
The security of Kyber’s FO-transform

Manuel Barbosa1 and Andreas Hülsing2

1 University of Porto (FCUP) and INESC TEC, Portugal
2 Eindhoven University of Technology
mbb@fc.up.pt, andreas@huelsing.net

Abstract. In this short note we give another direct proof for the variant of the FO transform used by Kyber
in the QROM. At PKC’23 Maram & Xagawa gave the first direct proof which does not require the indirection
via FO with explicit rejection, thereby avoiding either a non-tight bound, or the necessity to analyze the failure
probability in a new setting. However, on the downside their proof produces a bound that incurs an additive
collision bound term. We explore a different approach for a direct proof, which results in a simpler argument
closer to prior proofs, but a slightly worse bound.

1 Introduction

Kyber is the winning KEM of the NIST post-quantum standardization project and will be stan-
dardized as the post-quantum KEM of choice. Like most post-quantum KEMs, the design of
Kyber first defines a CPA-secure PKE, which is then used to instantiate the Fujisaki-Okamoto
transform [FO99] and obtain a CCA-secure KEM. However, the transform used by Kyber is not
the actual FO transform as analyzed, for example, in [HHK17, SXY18, JZC+18, HKSU20, JZM19a,
JZM19b, BHH+19].

Figure 1 shows the variant of the FO construction described in [HHK17] that is closest to the
Kyber construction. We call this FO̸⊥ and obtain it by combining the T and the U̸⊥ transforms. Fig-
ure 2 shows the Kyber construction, which we call FOKyber. The Kyber transform FOKyber deviates
from the original transform FO̸⊥ in two steps of the encapsulation procedure and the corresponding
parts of the decapsulation. The first step of the FO-transform (called T-transform in [HHK17]) is
to derandomize the PKE encryption scheme. For this, the encryption randomness is replaced by
the hash of the message r ← G(m). G is modeled as a random oracle in security proofs for the FO
transformation. Kyber extends the output of G to include, not only encryption randomness r, but
also a pre-key K̃ (see (K̃, r)← H1(m,H3(pk)) in line 2 of Encaps). We note that, in the security
proof, one can ignore the H3(pk) input and H1 can be seen as H1(x) := H ′1(x)∥G(x), where H ′1 and
G are random oracles. This is because there is only one public key in the CCA game (hashing the
public key is relevant when considering multi-instance attacks) and any random oracle that maps
to a product space can be split into two independent random oracles over the same input type.
Indeed, once this conceptual change is introduced, the standard T transform is recovered and one
can focus on the other modifications as applying to the U̸⊥ transform, which do have an impact
on the security proof.

Consider the key derivation step (line 4 in Encaps of Figure 2). Kyber uses K̃ = (H ′1(m))1 in
place of m and H2(c), the hash of the ciphertext, instead of the ciphertext c. These two modifi-
cations broke existing proofs for the U̸⊥ transform and created complications in attempts to give
a direct proof that would follow along the lines of previous proofs for FO with implicit rejection.
The main issue is that the proofs for implicit rejection commonly use an approach that dates back
to at least the seminal work introducing the QROM [BDF+11], which answers decryption queries

This work was funded by an NWO VIDI grant (Project No. VI.Vidi.193.066). Date: May 25, 2023

https://orcid.org/0000-0002-6848-5564
https://orcid.org/0000-0003-2215-4134

Keygen():

1 (pk, skP)← KeygenP()

2 prfk
$← KF

3 sk← (skP, prfk)
4 return (pk, sk)

Encaps(pk):

1 m
$←M

2 r ← G(m)
3 c← Encr(pk,m; r)
4 K ← H(m, c)
5 return (K, c)

Decaps(sk, c):

1 parse sk = (skP, prfk)
2 m′ ← Decr(skP, c)
3 if m′ = ⊥:
4 return F(prfk, c)
5 else if Encr(pk,m′;G(m′)) ̸= c:
6 return F(prfk, c)
7 else: return H(m′, c)

Fig. 1. Transform FO ̸⊥(P,F, G,H) := (Keygen,Encaps,Decaps).

by manipulating the random oracle used for key derivation (c.f., line 4 of Encaps in Figure 1) in a
smart way. Namely, the oracle is transformed into H(m, c) := H ′(Encr(pk,m;G(m))) for a random
oracle H ′ that the adversary is not given direct access to, using the fact that the ciphertext can
be deterministically computed from message m. This way, they can simulate the corresponding
decapsulation oracle Decaps′(c) := H ′(c) without having knowledge of the secret key.

This strategy is not directly applicable to FOKyber, first of all, because the key derivation step
only gets the pre-key K̃ = (H1(m))1, rather than m itself. This issue was observed and is solved
by [GMP22] who notice that H1 is length-preserving, i.e., it is n-to-n. This means that in the
proof we can start by replacing H1, modelled as a random oracle, by a random permutation H ′1.

3.
Once this transformation is introduced, one can first invert the function H ′1 := (H1)1 and set
H(m, c) := H ′(Encr(pk, H ′−11 (K̃);G(m))). However, the authors of [GMP22] did not present a
complete proof for FOKyber, referