-
line extractable proof, there exists an extractor who can extract multiple wit-
nesses from an adversary who generates multiple valid proofs, and moreover the
extraction does not need rewinding. As pointed out by [2, 10, 21], this is an im-
portant feature for non-interactive blind signatures and anonymous credentials.
For our CTS, specifically we need to prove knowledge of BDLOP commitments,
which we recall below. A BDLOP commitment of message m has the structure:

Commit(m; r) =

[
A1

A2

]
· r +

[
0
m

]
mod q1
mod q2

=

[
t1
t2

]
,

where r is the randomness (ring elements with small coefficients) and m is the
message. There are two different moduli with some flexibility in the design.
For efficiency optimizations, we can set q1 � q2, and in our application, we
additionally require q2 to be a large prime of a special form, e.g., congruent to
3 or 5 modulo 8.

There are various efficient lattice proofs of knowledge about m, r in the liter-
ature [5,6,13,22,25] in the random oracle model. However, the knowledge extrac-
tion of these constructions requires to rewind the random oracle, and as pointed
out by [21, 34], this would incur an exponential security loss in the application
of blind signatures and anonymous credentials. To achieve efficient straight-line
extractable proof, as we discussed in the prior section, we take the approach of
encrypt-and-prove, which is currently better optimized than the other one using
extractable linear homomorphic commitments.

The general paradigm is to encrypt the witness and then prove well-formedness
of the encryption and consistency of the encrypted witness (with the BDLOP
commitment). In our specific case, we can just encrypt the randomness r of the
above BDLOP commitment, i.e., Enc(r) and then prove well-formedness of the
encryption, upper bound of `2 norm for r, and A1 ·r = t1. The r can be extract-
ed easily in a straight-line manner, by decrypting the ciphertext given the secret
key of Enc. Then one can derive m := t2−A2r, which would be consistent with
what was originally committed to by the binding property of the commitment.

To instantiate this idea, one could consider the currently most optimized lat-
tice proof (in the classical random oracle model) [2], which takes the following
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high-level step. First they instantiate a RLWE-type encryption scheme Enc(·) and
then use the ABDLOP commitment to commit to r and the randomness to gen-
erate the encryption Enc(r), say ρ. Then they use the LNP proof technique [41]
to prove (1) the randomness ρ and r are small; (2) ρ and r satisfy the linear
equation as in this particular encryption algorithm, implying that the ciphertext
is well-formed; and (3) A1 · r = t1 (mod q1).

One More Subtlety. We identify a technical subtlety – for our anonymous
construction, there still remains a gap towards the full overall security, even
if one proves well-formedness of BDLOP commitments using a straight-line ex-
tractable proof, due to a possible mix-and-match attack. To tackle this, we iden-
tify a stronger form of well-formedness, where it is computationally infeasible
to generate tuples (t1, t

′
1, t2) such that both (t1, t2) and (t′1, t2) can be proved

well-formed. This stronger property suffices for deriving secure anonymous cre-
dentials and can be realized in a simple and efficient way. We present more details
in Section 2.3.

2 Preliminaries

Notations. Z and R denote the sets of integers and real numbers. Throughout
this paper, we use λ to denote the security parameter, which is the implicit input
for all algorithms. A function f(λ) > 0 is negligible and denoted by negl(λ) if
for any c > 0 and sufficiently large λ, f(λ) < 1/λc. A probability is called to be
overwhelming if it is 1 − negl(λ). A column vector is denoted by a bold lower
case letter (e.g., x). A matrix is denoted by a bold upper case letter (e.g., A).
For a vector x, its Euclidean norm (also known as the `2 norm) is defined to be
‖x‖ = (

∑
i x

2
i )

1/2, and its infinity norm is defined to be ‖x‖∞ = maxi |xi|. For a
matrix A, its ith column vector is denoted by ai and its transposition is denoted
by A>. The Euclidean norm of a matrix is the `2 norm of its longest column:
‖A‖ = maxi ‖ai‖. For any matrix B = (b1, . . . , bm), we use B̃ = (b̃1, . . . , b̃m) to

denote the Gram-Schmidt orthogonalization of B. Besides, we refer to ‖B̃‖ as
the Gram-Schmidt norm of B. Let R = Z[x]/(xd + 1) be a cyclotomic ring, with
d be a power of 2. And the norm of an element in Rq will be the norm of its
unique representative with coefficients in [−(q−1)/2, (q−1)/2]. For matrix A in

R`×l, we use s1(A) = max‖x‖

(
‖Ax‖
‖x‖

)
to denote its operator norm. For positive

β ∈ R, we use Sβ to denote the set of all polynomials of infinity norm less than
β, i.e., Sβ = {a ∈ R | ‖a‖∞ ≤ β}.

For positive integers n, q, let [n] denote the set {1, ..., n} and Zq denote the

ring of integers modulo q. For a distribution or a set X , we write x
$←− X to

denote the operation of sampling an uniformly random x according to X . For
two distributions X ,Y, we let SD(X ,Y) denote their statistical distance. We

write X
s
≈ Y to mean that they are statistically close, and X

c
≈ Y to say that

they are computationally indistinguishable.
Due to the space limit, we defer the detailed background notations, defi-

nitions, and lemmas on lattices, rejection sampling, and algebraic structure of
cyclotomic rings to Appendices A.1, A.2, and A.4, respectively.
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2.1 M-LWE and M-SIS

Now we introduce the hard problems on which our schemes rely, which are
denoted as M-LWE and M-SIS.

Definition 2.1 (M-SIS [35]) The M-SISq,`,m,β problem (over an implicit ring
R) is defined as follows. Given an uniformly random matrix A ∈ R`×mq , output
vector z ∈ Rm such that Az = 0 and 0 < ‖z‖ ≤ β.

Definition 2.2 (M-LWE [35]) The decision M-LWEq,`,m,St problem (over an

implicit ring R) is defined as follows. For s
$←− S`t , use Aq,s to denote the distri-

bution of (a, 〈a, s〉 + e) ∈ R`q × Rq, where a
$←− R`q and e

$←− St. The goal is to

distinguish m samples from either Aq,s or U(R`q, Rq).

Notice that for M-LWEq,`,m,St , if ` = 1 and t = 1, it can also be called as
RLWEq,1,m.

2.2 Syntax of Commitment

We give a formal definition of commitment schemes, following the presentation of
[6,22]. A commitment scheme consists three algorithms (CKeyGen,Commit,Open),
with the security parameter 1λ as implicit input:

CKeyGen is a ppt algorithm that outputs the public parameters params con-
taining the descriptions of the message space M and randomness space R.
Commit is a ppt algorithm that, on input the public parameters params and a
message x ∈M, outputs the commitment c and its related randomness r ∈ R.
Open is a deterministic poly-time algorithm that, on input the public parame-
ters params, a message x ∈M and values c and r ∈ R, outputs a bit b ∈ {0, 1}.

A secure commitment scheme requires the two properties: hiding and binding.
We defer the presentation to Appendix A.3.

2.3 BDLOP Commitment Scheme

We use as a building block the efficient lattice-based commitment scheme in
[6, 22], implicitly denoted as BDLOP Commitment. Particularly, BDLOP Com-
mitment consists of three algorithms (CKeyGen,Commit,Open) as follows.

– CKeyGen (1λ): Given the security parameter λ as input, the algorithm first sets
the parameters n, k, `, q1, q2, and ring R = Z[x]/〈xN + 1〉 where N is a power
of 2, or other cyclotomic rings as Table 5, and then chooses random matrices

A′1
$←− R

n×(k−n)
q1 and A′2

$←− R
`×(k−n−`)
q2 . Finally, the algorithm outputs the

public paramters params := A0 =

[
A1

A2

]
with A1 := [In,A

′
1] ∈ Rn×kq1 , A2 :=

[0`×n, I`,A
′
2] ∈ R`×kq2 .

12



– Commit(params,m; r): In order to commit to a message m ∈ R`q2 , the al-

gorithm first samples a random short vector r
$←− Skβ , and then outputs

comm :=

[
t1
t2

]
=

[
A1

A2

]
r +

[
0
m

]
.13

– Open(params, comm): For comm := (t>1 , t
>
2 )> ∈ Rnq1 × R`q2 , there are two

types of openings for slightly different commitment relations in the literature:
relaxed one (c, r̄,m) and exact one (r,m).
Here we will choose to use the latter one. This is because for the efficiency
of our specific constructions of CTS and Anonymous Credentials system, we
need to extract the exact randomness r for each commitment comm, rather
than the relaxed randomness r̄.14

Particularly, The valid exact opening is with respect to the following exact
relation

L̂ =:
{

comm : ∃(m, r) such that comm = Commit(params,m, r)
}
.

A valid opening of comm := (t>1 , t
>
2 )> ∈ Rnq1 × R

`
q2 consists of a message

m ∈ R`q2 , and a short vector r = (r1, . . . , rk)> ∈ Rk, such that

[
t1
t2

]
=[

A1

A2

]
r +

[
0
m

]
, where for all i, ‖ri‖∞ ≤ β.

Besides, there are two additional algorithms for the randomness vector in the
valid commitment.

– Combine(r, r′): Given two vectors r ∈ Skβ and r′ ∈ Skβ , output r̂ = r + r′ ∈
Sk2β .

– Randomize(params, comm, r′): Taking as input params, r′ ∈ Skβ , and a com-

mitment comm, output comm′ = comm + A0 · r′.15

According to [6,22], we know that BDLOP Commitment satisfies binding and
hiding properties, following from M-SISq1,n,k,8

√
2·η·κ·β·k·N and M-LWEq2,k−n−`,n+`,

respectively. Here, η is the parameter for rejection sampling as in Lemma A.9,
κ is the parameter for the challenge set of NIZKPoK system as in Table 5.

Well-Formedness. For our application, we need to prove the well-formedness
of BDLOP commitments along with the commitment generation. This task has
been studied in the original BDLOP scheme and several follow up works, e.g.,

13 For a general parameter τ ≥ 1, if we choose a random short matrix R
$←− S`×τβ ,

then we can use such a BDLOP commitment scheme to commit to a message matrix
M ∈ R`×τq2 .

14 In fact, even just with the proof with respect to the relaxed relation, we can also
extract the exact vector r through using the encrypt-and-prove paradigm. But, this
might result in a relatively inefficient construction.

15 Notice that, if comm is a valid commitment of m with randomness r, then comm′ is
still a valid commitment of m, but with randomness r̂ = Combine(r, r′).
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[6,22]. Particularly, given the public matrices A1,A2 and commitment comm :=
(t>1 , t

>
2 )>, the relation can be described as: there exist vector r,m such that[

A1 0
A2 I

]
·
[
r
m

]
=

[
t1

t2

]
,

where 0 ∈ Rn×`q1 and I ∈ R`×`q2 denote the zero and identity matrices.

For the original BDLOP scheme where the message space is R`q2 , i.e., m can

be any element in R`q2 , well-formedness can be proved in a relaxed way, i.e., by
showing that there exists a r such that A1 ·r = f ·t1, with respect to the relaxed
relation

Lγ′1,q1,q2,C̄ :=
{

(A1,A2, t1, t2) : ∃ (r,m) and f ∈ C̄ such that 0 < ‖r‖ ≤ γ′1, and[
A1

A2

]
· r +

[
0
m

]
= f ·

[
t1

t2

]}
.

In fact, this is what the “proof of opening” does in several prior works [6, 22].
However, our application requires a stronger form of well-formedness, which is

not implied by what we just described above. Particularly, our application needs
a stronger commitment-proof binding property that for any (t1, t2) that can be
proved to be well-formed, it is computationally infeasible to find another t′1 such
that one can prove well-formedness for (t′1, t2). This is an important requirement
that prevents the mix-and-match attacks for our anonymous credential systems.
We formalize this in Appendix A.5.

Next we argue that the original BDLOP does not satisfy this property by
the following example. One first generates Commit(m) = (t1, t2) honestly for an
arbitrary m, and then computes t′1 = A1 ·r′, with r 6= r′. Then we can interpret
(t′1, t2) as Commit(m′ = t2−A2 ·r′). As the message space is the full ring vector
R`q2 , this interpretation is valid, and thus (t′1, t2) can still be considered to be
well-formed. Thus, it is easy to generate two proofs for these two commitments,
breaking the commitment-proof binding property.

To tackle this, we identify a simple property – as long as the BDLOP message
space is “short”, i.e., ‖m‖ ≤ γ′2 for some parameter γ′2, then the stronger form
of well-formedness is implied naturally!

Particularly, we notice that this stronger well-formedness can also be ex-
pressed as two exact linear relations:

A1 · r = t1 and
[
A2 I

]
·
[
r
m

]
= t2.

So, through using the LNP proof framework, i.e., Figure 10 in [41], we can first
commit to vectors r and m, and then prove their exact norm bound and the
liner relations. The advantage of adopting such an exact relation proof is that
the overhead can be amortized with other NIZKPoK parts, which will reduce the
full proof size significantly. Thus, we use such an exact proof approach in our
instantiations for multi-theorem straight-line extractable NIZKPoK in Section 5.

Except with achieving the stronger well-formedness by the above exact re-
lation, we can also get it by the relaxed relation. Our intuition is that, if the
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adversary can come up with such a tuple (t1, t2, t
′
1), then there is a reduction

that breaks the M-SIS problem (with proper parameters). Due to space limit,
we defer more details in Appendix A.5.

2.4 Non-interactive Zero-knowledge Proof

Let’s recall the notion of non-interactive zero-knowledge (NIZK) proof system.

Definition 2.3 ( [23]) Let R be a relation. A non-interactive proof system for
R is a tuple of PPT algorithms (Setup,Prove,Verify,SimSetup) having the fol-
lowing interfaces (where 1λ are implicit inputs to Prove,Verify,SimSetup):

– Setup(1λ) : given a security parameter λ, outputs a string crs.
– Prove(crs, x, w): given a string crs and a statement-witness pair (x,w) ∈ R,

outputs a proof π.
– Verify(crs, x, π): given a string crs, a statement x, and a proof π, either accepts

or rejects.
– SimSetup(1λ): given a security parameter λ, outputs a simulated string ĉrs and

a trapdoor tk.

A secure NIZK should have three properties: Completeness, Soundness, and
Zero-knowledge. Due to space limitation, we defer the definitions in Appendix A.6.
As argued by [5, 21, 25, 27], Fiat-Shamir based proof systems in the random o-
racle model satisfy these properties. Many recent lattice-based efficient NIZKs
are Fiat-Shamir based, so they also enjoy this property. Notice that, even crs is
explicitly outputted by the algorithm Setup, the above definition still cover the
case of Random Oracle based NIZK, just as used in [2, 12,21,33]

3 Commit-Transferable Signatures

Following prior work [7], our goal is to obtain a signature scheme that can be
combined with an appropriate commitment scheme and zero-knowledge proof-
of-knowledge protocols to obtain an Anonymous Credential scheme.

We will first describe the key novel building block we need: a signature
scheme whose message space consists of commitments. Our starting point is a
non-interactive commitment algorithm Commit parameterized by params chosen
according to the Setup algorithm, i.e., params ← Setup(1λ). The commitment
scheme should admit additional algorithms that allow for randomizing com-
mitments. Particularly, given a commitment comm = Commit(params,m; Rand)
and randomness Rand′, there is an algorithm Randomize that outputs another
commitment comm′ = Commit(params,m; Rand′′) to the same message m. An
additional Combine operation is for combining Rand′ with the randomness Rand
of the commitment comm, i.e., Rand′′ = Combine(Rand,Rand′).

The novel property of a commit-transferable signature is that, given a sig-
nature σ on a commitment comm = Commit(params,m; Rand), it is possible to
obtain a signature σ′ on a different commitment to the same message, comm′ =
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Commit(params,m; Combine(Rand,Rand′)). The unforgeability property is de-
fined that an adversary querying for signatures on commitments whose openings
are known m1, . . . ,mn will not be able to produce a signature on a commitment
that opens to a new message m′ 6= mi, for ∀ i ∈ [n]. We notice that the require-
ment of commitments whose openings are known can be achieved by requiring
the adversary to provide an additional (non-interactive) zero-knowledge proof of
knowledge in the applications, and thus our simpler form of unforgeability for
CTS suffices. As discussed in the introduction, our applications need an addi-
tional property called straight-line extraction for the NIZKPoK. We discuss more
details in Remark 3.5 and Section 5.

More formally: let (Setup,Commit) be a non-interactive randomizable com-
mitment scheme that admits (Randomize,Combine) for randomizing commit-
ments; let (KeyGen,Sign,Verify) be a signature scheme, and let Transfer be an
additional algorithm with the following input-output behavior:

Setup Let λ be the security parameter. Setup(1λ) outputs params, the parame-
ters for the commitment scheme and the signature scheme; these parameters
also define the message space M, randomness space R for the commitmen-
t scheme, the randomness space R′ for the Randomize algorithm, and the
output space R′′ of the Combine algorithm.

Commit Let m ∈ M, Rand ∈ R. Commit(params,m; Rand) outputs comm, a
commitment to m using randomness Rand. There is no separate opening
algorithm: opening can be achieved by revealing m and Rand.

Randomize and Combine Let comm = Commit(params,m; Rand), with Rand ∈
R. Randomize(params, comm,Rand,Rand′) returns the commitment comm′ =
Commit(params,m; Combine(Rand,Rand′)), where Combine : R×R′ 7→ R′′ is
an efficiently computable operation on elements of R and R′.

KeyGen Given params, KeyGen(params) outputs a secret key sk and the corre-
sponding public key pk for commit-transferrable signature system.

Sign Let comm = Commit(params,m; Rand). Sign(params, pk, sk, comm) outputs
a signature σ with respect to comm.

Transfer Let comm = Commit(params,m; Rand), comm′ = Randomize(params,
comm,Rand′), σ = Sign(params, pk, sk, comm). On input (params, pk, σ,m,
(Rand,Rand′)), the algorithm Transfer outputs a signature σ′ with respect to
the randomized commitment comm′.

Verify On input (params, pk, comm, σ), the algorithm Verify either accepts or
rejects. For simplicity, our syntax does not distinguish whether the signature
σ is an original or a transferred one. In the construction, we need to specify
two different procedures when verifying different types of the signatures.

Definition 3.1 (Correctness) Let Setup, Commit, Randomize, Combine, KeyGen,
Sign, Verify and Transfer be efficient algorithms with input-output behavior as
above. They define a correct randomizable commitment scheme if for all params
that are output by Setup, for all m ∈M, Rand ∈ R, Rand′ ∈ R′, Randomize(
Commit(params,m; Rand),Rand′) = Commit(params,m; Combine(Rand,Rand′)).

Moreover, they define a correct commit-transferable signature scheme if for
all params that are output by Setup, for all m ∈M, Rand ∈ R, Rand′ ∈ R′, σ ←
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Sign(params, pk, sk,Commit(params,m,Rand)), (sk, pk)← KeyGen(params), σ′ ←
Transfer(params, pk, σ,m, (Rand,Rand′)), both Verify(params, pk, Commit(params,
m,Rand), σ) and Verify(params, pk,Commit(params,m,Combine(Rand,Rand′)), σ′)
accept.

Additionally, we require that commit-transferrable signature schemes satis-
fy several properties: unlinkablity/simulatability and unforgeability. Intuitively,
unlinkablity means that for any two messages m0,m1, it is infeasible to distin-
guish their honest transferred signatures σ′0 and σ′1 (output by the algorithm
Transfer). Simulatability means that the transferred signature σ′ itself does not
leak information about the input x (and also the randomness). Clearly, simulata-
bility is much stronger property, and implies unlinkability. Thus, it is sufficient
for us to just focus on simulatability.

Below we formulate the property of simulatability by the zero-knowledge
paradigm, requiring that a simulator without knowing the input x and random-
ness can generate an indistinguishable σ′ for an arbitrary number of queries.

Definition 3.2 (Simulatability) We say that the Transfer algorithm can be
simulatable if there exists a two-stage probabilistic polynomial time simulator S
which can simulate the transfer algorithm in an indistinguishable way, without
knowing the input x and randomness to the commitment comm. More formally,
we define the syntax of the two-stage simulation process as follow.

– First, S generates params, together with some trapdoor information Trap.
– Second, S is given input params with the trapdoor Trap, and any arbitrary pk,

comm. Then S can generate a simulated transferred signature σ̃′.

Then the simulatability requires that for t = poly(λ), any {mi}i∈[t] ∈ M, ran-
domness {Randi,Rand′i}i∈[t], no probabilistic polynomial time distinguisher D
can distinguish (params, pk, {comm′i}i∈[t], {σ′i}i∈[t]) from (params, pk, {comm′i}i∈[t],
{σ̃′i}i∈[t]) with better than a negligible advantage, where

– in the former, the params and pk are sampled honestly, each commi = Commit
(params,mi; Randi), σi ← Sign(params, pk, sk, commi), comm′i = Randomize
(params, commi,Rand′i), and σ′i ← Transfer(params, pk, σi,mi, (Randi,Rand′i));

– in the latter, params is generated by the simulator, pk is sampled honestly,
comm′i is generated as above, and σ̃′i is generated by the simulator.

Definition 3.3 (Unforgeability for Commitment Relation) We say that
the algorithms as above define an unforgeable commit-transferable signature if
for all probabilistic polynomial-time adversaries A, the probability that A wins
the following game is negligible:

Input generation phase: On input 1λ, the challenger generates params ←
Setup(1λ), (sk, pk)← KeyGen(params).

Query phase: Given (params, pk) as input, the adversary A can access to the
following oracle: A makes queries with the form of (commi,mi,Randi), and gets
as responses σi = Sign(params, sk, commi) if commi = Commit(params,mi; Randi),
or ⊥ else.
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Challenge phase: Finally, the adversary A outputs (m∗,Rand, σ). Let comm∗ =
Commit(params,m∗; Rand), and A wins the game if Verify(params, pk, comm∗, σ)
accepts, and m∗ has never been queried in the query phase.

The scheme is selectively secure if the adversary needs to commit to the challenge
message m∗ before the input generation phase, and is adaptively secure if this
condition is not required.

Remark 3.4 Our notion of unforgeability requires the adversary to make queries
of the form (comm,m,Rand) such that comm = Commit(params,m,Rand). In
practical applications such as anonymous credentials and blind signature, this
form can be enforced by requiring the adversary to provide a zero-knowledge
proof of knowledge π, i.e., knowing a witness (m,Rand) such that comm =
Commit(params,m,Rand). In this way, an adversary who makes queries of (comm, π)
can be made equivalent to an adversary who makes queries of (comm,m,Rand).

Remark 3.5 As pointed out by [21], there is a subtlety about proving knowl-
edge of the commitment in the applications to anonymous credentials and blind
signatures – the knowledge extraction needs to be straight-line, as the rewinding
extraction would incur an exponential security loss (in the number of queries).
In Section 5, we show how to instantiate a competitively efficient straight-line
extractable NIZKPoK required by our anonymous credential construction.

Remark 3.6 A weaker notion of selective security can be considered where in
the above unforgeability game, the adversary needs to commit to both (m∗,Rand)
before the input generation phase. However, this weaker notion suffers from a
drawback – the upgrade to the adaptive security via the complexity leveraging
would incur |m∗|+|Rand| bits of security loss, whereas the above stronger selective
notion only incurs |m∗| bits security loss. As our construction (in Section 4) can
directly achieve the stronger notion as Definition 3.3, we do not consider this
weaker variant in this work.

Finally the overall security of the CTS can be defined as follow.

Definition 3.7 (Secure commit-transferable signature) The algorithms
Setup, Commit, KeyGen, Sign, Verify and Transfer constitute a secure commit-
transferable signature scheme if they constitute correct, simulatable and unforge-
able (for exact commitment relation) commit-secure signature scheme, i.e. satisfy
Definitions 3.1, 3.2, 3.3; and the commitment scheme (Setup,Commit) is hiding
and binding, satisfying Definitions A.10, A.11.

4 Efficient Construction for CTS

In this section, we first present a lattice-based commit-transferrable signature
scheme, and then show that it satisfies the properties of correctness, simulatabili-
ty, and unforgeability as defined in Section 3. Our construction uses the following
building blocks: (1) the BDLOP commitment scheme Γ = Γ.{CKeyGen,Commit,
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Open,Combine,Randomize}, and (2) a NIZKPoK systemΠ(1) = Π(1).{Setup,Prove,
VerifyProve,SimSetup} for the following language (parameterized by γ′, q ∈ N)16

Lγ′,q,C̄ =
{

(B,u) ∈ R`×(`·(2τ+1)+ˆ̀+k−n)
N,q ×R`N,q : ∃ x ∈ R`·(2τ+1)+ˆ̀+k−n

N,q and

f ∈ C̄ such that 0 < ‖x‖ ≤ γ′ and B · x = f · u
}
.

4.1 Construction

We first describe the required parameters in Table 5. Notice that in this work,
we consider the cyclotomic rings RN = Z[X]/(XN +1) and Rd = Z[X]/(Xd+1)
with N, d be powers of 2, and t = N/d. This type of ring is commonly used
in many constructions, as it is easy to analyze to the norm bounds under ring
operations, convenient to implement, and has an efficient zero-knowledge proof
system.

Param. Description

λ Security parameter

R,N, d, t Cyclotomic Ring for CTS and its dimensions N, d with t = N/d

q1, q2 Moduli used for BDLOP commitment scheme

n, k, ` Dimensions for the underlying BDLOP commitment scheme

M,M̄ M = M̄ `, M̄ is a subset of the ring RN,q2 consisting of

ω, ζ 2ζ non-zero binary polynomials elements with `1-norm be ω

δ, τ g> = (1, δ, . . . , δτ−1), δ = bq1/τ
2 e

Sβ Set of all elements in RN with `∞ norm at most β

α Parameter used in SamplePre

ˆ̀ Public matrix D ∈ R`×(`+ˆ̀)
N

η,M Parameters for rejection sampling algorithm

γ `2 norm parameter used in Verify algorithm for original signature

C, κ Challenge set of the NIZKPoK system Π(1) C = {c ∈ R : ‖c‖1 = κ, ‖c‖∞ = 1}
C̄ The set of differences C − C except 0

γ′ `2 norm parameter for “short” vectors in the language of Π

δ0 Root-Hermite Factor

Bit-sec Bit-security in time for our construction
Table 5. Parameters of Commit-Transferrable Signature Scheme

In our Construction 4.1, we directly set the dimensions of the underlying
BDLOP commitment as n, k, `, following from the presentation of Definition 2.3.

Construction 4.1 (Commit-Transferrable Signature) Our CTS is construct-
ed as follow.

16 Under current state of art, such a system Π(1) can be efficiently instantiated from
lattice-based assumptions, just as stated in Section 4.2.
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– Setup(1λ): On input the security parameter 1λ, the algorithm does:

1. Run Γ.CKeyGen to get A :=

[
In, A1

0`×n,A2

]
← Γ.CKeyGen(1λ), where [In,A1] ∈

Rn×kN,q1
and [0`×n,A2] ∈ R`×kN,q2

, with A1 ∈ Rn×(k−n)
N,q1

and A2 = (I`,A
′
2) ∈

R
`×(k−n)
N,q2

. Note that the commitment scheme sets message space M =

M̄` ⊆ R`N,q2 with randomness space Sk1 ⊆ RkN , where M̄ is a subset of the

ring RN,q2 consisting of 2ζ non-zero binary polynomials elements. More
specifically, let B be the set of non-zero binary polynomials in Rd,q2 . Then,
we can formally define the message space as M̄ := {m(Xt) ∈ RN,q2 : m ∈
B and ‖m‖1 = ω}.

2. Sample a random vector D
$←− R`×(`+ˆ̀)

N,q2
.

3. Set parameters κ, γ, γ′, and a gaussian parameter α;
4. Run Π.Setup(1λ) to get a common reference string crs;
5. Output params := (A,D, q1, q2, N, κ, γ, γ

′, α,M,R, crs).
– Commit(params,m; Rand): On input params, message m ∈ M̄, and random-

ness Rand := R ∈ Sk×(`·τ)
1 , the algorithm does the following.

1. Set G = I` ⊗ g> ∈ R`×(`·τ)
N , where I` ∈ R`×`N is the identity matrix and

g> = (1, δ, . . . , δτ−1).
2. Compute comm = Γ.Commit(A,mG; R) as the commitment of m, i.e.,

comm := C =

[
A1

A2

]
·R +

[
0n×(`·τ)

m ·G

]
∈ R(n+`)×(`·τ)

N,q2
.

– Randomize(params, comm,Rand′): On input params, Rand′ := R′ ∈ Sk×(`·τ)
1 ,

and comm, the algorithm computes and outputs comm′ = Γ.Randomize(A, comm,R′),17

i.e.,

comm′ := C′ =

[
A1

A2

]
·R +

[
0n×(`·τ)

m ·G

]
+

[
A1

A2

]
·R′ ∈ R(n+`)×(`·τ)

N,q2
.

– Combine(Rand,Rand′): Taking as input two randomness Rand := R ∈ Sk×(`·τ)
1 ,

and Rand′ := R′ ∈ Sk×(`·τ)
1 , the algorithm computes and outputs R̃ ∈ Sk×(`·τ)

2 ,
where R̃ = R + R′.

– KeyGen(params): On input params, the algorithm does:

1. Sample T
$←− S(`+ˆ̀)×(`·τ)

1 , and set A0 = D ·T + G ∈ R`×(`·τ)
N,q2

.

2. Sample B
$←− R`×(`·τ)

N,q2
and a non-zero u

$←− R`N,q2 .
3. Output pk := (A0,B,u), and sk := T.

– Sign(params, pk, sk, comm): On input params, pk, sk, and comm, the algorithm
does the following:

1. Parse comm := C =

[
C1

C2

]
∈ R

(n+`)×(`·τ)
N,q2

, where C1 ∈ R
n×(`·τ)
N,q2

, and

C2 ∈ R`×(`·τ)
N,q2

.

17 Notice that, if comm is a valid commitment of mG with randomness R, then comm′

is still a valid commitment of m, but with randomness R̂ = Γ.Combine(R,R′).
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2. Set Fcomm =
[
[D|A0]

∣∣Bcomm

∣∣A2

]
=
[
[D|A0]

∣∣[B + C2]
∣∣A2

]
, and sam-

ple Sigcomm :=

s1

s2

s3

 ← SamplePre(
[
[D|A0]

∣∣Bcomm

∣∣A2

]
,T,u, α),18 and out-

put Sigcomm as the signature of comm, where s1 =

[
s1,1

s1,2

]
, and s1,1 ∈

R`+
ˆ̀

N , s1,2 ∈ R`·τN , s2 ∈ R`·τN , s3 ∈ Rk−nN .
– Transfer(params, pk,Sigcomm,m, (Rand,Rand′)): On input params, pk, a signa-

ture Sigcomm, message m, randomness Rand := R ∈ Sk×(`·τ)
1 for generating the

commitment comm for m, the additional randomness Rand′ := R′ ∈ Sk×(`·τ)
1

for the rerandomization of comm, the algorithm does the followings:

1. Parse Sigcomm as vector

s1

s2

s3

 , where s1 ∈ R(1+τ)·`+ˆ̀

N , s2 ∈ R`·τN , s3 ∈

Rk−nN .

2. Run Commit(params,m; R) and obtain: comm := C =

[
C1

C2

]
∈ R(n+`)×(`·τ)

N,q2
.

3. Run Randomize (params, comm,R′) and obtain comm′ := C′ =

[
C′1
C′2

]
∈

R
(n+`)×(`·τ)
N,q2

.
4. Compute a (temporary) signature Sigcomm′ as

Sigcomm′ :=

 s1

s2

s3 − R̃2 · s2

 =

 s1,1

s1,2

s2

s3 − R̃2 · s2

 ∈ R`·(2τ+1)+ˆ̀+k−n,

where we denote R̃ = R + R′ =

[
R̃1

R̃2

]
∈ Rk×(`·τ)

N , with R̃1 ∈ Rn×(`·τ)
N

and R̃2 ∈ R(k−n)×(`·τ)
N .

5. Compute Fcomm′ :=
[
[D|A0]

∣∣Bcomm′
∣∣A2

]
=
[
[D|A0]

∣∣[B + C′2]
∣∣A2

]
.

6. Run the prove algorithm and output Sig′comm′ := π ← Π(1).Prove(crs2,
(Fcomm′ ,u),Sigcomm′), proving that Sigcomm′ is a short `2 norm vector and
satisfies Fcomm′ · Sigcomm′ = u, through using the NIZKPoK system Π(1)

with the relaxed language Lγ′,q2,C̄.
– Verify(params, pk, comm,Sig): On input params, pk, comm,Sig, the algorithm

does the following.

1. Parse comm := C =

[
C1

C2

]
∈ R

(n+`)×(`·τ)
N,q2

, where C1 ∈ R
n×(`·τ)
N,q2

, and

C2 ∈ R`×(`·τ)
N,q2

;
2. Based on the type of Sig, the verification works as follow.
• If Sig is a non-zero short vector within `2 norm γ, then the algorithm

does

18 Here, we implicitly use T as the G-trapdoor of the matrix [D|A0], which can be
easily extended to get the corresponding G-trapdoor for

[
[D|A0]

∣∣Bcomm

∣∣A2

]
.
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(a) Set matrix Fcomm :=
[
[D|A0]

∣∣[B + C2]
∣∣A>2 ] .

(b) Check whether Sig satisfies Fcomm ·

s1

s2

s3

 = u ∈ RN,q2 .

• If Sig is a proof of the NIZKPoK system Π(1),
(a) Set matrix Fcomm :=

[
[D|A0]

∣∣[B + C2]
∣∣A>2 ].

(b) Run the verify algorithm (with respect to language Lγ′,q2,C̄)
Π2.VerifyProve(crs, (Fcomm,u),Sig) and output its result.

Lemma 4.2 (Correctness) For parameters N, q2, α, γ, the NIZKPoK system
Π(1) for the relaxed language Lγ′,q2,C̄, Construction 4.1 satisfies the correctness
property as defined in Definition 3.1, where

γ = α

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N

γ′ ≥

((√
k − n+

√
` · τ

)
·N · α

√
2 · ` · τ + α

√(
` · (2τ + 1) + ˆ̀+ k − n

)
·N

)
The correctness directly follows the correctness of BDLOP commitment, the
completeness of the NIZKPoK system Π and our parameter settings. Due to
space limitation, we defer the proof in Appendix B.1.

4.2 Instantiation of NIZKPoK system Π(1) in CTS

Before presenting the NIZKPoK system Π(1), we first specify the concrete lan-
guage Lγ′,q2,C̄ in the algorithms Transfer and Verify,

Lγ′,q2,C̄ =
{

(Fcomm′ ,u) ∈ R`×(`·(2τ+1)+ˆ̀+k−n)
N,q2

×R`N,q2 : ∃ x ∈ R`·(2τ+1)+ˆ̀+k−n

and f ∈ C̄ such that 0 < ‖x‖ ≤ γ′ and Fcomm′ · x = f · u
}
.

Then, according to [6, 22], there exists such an efficient Π(1) for Lγ′,q2,C̄ . The
formal theorem is presented as follows.

Theorem 4.3 ( [6, 22]) In the random oracle model, there exists a NIZKPoK
system Π(1) for the relaxed language Lγ′,q2,C̄, with

γ′ =2

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N · η · κ

·
(

(
√
k − n+

√
` · τ) ·N · α

√
2 · ` · τ + α

√
2 · (` · (2τ + 1) + ˆ̀+ k − n) ·N

)
.

Moreover, assuming a t-time adversary A forging a proof with probability ε,
there exists a O(t/ε)-time extractor, who can successfully extract the witness x
and c ∈ C̄ with probability 1

2 .

Remark 4.4 Notice that the concrete instantiation of NIZKPoK system Π(1) in
Theorem 4.3 is essentially a Fiat-Shamir signature, which is quite practical.
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4.3 Security of CTS

In this section, we establish the simulatability and unforgeability of the above
Construction 4.1.

Lemma 4.5 (Simulatability) Suppose Π(1) is a NIZKPoK system, the algo-
rithm Transfer in Construction 4.1 is simulatable.

Proof. (Sketch) We show the simulatability of our construction by first con-
structing a two-stage ppt simulator S, and then proving that after running any

polynomial % = poly(λ) times, the distribution of {S̃ig
′
comm′i

}i∈[%] output by S
are statistically close to that of {Sig′comm′i

}i∈[%] output by Transfer. Due to space
limitation, we defer the full proof in Appendix B.2. ut

Below, we analyse the unforgeability of Construction 4.1. Before this, we first
specify the corresponding commitment relation L̂q1,q2 as follows.

L̂q1,q2 :=
{

comm : ∃(m, q1, q2,R) such that m ∈M,

R ∈ Sk×(`·τ)
1 and comm = Commit(params,m ·G;R)

}
.

Lemma 4.6 (Unforgeability) Suppose Π(1) is a rewinding-extractable NIZKPoK
system in the random oracle model, assume that M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν prob-
lem and M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν′ problem are hard with

ν =α

√
2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α ·N

√
2 · ` · τ + 1

ν′ =α′
√

2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α′ ·N

√
2 · ` · τ + 2

√
κ,

where α′ = γ′/

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N . Then our above lattice-based

commitment-transferrable signature scheme is partially selectively unforgeable for
the exact commitment relation L̂q1,q2 , i.e., the advantage of any ppt adversary
A against the partially selective unforgeability game of CTS is at most

AdvunforgeA (λ) ≤ 2AdvM-LWE
A + Advunforge

∗

A (λ).

Due to space limitation, we defer the detailed proof and the definition of Advunforge∗

A (λ)
in Appendix B.3.
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5 Efficient Straight-Line Extractable NIZKPoK System

In this section, we present a multi-theorem straight-line extractable NIZKPoK
systemΠ(2) to prove the well-formedness of commitment comm output by CTS.Commit.
In a high level way, we adopt the encrypt-and-prove paradigm, as in [2, 23, 41].
Particularly, this can be achieved by first encrypting the witness, and then prov-
ing that these encrypted message under the ciphertext satisfies the corresponding
relation.

For clarity of presentation, below we describe in a modular way: first we
present (i) the exact commitment relation L̂q1,q2 , and then (ii) the concrete
instantiation of encryption scheme, finally (iii) prove that the encrypted witness
indeed satisfies L̂q1,q2 .

5.1 Exact Commitment Relation L̂q1,q2

For the above Construction 4.1, we need to prove the exact commitment relation
L̂q1,q2 (implicitly including the commitment public parameter in the crs):

L̂q1,q2 :=
{

comm : ∃(m, q1, q2,R) such that m ∈ M̄,R ∈ Sk×(`·τ)
1

and comm = Commit(params,m ·G;R)
}
.

More precisely, we need to prove the following equations over RN,q1 and
RN,q2 :

comm := C =

[
C1

C2

]
=

[
A1

A2

]
·R +

[
0n×(`·τ)

m ·G

]
∈ Rn×(`·τ)

N,q2

∈ R`×(`·τ)
N,q2

. (1)

Furthermore, we can easily transfer the above Equation (1) into the following
equations.

C1 = A1 ·R mod q1, C2 = A2 ·R +m ·G mod q2, (2)

where R ∈ Sk×(`·τ)
1 , and m ∈ M̄, as defined in the setup algorithm of Construc-

tion 4.1. Moreover, ( mod q1) and ( mod q2) means the computations are conduct-
ed over RN,q1 and RN,q2 , respectively.

5.2 Concrete instantiation of PKE for the Encrypt-and-Prove
Paradigm

For the encryption scheme, we choose to use a variant of standard Regev public-
key encryption scheme with Rd = Z[x]/(Xd + 1) as the underlying ring. For
completeness, we present it as follows.

Construction 5.1 (Encryption Scheme E) The Ring-based Regev encryption
scheme is as follows.

– KeyGen(λ): Given a security parameter λ, the algorithm conducts the follow-
ing steps:
1. Choose two integers d, qPKE, where d is a power of 2, and qPKE is a prime;
2. Set nPKE,mPKE, kPKE, qPKE be integers.
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3. For the ring Rd = Z[X]/(Xd + 1), and let Rd,qPKE = ZqPKE [X]/(Xd + 1),

Ŝ2 be the set of elements from Rd with `∞-norm ≤ 2.

4. Sample APKE
$←− RnPKE×mPKE

d,qPKE
, S← ŜkPKE×nPKE

2 ,E← ŜkPKE×mPKE
2 .

5. Compute BPKE = S ·APKE + 3 ·E(modqPKE).
6. Output pk := (APKE,BPKE), sk := S.

– Enc(pk,µ): Given public key pk and the message vector µ> ∈ RkPKEd,qPKE
, where

each coefficient of µi is from {−1, 0, 1}, the algorithm conducts the following
steps:

1. Sample rPKE
$←− ŜmPKE

2 .

2. Compute c0 = APKE · rPKE ∈ RnPKE

d,qPKE
, c1 = BPKE · rPKE + µ ∈ RkPKEd,qPKE

.
3. Output ct = (c0, c1).

– Dec(pk, sk, ct): Given public key pk, secret key sk and the ciphertext ct =
(c0, c1), where c0 ∈ RnPKE

d,qPKE
, c1 ∈ RkPKEd,qPKE

, the algorithm conducts the follow-
ing steps:
1. Compute µ′ = c1 − S · c0 ∈ RkPKEd,qPKE

.
2. Return µ′ mod 3.

Correctness of Construction 5.1. Notice that for a properly formed ci-
phertext ct = (c0, c1), the correctness of decryption holds if the `∞-norm of
µ′ = c1 − S · c0 = 3E · rPKE + µ mod qPKE is smaller than qPKE/2. In this
case, we can directly compute µ′ mod 3 to recover µ. For this, we need to set
qPKE > 2(12 ·mPKE · d + 1). Moreover, in order to encrypt the random vectors
ri ∈ RN for i ∈ [4] and the message m ∈ Rd, we need to set kPKE = `·τ ·N/d·k+1.

Security of Construction 5.1. Clearly, the IND-CPA security follows from
the hardness of M-LWEqPKE,nPKE,mPKE,Ŝ2

. So we set qPKE, d, nPKE and mPKE =
2 ·nPKE + kPKE to achieve sufficient security. The concrete parameter setting are
presented in the following Table 11.

Overall, it is easy for us to set parameters to obtain correctness and security
simultaneously.

5.3 Proof of Witness Satisfying the Relation L̂q1,q2

Following from [2], we can instantiate the required zero-knowledge proof through
using LNP proof, i.e., Figure 10 in [41]. Particularly, we need to prove the knowl-
edge of ri ∈ RN ∼= Rtd with small norm where t = N/d, m ∈ RN is binary
polynomial with certain `1-norm, such that equations in (2) are set up.

Besides, we also need to prove the well-formedness of ct. This means the
existence of vector rPKE ∈ RmPKE

d that are small and satisfy the relations of the
Enc algorithm of Construction 5.1 for the message µ = (r1‖ . . . ‖r`·τ‖m),19 with
R = (r1, . . . , r`·τ ).

19 Similar to [41], according to the algebraic setting of our message space, we can just

express m(X) ∈ RN as a single binary polynomial m ∈ Rd, even RN ∼= R
N/d
d . This

will clearly improve the efficiency of the used PKE scheme and the corresponding
LNP proof.
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Concretely, we can first commit to the vector (rPKE‖r1‖ . . . ‖r`·τ‖m) through
using ABDLOP commitment (in the “Ajtai part”) [41], and then prove several
linear relations (from equations in (2) and the Enc algorithm of Construction
5.1), m are binary polynomial, and prove the following bounds:

(i) ‖rPKE‖2 ≤ 2
√
d ·mPKE; (ii) ‖ri‖2 ≤

√
kN ; (iii) ‖m‖1 = ω.

variable description instantiation

ρ # of equations to prove t0 = ` · τ ·N/d · (n+ `)
ρeval # of evaluations with const. coeff. zero 1
ve # of exact norm proofs ` · τ + 1
vd # non-exact norm proofs 1
kbin length of the binary vector to prove 1

s1 committed message in the Ajtai part (rPKE, r1, . . . , r`·τ ,m)
m committed message in the BDLOP part ∅ (no message)

f1, . . . , ft0 equations to prove Equations (2)

F1 evaluation to prove const coeff. zero σ−1(
∑d−1
i=0 X

i) ·m− ω
E1 public matrix for proving ‖E1s− v1‖ ≤ β(e)

1 [ImPKE 0 . . . 0 0]

v1 public vector for proving ‖E1s− v1‖ ≤ β(e)
1 0

β
(e)
1 upper-bound on ‖E1s− v1‖ ≤ β(e)

1 2
√
d ·mPKE

E2 public matrix for proving ‖E2s− v2‖ ≤ β(e)
2

[
0 Ik·N/d . . . 0 0

]
v2 public vector for proving ‖E2s− v2‖ ≤ β(e)

2 0

β
(e)
2 upper-bound on ‖E2s− v2‖ ≤ β(e)

2

√
N · k

...
...

...

Ei public matrix for proving ‖Eis− vi‖ ≤ β(e)
i

[
0 . . . Ik·N/d . . . 0 0

]
vi public vector for proving ‖Eis− vi‖ ≤ β(e)

i 0

β
(e)
i upper-bound on ‖Eis− vi‖ ≤ β(e)

i

√
N · k

...
...

...

E`·τ public matrix for proving ‖E`·τs− v`·τ‖ ≤ β(e)
`·τ

[
0 0 . . . Ik·N/d 0

]
v`·τ public vector for proving ‖E`·τs− v`·τ‖ ≤ β(e)

`·τ 0

β
(e)
`·τ upper-bound on ‖E`·τs− v`·τ‖ ≤ β(e)

`·τ

√
N · k

D1 public matrix for proving ‖D1s− u1‖ ≤ β(d)
1 q−1

PKE ·
[
APKE,0
BPKE, IkPKE

]
u1 public vector for proving ‖D1s− u1‖ ≤ β(d)

1 q−1
PKE ·

[
t0

t1

]
β

(d)
1 upper-bound on ‖D1s− u1‖ ≤ β(d)

1 (d ·mPKE + 1)
√

(nPKE + 1) · d
Ebin matrix for proving binary [0 . . . 0 1]
vbin vector for proving binary 0

Table 6. Instantiation of Figure 10 of [41] for multi-theorem straight-line extractable
NIZKPoK.

Similar to the concrete instantiations in [2,41], we just explain how to instan-
tiate the protocol in Figure 10 of [41], instead of presenting the detailed steps of
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LNP proof. Particularly, we show in Table 6 how to instantiate LNP proof, i.e.,
the protocol in Figure 10 of [41].

Overall, in order to help the readers to understand this process of instan-
tiating LNP proof, we try to use the same notations as in [41] to indicate the
corresponding variables. However, due to notation abusing, we use the addition-
al superscript star to distinguish symbols of LNP instantiation from these of
our CTS. Particularly, we list the concrete parameter selection in Table 1120,
among which we instantiate the variables d∗, κ∗, l∗, ν∗, γ1, γ2, γd, and γe as in
the Section 6.4 of [41] for group signature. This means our LNP instantiation
has the same underlying ring structure for ABDLOP and the related proof, and
the same expected repetition times M∗ = 7. Notice that, for the case of d ≥ 512,

we set κ∗ = 1 and η∗ such that

(
d/2
η∗

)
× 2κ ≥ 2128, rather than through the

experimental evaluation as in [41]. This is because conditioned on d ≥ 512, the
challenge space C for LNP proof is sufficiently large, i.e., |C| ≥ 2128, even with
the `∞-norm κ∗ = 1.

We set m1 = (mPKE + ` · τ · k) · N/d + 1 and ve = ` · τ + 1 to commit
to (rPKE, r1, . . . , r`·τ ,m), where ve indicates that the number of exact `2-norm
bounds we need to prove. Then, the parameters n,m2, γ,D are chosen to make
the underlying M-SIS and M-LWE problems for LNP proof have sufficient hard-
ness, and improve the proof size, through using the compression technique as
in [41].

Below, we elaborate how to choose suitable modulus qLNP for our instantiation
of LNP proof. Generally, our proof involves three types of equations: (i) the
left side of Equations (2) with modulus q1; (ii) the right side of Equations (2)
with modulus q2; (iii) the encryption equation of Construction 5.1 with modulus
qPKE. For each one, we have two approaches to complete the proof: (a) multiply
another prime to both sides of one equation, and then prove the linear relations
on the committed vectors over the multiplication of these two primes; and (b)
directly express the equation modulo a larger modulus that is co-prime to the
original modulus, and then prove the approximate `2-norm bound on linear
computation of the committed vectors. Here, in order to simplify the relations
to be proven, we set qLNP as a multiplication of q1 and q2, with which we directly
prove Equations (2) through using the above mentioned approach (a). With such
qLNP, we can prove the encryption equation of Construction 5.1 through using
the above mentioned approach (b). Of course, it is possible for us to choose
other much smaller qLNP. For example, we can prove the left side of Equations
(2), through choosing to use the above mentioned approach (b), rather than the
approach (a). But this will not significantly affect our final efficiency parameters.

6 Application to Anonymous Credentials

In this section, we present how to construct Anonymous Credentials from CTS
and NIZKPoK. Particularly, we first recall the definition and security requirement

20 Due to space limitation, we present this table in Section C.
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of the basic Anonymous Credentials in [37], and then describe the construction.
Then we describe how to extend the basic scheme into one that supports some
attribute settings.

6.1 Definition and Security of Anonymous Credentials

We use the formulation of Anonymous Credentials by Lysyanskaya [37]. A basic
credential system has users, organizations, and verifiers as types of players.
Users are entities that receive credentials. Organizations are entities that issue
the credentials of the users. Finally, verifiers are entities that verify credentials
of the users. Specifically, the system is defined as follows:

AC.Setup: System parameters params are generated, users generate their secret
key usk, and organizations generate their public and secret keys (pkO, skO);

AC.Registration: A user generates a pseudonym nym, and sends it to an orga-
nization. The user’s private input is usk. the organization does not have any
private input.

AC.Issue: As a result of this protocol, a user obtains a credential from an organi-
zation without revealing his private input, just based on his pseudonym nym.
The user’s private input to the protocol is his usk. The organization’s private
input is its secret key skO. And the user’s private output is the credential
Cred;

AC.Prove: The user who is known to one organization O1 under nym1, and to
a verifier under nym2, and a credential Cred from O1, proves to the verifier
that he has a credential from O1. The user’s private input to this protocol
consists of (usk, nym1,Cred), while the values nym2 and pkO1

are public;
AC.Verify: The verifier verifies if the user possesses a credential Cred with respect

to nym2 from O1 or not.

We follow the security formulation of [7] – an anonymous credential should
satisfy unforgeability, anonymity, and unlikability. Intuitively, unforgeability re-
quires that an adversary cannot provide a valid proof of credential Cred∗ with
respect to a pseudonym nym∗ of some usk∗ that he has never received a credential
from an organization.

Anonymity, informally, requires two different privacy properties: (1) privacy
against an organization: the organization cannot distinguish any two different
users with two different private inputs in the registration process, and (2) privacy
against a verifier: the proof of credential leaks no information other than the
validity of owning a credential with respect to the pseudonym.

Unlinkability requires that the adversary cannot distinguish whether (nym1,
π1) and (nym2, π2) are from the same user or not, where π1, π2 are two proofs
of credentials with respect to nym1 and nym2, respectively.

6.2 Anonymous Credentials from CTS

Now we show how to construct an anonymous credential system from a secure
CTS and a zero-knowledge proof of knowledge of commitment opening.
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Building blocks. Suppose we are given a secure commit-transferable signature
scheme (CTS.Setup,CTS.Commit,CTS.Randomize,CTS.KeyGen,CTS.Sign,
CTS.Transfer,CTS.Verify) as in Construction 4.1, and an efficient multi-theorem
straight-line extractable NIZKPoK Π = (NIZKSetup(params),NIZKProve,

NIZKVerify,SimSetup) for the following commitment relation L̂ as Definition 3.3.

L̂ =:
{

comm : ∃(m,Rand) such that comm = Commit(params, x,Rand)
}
.

Then we can construct an anonymous credential system as follows:

Construction 6.1 (Anonymous Credential) The anonymous credential
scheme can be constructed in the following way.

– AC.Setup: System runs CTS.Setup to obtain CTS.params, and runs
NIZKSetup(params) to obtain NIZKpara. An honest user U generates her se-
cret key usk by sampling Mparams. An honest organization O generates its
keys as follows: (skO, pkO)← CTS.KeyGen(params);

– AC.Registration: The user U first samples Rand ← Rparams and generates a
commitment comm = CTS.Commit(params, usk,Rand). Then U generates an
NIZK proof π by running NIZKProve(params, comm, usk,Rand). Furthermore,
U sends nym = (comm, π) as the pseudonym to the organization O. Finally,
O would run NIZKVerify to check whether the pseudonym (commitment) is
properly formed;

– AC.Issue: Suppose that a user U is known to organization O under pseudonym
nym = (comm, π)21. O computes σ ← CTS.Sign(params, skO, comm) and gives
Cred := σ to U ;

– AC.Prove: User U samples Rand′, and runs comm′ ← CTS.Randomize(comm,
Rand,Rand′). Then she computes σ′ = Transfer(params, pkO1

, usk,Rand,Rand′, σ),
which (by correctness of the CTS) is a signature under pkO1

on the commit-
ment comm′. Next, she gives the verifier the values σ′ and nym′ = (comm′, π′),
where π′ is an NIZK proof that comm′ is properly formed as well;

– AC.Verify: The verifier runs Verify(params, pkO1
, comm′, σ′) and the NIZK

verifier of π′ on input (σ′, nym′ = (comm′, π′)) to verify U ’s credential on
the new pseudonym nym′.

Security of the anonymous credential system follows from the security of CTS
and NIZKPoK Π with respect to the commitment relation L̂.

Theorem 6.2 Assuming that CTS is secure for the exact commit relation, and
Π is a secure multi-theorem straight-line extractable NIZKPoK system for L̂,
Construction 4.1 is a secure anonymous credential system.

Proof. (Sktech) Intuitively, the anonymity against the organization follows from
the security of NIZKPoK and hiding of the commitment scheme, and that against
the verifier follows from the simulatability of the CTS, as the transferred signa-
ture does not leak information beyond the validity. The unlinkability follows by

21 Here, we implicitly assume this π has been successfully verified, otherwise this nym
will be invalid.

29



the hiding property of the re-randomized commitments and the simulatability
of the CTS, so that any user cannot relate two pairs of pseudonym-proofs.

To prove unforgeability, we rely on the NIZKPoK extractor (of the commit-
ment relation) and the unforgeability of CTS. Assuming that there exists an
adversary A that forges a valid proof of the anonymous credential, then we can
construct a reduction B that breaks CTS unforgeability in the following way.
B first simulates the NIZKPoK and extracts A’s (m,Rand) in the commitment
of the registration queries, from the ZKPoK proof he provides. Then when A
makes an issue query, B makes a signing query to the CTS challenger. As B has
extracted the witness from the commitment, B can make a valid CTS signing
query. It is easy to verify that as long as A can forge a valid proof, B can break
the CTS unforgeability. We note that if the NIZKPoK is with respect to the ex-
act commitment relation, then B breaks CTS unforgeability with respect to the
exact relation. If the proof system is with respect to the relaxed commitment
relation, then B breaks CTS unforgeability with respect to the relaxed relation.
ut

6.3 Extension to Attribute-based Settings

In the above basic anonymous credential system, the user’s secret value usk
is her id or some secret key. In a more general setting of attribute-based cre-
dentials, the user’s secret value can include additional attributes, denoted as
att = (att1, . . . , att`) where each atti is some small integer (or a short bit string).
The user might wish to reveal some subset of the attributes to any party, e.g., an
organization or a verifier, while keep the other attributes and the secret key/id
private. This property of chosen disclosure of attributes has been identified use-
ful in the literature [12, 18, 29, 33]. We observe that our system can easily be
extended to support such an extension. Below we elaborate.

In the basic scheme, the user sets the message as the secret value, i.e., m =
usk, and generates a BDLOP commitment comm = Commit(m) for the CTS as a
pseudonym. Then the user proves well-formedness of the commitment and then
the organizations would sign on the commitment. To generalize to the attribute
setting, we can use m to encode usk and the attributes att, simultaneously. For
example, for m =

∑N−1
i=0 miX

i ∈ Zq2 [X]/〈XN +1〉, we can use the coefficients to
encode (usk‖att) (for simplicity we assume N to be the bit-length of (usk‖att),
i.e., N = |usk| + |att|). Then the user generates comm = Commit(m) as before,
yet with m under such an encoding.

To disclose some subset of attribute, say attI = {atti}i∈I for I ⊆ [N ], the
user can prove well-formedness of the commitment and additionally that the
coefficients of m corresponding to these attributes are consistent with attI . To
achieve this, we observe that it suffices to use the following protocol ΠDisclosure

in Table 17, which proves well-formedness of a BDLOP commitment Commit(m)
and as well consistency that a certain subset of coefficients in m are the same
as those were disclosed. To achieve this, we present the interactive protocol
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adapted from the ENS and LNP proof [25,41] in Table 1722, which can be made
non-interactive easily using the Fiat-Shamir Transform.

We notice that the above approach supports the case when we can embed
the usk and the attribute into one single ring element. A noticeable advantage
is that the proof size is essentially independent of the cardinality of I, i.e.,
the number of disclosed attributes. However, on the other hand, an oblivious
disadvantage is that the total bit-sizes of the embedded usk and attribute will
be strictly restricted, such as just 128 bits under our second parameter setting in
Tables 10 and 2 for efficient implementation, if we adopt the embedding approach
as in the first step of the Setup algorithm of Construction 4.1. Fortunately,
we can easily enlarge this space through modifying embedding approach. More
specifically, let B be the set of non-zero binary polynomials in Rd,q2 . Then, we
can formally define the message space as M̄ := {m = (m1‖ . . . ‖mt) ∈ RN,q2 :
mi ∈ B and ‖m‖1 = ω} with t = N/d. Here, we denote the part of m1 as usk,
and (m2, . . . ,mt) as attributes23. Then, through using LNP proof, we can prove
the well-formedness of such type of message, with almost the same efficiency
as original one in Construction 4.1. Technically, we use ‖m‖1 = ω to restrict
the size of the identity space, which is important to obtain efficient adaptive
construction from complexity leveraging. And (m2, . . . ,mt) allows us to encode
sufficiently large attributes for each user.

In our particular parameter selection for selective (or adaptive) construction,
the ring dimension d for LNP is 512 (or 1024), and ring dimension N for CTS is
2048 (or 4096). This allows that the final anonymous credentials system holds
sufficiently large number of different users, and each user has sufficient attributes.

22 Due to space limitation, we present this table in Section E.
23 Notice that if d is sufficiently large, we encode many attributes into one mi.
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2. S. Agrawal, E. Kirshanova, D. Stehlé, and A. Yadav. Practical, round-optimal
lattice-based blind signatures. In H. Yin, A. Stavrou, C. Cremers, and E. Shi,
editors, ACM CCS 2022, pages 39–53. ACM Press, Nov. 2022.

3. M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite,
F. Virdia, and T. Wunderer. Estimate all the LWE, NTRU schemes! In Catalano
and De Prisco [20], pages 351–367.
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Roadmap of the Appendix

Here we present a roadmap so that the readers can find relevant texts more easily.
In Section A, we present additional preliminaries. In Section B, we present the
security analysis of our selectively secure CTS. Going a step further, Section
C provides parameter setting details for CTS construction in Section 4.1 and
NIZKPoK system in Section 5. In Section E, we present the interactive protocol
to disclose certain coefficients of a committed polynomial, which can extend the
basic anonymous credentials system to attribute-based on supporting chosen
disclosure of attributes.

Notice that the CTS in Section 4 is just proven to be selectively secure. This
means we need to use the approach of complexity leveraging to achieve adaptive
security, which will induce security loss related to the size of message space. As
a technical supplement, in Section D, we present how to construct an adaptively
secure CTS without the complexity leveraging argument, and determine concrete
parameters.

A Supplementary Material for Section 2

A.1 Lattices with Algebra Structure

Below, we use R to denote a polynomial ring of the form Z[X]/(Φm(X)), where
Φm(X) is the mth cyclotomic polynomial, and denote N = ϕ(m). For an integer
q ∈ Z, we also consider the quotient ring Rq = R/qR. Any element in R can be
considered as a vector of its coefficients. Namely, an element a =

∑
i∈[N ] aix

i ∈ R
can be seen as the vector a = (a0, ..., aN−1). We call this map as coefficient
embedding (denoted as Coeffs(·)). Furthermore, we can also represent a ring
element a ∈ R as a matrix in ZN×N by the following map Rot : R→ ZN×N :

Rot(a) :=


Coeffs(a)>

Coeffs(xa mod Φ(x))>

...

Coeffs(xN−1a mod Φ(x) )>

 .
Furthermore, we extend this map to ring vectors and matrices by applying it
entry-wise, i.e., for a vector a> = (a1, . . . , a`) ∈ R`, we define Rot(a>) =
[Rot(a1)| . . . |Rot(a`)] ∈ Zn×n`, and the map for matrices can be defined sim-
ilarly. In the case of power of 2 cyclotomic rings, i.e., Φ(x) = xN + 1 for n being
some power of 2, the above rotation matrix Rot(a) is the anti-cyclic matrix.

If I is an ideal in the polynomial ring R, then it is also an additive sub-
group of ZN , and therefore a N -dimensional lattice. Such lattices are there-
fore sometimes referred to as ideal lattices. Similarly, we can also define the
module lattices M ⊆ (Q[X]/(Φm(X)))` as a `N -dimensional lattice. We simply
denote ideal lattices or module lattices as Λ.
Discrete Gaussian distribution. We now define the Gaussian distribution
used in our schemes.
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Definition A.1 The discrete Gaussian distribution on Λ ⊆ R` centered around

v ∈ R` with standard deviation s > 0 is given by DΛ,v,s(x) = e−‖x−v‖2/2s2∑
z∈Λ e

−‖z−v‖2/2s2 .

When it is centered around 0, we denote DΛ,s for short.

Specifically, for ring vector x, we write x ← DΛ,s to mean that x ∈ Λ ⊆ R`

and every coefficient of each component xi ∈ R is distributed according to DZ,s.
Then, we have the following properties.

Lemma A.2 ( [40]) Let Ds is a discrete Gaussian distribution over the ring

R. Then for x← D`
s, it holds Pr

[
‖x‖ > t · s

√
`N
]
≤
(
te

1−t2
2

)`N
For positive integers δ and k = dlogδ(q)e, let g>δ = [1|δ|δ2|...|δk−1] ∈ Rk be

the gadget matrix. Then we have the following lemmas.

Lemma A.3 ( [46]) There exists an efficient algorithm that on input ring vec-
tor a ∈ R`q such that Rot(a>) ∈ ZN×N` is full-rank, elements x ∈ R∗q , u ∈ Rq and

matrix R ∈ R`×kq , outputs a random sample r ∈ R`+k from a distribution that

is statistically close to DΛuq [a>|a>R+x·g>δ ],σ(x), where σ ≥ 2
√
δ2 + 1(s1(R) + 1).

Lemma A.4 ( [46]) For g>δ = [1|δ|δ2|...|δk−1] ∈ Rk, there exists a determin-
istic polynomial time algorithm G−1 which takes input u ∈ Rkq , and outputs

R← G−1(u>) such that gδ ·R = u>, such that s1(R) ≤ kNδ.

We here recall the definition of smoothing parameter of a lattice and its upper
bound as follow.

Definition A.5 ( [47]) For any n-dimensional lattice Λ and positive real εs >
0, the smoothing parameter ηεs(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0})
≤ εs, where Λ∗ is the dual lattice of Λ.

Lemma A.6 (Generalization of Lemma 2.6 in [45] to ring setting) For
any primitive matrix P ∈ R`×k, positive reals α, σ > 0, and negligible ε, if

P ·P> = α2 · I and ηε(ker(P)) ≤ σ, then P ·DkN
σ

s
≈ D`N

ασ .

From Lemmas A.3 and A.6, we have the following lemma.

Lemma A.7 There exists an efficient algorithm that on input ring vectors a1 ∈
R`1q ,a2 ∈ R`2q such that Rot([a>1 |a>2 ]) ∈ ZN×N(`1+`2) is full-rank, elements x, c ∈
R∗q , u ∈ Rq with ‖c‖2 ≤ τ and matrices R1 ∈ R`1×kq ,R2 ∈ R`2×kq , outputs a

random sample r ∈ R`1+`2+k from a distribution that is statistically close to

Dσ(Λuq [a>1 |a>1 R1 + a>2 R2 + x · g>δ |a>2 ]), where σ ≥ 2
√
δ2 + 1(s1(

[
R1

R2

]
) + 1).

Proof. Given the vector [a>1 |a>1 R1 + a>2 R2 + x · g>δ |a>2 ] ∈ R`1+`2+k
q , consider

matrix

P =

I`1 0 0
0 0 Ik
0 I`2 0

 ∈ R(`1+`2+k)×(`1+`2+k)
q ,
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we have [a>1 |a>2 |a>1 R1 + a>2 R2 + x · g>δ ] = [a>1 |a>1 R1 + a>2 R2 + x · g>δ |a>2 ] ·P.

Let ` = `1 + `2, a> = [a>1 |a>2 ] ∈ R`q, and R =

[
−R1

−R2

]
. Clearly, we have

[a>|a>1 R1 + a>2 R2 + x · g>δ ] ·
[

R
1

]
= x · g>δ , where x and 1 are invertible ring

elements. Hence, we can view this matrix R as the G-trapdoor.

Therefore, by Lemma A.3, we can sample vector r ∈ R`+k such that [a>|a>R+
x·g>δ ]·r = u ( mod q), and the distribution of r is statistically close to Dσ(Λuq [a>|
a>R+x·g>δ ]), where σ ≥ 2

√
δ2 + 1(s1(R)+1). As a result, [a>1 |a>1 R1 +a>2 R2 +

x · g>δ |a>2 ] ·P · r = u (modq). Furthermore, by Lemma A.6, the distribution of
P · r is statistically close to Dσ(Λuq [a>1 |a>1 R1 +a>2 R2 + x · g>δ |a>2 ]) (it’s easy to

see P ·P> = I and ηε ≤ σ). This completes the proof. ut

In this paper, we use the following sampling algorithm. The following lemma
have been established in a sequence of works.

Lemma A.8 ( [1, 31]) Given integers n ≥ 1, q ≥ 2 there exists some m =
m(n, q) = O(n log q), there exists a sampling algorithm SamplePre(A,TA,u, s),
that takes as input: (1) a rank-n matrix A ∈ Zn×mq , (2) a “short” basis TA for

lattice Λ⊥q (A), a vector u ∈ Znq , (3) a Gaussian parameter s > ‖T̃A‖·ω(
√

logm);
then outputs a vector r ∈ Zm distributed statistically close to DΛu

q (A),s.

We note that when A ∈ R`×kq is a ring matrix, and TA is the trapdoor for A,

the SamplePre algorithm also works by taking A as a matrix in Z`N×kNq , which
is the coefficient embedding of A.

A.2 Rejection Sampling

Lemma A.9 (Rejection Sampling) Let V be a subset of Rm in which all
elements have norms less than T , and h : V → [0, 1] be a probability distribution.
Let σ = ηT for η = O(

√
λ) and

M = exp

(√
2(λ+ 1)

log e
· 1

η
+

1

2η2

)
= O(1).

Now, sample v
$←− h and y

$←− Dm
σ , set z = y + v, and run b ← Rej(z,v, σ)

in Table 7. Then, the probability that b = 0 is at least 1−2−λ

M . And conditioned

on b = 0, the distribution of (v, z) is within statistical distance of 2−λ

M of the
product distribution h×Dm

σ .

A.3 Security of Commitment

A secure commitment scheme requires the two properties: hiding and binding.
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Rej(z,v, σ)

01 u
$←− [0, 1)

02 If u > 1
M
· exp(−2〈z,v〉+‖v‖2

2σ2 )
03 return 0 (i.e. abort)
04 Else
05 return 1 (i.e. non-abort)
Table 7. Rejection Sampling.

Definition A.10 (Hiding, [6]) We say that a commitment scheme (CKeyGen,
Commit,Open) with message space M and randomness space R is hiding, if for
all adversaries A, the probability (over the randomness of CKeyGen,Commit, and
A) that b′ = b in the following experiment is negligible:

Parameter setup The challenger sets up params ← CKeyGen(1λ), and send
params to A.

Message selection A(params) selects two messages m0,m1 ∈ M, and then
sends them to C.

Commitments The challenger computes commb = Commit(params,mb; r), where

b
$←− {0, 1}, r $←− R, and sends commb to A.

Output A outputs a bit b′.

If A are restricted to polynomial-time algorithms, then the scheme is called
computationally hiding. If there is no restriction on the running time of such
algorithms, then the scheme is statistically hiding.

Definition A.11 (Binding, [6]) We say that a commitment scheme (CKeyGen,
Commit,Open) with message spaceM and randomness space R is binding, if for
all adversaries A, the probability

Pr


params← CKeyGen(1λ),

(m,m′, r, r′, comm)← A(params)

s.t. m 6= m′ ∧ Open(params,m, comm, r) =

Open(params,m′, comm, r′) = 1

 ≤ negl(λ),

where the probability is taken over the randomness of CKeyGen and A.
Similarly, if A are restricted to polynomial-time algorithms, then the scheme

is called computationally binding. If there is no restriction on the running time
of such algorithms, then the scheme is statistically binding.

A.4 Algebraic Structure of Cyclotomic Rings

In this section, we first recall some necessary algebraic background, and then
introduce the related and necessary lemmas for our constructions.

We focus mainly on the algebraic structure of cyclotomic rings of integers
RN = Z[X]/〈XN + 1〉 and Rd = Z[X]/〈Xd + 1〉 with dimension N and d,
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respectively. Given certain prime q, we can define RN,q = Zq[X]/〈XN + 1〉 (or
Rd = Zq[X]/〈Xd + 1〉), where each coefficient of RN,q (or Rd,q) are in Zq.

Additionally, if d|N and t = N/d, Rd can be viewed as a subring of RN , i.e.,
RN ∼= Rtd. According to [41, 42], there is an efficiently computable ring isomor-
phism between RN and Rd, for an appropriately defined vector multiplication in
R, which preserves norms. Therefore, any relations over RN,q can be expressed
as the corresponding relations over Rd,q.

We consider the algebraic structure ofm-th cyclotomic fieldK = Q[X]/〈Φm(X)〉
of degree d = φ(m) with the ring of integers R = Z[X]/〈Φm(X)〉. Here, K is
a d-degree Galois extension of Q. Then, we use G = Gal(K/Q) to denote the
Galois group of K, which consists of all automorphisms of K and is computed
under composition. Clearly, all these automorphisms fix the rational numbers
Q, i.e., for any σ ∈ G and any x ∈ Q, it holds σ(x) = x. Conversely, cyclotomic
field are Galois over Q meaning that only the elements of Q are fixed by all
automorphisms in G.

Moreover, the Galois group G of K is isomorphic to Z×m, where the isomor-
phism j 7→ σj : Z×m 7→ Gal(K/Q) is defined by σj(X) = Xj . In general, the
degree of a Galois extension of a field is always equal to the order of its Galois
group. The main theorem of Galois theory says that there is one-by-one corre-
spondence between the subgroups of G and the subfields of K. For example, let
H to be a subgroup of G, i.e., H < G. Then H is corresponded to a subfield L
of K, i.e., L < K. And H is the Galois group of K over L, i.e., H = Gal(K/L)
consists of the automorphisms of K that fix the elements in L. Conversely, as
the subfield of K, L consists precisely of all the elements that are fixed by all
automorphisms in H, and thus L is called as the fixed field of H. This implies
that the extension K/L is again Galois.

Furthermore, by restricting the automorphisms of K to the cyclotomic ring
R ⊂ K, we get ring automorphisms of R. And the property that certain subset
S ⊂ R is fixed under automorphisms is still set up. More formally, we have the
following lemma from [22].

Lemma A.12 (Theorem 3.1 in [22]) Let K be a cyclotomic number field with
the ring of integers R, and let L be a subfield of K with the ring of integers S.
Let G denote the Galois group of K, and H denote a subgroup that consists of
all these automorphisms fixing L. Let q is a prime number that is inert in the
subfield L, µ ∈ Rq be an element that is fixed modulo q by all Galois automor-
phisms σ ∈ H; that is, σ(µ) ≡ µ(modqR) for all σ ∈ H. Then, µ is contained
in the subfield Sq of Rq.

Moreover, for the special case of power-of-two cyclotomic rings, given a power
of 2 integer n, we denote R = Z[X]/〈Xd+1〉 as the related cyclotomic ring, since
Xd+1 is the 2d-th cyclotomic polynomial. Similarly, we denote K = Q[X]/〈Xd+
1〉 as the related cyclotomic field, which is a d-degree Galois extension of Q.
Here, the Galois group G of K is isomorphic to Z×2d, which has the structure
Z2 × Zd/2. Notice that the cyclic subgroup Z2 and Zd/2 are generated by σ−1

and σ5, respectively.
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Given a prime q and the integer ring R = Z[X]/〈Xd + 1〉, we need to ensure
the message space M ⊆ Rq is a subfield of K = Q[X]/〈Xd + 1〉. According
to the above mentioned Galois group structure of general cyclotomic rings, the
necessary and sufficient conditions for M to be a subfield is:

1. Its elements are fixed by a subgroup of G. This means that the message is
contained in Sq = S/qS where S ⊆ R is the ring of integers of a subfield of
K.

2. Prime number q stay inert in S such that Sq is a field.

With respect to the above two conditions, we have the following two formal
lemmas from [22].

Lemma A.13 (Theorem 3.2 in [22]) Let d > k ≥ 1 be powers of 2. The
subgroup H = 〈σ−1, σ

k
5 〉 of the Galois group G = Gal(K/Q) has index k. Its

fixed field L is generated by α = Xd− d
2k −X d

2k over Q inside K, L = Q[α] ⊂ K.

Lemma A.14 (Theorem 3.3 in [22]) The prime numbers that are inert in
the fixed field L of 〈σ−1, σ

k
5 〉 with 1 < k < d be power of two, are precisely the

primes that are congruent to 3 or 5 modulo 8. They split into two prime ideals
in K.

A.5 Well-formedness of BDLOP commitment

In this section, we present how to achieve the well-formedness of BDLOP com-
mitment, through using relaxed relation. Particularly, we first present the related
relaxed relation with respect to the well-formedness of BDLOP commitment, and
then present the concrete protocol. Finally, we analyze the efficiency of this con-
crete protocol, and compare it with that of the previous opening proof in [6,22].

We first consider the following language for the relaxed relation of BDLOP:

Lγ′1,γ′2,q1,q2,C̄ :=
{

(A1,A2, t1, t2) : ∃ (r,m) and f ∈ C̄ such that 0 < ‖r‖ ≤ γ′1,

0 < ‖m‖ ≤ γ′2, and

[
A1 0
A2 I

]
·
[
r
m

]
= f ·

[
t1

t2

]}
.

By using the technique of [6,22], we can construct a NIZKPoK (with rewinding-
type extractions) as following. For the BDLOP scheme with small non-zero mes-
sage, i.e., ‖m‖ ≤ γ′2 , the stronger well-formedness can be achieved.

Interactive Proof Protocol

The interactive version is presented in Table 8.

Proof of Theorem A.15

Theorem A.15 In the random oracle model, for a secure BDLOP commitment
scheme, there exists a NIZKPoK system Π for the relaxed language Lγ′1,γ′2,q1,q2,C̄,

with γ′1 = 2
√

2η ·
√
κ ·β ·kN and γ′2 = 2

√
2η ·
√
κ ·β ·`N , where η is the parameter

for rejection sampling as in Lemma A.9.

40



Prover P Verifier V
Inputs:

A1 ∈ Rn×kq1 ,A2 ∈ R`×kq2 A1,A2

A =

[
A1 0
A2 I

]
A,t1, t2

t1 ∈ Rnq1 , t2 ∈ Rkq2 B1 ≥ σ1 ·
√

2N · k
r ∈ Snβ ,m ∈ S`β′ B2 ≥ σ2 ·

√
2N · `

y1 ← Dkσ1
y2 ← D`σ2

w1 = A1 · y1

w2 = A2 · y1 + y2

w1,w2−−−−→
c←−−−− c

$←− C
z1 = y1 + c · r
z2 = y2 + c ·m

z1,z2−−−→
If Rej(z1, c · r, σ1) = 1

or Rej(z2, c ·m, σ2) = 1,
abort

Check:
‖z1‖ ≤ B1, ‖z2‖ ≤ B2

A1 · z1 = w1 + c · t1

A2 · z1 + z2 = w2 + c · t2

Table 8. Well-formedness proof of BDLOP commitment.

Proof. Essentially, this proof consists of two steps: the first is that of proving
the protocol in Table 8 is complete, statistical honest verifier zero-knowledge and
computational sound under the M-SIS assumption; the second is that of making
it non-interactive with the help of the standard Fiat-Shamir technique. As the
second one is natural, it suffices for us to just focus on the first one. Details are
given as follows.

Completeness. The vectors z1, z2 sent by P are independent and their distri-
butions have statistical distance at most 2−λ from Dnσ1

and D`σ2
respectively, by

Lemma A.9 on rejection sampling. Furthermore, Lemma A.2 implies that the
bounds ‖zi‖2 ≤ Bi holds with overwhelming probability. Besides, it is easy to
verify that all of the other verification equations are always true for the messages
sent by P.

Statistical honest verifier zero-knowledge. Here, we just need to prove that
the protocol is zero-knowledge when P does not abort prior to sending zi. This is
because after converting into non-interactive proofs via Fiat-Shamir transform, V
never sees the aborting transcripts. We can prove this zero-knowledge properties
by designing a ppt simulator S whose outputs are statistically close to the
transcript of real protocol. Particularly, given matrices A1 ∈ Rn×kq1 , A2 ∈ R`×kq2 ,

and commitment vectors t1 ∈ Rnq1 , t2 ∈ R`q2 , S conducts the followings
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Prover P Verifier V
Inputs:

For i ∈ [τ ]:

A1,i ∈ Rni×kiq1 Ai,1,Ai,2

A2,i ∈ R`i×kiq2 Bi

Bi ∈ Rx×`iq2

Ai =

[
Ai,1 0i
Ai,2 Ii

]
Ai,ti,1, ti,2

with zero matrix:

0i ∈ Rni×`i
identity matrix:

Ii ∈ R`i×`i
ti,1 ∈ Rniq1 , ti,2 ∈ R

ki
q2 Bi,1 ≥ σi,1 ·

√
N · ki

ri ∈ Sniβ ,mi ∈ S`iβ′ Bi,2 ≥ σi,2 ·
√
N · `i

s.t.[
ti,1
ti,2

]
= Ai

[
ri,1
mi,2

]
∑

Bimi = 0 ∈ Rxq2

For ∀i ∈ [τ ]

yi,1 ← Dkiσi,1
yi,2 ← D`iσi,2

wi,1 = Ai,1 · yi,1
wi,2 = Ai,2 · yi,1 + yi,2
w2 =

∑
iBiAi,2yi,1

w2

wi,1

wi,2−−→
c←−−−− c

$←− C
zi,1 = yi,1 + c · ri
zi,2 = yi,2 + c ·mi

z1,z2−−−→
For ∀i ∈ [τ ], if

Rej(zi,1, c · ri, σi,1) = 1
or

Rej(zi,2, c ·mi, σi,2) = 1,
abort

Check: for ∀i ∈ [τ ]
‖zi,1‖ ≤ Bi,1
‖zi,2‖ ≤ Bi,2

Ai,1 · zi,1
= wi,1 + c · ti,1
Ai,2 · zi,1 + zi,2

= wi,2 + c · ti,2∑
BiAi,2zi,1

= c
∑

Biti,2 + w2

Table 9. Linear-relationship Proof of BDLOP commitment.
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– Sample c
$←− C;

– Sample z1 ← Dkσ1
, and z2 ← D`σ2

;
– Set w1 = A1 · z1 − c · t1, w2 = A2 · z1 + z2 − c · t2;
– Output (w1,w2, c,z1, z2).

Clearly, the vectors z1, z2 output by S will be accepted with overwhelming
probability. Besides, the distribution of zi output in the real protocol is with-
in a negligible statistical distance of Dkσ1

or D`σ2
. Since w1,w2 are completely

determined by A1,A2, t1, t2, c, z1, z2, the output distribution of S is within a
negligible statistical distance of these random variables in the actual protocol.

Special soundness. Suppose there exists an adversary A who can produce a
valid proof π := (w1,w2, c,z1, z2) for two vectors (t1, t2) /∈ Lγ′1,γ′2,q1,q2,C̄ . Then,

we can rewind A to obtain another adversary π := (w1,w2, c
′, z′1, z

′
2) with c 6= c′

and c̄ = c− c′ ∈ C̄ is invertible. Then, we can compute f = (c− c′) ∈ C̄, and set
r̄ = z1 − z′1, m̄ = z2 − z′2 such that A1 · r̄ = f · t1, and A2 · r̄ + m̄ = f · t2.

Below, we compute the `2-norm of the extracted vectors r̄, m̄. According
to the rejection sampling in Lemma A.9 and ‖r‖∞ ≤ β, ‖m‖∞ ≤ β′, we need
to set σ1 = η ·

√
κ · β ·

√
kN and σ2 = η ·

√
κ · β′ ·

√
`N . And thus, we get

‖r̄‖2 ≤ 2
√

2 · σ1 ·
√
kN = 2

√
2η ·
√
κ · β · kN = γ′1 and ‖m̄‖2 ≤ 2

√
2 · σ2 ·

√
`N =

2
√

2η ·
√
κ · β′ · `N = γ′2, where η is the parameter for rejection sampling as

in Lemma A.9. This implies we can view (r̄, m̄) as a witness for (t1, t2) ∈
Lγ′1,γ′2,q1,q2,C̄ . However, this is clearly contradictive with the previous assumption

that (t1, t2) is not in the language Lγ′1,γ′2,q1,q2,C̄ , which implies the protocol is
computationally special soundness. Notice that this special soundness implicitly
implies the properties of computational soundness. ut

Proof Size of Non-Interactive Protocol

In this section, we analyze the efficiency of the non-interactive protocol of Table
8. This means that the challenge c ∈ C is computed by P via hashing all previous
messages and public information. And the hash function is modeled as a random
oracle. In order to shorten the length of the proof, we can adopt a standard
technique that is not to directly send the input to the hash function, but rather
send its output (i.e. the challenge). In this case, given the transmitted vector zi,
the verifier can recompute the input, through using the verification equation, and
then check that the hash of these computed input terms is indeed the transmitted
challenge c. As a result, the proof size of the non-interactive protocol consists of
that of vectors zi and the challenge c, i.e.,

k ·N · dlog(12σ1)e+ ` ·N · dlog(12σ2)e+ 256,

where the output size of random oracle is supposed to be 256 bits.
Notice that for our parameter setting on Construction 4.1 (i.e., n = ` =

1,k = 3), if we choose message polynomial m with coefficients in {−1, 0, 1}, this
proof of well-formedness is just larger than the previous opening proof in [6,22]
by one third times. Clearly, this overhead is mild.
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Additional Properties of the Protocol in Table 8

In this section, we first present a proof of knowledge on linear relationship as

in [22]. Particularly, given a set of commitments ti =

[
ti,1
ti,2

]
, we prove that their

openings mi satisfying
∑

Bimi = 0 for any fixed Bi. The detailed protocol is
presented in Table 9. Here, due to the similarity with [22], we omit the detailed
proof of completeness, honest-verifier zero-knowledge, and special soundness for
simplity.

Moreover, just as mentioned in Section 2.3, our new well-formedness proof
in Table 8 can prevent the mix-and-match attacks for our anonymous credential
systems. In order to specify this more clearly, below we first introduce what the
mix-and-match attack is, and then argue this will induce a solution for M-SIS
problem.

Definition A.16 (Mix-and-Match attack) Given a pair of BDLOP public
matrices A1,A2 and two vectors t1,1, t1,2, together with an opening NIZKPoK

proof π showing that

[
t1,1
t1,2

]
is a valid commitment with respect to A1,A2, if the

adversary can find out a new vector t2,1 together with a new opening NIZKPoK

proof π′ showing that

[
t2,1
t1,2

]
is a valid commitment with respect to A1,A2.

Definition A.17 (Commitment-Proof Binding Property) We say the BDLOP
commitment scheme and its NIZKPoK proof system Π satisfy the commitment-
proof binding property, if they can resist mix-and-match attacks, i.e., it is neg-
ligible for any ppt adversary to find a vector t2,1 and a proof π′ to conduct a
successful mix-and-match attack.

It is easy to verify that for BDLOP commitment scheme, the previous opening
proof systems as in [6,22] can not satisfy the commitment-proof binding property.
Particularly, suppose t1 is a valid commitment of m, with respect to the public

matrices A1, A2. This means t1 =

[
t1,1
t1,2

]
=

[
A1

A2

]
r1 +

[
0
m

]
. According to the

opening proof for BDLOP commitment in [6, 22], given their opening proofs π1,
the corresponding extracted openings are (m, r̄1, f1) such that A1 · r̄1 = f1 · t1,1
and m = t1,2 − f−1

1 ·A2r̄1.
In this case, through computing t2,1 = A1r2, the adversary can obtain a

modified commitment t′1 =

[
t2,1
t1,2

]
. Furthermore, the adversary can directly use

r2 to generate opening proof π′ for t′1, and the corresponding extracted openings
are (m′, r̄2, f2), such that A1 · r̄2 = f2 · t2,1 and m′ = t1,2− f−1

2 ·A2r̄2. Clearly,
this is a successful mix-and-match attack.

Fortunately, for our new proof in Table 8, this attack can be prevented.

Claim A.18 When using the protocol in Table 8 as the opening proof, the
BDLOP commitment satisfies the commitment-proof binding property.
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Proof. Generally, we give a reduction that if the adversary can conduct the mix-
and-match attacks successfully, then we can construct a new algorithm to solve
the M-SIS problem.

Particularly, suppose t1 =

[
t1,1
t1,2

]
is a valid commitment of m, with respect

to the public matrices A1, A2. This means

[
A1 0
A2 I

]
·
[
r
m

]
=

[
t1,1
t1,2

]
. Through

using the new proof in Table 8, one can extract witness (r̄, m̄, f) such that
A1 · r̄ = f · t1,1 and A2 · r̄ + m̄ = f · t1,2, which implies

[A2, I]

[
r̄
m̄

]
= f · t1,2. (3)

Here, assume the adversary can compute a vector t2,1 6= t1,1 such that the

modified commitment t′1 =

[
t2,1
t1,2

]
is valid. This means

[
A1 0
A2 I

]
·
[
r′

m′

]
=

[
t2,1
t1,2

]
for certain vectors r′,m′. Furthermore, through using the new proof in Table 8,
the extracted witness is (r̄′, m̄′, f ′) such that A1 · r̄′ = f ′ ·t2,1 and A2 · r̄′+m̄′ =
f ′ · t1,2, which implies

[A2, I]

[
r̄′

m̄′

]
= f ′ · t1,2. (4)

Through multiplying f ′ and f into Equations (3) and (4), we can get

[A2, I]

[
f ′ · r̄
f ′ · m̄

]
= f ′ · f · t1,2 (5)

and

[A2, I]

[
f · r̄′
f · m̄′

]
= f · f ′ · t1,2. (6)

And through subtracting (6) from (5), we can get

[A2, I]

[
f ′ · r̄ − f · r̄′
f ′ · m̄− f · m̄′

]
= 0. (7)

Below, we just need to prove that

[
f ′ · r̄ − f · r̄′
f ′ · m̄− f · m̄′

]
is a non-zero short

vector. First, as both f, f ′ are small, and the `2 norms of all vectors r̄, r̄′, m̄, m̄′

are small, the `2 norm of

[
f ′ · r̄ − f · r̄′
f ′ · m̄− f · m̄′

]
should be bounded by a small value

too.
Second, from A1 · r̄ = f · t1,1 and A1 · r̄′ = f · t2,1, we know that

A1 · (f ′ · r̄ − f · r̄′) = f ′f · t1,1 − f · f ′ · t2,1.

Then, by the assumption that t2,1 6= t1,1, we know the above equation is
non-zero, which implies (f ′ · r̄ − f · r̄′) 6= 0. Finally, this implies the vector[
f ′ · r̄ − f · r̄′
f ′ · m̄− f · m̄′

]
is non-zero.
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Overall, this implies if there exists the adversary successfully conducting mix-
and-match attacks, then we can construct another reduction algorithm to solve
M-SIS problem with respect to [A2, I]. ut

A.6 Security for NIZK

Let’s recall the notion of non-interactive zero-knowledge (NIZK) proof system.

Definition A.19 ( [23]) Let R be a relation. A non-interactive proof system
Π for R is a tuple of PPT algorithms (Setup,Prove,Verify,SimSetup) having the
following interfaces (where 1λ are implicit inputs to Prove,Verify,SimSetup):

– Setup(1λ) : given a security parameter λ, outputs a string crs.
– Prove(crs, x, w): given a string crs and a statement-witness pair (x,w) ∈ R,

outputs a proof π.
– Verify(crs, x, π): given a string crs, a statement x, and a proof π, either accepts

or rejects.
– SimSetup(1λ): given a security parameter λ, outputs a simulated string ĉrs and

a trapdoor tk.

A secure NIZK system Π should have three properties: Completeness, Sound-
ness, and Zero-knowledge. As argued by [5, 21, 25, 27], Fiat-Shamir based proof
systems in the random oracle model satisfy these properties. Many recent lattice-
based efficient NIZKs are Fiat-Shamir based, so they also enjoy this property.
We require that the following three properties hold:

– Completeness: for every (x,w) ∈ R and every λ, Verify(crs, x, π) accepts with
probability 1, over the choice of crs← Setup(1λ) and π ← Prove(crs, x, w).

– Soundness : let LR be the language defined by relation R. For any ppt
adversary A,

Prcrs←Setup(1λ)

[
∃x s.t.π∗ ← A(crs, x) : Verify(crs, x, π∗) accepts ∧ x /∈ LR

]
≤ negl(λ).

– Zero-Knowledge : There exists one ppt algorithm SimProve, such that, for
any ppt adversary A we have |Pr[A wins] − 1

2 | ≤ negl(λ) in the following
game:
1. The challenger samples (ĉrs, tk)← SimSetup(1λ) such that ĉrs is indistin-

guishable from crs output by Setup, and gives the simulated ĉrs to A.
2. The adversary A chooses (x,w) ∈ R and gives these to the challenger.
3. The challenger samples π0 ← Prove(crs, x, w), π1 ← SimProve(ĉrs, x, tk), b←
{0, 1} and gives πb to A.

4. The adversary A outputs a bit b′ and wins if b′ = b.

Notice that in the above zero-knowledge game, if we allow the adversary A to
choose any polynomial numbers of (xi, wi), and all the resulting {πi,0} and {πi,1}
are still indistinguishable, we say that Π is a multi-theorem NIZK system.

We define proof of knowledge which is a stronger property than soundness.
Generally, a NIZK system is called NIZKPoK if we can efficiently recover the
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witness w from the valid proof output by the adversary. More formally, we say
a non-interactive system is a proof of knowledge, if there exists a pair of ppt
algorithms (SimSetup,Ext), such that SimSetup outputs a correctly generated ĉrs
together with an extraction key tk, and Ext can use tk to extract a valid witness
from a proof.

Moreover, we consider two flavors for proof of knowledge: single-proof ex-
tractability and multi-theorem straight-line extractability.

Definition A.20 (Single-Theorem Extractability in [21]) An NIZK proof
system is single-proof extractable if there exists a ppt extractor Ext, constant c1,
c2, e and a non-negligible polynomial p(λ) such that for any crs, any x ∈ LR,
any Q = poly(λ), and ppt adversary A that makes at most Q random oracle
queries with

Pr
[
π

$←− A(crs, x) : Verify(crs, x, π) = 1
]
≥ µ(λ),

then we have,

Pr
[
w

$←− ExtA(crs, x) : (x,w) ∈ R
]
≥ 1

p(λ ·Qe) · µ(λ)c1 − negl(λ),

where the runtime of Ext is upper bounded by c2 · Time(A) and we assume one
oracle access to A takes Time(A).

Particularly, if we compile a sigma protocol with the Fiat-Shamir transform,
then we have (c1, c2, e) = (2, 2, 1) and p(λ) = 1 via rewinding the prover and
the forking lemma [8, 50]. Additionally, we need to use a stronger extractabili-
ty, i.e., multi-theorem straight-line extractability, where we can directly extract
witnesses from multiple pairs of statement and proof output by the adversary.
Moreover, for such multiple-theorem extractability, we allow the adversary to
choose the queried statements adaptively.

Definition A.21 (Multi-Theorem Extractability in [21]) An NIZK system
is multi-theorem straight-line extractable, if there exists a ppt oracle simulator
SimSetup and a ppt extractor Ext with the following properties:

CRS indistinguishability. For any ppt adversary A, we have

Adv(A) : =
∣∣∣Pr[crs← Setup(1λ) : A(crs) = 1]

− Pr[(ĉrs, tk)← SimSetup(1λ) : A(ĉrs) = 1]
∣∣∣ ≤ negl(λ).

Straight-Line Extractability. There exists constants c, e1, e2 and polynomial
p(λ) such that for any Q = poly(λ) and ppt adversary A that makes at most Q
random oracle queries with

Pr
[
(ĉrs, tk)← SimSetup(1λ), {(xi, πi)}i∈[Qs] ← A(ĉrs) :

∀i ∈ [Qs],Verify(ĉrs, xi, πi) = 1
]
≥ µ(λ),
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we have

Pr
[
(ĉrs, tk)← SimSetup(1λ), {(xi, πi)}i∈[Qs] ← A(ĉrs),

{wi ← Ext(1λ, QH , Qs, 1/µ, tk, xi, πi)}i∈[Qs] :

∀i ∈ [Qs], (xi, πi) ∈ R ∧ Verify(ĉrs, xi, πi) = 1
]

≥ 1

2
· µ(λ)− negl(λ).

Moreover, the running time of Ext is upper bounded by Qe1H ·Qe2s ·
1
µc · p(λ).

B Supplementary Material for Section 4

B.1 Correctness Proof for Construction 4.1

Lemma B.1 (Restatement of Lemma 4.2) For parameters N, q2, α, γ, the
NIZKPoK system Π(1) for the relaxed language Lγ′,q2,C̄, Construction 4.1 satisfies
the correctness property as defined in Definition 3.1, where

γ = α

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N

γ′ ≥

((√
k − n+

√
` · τ

)
·N · α

√
2 · ` · τ + α

√(
` · (2τ + 1) + ˆ̀+ k − n

)
·N

)

Proof. The correctness according to Definition 3.1 requires to prove the following
three statements: (1) four algorithms (Setup,Commit,Randomize, Combine) define
a correct randomizable commitment scheme; (2) the signature by algorithm Sign
passes the verification algorithm, i.e., Verify; and (3) the transferred signature
(with respect to the randomized commitment) from Transfer also passes Verify.

Notice that, statement (1) follows naturally from the used BDLOP commit-
ment scheme Γ . And statement (2) simply follows from the fact that SamplePre
outputs a short vector of lattice Λ⊥u (Fcomm) with an overwhelming probability,
and thus the verification would pass. To show statement (3), it suffices to show
that Fcomm′ ·Sigcomm′ = u (as defined in the algorithm Transfer) Sigcomm′ is with-

in `2 norm ((
√
k − n+

√
` · τ) ·N ·α

√
2 · ` · τ +α

√
` · (2τ + 1) + ˆ̀+ k − n) ·N),

as the rest of the proof simply follows from the completeness of the NIZKPoK
systems Π.

Particularly, for all m ∈M ⊆ Rq2 , (sk, pk) output by KeyGen, and signature
Sigcomm = (sT1 , s

T
2 , s

T
3 ) = ((sT1,1, s

T
1,2), sT2 , s

T
3 ) output by Sign, it holds

Fcomm ·

s1

s2

s3

 = u ∈ Rq2 ,
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where Fcomm :=
[
[D|A0]

∣∣[B + C2]
∣∣A>2 ]. And the `2 norm of the vector (sT1,1, s

T
1,2, s

T
2 , s

T
3 )

is less than α

√
2 · (` · (2τ + 1) + ˆ̀+ k − n) ·N . This implies

D · s1,1 + A0 · s1,2 + (B + C2) · s2+A2 · s3 =u ∈ R`q2 .

We notice that the above equation is equivalent to

u =D · s1,1 + A0 · s1,2 + (B + C2) · s2 + A2 · (R̃2 · s2)−A2 · (R̃2 · s2) + A2 · s3

=D · s1,1 + A0 · s1,2 + (B + C2 + A2 · R̃2) · s2 + A2 · (s3 − R̃2 · s2),

which can be rewritten as

[
[D|A0]

∣∣[B + C2]
∣∣A>2 ] ·


s1,1

s1,2

s2

s3 − R̃2 · s2

 = u.

Here we denote R̃ = R + R′ =

[
R̃1

R̃2

]
∈ R

k×(`·τ)
N , with R̃1 ∈ R

n×(`·τ)
N and

R̃2 ∈ R(k−n)×(`·τ)
N .

Then we observe that

Fcomm′ :=
[
[D|A0]

∣∣Bcomm′
∣∣A2

]
=
[
[D|A0]

∣∣[B + C′2]
∣∣A2

]
,

and Sigcomm′ :=


s1,1

s1,2

s2

s3 − R̃2 · s2

. Now, it is easy to verify that the `2 norm of

Sigcomm′ is within ((
√
k − n+

√
` · τ)·N ·α

√
2 · ` · τ+α

√
2 · (` · (2τ + 1) + ˆ̀+ k − n) ·N)

and Fcomm′ ·Sigcomm′ = u, since for such a matrix R̃2 ∈ S(k−n)×(`·τ)
1 , its singular

value s1(R̃2) is bounded by (
√
k − n+

√
` · τ)

√
N . This completes the proof. ut

B.2 Simulatability Proof for Construction 4.1

Lemma B.2 (Restatement of Lemma 4.5) The algorithm Transfer in Con-
struction 4.1 is simulatable.

Proof. According to Definition 3.2, we need to first construct a two-stage ppt
simulator S, and then prove that after running any polynomial t = poly(λ) times,

the distribution of {S̃ig
′
comm′i

}i∈[t] output by S are statistically close to that of

{Sig′comm′i
}i∈[t] output by Transfer.

Particularly, the two-stage ppt simulator S can be constructed in the follow-
ing way:

– First Stage: S conducts the following steps:
1. Generate and output (A,D, q1, q2, N, κ, γ, γ

′, α,M,R, crs).
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– Second Stage: given params, and valid pk, comm′, S conducts the following
steps:
1. Recognize pk as (A0,B,u).

2. Parse comm′ := C′ =

[
C′1
C′2

]
∈ R(n+`)×(`·τ)

N,q2
;

3. Set matrix

Fcomm′ :=
[
[D|A0]

∣∣[B + C′2]
∣∣A2

]
,

4. With respect to the NIZKPoK system Π for the relaxed language Lγ′,q2,C̄ ,

Lγ′,q2,C̄ =
{

(Fcomm′ ,u) ∈ R`×(`·(2τ+1)+ˆ̀+k−n)
N,q2

×R`N,q2 : ∃ x ∈ R`·(2τ+1)+ˆ̀+k−n

and f ∈ C̄ such that 0 < ‖x‖ ≤ γ′ and Fcomm′ · x = f · u
}
.

we can run the corresponding simulation algorithm to generate a simulated
proof π′, whose distribution is statistically indistinguishable from that of
the real proof π.

5. Output S̃ig
′
comm′ := π′.

According to the zero knowledge property of the used NIZKPoK system Π(1),
it is clear that after running any polynomial % = poly(λ) times, the distribution

of {S̃ig
′
comm′i

}i∈[%] output by S are statistically close to that of {Sig′comm′i
}i∈[%]

output by Transfer. ut

B.3 Unforgeability Proof for Construction 4.1

Lemma B.3 (Restatement of Lemma 4.6) Assume that M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν
problem and M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν′ problem are hard with

ν =α

√
2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α ·N

√
2 · ` · τ + 1

ν′ =α′
√

2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α′ ·N

√
2 · ` · τ + 2

√
κ,

where α′ = γ′/

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N . Then our above lattice-based

commitment-transferrable signature scheme is partially selectively unforgeable for
the exact commitment relation L̂q1,q2 , i.e., the advantage of any ppt adversary
A against the partially selective unforgeability game of CTS is at most

AdvunforgeA (λ) ≤ 2AdvM-LWE
A + Advunforge

∗

A (λ).

Proof. We argue the unforgeability using the series of hybrids.
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H0: The challenger B runs the CTS honestly. He gives to the adversary A the
public key pk and signatures with respect to the queried commitments commi.
In this hybrid, we say A has advantage ε = Advunforge

A (λ) in the unforgeability
game. Then, it holds

AdvH0

A (λ) = Advunforge
A (λ).

H1: The challenger B runs the identical procedures as H0, except that he samples

R0
$←− S

(`+ˆ̀)×(`·τ)
1 , and set B = D ·R0 −mG ∈ R`×(`·τ)

q2 . Here, we use m∗ to
denote the committed message in the challenge commitment comm∗. According
to the M-LWEq2,ˆ̀,`,S1

assumption, we know that H0 and H1 are computationally
indistinguishable. Then, it holds

|AdvH0

A (λ)− AdvH1

A (λ)| ≤ AdvM-LWE
A (λ).

H2: The challenger B runs the identical procedures as H1, except that he samples

A0
$←− R`×(`·τ), and B answers the signature queries through using Lemma A.7,

rather than Lemma A.8. According to the M-LWE assumption, we know that H1

and H2 are computational indistinguishability. Then, it holds

|AdvH1

A (λ)− AdvH2

A (λ)| ≤ AdvM-LWE
A (λ).

Besides, we denote the challenger in H2 as B∗. Thus, we have

AdvH2

A (λ) = Advunforge∗

A (λ).

Lemma B.4 Let A be a ppt adversary with advantage ε in the selective un-
forgeability game with respect to B∗ for the exact commitment relation L̂q1,q2 , i.e.,

Advunforge
∗

A (λ) = ε. Let h be a bound on the number of random oracle queries
made by A. Let

ν =α

√
2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α ·N

√
2 · ` · τ + 1

ν′ =α′
√

2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α′ ·N

√
2 · ` · τ + 2

√
κ,

where α′ = γ′/

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N . Then there exists a reduction

algorithm R for M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν or M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν′ such
that

AdvM-SIS
R (λ) ≥ ε( ε

h
− 2−λ).
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Proof. According to our construction, the verifier needs to consider two cases:
original signature and transferred signature. Thus, we need to prove the unforge-
ability for both cases. Overall, both of them have the similar proof process, and
are based on the hardness of M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν and M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν′

problems, respectively. Below, we present the details for both cases in an unified
form, and just separate in their different points.

Particularly, we prove that if the adversary A can forge a valid original/trans-
ferred signature in the selective way, then we can construct an efficient reduction
algorithm B to solve the M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν/ M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν′

problem. In particular, B is given an uniformly random matrix

X =
[
x1, . . . ,x`(τ+1)+ˆ̀+k−n+1

]
∈ R

`×(`(τ+1)+ˆ̀+k−n+1)
q2 , and need to output a

vector y such that X · y = 0 mod q2 and

‖y‖ ≤ ν =α

√
2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α ·N

√
2 · ` · τ + 1

or

‖y‖ ≤ ν′ =α′
√

2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α′ ·N

√
2 · ` · τ + 2

√
κ,

with α′ = γ′/

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N . Similar to the consideration

in [22], we choose to use

X =
[
x1, . . . ,x`(τ+1)+ˆ̀+1, I`,x`(τ+1)+ˆ̀+2, . . . ,x`(τ+1)+ˆ̀+1+k−n−`

]
,

which is a permute of the hermite norm form of the original matrix.
In this case, B conducts the following steps:

1. Choose A′1
$←− Rn×(k−n)

N,q1
and set A1 = [In,A

′
1] ∈ Rn×kN,q1

.

2. Set A2 = (I`,A
′
2) ∈ R`×(k−n)

q2 , where

A′2 =
[
x`(τ+1)+ˆ̀+2, . . . ,x`(τ+1)+ˆ̀+1+k−n−`

]
.

3. Set A =

[
A1

0,A2

]
and send it to A.

Clearly, A is a valid public parameter output by Γ.CKeyGen.
Next, we need to argue that B can simulate the environment of A successfully

for the exact commitment relation L̂q1,q2 . In particular, we use the following
Claim B.5 to specify the case.
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Claim B.5 B can simulate the environment of A successfully in the unforge-
ability game with respect to the exact commitment relation L̂q1,q2 .

Proof. With this A, according to Remark 3.6 of Definition 3.3, A can commit
to the challenge message m∗ at the beginning of unforgeability game.

Then B can set the public parameters in the following way:

1. Set D = (x1, . . . ,x`+ˆ̀) ∈ R`×2`
q2 , A0 = (x`+ˆ̀+1, . . . ,x`+ˆ̀+`·τ ) ∈ R

`×(`·τ)
q2 ,

u = x`(τ+1)+ˆ̀+1 ∈ R
`
q2 .

2. Sample R0
$←− S

(`+ˆ̀)×(`·τ)
1 , and set B = D ·R0 −m∗ ·G ∈ R`×(`·τ)

q2 , where

G = In ⊗ (1, δ, . . . , δτ−1) and τ = bq1/τ
2 e;

3. Send pk := (A0,B,u) to A.

According to the uniformity of x`+ˆ̀+1, . . . ,x`+ˆ̀+`·τ and the distribution of R0,
pk is a valid public key of our commit-transferrable signature, which follows from
the M-LWE assumption.

Then, the A can conduct signature queries and get responses from B. In
particular, after receiving the signature query (comm,m,R) from A, where

comm := C =

[
C1

C2

]
∈ R(n+`)×(`·τ)

N,q2
and

C1 := A ·R,

C2 := A ·R +m ·G.

B can compute

Fcomm =
[
[D|A0]

∣∣[B + C2]
∣∣A2

]
=
[
[D|A0]

∣∣[D ·R0 −m∗ ·G + C2]
∣∣A2

]
=
[
[D|A0]

∣∣[D ·R0 + A2 ·R2 + (m−m∗) ·G]
∣∣A2

]
,

where we denote R =

[
R1

R2

]
∈ Rk×(`·τ) with R2 ∈ R(k−n)×(`·τ).

For any m 6= m∗, we know that m−m∗ is invertible in Rq2 , due to the fact
that ‖m−m∗‖∞ is small enough. According to the algorithm in Lemma A.7, the

challenger can get a short vector z ∈ R`·(2τ+1)+ˆ̀+k−n such that Fcomm · z = u.
ut

From above Claim B.5, we know that B can simulate the environment of A
successfully.

Next, for the challenge query, the adversary sends randomness R∗ to the
challenger, such that the final challenge query is of the form (comm∗,m∗,R∗),

where where comm∗ := C∗ =

[
C∗1
C∗2

]
∈ R(n+`)×(`·τ)

N,q2
and

C∗1 := A ·R∗,

C∗2 := A ·R∗ +m∗ ·G.
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In this case, we have

Fcomm∗ =
[
[D|A0]

∣∣[D ·R0 + A2 ·R∗2]
∣∣A2

]
,

where we denote R∗ =

[
R∗1
R∗2

]
∈ Rk×(`·τ) with R∗2 ∈ R(k−n)×(`·τ).

Below, according to the fact that the adversary’s forgery is for original signa-
ture or transferred one, we need to separate the following proof into two cases.

For the case of original one. If the adversary can forge a valid signature

Sigcomm∗ :=


s∗1,1
s∗1,2
s∗2
s∗3

, such that

Fcomm∗ · Sigcomm∗ =
[
[D|A0]

∣∣[D ·R0 + A2 ·R∗2]
∣∣A2

]
·


s∗1,1
s∗1,2
s∗2
s∗3


= D · s∗1,1 + A0 · s∗1,2 + (D ·R0 + A2 ·R∗2) · s∗2 + A2 · s∗3
= u,

then B can compute y =


s∗1,1 + R0 · s∗2

s∗1,2
−1

R∗2 · s∗2 + s∗3

 as a solution to the

M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν problem defined by

X = [x1, . . . , x`(τ+1)+ˆ̀+1, I`,x`(τ+1)+ˆ̀+2, . . . ,x`(τ+1)+ˆ̀+1+k−n−`].

And the `2 norm of this solution is less than

‖y‖ ≤ ν =α

√
2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α ·N

√
2 · ` · τ + 1.

For the case of transferred one. If the adversary can forge a valid proof for
the language Lγ′,q2,C̄ , then the reduction algorithm B can run the extractor of

the NIZKPoK system Π2, and get a `2 norm short vector Sig′comm∗ :=


s∗1,1
s∗1,2
s∗2
s∗3

,

such that

Fcomm∗ · Sigcomm∗ =
[
[D|A0]

∣∣[D ·R0 + A2 ·R∗2]
∣∣A2

]
·


s∗1,1
s∗1,2
s∗2
s∗3


= D · s∗1,1 + A0 · s∗1,2 + (D ·R0 + A2 ·R∗2) · s∗2 + A2 · s∗3
= c̄ · u,
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then B can compute y =


s∗1,1 + R0 · s∗2

s∗1,2
−c̄

R∗2 · s∗2 + s∗3

 as a solution to the

M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν problem defined by

X =
[
x1, . . . ,x`(τ+1)+ˆ̀+1, I`,x`(τ+1)+ˆ̀+2, . . . ,x`(τ+1)+ˆ̀+1+k−n−`

]
And the `2 norm of this solution is less than

‖y‖ ≤ ν′ =α′
√

2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α′ ·N

√
2 · ` · τ + 2

√
κ,

with α′ = γ′/

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N .

Furthermore, according to the forking lemma of [8, 50], R can complete the
above reduction with probability at least ε( εh − 2−λ).

Summing up all above arguments, we conclude that our commit transferrable
signature satisfies unforgeability in the selective way. ut

ut

C Parameter Settings of Construction 4.1 and NIZKPoK
system in Section 5

In this section, we set the concrete parameters for Construction 4.1 and the
straight-line extractable NIZKPoK system, according to the related requirements
in correctness and security. For clarity, we denote the straight-line extractable
NIZKPoK system for L̂q1,q2 in Section 5 as Π1, and denote the NIZKPoK system
for Lγ′,q2,C̄ in Section 4.2 as Π2.
Requirements for Correctness. We require the following:

– The SamplePre in the Sign step needs to work properly. According to Lemma
A.3, we need to set α ≥ 2

√
δ2 + 1 · ((

√
2`+

√
` · τ)

√
N + 1).

– The valid original signature Sigcomm can be verified successfully. According to

Lemma A.2, we need to set γ = α

√
2 · (` · (2τ + 1) + ˆ̀+ k − n) ·N .

– The valid transferred signature Sig′comm′ can be verified successfully. According
to Lemma 4.2 and the relaxed language in Theorem 4.3, we need to set

γ′ = 2

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N · η · κ

·
(

(
√
k − n+

√
` · τ) ·N · α

√
2 · ` · τ + α

√
2 · (` · (2τ + 1) + ˆ̀+ k − n) ·N

)
.
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– The message space of Construction 5.1 is large enough to encrypt all ran-
domness. And, the related Ciphertexts can be decrypted correctly. Accord-
ing to the corresponding analysis, we need set kPKE = ` · τ · N/d · k + 1,
mPKE = 2 · nPKE + kPKE, qPKE/2 > 12 ·mqPKE · d+ 1, with APKE ∈ RnPKE×mPKE

d,qPKE
,

BPKE ∈ RkPKE×mPKE

d,qPKE
.

Requirements for Security. We require the following:

– The ring RN , Rd are cyclotomic rings, i.e., RN = Z[X]/(XN + 1), Rd =
Z[X]/(Xd+1), with d|N . In this case, according to the efficiently computable

ring isomorphism between RN and R
N/d
d , any relations we need to prove over

RN can be proven by showing the corresponding relations over Rd is set up.
– For the fixed security parameter λ, we require that the output distribution of

the rejection sampling algorithm is within statistical distance of 2−λ

M of the
related product distribution, according to Lemma A.9. Thus, we need to set

η satisfying M = exp

(√
2(λ+1)

log e ·
1
η + 1

2η2

)
= O(1).

– There exists a multi-theorem straight-line extractable NIZKPoK system Π1

for the commitment relation L̂q1,q2 . Hence, in order to make Construction 5.1
to be IND-CPA security, M-LWEqPKE,nPKE,mPKE,Ŝ2

need to be hard. Other hard
problems for the concrete instantiation of LNP proof are implicitly considered
in the parameter setting of Table 11.

– There exists a NIZKPoK system Π2 for the language Lγ′,q2,C̄ , according to
Theorem 4.3. Thus, in order to make this language is hard, the problem
M-SISq2,`,(`·(2τ+1)+ˆ̀+k−n),γ′ needs to be hard.

– The constructed CTS satisfies unforgeability in Definition 3.3. Hence, For Def-
inition 3.3 with respect to the exact commitment relation L̂q1,q2 , according to
Lemma 4.6, and Claim B.5, we need to set M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν problem
and M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν′ problem are hard with

ν =α

√
2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α ·N

√
2 · ` · τ + 1

ν′ =α′
√

2 ·
(
`(τ + 1) + ˆ̀+ k − n

)
·N

+

(√
`+ ˆ̀+

√
k − n+ 2

√
` · τ

)
· α′ ·N

√
2 · ` · τ + 2

√
κ,

where α′ = γ′/

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N .

– The underlying BDLOP satisfies hiding and binding. Hence, according to Sec-
tion 2.3, we need to set M-LWEq2,k−n−`,n+`,S1

and M-SISq1,n,k,8
√

2·η·κ·β·k·N
being hard.
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– The successful simulation of the adversary in Claim B.5. Here, according to the

Lemma A.7, we need to set α ≥ 2
√
δ2 + 1·((

√
`+ ˆ̀+ k − n+

√
` · τ)·

√
N+1).

Concrete Parameter instantiations. From the above analysis, according to
unforgeability for exact commitment relation L̂q1,q2 , we give the specific param-
eter setting as in Table 10. Moreover, we use LNP techniques, i.e., Figure 10
in [41], to instantiate the multi-theorem straight-line extractable NIZKPoK, as
presented in Section 5. Thus, we set the concrete related parameters as in Table
11, and denote the related proof size as sizeLNP in the final computation on the
pseudonym size of our Anonymous Credentials system.

description Params 1 Params 2

N dimension of ring for CTS 2048 4096

d dimension of ring for LNP 512 1024

t N = t · d 4 4

q1 top modulus for BDLOP 224 − 75 226 − 371

q2 bottom modulus for BDLOP 279 − 67 288 − 299

n row number A1 for BDLOP 1 1

k column number A1 for BDLOP 4 4

` row number of A2 1 1
ˆ̀ column number of D 2 2

τ dimension of g = (1, δ, . . . , δτ−1) with δ = q
1/τ
2 7 5

ω `1-norm of message m ∈M 22 18

ζ 2ζ is the size of message space M ≈ 128 ≈ 128

λ security target 128 256

k̂ repetition times for attribute disclosure 2 3

M abort time for rejection sampling 6 6

η σ = η · T is the standard deviation for rejection sampling 7.6 10.6

κ `1-norm of c in C 14 27

α standard deviation of original signature 220.14 226.83

γ `2-norm of original signature 228.3 235.33

γ′ parameter for the relaxed language Lγ′,q2,C̄ 251.07 260.14

ν′ bound for M-SISq2,`,`(τ+1)+ˆ̀+k−n+1,ν′ 258.95 268.30

δ0 Root-hermite factor 1.003729 1.002245

Bit-sec classcial bit security 128.35 257.72
Table 10. Concrete Settings for the Parameters and the Related Security in the case
of selective unforgeability with exact relation.

Below, we roughly explain about the calculations of these two tables.

– According to the used rejection sampling algorithms in Lemma A.9, we need

to set the parameter η to satisfy the M = exp

(√
2(λ+1)

log e ·
1
η + 1

2η2

)
, for any

fixed M and λ.
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– Given the concrete value of N , we need to fix κ such that the size of the

challenge sets are larger than 2λ, i.e.,

(
N
κ

)
× 2κ ≥ 2λ.

– According to the used NIZKPoK system Π2 in Theorem 4.3, we need to set

γ′ = 2

√
2 ·
(
` · (2τ + 1) + ˆ̀+ k − n

)
·N · η · κ

·
(

(
√
k − n+

√
` · τ) ·N · α

√
2 · ` · τ + α

√
2 · (` · (2τ + 1) + ˆ̀+ k − n) ·N

)
.

, such that the assumption M-SISq2,`,(`(τ+1)+ˆ̀+k−n),γ′ is hard, and a NIZKPoK sys-
tem Π2 exists for the relaxed language Lγ′,q2,C̄ .

– Given N, q2, κ, we can calculate the values of α, γ, γ′ (all these parameters
need to be used in the description of our CTS in Construction 4.1), according
to the above parameter analysis for correctness and security.

– We can further compute the values of ν, ν′ (all these parameters need to be
used to ensure the security proof of our CTS in Construction 4.1), as the
requirement of security proof.

During the above calculation process, we use the Root-Hermite Factor δ0
to estimate bit-hardness of the underlying assumptions, i.e., M-SIS and M-LWE,
according to the best known attacks, and δ0 can be determined given N, q1, q2, α.
Generally, we can use the work [3, 4, 30] to estimate δ0 and its corresponding
hardness of the assumptions.

Our reduction from each building block is essentially tight (by calling the ad-
versary a constant number of times), so the attained security of our construction
is essentially the same as that of the underlying M-LWE and M-SIS problems.

Size Computation. Based on the above parameters on CTS and multi-theorem
straight-line extractable NIZKPoK listed in Tables 10 and 11, the size of public
parameter of CTS is about

|paraCTS| := n·(k−n)·Ndlog q1e+`·(ˆ̀+k−n)·Ndlog q2e+log(α·N ·q1·q2·κ·γ·γ′) bits.

The additional size of public parameter of multiple-theorem straight-line ex-
tractable NIZKPoK consists of |paraABDLOP| and |paraPKE|, where

|paraABDLOP| := (n∗·(m1+m2+ve)+(`∗+2)·m2)·ddlog(qLNP)e+512·m2·dlog(qLNP)e,

|paraPKE| := (nPKE + kPKE) ·mPKE · d · dlog(qPKE)e bits.

Besides, the size of public parameter for the disclosure of attributes is about

|paraDisclosure| := k · k̂ ·N · dlog q2e.

Thus, the total size of public parameter is about

|paraCTS|+ |paraABDLOP|+ |paraPKE|+ |paraDisclosure|.
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variable description Para. 1 Para. 2

q1
modulus for the BDLOP commitment

224 − 75 226 − 371
q2 279 − 67 288 − 299

n

dimensions for the BDLOP commitment

1 1
` 1 1
k 4 4
τ 7 5

d dimension for the underlying ring of LNP 512 1024
t N = t · d is the dimension for the ring of CTS 4 4
ω # 1’s in the identity m ∈M 22 18
|M| size of the user space ≈ 2128 ≈ 2128

qPKE encryption modulus 1437757 2039837
nPKE height of APKE 2 1
mPKE height of APKE 117 83
kPKE height of APKE 113 81

δPKE0 root-hermite factor of PKE 1.003433 1.00351

Bit-secPKE classcial/quantum security of PKE 144.25/130.91 139.87/126.93

qLNP modulus for the proof system ≈ 2103 ≈ 2114

l # factors Xd + 1 splits into mod qLNP 2 2
γ1 rejection sampling constant for cs1 17 17
γ2 rejection sampling constant for cs2 1.2 1.2

γ(e) rejection sampling constant exact ARP 2.5 2.5

γ(d) rejection sampling constant non-exact ARP 12 12

η∗ upper bound of 2k
√
‖c2k‖ for k = 32 23 19

κ∗ maximum coefficient of a challenge in C 1 1
n∗ height of matrices A1,A2 in ABDLOP 2 1
m1 length of the message s1 in the“Ajtai” part 581 413
`∗ length of the message m in the“BDLOP ” part 0 0
m2 length of the message s2 in ABDLOP 18 13
ν∗ randomness s2 is sampled from Sm2

ν∗ 1 1
γ∗ parameters to cut low-order bits from w ≈ 235.69 ≈ 237.81

D∗ number of low-order bits cut from tA 27 28

repetition rate 7 7
|sizeLNP| proof size of the straight-line extractable NIZKPoK 1007.41 KB 1469.25 KB
|paraABDLOP| public parameter size of ABDLOP commitment 8162.75 KB 6594.19 KB
|paraPKE| public parameter size of PKE encryption 17659.69 KB 17865.75 KB
|ctPKE| ciphertext size of PKE encryption 150.94 KB 215.25 KB

Table 11. Parameter selection and concrete sizes for for multi-theorem straight-line
extractable NIZKPoK, where the setting root-hermite factor is 1.003735, with 128-bit
classical security.
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Besides, the sizes of public key and secret key of CTS or the final Anonymous
Credentials are about

|pkCTS| := (2`2 · τ) ·Ndlog q2e bits and |skCTS| := ((`+ ˆ̀) · ` · τ) ·Ndlog 3e bits,

respectively. Furthermore, the size of signature is about

|SigCTS| := (` · (2τ + 1) + ˆ̀+ k − n) ·N · log(12α) bits,

which can be further optimized by using the Huffman coding as in [41] to get
the signature size as

|SigCTS| := (` · (2τ + 1) + ˆ̀+ k − n) ·N · (2.57 + dlog(α)e) bits,

Moreover, the pseudonym consists of three parts: BDLOP commitments, the
related multi-theorem straight-line extractable NIZKPoK system and the disclo-
sure of chosen attributes for attribute-based setting. And the size of commitment
is about

|commCTS| := n · ` · τ ·Ndlog q1e+ `2 · τ ·Ndlog q2e bits.

the size of proof is denoted by sizeLNP, which is presented in Section 5. And
according to Table 17 in Section 6.3, sizeDisclosure is about

sizeDisclosure := 2 · k̂ ·N · dlog q2e+ k̂ · log q2 + k ·N(2.57 + dlog(η · κ
√
k ·N)e) + λ.

Thus, the total size of pseudonym |pseudonym| is about

|pseudonym| := |commCTS|+ sizeLNP + sizeDisclosure bits.

Finally, the credential size is about

|Cred| := (` · (2τ + 1) + ˆ̀+ k − n) ·N · log(12η · κ · γ) bits,

which can be optimized to get the credential size as

|Cred| := (` · (2τ + 1) + ˆ̀+ k − n) ·N · (2.57 + dlog(η · κ · γ)e) bits,

D Adaptively Secure CTS

In this section, we present an adaptively secure CTS scheme. Our construction
follows the partitioning approach as [1], and results in some additional reduction
loss compared with the selective construction in section 4. We first introduce the
additional preliminaries for this adaptive construction, and then present the
construction, and show the correctness and security of the scheme. Finally, we
provide some parameter settings for concrete instantiations.
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D.1 Pairwise Independent Hash Function

We give a lemma which shows that pairwise independent hash function fam-
ily which is denoted as H has the isolation property as long as a conditional
probability defined as below approximates 1/|Q|.

Lemma D.1 Let Q ⊆M, A,B be integers such that B ≤ A, |Q| ≤ ςB for some
ς ∈ (0, 1), and let H :M→ Y be an pairwise independent hash function family
which has the following properties:

– ∀a ∈M, PrH←H[H(a) = 0] = 1/A;
– ∀a 6= b ∈M, PrH←H[H(a) = 0|H(b) = 0] ≤ 1/B.

Then for any element a /∈ Q, we have

PrH∈H[H(a) = 0
∧
H(a′) 6= 0,∀a′ ∈ Q] ∈

[
1− ς
A

,
1

A

]
.

An Explicit Almost Pairwise Independent Hash Construction. Let q ∈
N be a prime, N, θ ∈ N, Rq = Zq[X]/〈xN + 1〉, Sq ⊂ Rq be a subfield of Rq
with order qζ

′
. We define the hash function family H : (Sq)

θ → Sq as follows:
∀H ∈ H, H is indexed by (α, h1, ...hθ) ∈ (Sq)

θ+1, ∀x = (x1, ..., xθ) ∈ (Sq)
θ,

H(x) = α+ 〈x,h〉 ∈ Sq. We have the following lemma.

Lemma D.2 ( [1]) The function family H defined above is an pairwise inde-
pendent hash function. Moreover, we have

– ∀H ← H and ∀x ∈ (Sq)
θ, Pr[H(x) = 0] = 1/qζ

′
.

– ∀H ← H and ∀x 6= y ∈ (Sq)
θ, Pr[H(y) = 0|H(x) = 0] ≤ 1/qζ

′
.

D.2 Adaptively Secure Construction

Our construction uses the following building blocks: (1) the BDLOP commit-
ment scheme Γ = Γ.{CKeyGen,Commit,Open,Combine,Randomize}, and (2) a
NIZKPoK system Π(3) = Π(3).{Setup,Prove,VerifyProve,
SimProve} for the following language (parameterized by γ′, q ∈ N)

Lγ′,q,C̄ =
{

(B, u) ∈ R1×(2τ+6)
q ×Rq : ∃ x ∈ R(2τ+6)

q and

f ∈ C̄ such that ‖x‖2 ≤ γ′ and B · x = f · u
}
,

Similar to the presentation of Construction 4.1 in Section 4.1, we first de-
scribe the required parameters in Table 12. Notice that for the adaptive security,
we need to set the message spaceM as the concatenation of several independent
and identical spaces M̄, i.e.,M = M̄θ. Moreover, M̄ should satisfy two require-
ments: (1) M̄ is a subfield of Rq2 ; (2) the `2 norm of all elements in M̄ should
be upper bounded by B. Here, for simplicity, we directly set the parameters of
underlying BDLOP commitment Γ as n = 1, ` = 1, k = 4.

Particularly, all parameters are in the following table.
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Parameters Description

N Ring dimension

d
Ring dimension for the straight-line

extractable NIZKPoK

R Cyclotomic Ring used in this work

q1 Moduli used for
q2 BDLOP commitment scheme

M Message space M of the commitment, which
M̄ consists of θ subspace M̄. And M̄
θ, ζ′ consists of ζ′ polynomials

δ the basis and dimension of the gadget vector g

τ i.e., g> = (1, δ, . . . , δτ−1), with δ = q
1/τ
2

Sβ
Set of all elements in R
with `∞ norm at most β

α Parameter used in SamplePre

γ
`2 norm parameter used in Verify
algorithm for original signature

C Challenge set of the NIZKPoK system Π
κ C = {c ∈ R : ‖c‖1 = κ, ‖c‖∞ = 1}
C̄ The set of differences C − C except 0

γ′
`2 norm parameter for “short”
vectors in the language of Π

δ0 Root-Hermite Factor

Bit-sec Bit-security in time

Table 12. Parameters of Adaptive Commit-Transferrable Signature Scheme

Construction D.3 (Commit-Transferrable Signature) Our adaptive CTS
is constructed as follow.

– Setup(1λ, `, B): On input the security parameter 1λ, the algorithm does the
following.

1. Run Γ.CKeyGen to get A :=

[
1, a′1

>

0, 1, a′2

]
← Γ.CKeyGen(1λ), where [1,a′1

>
] ∈

R1×4
q1 and [0, 1, a′2] ∈ R1×4

q2 , with a′1 ∈ R3
q1 , a>2 = (1,a′2) ∈ R3

q2 . Note that

the commitment scheme sets message spaceM⊆ (Rq2)θ with randomness
space (R)τθ = (S4

1)τθ, where M = (M̄)θ, and M̄ is a subfield of Rq2 with

|M̄| = qζ
′

2 . And the `∞ norm of all elements in M̄ is set be at most 1.

2. Sample d
$←− R3

q2 ;

3. Run Π.Setup(1λ) to get common reference string crs;
4. Output params := (A,d,M,R, crs).

– Commit(params,m; Rand): On input params, message m ∈ M, and random-
ness Rand ∈ Rτθ, the algorithm does the following.

1. Parse Rand as θ vectors {(ri,1, ri,2, · · · , ri,τ )}i∈[θ], where ri,j ∈ R = S4
1

for i ∈ [θ], j ∈ [τ ].
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2. Parse m as (m1, · · · ,mθ). For i ∈ [θ], run commi,1 = Γ.Commit(A,mi; ri,1),
commi,2 = Γ.Commit(A,miδ; ri,2), · · · , commi,τ = Γ.Commit(A,miδ

τ ; ri,τ ).
3. Output comm = {(commi,1, commi,2, · · · , commi,τ )}i∈[θ] as the commit-

ment of m.
– Randomize(params, comm,m,Rand,Rand′): On input params, Rand,Rand′ ∈
Rτθ, and comm = {(commi,1, commi,2, · · · , commi,τ )}i∈[θ], the algorithm does
the following.
1. Parse Rand′ as θ vectors {(r̃i,1, r̃i,2, · · · , r̃i,τ )}i∈[θ], where r̃i,j ∈ R = S4

1

for i ∈ [θ], j ∈ [τ ].
2. For i ∈ [θ], run comm′i,1 = Γ.Randomize(A, commi,1, r̃i,1), comm′i,2 =

Γ.Randomize(A, commi,2, r̃i,2), · · · , comm′i,τ = Γ.Randomize(A, commi,τ , r̃i,τ ).
Set comm′ = {(comm′i,1, comm′i,2, · · · , comm′i,τ )}i∈[θ].

3. Output comm′ as the rerandomized commitment of m.
– Combine(Rand,Rand′): Taking as input two randomness Rand = {(ri,1, ri,2, · · · ,
ri,τ )}i∈[θ] ∈ S4×τθ

1 , and Rand′ = {(r̃i,1, r̃i,2, · · · , r̃i,τ )}i∈[θ] ∈ S4×τθ
1 , the

algorithm computes and outputs {(r̂i,1, r̂i,2, · · · , r̂i,τ )}i∈[θ] ∈ S4×τθ
2 , where

r̂i,j = ri,j + r̃i,j for i ∈ [θ], j ∈ [τ ].
– KeyGen(params): On input params, the algorithm does:

1. Sample T
$←− S3×τ

1 , and set a> = d> · T + g>δ ∈ R1×τ
q2 , where g>δ =

(1, δ, δ2, · · · , δτ−1) ∈ R1×τ
q2 .

2. Sample (b0, b1, · · · , bθ)
$←− Rτ(θ+1)

q2 ;

3. Sample u
$←− Rq2 ;

4. Output pk := (a, b0, {bi}i∈[θ], u), and sk := T.
– Sign(params, pk, sk, comm): On input params, pk, sk and comm, the algorithm

does the following:

1. For i ∈ [θ], parse commi = (commi,1, . . . , commi,τ ) as commi,1 =

[
t
(i)
1,1

t
(i)
2,1

]
,

commi,2 =

[
t
(i)
1,2

t
(i)
2,2

]
, · · · , commi,τ =

[
t
(i)
1,τ

t
(i)
2,τ

]
;

2. Set Fcomm =
[
[d>|a>]

∣∣b>comm

∣∣a>2 ] =[
[d>|a>]

∣∣[b0 +
∑
i∈[`]

(
(t

(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)

)
]
∣∣a>2 ] , and sample

Sigcomm :=

s1

s2

s3

← SamplePre(
[
[d>|a>]

∣∣b>comm

∣∣a>2 ] ,T, u, α), and output Sigcomm

as the signature of comm, where s1 =

[
s1,1

s1,2

]
, and s1,1 ∈ R3, s1,2 ∈

Rτ , s2 ∈ Rτ , s3 ∈ R3.
– Transfer(params, pk,Sigcomm,m, (Rand,Rand′)): On input params, pk, a signa-

ture Sigcomm, message m, randomness Rand for generating the commitment
comm for m, the additional randomness Rand′ for the rerandomization of
comm, the algorithm does the followings:

1. Parse Sigcomm as vector

s1

s2

s3

 , where s1 ∈ Rτ+3, s2 ∈ Rτ , s3 ∈ R3.
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2. Parse Rand as τθ vectors {(ri,1, ri,2, · · · , ri,τ )}i∈[θ], where ri,j ∈ R = S4
1 .

3. Parse Rand′ as τθ vectors {(r̃i,1, r̃i,2, · · · , r̃i,τ ), where r̃i,j ∈ R = S4
1 .

4. For i ∈ [θ], run Commit(params,mi; (ri,1, ri,2, · · · , ri,τ )) and obtain:

commi = (commi,1, commi,2, · · · , commi,τ ), where commi,1 =

[
t
(i)
1,1

t
(i)
2,1

]
, commi,2 =[

t
(i)
1,2

t
(i)
2,2

]
, · · · , commi,τ =

[
t
(i)
1,τ

t
(i)
2,τ

]
.

5. For i ∈ [θ], run Randomize (params, commi, (r̃i,1, r̃i,2, · · · , r̃i,τ )) and ob-

tain comm′i = (comm′i,1, comm′i,2, · · · , comm′i,τ ), where comm′i,1 =

[
t̂
(i)
1,1

t̂
(i)
2,1

]
,

comm′i,2 =

[
t̂
(i)
1,2

t̂
(i)
2,2

]
, · · · , comm′i,k =

[
t̂
(i)
1,τ

t̂
(i)
2,τ

]
.

6. Compute a (temporary) signature Sigcomm′ as

Sigcomm′ : =

 s1

s2

s3 −
∑
i∈[θ]

(
R̃i,2G

−1(bi)
)
· s2



=


s1,1

s1,2

s2

s3 −
∑
i∈[θ]

(
R̃i,2G

−1(bi)
)
· s2

 ∈ R2τ+4,

where we denote R̃i =

[
R̃i,1

R̃i,2

]
=
[
r̃i,1, r̃i,2, · · · , r̃i,τ

]
∈ R4×τ , with R̃i,1 ∈

R1×τ and R̃i,2 ∈ R3×τ .

7. Compute Fcomm′ :=
[
[d>|a>]

∣∣b>comm′

∣∣a>2 ] =[
[d>|a>]

∣∣[b0 +
∑
i∈[`]

(
(t̂

(i)
2,1, t̂

(i)
2,2, · · · , t̂

(i)
2,τ ) ·G−1(bi)

)
]
∣∣a>2 ].

8. Run the prove algorithm, output Sig′comm′ := π ← Π(3).Prove(crs, (Fcomm′ , u),
Sigcomm′), proving that Sigcomm′ is a short `2 norm vector and satisfies
Fcomm′ · Sigcomm′ = u, through using the NIZKPoK system Π with the re-
laxed language Lγ′,q2,C̄.

– Verify(params, pk, comm,Sig): On input params, pk, comm,Sig, the algorithm
does the following.

1. Parse comm = {(commi,1, commi,2, · · · , commi,τ )}i∈[`] as commi,1 =

[
t
(i)
1,1

t
(i)
2,1

]
,

commi,2 =

[
t
(i)
1,2

t
(i)
2,2

]
, · · · , commi,τ =

[
t
(i)
1,τ

t
(i)
2,τ

]
;

2. Based on the type of Sig, the verification works as follow.

• If Sig is a short vector within `2 norm γ, then the algorithm does
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(a) Set matrix

Fcomm :=

[d>|a>]
∣∣[b0 +

∑
i∈[θ]

(
(t

(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)

)
]
∣∣a>2

 .
(b) Check whether Sig satisfies

Fcomm ·

s1

s2

s3

 = u ∈ Rq2 .

• If Sig is a proof of the NIZKPoK system Π(3),
(a) Set matrix

Fcomm :=

[d>|a>]
∣∣[b0 +

∑
i∈[θ]

(
(t

(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)

)
]
∣∣a>2

 .
(b) Run the verify algorithm (with respect to language Lγ′,q2,C̄)

Π.VerifyProve(crs, (Fcomm, u),Sig), and output its result.

Lemma D.4 (Correctness) For parameters N, q2, α, γ = α
√

2 · (2τ + 6) ·N ,

the NIZKPoK system Π(3) for the relaxed language Lγ′,q2,C̄ with γ′ ≥ (
√

3τ +

τ)
√

2τθαN2δ+α
√

2 · (2τ + 6)N , Construction D.3 satisfies the correctness prop-
erty as defined in Definition 3.1.

Proof. The correctness according to Definition 3.1 requires to prove the following
three statements: (1) four algorithms (Setup,Commit,Randomize, Combine) define
a correct randomizable commitment scheme; (2) the signature by algorithm Sign
passes the verification algorithm, i.e., Verify; and (3) the transferred signature
(with respect to the randomized commitment) from Transfer also passes Verify.

The correctness of statement (1) and statement (2) are easy to verify. We just
sketch the correctness of statement (3). Similar to the analysis of Lemma 4.2,
it it suffices to show that Fcomm′ · Sigcomm′ = u (as defined in the algorithm
Transfer) Sigcomm′ is within `2 norm (

√
3τ + τ)

√
2τθαN2δ + α

√
2 · (2τ + 6)N .

Particularly, for all m ∈ M = (M̄)θ ⊆ (Rq2)θ, ri,j , r̃i,j ∈ S3
1 , i ∈ [θ], j ∈ [τ ],

(sk, pk) output by KeyGen, and signature Sigcomm = (sT1 , s
T
2 , s

T
3 ) = ((sT1,1, s

T
1,2),

sT2 , s
T
3 ) output by Sign, it holds

Fcomm ·

[
s1

s2

s3

]
= u ∈ Rq2 ,

where

Fcomm =

[dT |aT ]
∣∣[b0 +

∑
i∈[`]

(
(t

(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)

)
]
∣∣aT2

 .
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And the `2 norm of the vector (sT1,1, s
T
1,2, s

T
2 , s

T
3 ) is less than α

√
2 · (2τ + 4)N .

This implies

〈d, s1,1〉+ 〈a, s1,2〉+ 〈b0 +
∑
i∈[θ]

(
(t

(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)

)
,

s2〉+ 〈a2, s3〉=u ∈ Rq2 .

We notice that the above equation is equivalent to

u =〈d, s1,1〉+ 〈a, s1,2〉+ 〈b0 +
∑
i∈[θ]

(t
(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi),

s2〉+ 〈a2,
∑
i∈[θ]

R̃i,2G
−1(bi) · s2〉 − 〈a2,

∑
i∈[θ]

R̃i,2G
−1(bi) · s2〉

+ 〈a2, s3〉

=〈d, s1,1〉+ 〈b0 +
∑
i∈[θ]

(t
(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)+

a>2 ·
∑
i∈[θ]

R̃i,2G
−1(bi), s2〉+ 〈a, s1,2〉+ 〈a2,

−
∑
i∈[θ]

R̃i,2G
−1(bi) · s2〉+ 〈a2, s3〉,

which can be rewritten as

[[d>|a>]
∣∣b0 +

∑
i∈[θ]

(t
(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)+

a>2 ·
∑
i∈[θ]

R̃i,2G
−1(bi)|a>2 ] ·


s1,1

s1,2

s2

s3 −
∑
i∈[θ] R̃i,2G

−1(bi) · s2

 = u.

Here we denote R̃i =

[
R̃i,1

R̃i,2

]
=
[
r̃i,1, r̃i,2, · · · , r̃i,τ

]
∈ R3×τ , with R̃i,1 ∈ R1×τ

and R̃i,2 ∈ R2×τ .
Then we observe that

Fcomm′ :=

[d>|a>]
∣∣b0 +

∑
i∈[θ]

(t̂
(i)
2,1, t̂

(i)
2,2, · · · , t̂

(i)
2,τ ) ·G−1(bi)

∣∣a>2


=
[
[d>|a>]

∣∣b0 +
∑
i∈[θ]

(t
(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)

+ a>2 ·
∑
i∈[θ]

R̃i,2G
−1(bi)|a>2

]
,
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and Sigcomm′ :=


s1,1

s1,2

s2

s3 −
∑
i∈[θ] R̃i,2G

−1(bi) · s2

. Now, it is easy to verify that

the `2 norm of Sigcomm′,1 and Sigcomm′,2 are within (
√

3τ + τ)
√

2τθαN2δ +

α
√

2 · (2τ + 6)N and Fcomm′ ·Sigcomm′ = u, since for such matrices R̃i,2 ∈ S3×τ
1 ,

its singular value s1(R̃i,2) is bounded by (
√

3 +
√
τ)
√
N , and the singular value

of G−1(bi) is bounded by τNδ by Lemma A.4. This completes the proof. ut

D.3 Instantiation of NIZKPoK system Π(3) in CTS

Before presenting the NIZKPoK system Π(3), we first specify the concrete lan-
guage Lγ′,q2,C̄ in the algorithms Transfer and Verify,

Lγ′,q2,C̄ =
{

(Fcomm′ , u) ∈ R1×(2τ+6)
N,q2

×RN,q2 : ∃ x ∈ R2τ+6 and f ∈ C̄

such that 0 < ‖x‖ ≤ γ′ and Fcomm′ · x = f · u
}
.

Then, according to [6, 22], there exists such an efficient Π(3) for Lγ′,q2,C̄ . The
formal theorem is presented as follows.

Theorem D.5 ( [6, 22]) In the random oracle model, there exists a NIZKPoK
system Π(3) for the relaxed language Lγ′,q2,C̄, with

γ′ = 2
√

2(2τ + 6)N · ηκ · ((
√

3τ + τ)
√

2τθαN2δ + α
√

2 · (2τ + 6)N).

Moreover, assuming a t-time adversary A forging a proof with probability ε,
there exists a O(t/ε)-time extractor, who can successfully extract the witness x
and c ∈ C̄ with probability 1

2 .

Remark D.6 Notice that the concrete instantiation of NIZKPoK system Π(3)

in Theorem D.5 is essentially a Fiat-Shamir signature, which is quite practical.

D.4 Security Proof

In this section, we show the simulatability and unforgeability of the above Con-
struction D.3.

Lemma D.7 (Simulatability) The algorithm Transfer in Construction D.3 is
simulatable.

Proof. Similar to the proof of Lemma 4.5, we first construct a two-stage ppt
simulator S, and then prove that after running any polynomial % = poly(λ)

times, the distribution of {S̃ig
′
comm′i

}i∈[%] output by S are statistically close to

that of {Sig′comm′i
}i∈[%] output by Transfer.

The two-stage ppt simulator S can be constructed in the following way:
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– First Stage: S conducts the following steps:
1. Generate and output params := (A,d,M,R, crs).

– Second Stage: given params, and valid pk, comm′, S conducts the following
steps:
1. Recognize pk as (a, b0, {bi}i∈[θ], u).

2. Parse comm′ = ({comm′i,1, comm′i,2, · · · , comm′i,τ}i∈[θ]) as commi,1 =

[
t̂
(i)
1,1

t̂
(i)
2,1

]
,

commi,2 =

[
t̂
(i)
1,2

t̂
(i)
2,2

]
, · · · , commi,τ =

[
t̂
(i)
1,τ

t̂
(i)
2,τ

]
;

3. Set matrix

F′comm′ :=

[d>|a>]
∣∣b0 +

∑
i∈[θ]

(t̂
(i)
2,1, t̂

(i)
2,2, · · · , t̂

(i)
2,τ ) ·G−1(bi)

∣∣a>2
 .

4. With respect to the NIZKPoK system Π for the relaxed language Lγ′,q2,C̄ ,

Lγ′,q2,C̄ =
{

(F′comm′ , u) ∈ R1×(2τ+4)
q2 ×Rq2 : ∃ x ∈ R2τ+4

q2 and

f ∈ C̄ such that ‖x‖2 ≤ γ′ and F′comm′ · x = f · u
}
,

we can run the corresponding simulation algorithm to generate a simulated
proof π′, whose distribution is statistically indistinguishable from that of
the real proof π.

5. Output S̃ig
′
comm′ := π′.

According to the zero knowledge property of the used NIZKPoK system Π,
it is clear that after running any polynomial % = poly(λ) times, the distribution

of {S̃ig
′
comm′i

}i∈[%] output by S are statistically close to that of {Sig′comm′i
}i∈[t]

output by Transfer. ut

Below, we analyse the unforgeability of Construction D.3. Before this, we
first specify the exact commitment relation L̂q1,q2 .

L̂q1,q2 :=
{

comm = {commi,j}i∈[θ],j∈[τ ] : ∃((mi)i∈[θ], q1, q2, {ri,j}i∈[θ],j∈[4])such that

mi ∈ M̄i, ri,j ∈ S3
1 and commi,j = Commit(params,mi · q

j−1
τ

2 , ri,j) for i ∈ [θ], j ∈ [τ ]
}

Lemma D.8 (Unforgeability) Assume that M-SISq2,1,τ+7,ν and M-SISq2,1,τ+7,ν′

are hard with

ν = α
√

2(τ + 6)N + (τ +
√

3τ)
√

2Nα
√

(`B + 1)2 + τ2N2θ2δ2

and

ν′ = α′
√

2(τ + 6)N + (τ +
√

3τ)
√

2Nα′ ·
√

(θ
√
N + 1)2 + τ2N2δ2,
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with α′ = γ′/
√

(2τ + 6)N . Then our above lattice-based commitment-transferrable
signature scheme is adaptively unforgeable for the exact commitment relation
L̂q1,q2 , i.e., the advantage of any ppt adversary A against the selective unforge-
ability game of CTS is at most

AdvunforgeA (λ) ≤ 2AdvRLWE
A + Advunforge

∗

A (λ).

Proof. We argue the unforgeability using the series of hybrids.

H0: The challenger B runs the CTS honestly. He gives to the adversary A the
public key pk and signatures with respect to the queried commitments commi.
In this hybrid, we say A has advantage ε = Advunforge

A (λ) in the unforgeability
game. Then, it holds

AdvH0

A (λ) = Advunforge
A (λ).

H1: The challenger B runs the identical procedures as H0, except that he sam-

ples R0
$←− S2×k

1 and {Ri}i∈[`]
$←− S2×k

1 , and set b>i = d> ·Ri+hi ·g>δ ∈ R1×k
q2 for

i ∈ {0, 1, . . . , `}, where hi is included in a subfield Sq2 of Rq2 of order q2. Accord-
ing to the Ring-LWE assumption, we know that H0 and H1 are computational
indistinguishability. Then, it holds

|AdvH0

A (λ)− AdvH1

A (λ)| ≤ ` · AdvRing-LWE
A (λ).

H2: The challenger B runs the identical procedures as H1, except that except
that we add an abort event that is independent of the adversary’s view. Specifi-
cally, in the final challenge phase, the adversary outputs (m∗,Rand∗, σ∗) as the
forgery. B does the abort check: h0 + 〈mi,h〉 6= 0 mod q2R and h0 + 〈mi,h〉 =
0 mod q2R, where h = (h1, · · · , h`) ∈ S`q2 . If the condition does not hold, B
aborts the game.

The only difference between H1 and H2 is the abort event. We argue that the
adversary still has non-negligible advantage in H2 even though the abort event
happens.

Lemma D.9 Let I be a Q1 + 1 tuple (m∗,m1, ...,mQ1
) denoted the challenge

message m∗ along with the queried message’s, and ε(I) define the probability
that an abort does not happen in hybrid H2. Assuming ε(I) ∈ [εmin, εmax], then
we have

AdvH2

A (λ) ≥ εmin · AdvH1

A (λ)− 1

2
(εmax − εmin).

H3: The challenger B runs the identical procedures as H2, except that he samples

a
$←− Rk, and B answers the signature queries through using Lemma A.7, rather

than Lemma A.8. According to the Ring-LWE assumption, we know that H2 and
H3 are computational indistinguishability. Then, it holds

|AdvH3

A (λ)− AdvH2

A (λ)| ≤ AdvRing-LWE
A (λ).
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Besides, we denote the challenger in H2 as B∗. Thus, we have

AdvH3

A (λ) = Advunforge∗

A (λ).

Lemma D.10 Let A be a ppt adversary with advantage ε in the adaptive un-
forgeability game with respect to B∗ for the exact commitment relation L̂q1,q2 ,

i.e., Advunforge
∗

A (λ) = ε. Let Q2 be a bound on the number of random oracle
queries made by A. Let

ν = α
√

2(τ + 6)N + (τ +
√

3τ)
√

2Nα
√

(`B + 1)2 + τ2N2θ2δ2

and

ν′ = α′
√

2(τ + 6)N + (τ +
√

3τ)
√

2Nα′ ·
√

(θ
√
N + 1)2 + τ2N2δ2 + 2

√
κ,

with α′ = γ′/
√

(2τ + 6)N . Then there exists a reduction algorithm R for
M-SISq2,1,k+7,ν or M-SISq2,1,k+7,ν′ such that

AdvM-SIS
R (λ) ≥ ε( ε

Q2
− 2−λ).

Proof. According to our construction, the verifier needs to consider two cases:
original signature and transferred signature. Thus, we need to prove the un-
forgeability for both cases. Overall, both of them have the similar proof process,
and are based on the hardness of M-SISq2,1,k+5,ν and M-SISq2,1,k+5,ν′ problems,
respectively. Below, we present the details for both cases in an unified form, and
just separate in their different points.

Particularly, we prove that if the adversary A can forge a valid original/trans-
ferred signature in the selective way, then we can construct an efficient reduction
algorithm B to solve the
M-SISq2,1,τ+7,ν/M-SISq2,1,τ+7,ν′ problem. In particular, B is given an uniformly
random matrix x> = [x1, x2, · · · , xτ+7] ∈ Rτ+7

q2 , and need to output a vector y
such that 〈x,y〉 = 0 mod q2 and

‖y‖ ≤ α
√

2(τ + 6)N + (τ +
√

3τ)
√

2Nα
√

(`B + 1)2 + τ2N2θ2δ2

or

‖y‖ ≤ α′
√

(τ + 6)N + (τ +
√

3τ)
√

2Nα′ ·
√

(θ
√
N + 1)2 + τ2N2δ2 + 2

√
κ,

with α′ = γ′/
√

(2τ + 6)N . Similar to the consideration in [22], we choose to use
x = [x1, x2, x3, · · · , xτ+3, 1, xτ+6], since one of xi will have an inverse with high
probability.

In this case, B conducts the following steps:

1. Choose x′1
$←− R3

q1 and set a>1 = (1,x′1
>

) ∈ R4
q1 .

2. Set a>2 = (1, xk+5, xk+6) ∈ R3
q2 .
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3. Set A =

[
a>1
0,a>2

]
and send it to A.

Clearly, A is a valid public parameter output by Γ.CKeyGen.

Next, we need to argue that B can simulate the environment of A successfully
for the exact commitment relation L̂q1,q2 . In particular, we use the following
Claim B.5 to specify the case.

Claim D.11 B can simulate the environment of A successfully in the unforge-
ability game with respect to the exact commitment relation L̂q1,q2 .

Proof. B can set the public parameters in the following way:

1. Set d> = (x1, x2, x3) ∈ R3
q2 , a> = (x4, x5, · · · , x3+τ ) ∈ Rτq2 , u = xτ+4.

2. For i ∈ [θ], sample Ri
$←− S3×τ

1 , and set b>i = d> ·Ri +hi · (1, δ, · · · , δτ−1) ∈
R1×τ
q2 , where hi ∈ Sq2 . Sample R0

$←− S3×τ
1 , and set b>0 = d> · R0 + h0 ·

(1, δ, · · · , δτ−1) ∈ R1×τ
q2 ;

3. Send pk := (a, b0, {bi}i∈[θ], u) to A.

According to the uniformity of x4, · · · , x2+τ , x3+τ and the distribution of R0, pk
is a valid public key of our commit-transferrable signature, which follows from
the Ring-LWEq2,2,1,S1 assumption.

Then, the A can conduct signature queries and get responses from B. In
particular, after receiving the signature query (comm,m, {ri,j}i∈[θ],j∈[τ ]) from
A, where comm = {(commi,1, commi,2, · · · , commi,τ )}i∈[θ] and

commi,1 :=

[
t
(i)
1,1

t
(i)
2,1

]
= A · ri,1 +

[
0
mi

]
,

commi,2 :=

[
t
(i)
1,2

t
(i)
2,2

]
= A · ri,2 +

[
0
miδ

]
,

· · ·

commi,τ :=

[
t
(i)
1,τ

t
(i)
2,τ

]
= A · ri,τ +

[
0

miδ
τ−1

]
.
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B can compute

Fcomm =

[d>|a>]
∣∣b0 +

∑
i∈[θ]

(
(t

(i)
2,1, t

(i)
2,2, · · · , t

(i)
2,τ ) ·G−1(bi)

) ∣∣a2


=

[
[d>|a>]

∣∣d> ·R0 + h0 ·G +
∑
i∈[θ]

(
(a>2 ·Ri,2 +miG) ·G−1(d> ·Ri + hiG)

) ∣∣a2

]

=

[
[d>|a>]

∣∣d> ·R0 + h0 ·G +
∑
i∈[θ]

(
a>2 ·Ri,2 ·G−1(d> ·Ri

+ hiG) + d> ·miRi,2 +mihiG
)∣∣a2

]

=

[
[d>|a>]

∣∣a>2 ·∑
i∈[θ]

(
Ri,2 ·G−1(d> ·Ri + hiG)

)
+

+ d> ·

R0 +
∑
i∈[θ]

miRi,2

+ (h0 + 〈m,h〉) ·G
∣∣a2

]
,

where we denote Ri =

[
Ri,1

Ri,2

]
=
[
ri,1, ri,2, · · · , ri,τ

]
∈ R4×τ with Ri,2 ∈ R3×τ .

For any h0 + 〈m,h〉 6= 0 mod q2R, we know that h0 + 〈m,h〉 is invertible
over the subfield Sq2 of ring Rq2 . According to the algorithm in Lemma A.7, the
challenger can get a short vector z ∈ R2τ+6 such that Fcomm · z = u. ut

From above Claim B.5, we know that B can simulate the environment of A
successfully.

Next, for the challenge query of the form (comm∗,m∗, {r∗i,j}i∈[θ],j∈[τ ]), we
have

Fcomm∗ =

[
[d>|a>]

∣∣a>2 ·∑
i∈[θ]

(
R∗i,2G

−1(d> ·Ri + hiG)
)

+ d> · (R0 +
∑
i∈[θ]

m∗iR
∗
i,2)
∣∣a>2

]
.

Below, according to the fact that the adversary’s forgery is for original signature
or transferred one, we need to separate the following proof into two cases.
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For the case of original one. If the adversary can forge a valid signature

Sigcomm∗ :=


s∗1,1
s∗1,2
s∗2
s∗3

 with s∗3 = (s∗3,1, s
∗
3,2, s

∗
3,3)T ∈ R3, such that

Fcomm∗ · Sigcomm∗ =[d>|a>]
∣∣a>2 ·∑

i∈[`]

R∗i,2G
−1(p) + d> ·R∗

∣∣a2

 ·

s∗1,1
s∗1,2
s∗2
s∗3


=〈d, s∗1,1〉+ 〈a, s∗1,2〉+ 〈a>2 ·

∑
i∈[θ]

R∗i,2G
−1(p) + d> ·R∗, s∗2〉

+ 〈a2, s
∗
3〉

= u,

where p = d> ·Ri + hiG,R∗ = R0 +
∑
i∈[`]m

∗
iR
∗
i,2, then B can compute y =

s∗1,1 + R∗ · s∗2
s∗1,2
−1

s∗3 +
∑
i∈[θ] R

∗
i,2G

−1(p) · s∗2

 as a solution to the M-SISq2,1,τ+7,ν problem de-

fined by [x1, x2, x3, · · · , xτ+3, xτ+4, 1, xτ+5, xτ+6]. And the `2 norm of this solu-
tion is less than ‖y‖ ≤ α

√
2(τ + 6)N+(τ+

√
3τ)
√

2Nα
√

(`B + 1)2 + τ2N2θ2δ2.

For the case of transferred one. If the adversary can forge a valid proof for
the language Lγ′,q2,C̄ , then the reduction algorithm B can run the extractor of

the NIZKPoK system Π2, and get a `2 norm short vector Sig′comm∗ :=


s∗1,1
s∗1,2
s∗2
s∗3


with s∗3 = (s∗3,1, s

∗
3,2, s

∗
3,3)> ∈ R3, such that

Fcomm∗ · Sigcomm∗

=

[d>|a>]
∣∣a>2 ·∑

i∈[θ]

R∗i,2G
−1(p) + d> ·R∗

∣∣a2

 ·

s∗1,1
s∗1,2
s∗2
s∗3


= 〈d, s∗1,1〉+ 〈a, s∗1,2〉+ 〈a>2 ·

∑
i∈[θ]

R∗i,2G
−1(p) + d> ·R∗, s∗2〉

+ 〈a2, s
∗
3〉

= c̄u,
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then B can compute y =


s∗1,1 + R∗ · s∗2

s∗1,2
−c̄∑

i∈[θ] R
∗
i,2G

−1(p) · s∗2 + s∗3

 as a solution to the

M-SISq2,1,τ+7,ν′ problem defined by [x1, x2, x3, · · · , xτ+3, xτ+4, 1, xτ+5, xτ+6]. And

the `2 norm of this solution is less than ‖y‖ ≤ α′
√

2(τ + 6)N+(τ+
√

3τ)
√

2Nα′ ·√
(θ
√
N + 1)2 + τ2N2δ2 + 2

√
κ, with α′ = γ′/

√
(2τ + 6)N .

Furthermore, according to the forking lemma of [8, 50], R can complete the
above reduction with probability at least ε( ε

Q2
− 2−λ).

Summing up all above arguments, we conclude that our commit transferrable
signature satisfies unforgeability in the adaptive way. ut

Completing the Proof. Recall that Q1 is the upper bound of the number of
the adversary’s signing queries, and ε1 is the advantage of the adversary in H1.
By Lemma D.1 and D.2, we can know that

Pr
H

[
H(m∗) = 0

∧
H(m1) 6= 0

∧
. . .
∧
H(mQ1

) 6= 0
]
∈
[

1

|M̄|
(1− Q1

|M̄|
),

1

|M̄|

]
.

Thus, we know that for any (Q1 + 1)-tuple I denoting a challenge m∗ along

with signing queries, we have ε(I) ∈
[

1
|M̄| (1−

Q1

|M̄| ),
1
|M̄|

]
. Then by setting

[εmin, εmax] =
[

1
|M̄| (1−

Q1

|M̄| ),
1
|M̄|

]
in Lemma D.9, we have

AdvH2

A (λ) ≥ 1

|M̄|
(1− Q1

|M̄|
)ε1 −

Q1

2|M̄|2
.

By our parameter setting, |Q| ≤ 1
2ε1|M̄|, we have that

AdvH2

A (λ) ≥ 1

|M̄|
(1− Q1

|M̄|
)ε1 −

Q1

2|M̄|2
≥ 1

4|M̄|
· AdvH1

A (λ).

In summary, we have that

AdvH0

A (λ) ≤ AdvH1

A (λ) + ` · AdvRing-LWE
A (λ)

≤ θ · AdvRing-LWE
A (λ) + 4|M̄|AdvH2

A (λ)

≤ (θ + 4|M̄|) · AdvRing-LWE
A (λ) + 4|M̄|AdvH3

A (λ)

≤ (θ + 4|M̄|) · AdvRing-LWE
A (λ) + 4|M̄|

√
(AdvM-SIS

R (λ) +
1

2λ
)Q1,

which completes the proof. ut
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D.5 Instantiation of NIZKPoK for Construction D.3

In this part, we instantiate the NIZKPoK involved in Construction D.3. We need
to prove the following equations over RN,q1 and RN,q2 :



commi,1 :=

[
t
(i)
1,1

t
(i)
2,1

]
=

[
1,a>1
0,a>2

]
r̃i,1 +

[
0

mi

]
mod q1

mod q2

,

commi,2 :=

[
t
(i)
1,2

t
(i)
2,2

]
=

[
1,a>1
0,a>2

]
r̃i,2 +

[
0

m · δ

]
mod q1

mod q2

,

...
...

...

commi,τ :=

[
t
(i)
1,τ

t
(i)
2,τ

]
=

[
1,a>1
0,a>2

]
r̃i,τ +

[
0

m · δτ−1

]
mod q1

mod q2

.

(8)

Furthermore, we can easily transfer the above Equation (8) into the following
equations.


t
(i)
1,1 =

[
1,a>1

]
· r̃i,1 mod q1

t
(i)
1,2 =

[
1,a>1

]
· r̃i,2 mod q1

...
...

...

t
(i)
1,τ =

[
1,a>1

]
· r̃i,τ mod q1

,


t2,1 = 〈0‖a2, r̃i,1〉+mi mod q2

t2,2 = 〈0‖a2, r̃i,2〉+mi · δ mod q2
...

...
...

t2,τ = 〈0‖a2, r̃i,τ 〉+mi · δk−1 mod q2

,

(9)

where r̃i,j ∈ S3
1 for i ∈ [θ], j ∈ [τ ], and m ∈ M̄, as defined in the setup algorithm

of Construction 4.1. Moreover, (modq1) and (modq2) means the computations
are conducted over RN,q1 and RN,q2 , respectively.

Notice that due to the usage of pair-wise independent hash function for adap-
tive security, we can not directly apply the LNP approach to prove the validness
of the committed message. This is because with the LNP approach, we direct
prove the committed message is a binary polynomial with certain constant `1-
norm. But such type of message space can not be easily proven to be a field.
Notice also that field is a necessary condition for the usage of pair-wise indepen-
dent hash function in Lemma D.2.

In order to conquer this dilemma, we use the property of the algebraic struc-
ture of m-th cyclotomic ring R = Zq[X]/〈Φm(X)〉 in Lemmas A.13 and A.14.
Particularly, this property means that a polynomial m ∈ R is contained in

a subfield, if and only if m is fixed under automorphisms σ−1 and σζ
′

5 , i.e.,

m = σ−1(m) = σζ
′

5 (m). Here the size of this subfield is qζ
′
, and q is prime such

that q = 3 or 5 mod 8. The concrete protocol Πwell-formedness is presented in the
following Table 13. So compared with the multi-theorem straight-line extractable
NIZKPoK in Section 5, we need to consider the additional overhead due to Table
13. And this overhead will be mild when ` is a small constant.
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Interactive proof system Πwell-formedness

Public Parameter for Commitment Scheme:

A =

[
a>1
a>2

]
=

[
1, a′1

>

0, 1, a′2

]
as in Construction D.3, ζ′|N , B1 = ξ ·

√
6N ,

Prover’s Witness: for i ∈ [θ], ri,1 ∈ S3
1 , mi =

∑
î∈[N ] mî−1X

î−1 is in a subfield of Rq2 ,

Commitment: (commi,1)i∈[θ], commi,1 :=

[
t
(i)
1,1

t
(i)
2,1

]
=

[
a>1
a>2

]
· ri,1 +

[
0
mi

]
.

Prover Verifier
∀i ∈ [θ],yi ← D3

ξ , y−1,i,y5,i ← D3
ξ

∀i ∈ [θ], wi,1 = a>1 · yi,
w

(i)
1,−1 = σ−1(a>1 ) · y−1,i, w

(i)
1,5 = σζ

′

5 (a>1 ) · y5,i

w
(i)
2,−1 = a>2 · yi − σ−1(a>2 ) · y−1,i

w
(i)
2,5 = a>2 · yi − σ

ζ′

5 (a>2 ) · y5,i

wi,1,w
(i)
1,−1,w

(i)
1,5,w

(i)
2,−1,w

(i)
2,5−−−−−−−−−−−−−−−−−−−−−→

d
$←− C

d←−−−−−−−−−−−−−−−−−−−−
∀i ∈ [θ],zi,1 = yi + d · ri,1
z−1,i = y−1,i + d · σ−1(ri,1)

z5,i = y5,i + d · σζ
′

5 (ri,1)

Rej(zi,1|z−1,i|z5,i, d · (ri|σ−1(ri,1)|σζ
′

5 (ri,1)), ξ)
zi,1,z−1,i,z5,i−−−−−−−−−−−−−−−−−−−−−→

Check:

1. for i ∈ [θ], ‖zi,1‖
?

≤ B1,

‖z−1‖
?

≤ B1,‖z5‖
?

≤ B1

2. for i ∈ [θ],a>1 · zi,1
?
= wi,1 + d · t1,i

σ−1(a>1 ) · z−1,i
?
= w

(i)
1,−1 + d · σ−1(t

(i)
1,1)

σζ
′

5 (a>1 ) · z5,i
?
= w

(i)
1,5 + d · σζ

′

5 (t
(i)
1,1)

a>2 · zi,1 − σ−1(a>2 ) · z−1,i
?
= w

(i)
2,−1 + d · (t(i)2,1 − σ−1(t

(i)
2,1))

a>2 · zi,1 − σζ
′

5 (a>2 ) · z5,i
?
= w

(i)
2,5 + d · (t(i)2,1 − σ

ζ′

5 (t
(i)
2,1))

Accept if all the above conditions hold.

Table 13. Proof of m = (mi)i∈[θ] is included into the message space.

Overall, the Equations (9) can be proven through instantiating LNP proof in
the following Table 14, which is similar to Section 5. Additionally, the concrete
parameters for LNP are presented in Table 15.

D.6 Parameter Settings of Construction D.3

In this part, we set the concrete parameters for Construction D.3 and the
straight-line extractable NIZKPoK system, according to the related requirements
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variable description instantiation

ρ # of equations to prove t0 = 2 · τ · θ ·N/d
ρeval # of evaluations with const. coeff. zero 0
ve # of exact norm proofs τ · θ + 2
vd # non-exact norm proofs 1
kbin length of the binary vector to prove 0

s1 committed message in the Ajtai part (rPKE, {r̃i,j}i∈[θ],j∈[τ ],m)
m committed message in the BDLOP part ∅ (no message)

f1, . . . , ft0 equations to prove Equations (9)
F1 evaluation to prove const coeff. zero ∅
E1 public matrix for proving ‖E1s− v1‖ ≤ β(e)

1 [ImPKE 0 . . . 0 0]

v1 public vector for proving ‖E1s− v1‖ ≤ β(e)
1 0

β
(e)
1 upper-bound on ‖E1s− v1‖ ≤ β(e)

1 2
√
d ·mPKE

E2 public matrix for proving ‖E2s− v2‖ ≤ β(e)
2

[
0 I3·N/d . . .0 0

]
v2 public vector for proving ‖E2s− v2‖ ≤ β(e)

2 0

β
(e)
2 upper-bound on ‖E2s− v2‖ ≤ β(e)

2

√
3 ·N

...
...

...

Eτ ·θ+1 public matrix for proving ‖Eτ ·θ+1s− vτ ·θ+1‖ ≤ β(e)
τ ·θ+1

[
0 . . . I3·N/d 0

]
vτ ·θ+1 public vector for proving ‖Eτ ·θ+1s− vτ ·θ+1‖ ≤ β(e)

τ ·θ+1 0

β
(e)
τ ·θ+1 upper-bound on ‖Eτ ·θ+1s− vτ ·θ+1‖ ≤ β(e)

τ ·θ+1

√
3 ·N

Eτ ·θ+2 public matrix for proving ‖Eτ ·θ+2s− vτ ·θ+2‖ ≤ β(e)
τ ·θ+2 [0 . . . 1]

vτ ·θ+2 public vector for proving ‖Eτ ·θ+2s− vτ ·θ+2‖ ≤ β(e)
τ ·θ+2 0

β
(e)
τ ·θ+2 upper-bound on ‖Eτ ·θ+2s− vτ ·θ+2‖ ≤ β(e)

τ ·θ+2

√
N

D1 public matrix for proving ‖D1s− u1‖ ≤ β(d)
1 q−1

PKE ·
[
APKE,0
BPKE, IkPKE

]
u1 public vector for proving ‖D1s− u1‖ ≤ β(d)

1 q−1
PKE ·

[
t0

t1

]
β

(d)
1 upper-bound on ‖D1s− u1‖ ≤ β(d)

1 (d ·mPKE + 1)
√

(nPKE + 1) · d
Table 14. Instantiation of LNP proof for multi-theorem straight-line extractable
NIZKPoK.
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variable description Para. 1

q1 modulus for the BDLOP commitment
235 − 451

q2 2175 − 267

d dimension for the underlying ring of LNP 4096
t N = t · d is the dimension for the ring of CTS 4

ζ′ m ∈M are fixed under 〈σ−1, σ
ζ′

5 〉 1
|M| size of the user space ≈ 2175

qPKE encryption modulus 472154173
nPKE height of APKE 1
mPKE height of APKE 4803
kPKE height of APKE 4801

δPKE0 root-hermite factor of PKE 1.00129048

Bit-secPKE classcial/quantum security of PKE 528.81/479.91

qLNP modulus for the proof system ≈ 2210

l # factors Xd + 1 splits into mod qLNP 2
γ1 rejection sampling constant for cs1 17
γ2 rejection sampling constant for cs2 1.2

γ(e) rejection sampling constant exact ARP 2.5

γ(d) rejection sampling constant non-exact ARP 12
η∗ `∞-norm upper bound of challenge 14
κ∗ maximum coefficient of a challenge in C 1
n∗ height of matrices A1,A2 in ABDLOP 1
m1 length of the message s1 in the“Ajtai” part 24013
`∗ length of the message m in the“BDLOP ” part 0
m2 length of the message s2 in ABDLOP 9
ν∗ randomness s2 is sampled from Sm2

ν∗ 1
γ∗ parameters to cut low-order bits from w ≈ 2123.74

D∗ number of low-order bits cut from tA 112

repetition rate 7
|sizeLNP| proof size of the straight-line extractable NIZKPoK 354.84 MB
|paraABDLOP| public parameter size of ABDLOP commitment 2.447 GB
|paraPKE| public parameter size of PKE encryption 318.935 GB
|ctPKE| ciphertext size of PKE encryption 67.997 MB

Table 15. Parameter selection and concrete sizes for for multi-theorem straight-line
extractable NIZKPoK, where the setting root-hermite factor is 1.003735, with 128-bit
classical security.
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in correctness and security. For clarity, we denote the straight-line extractable
NIZKPoK system for L̂q1,q2 in Section D.4 as Π1, and denote the NIZKPoK sys-
tem for Lγ′,q2,C̄ in Section D.3 as Π2.
Requirements for Correctness. We require the following:

– The SamplePre in the Sign step needs to work properly. according to Lemma
A.3, we need to set

α ≥ 2
√
δ2 + 1 · ((

√
τ +
√

3)
√
N + 1),

where δ = q
1/τ
2 and τ is an integer in [2, blog q2c].

– The valid original signature Sigcomm can be verified successfully. According to
Lemma A.2, we need to set

γ = α
√

2 · (2τ + 6) ·N.

– The valid transferred signature Sig′comm′ can be verified successfully. According
to Lemma D.4 and the relaxed language in Theorem 4.3, we need to set

γ′ = 2
√

2(2τ + 6)N · ηκ · ((
√

3τ + τ)
√

2τθαN2δ + α
√

2 · (2τ + 6)N).

– The message space of Construction 5.1 is large enough to encrypt all ran-
domness. And, the related Ciphertexts can be decrypted correctly. Accord-
ing to the corresponding analysis, we need set kPKE = 3 · N/d · τ · θ + 1,
qPKE/2 > 12 ·mqPKE · d+ 1, with APKE ∈ RnPKE×mPKE

d,qPKE
, BPKE ∈ RkPKE×mPKE

d,qPKE
.

Requirements for Security. We require the following:

– The ring RN , Rd are cyclotomic rings, i.e., RN = Z[X]/(XN + 1), Rd =
Z[X]/(Xd+1), with d|N . In this case, according to the efficiently computable

ring isomorphism between RN and R
N/d
d , any relations we need to prove over

RN can be proven by showing the corresponding relations over Rd is set up.
– For the fixed security parameter λ, we require that the output distribution of

the rejection sampling algorithm is within statistical distance of 2−λ

M of the
related product distribution, according to Lemma A.9. Thus, we need to set

η satisfying M = exp

(√
2(λ+1)

log e ·
1
η + 1

2η2

)
= O(1).

– There exists a multi-theorem straight-line extractable NIZKPoK system Π1

for the commitment relation L̂q1,q2 . Hence, in order to make Construction 5.1
to be IND-CPA security, M-LWEqPKE,nPKE,mPKE,Ŝ2

need to be hard. Other hard
problems for the concrete instantiation of LNP proof are implicitly considered
in the parameter setting of Table 11.

– There exists an NIZKPoK system Π2 for the language Lγ′,q2,C̄ . According to
Theorem 4.3, the problem M-SISq2,1,2τ+6,γ′ needs to be hard.

– The constructed CTS satisfies unforgeability in Definition 3.3. Particularly,
• For Definition 3.3 with respect to the exact commitment relation L̂q1,q2 ,

according to Lemma D.10, and Claim D.11, we need to set M-SISq2,1,τ+7,ν′

being hard with

ν′ = α′
√

2(τ + 6)N + (τ +
√

3τ)
√

2Nα′ ·
√

(θ
√
N + 1)2 + τ2N2δ2 + 2

√
κ,
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with α′ = γ′/
√

(2τ + 6)N .

– The underlying BDLOP satisfies hiding and binding. Hence, according to Sec-
tion 2.3, we need to set M-LWEq2,2,1 and M-SISq1,1,4,8

√
2·η·κ·β·4·N being hard.

– The successful simulation of the adversary in Claim D.11. Here, according to
the Lemma A.7, we need to set

α ≥ 2
√
δ2 + 1 · ((

√
τ +
√

6) ·
√
N(θ
√
N + τθNδ + 1) + 1).

More specifically, we have the concreted parameter setting in the following
Table 16.

Params Example

N 16384

d 4096

q1 235 − 451

q2 2175 − 267

λ 580

κ 55

η 15.9

M 6

θ 4

τ 100

ζ′ 1

δ 3.363

Q1 264

α 237.8430

γ 249.186

γ′ 2105.727

ν′ 2139.87

δ0 1.901183

Bit-sec of underlying assumptions 590.27

Bit-sec of concrete construction 128

Table 16. Concrete Settings for the Parameters and the
Related Security in the case of unforgeability with exact
relation.

Below, we roughly explain about the calculations of the above table.

– According to the used NIZKPoK system Π2 in Theorem D.5, we need to set

γ′ = 2
√

2(2τ + 6)N · ηκ · ((
√

3τ + τ)
√

2τθαN2δ + α
√

2 · (2τ + 6)N),

such that the assumption M-SISq2,1,2τ+6,γ′ is hard, and a NIZKPoK system
Π(3) exists for the relaxed language Lγ′,q2,C̄ .
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– Given the concrete value of N , we need to fix κ such that the size of the

challenge set is larger than 2λ, i.e.,

(
N
κ

)
× 2κ ≥ 2λ.

– Given N, q2, κ, we can calculate the values of α, γ, γ′ (all these parameters
need to be used in the description of our CTS in Construction D.3), according
to the above parameter analysis for correctness and security.

– As a reasonable setting, we assume the upper bound of the number of queries
that the adversary can make to be Q1 = 264.

– We can further compute the values of ν′ (all these parameters need to be
used to ensure the security proof of our CTS in Construction D.3), as the
requirement of security proof.

– In order to obtain much better tradeoff between efficiency and security, we
first choose modulus q2 such that both the hiding (based on M-LWEq2,2,1) and
the unforgeability (based on M-SISq2,1,τ+7,ν′) properties have the sufficient
security level.

During the above calculation process, we use the Root-Hermite Factor δ0
to estimate bit-hardness of the underlying assumptions, i.e., M-SIS and M-LWE,
according to the best known attacks, and δ0 can be determined given N, q1, q2, α.
Generally, we can use the work [3, 4, 30] to estimate δ0 and its corresponding
hardness of the assumptions.

Size Computation. Based on the above parameters on the adaptive CTS in
Construction D.3 and multi-theorem straight-line extractable NIZKPoK listed in
Table 15, the size of public parameter of CTS is about

|paraCTS| := 3 ·Ndlog q1e+ 5 ·Ndlog q2e+ log(α ·N · q1 · q2 · κ · γ · γ′) bits.

The additional size of public parameter of multiple-theorem straight-line ex-
tractable NIZKPoK consists of |paraABDLOP| and |paraPKE|, where

|paraABDLOP| := (n∗ ·(m1 +m2 +ve)+(`∗+2) ·m2) ·ddlog(q)e+512 ·m2 · dlog(q)e,

|paraPKE| := (nPKE + kPKE) ·mPKE · d · dlog(qPKE)e bits.

Besides, the size of public parameter for the disclosure of attributes is about

|paraDisclosure| := 4 · k̂ ·N · dlog q2e.

Thus, the total size of public parameter is about

|paraCTS|+ |paraABDLOP|+ |paraPKE|+ |paraDisclosure|.

Besides, the sizes of public key and secret key of CTS or the final Anony-
mous Credentials are about

|pkCTS| := (τ · (θ + 2) + 1) ·Ndlog q2e bits and |skCTS| := 3 · τ ·Ndlog 3e bits,

respectively. Furthermore, the size of signature is about

|SigCTS| := (2τ + 6) ·N · log(12α) bits,
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which can be further optimized by using the Huffman coding as in [41] to get
the signature size as

|SigCTS| := (2τ + 6) ·N · (2.57 + dlog(α)e) bits,

Moreover, the pseudonym consists of four parts: BDLOP commitments, the
related multi-theorem straight-line extractable NIZKPoK system, the disclosure
of chosen attributes for attribute-based setting, and the additional overhead for
the validness proof of message. Concretely, the size of commitment is about

|commCTS| := τ · θ · (Ndlog q1e+Ndlog q2e) bits.

the size of proof is denoted by sizeLNP, which is presented in Section 5. As θ
committed polynomials might need to be disclosed coefficients with respect to
different positions, according to Table 17 in Section 6.3, sizeDisclosure is about

θ · (2 · k̂ ·N · dlog q2e+ k̂ · log q2 + 4 ·N(2.57 + dlog(η · κ
√

3 ·N)e) + λ).

According to Table 13, sizevalidness is about

θ · 4N(2.57 + dlog(η · κ ·
√

3N)e).

Thus, the total size of pseudonym |pseudonym| is about

|pseudonym| := |commCTS|+ sizeLNP + sizeDisclosure + sizevalidness bits.

Finally, the credential size is about

|Cred| := (2τ + 6) ·N · log(12η · κ · γ) bits,

which can be optimized to get the credential size as

|Cred| := (2τ + 6) ·N · (2.57 + dlog(η · κ · γ)e) bits,

E Supplementary Materials for Section 6

In this section, we present the interactive protocol to disclose certain coefficients
of a committed polynomial, which can extend the basic anonymous credentials
system to attribute-based on supporting chosen disclosure of attributes.
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Interactive proof system ΠDisclosure

Public Parameter for Commitment Scheme:

A =

[
A1

a>2

]
as in Construction 4.1, B = ξ ·

√
2k ·N , B> = (bi) ∈ Rk×k̂q2

Commitment: comm1 :=

[
t1,1

t2,1

]
=

[
A1

a>2

]
· r1 +

[
0
m

]
, with m =

∑
i∈[N ] miX

i−1.

Let I ⊆ [N ] denote the subset of indices where the prover wants to disclose
mI = {mi}i∈I . Set matt =

∑
i∈ImiX

i−1, m′ =
∑
i∈[N ]\ImiX

i−1, where any co-

efficient of m′ with respect to Xi is 0 for i ∈ I. The prover discloses matt publicly.

Prover Verifier

g := (g1, . . . , gk̂)>
$←− {f ∈ Rq2 : fi = 0 for i ∈ I}k̂,

tg = (tg,i) = B · r1 + g
tg−−−−−−−−−−−−−−−−−−−−−−−−−→

(γi)i∈[k̂]←−−−−−−−−−−−−−−−−−−−−−−−−− (γi)
$←− Zk̂q2

∀i ∈ [k̂], hi = gi + γi ·m′
y ← Dkξ , w = A1 · y
∀i ∈ [k̂], wi = (γi · a>2 + b>i ) · y

w,hi,wi−−−−−−−−−−−−−−−−−−−−−−−−−→
d

$←− C
d←−−−−−−−−−−−−−−−−−−−−−−−−−

z = y + d · r1

Rej(z, d · r1, ξ)
z−−−−−−−−−−−−−−−−−−−−−−−−−→

Check:

1. ‖z‖
?

≤ B, A1 · z
?
= w + d · t1,1

2. ∀i ∈ [k̂], whether the coefficients with respect to I in hi
are zero, and

(γi · a>2 + b>i ) · z ?
= wi + d · (γi · (t2,1 −matt) + tg,i − hi)

Accept if all the above conditions are set up.
Table 17. The interactive version of ΠDisclosure: Disclosure of certain coefficients in the
committed message m. Even the whole pseudonym is the commitment to a matrix
m ·G, for disclosure purpose, we just need to focus on certain vectors a2, r1, such that
t2,1 = 〈a2, r1〉+m.

83


	Lattice-based Commit-Transferrable Signatures and Applications to Anonymous Credentials

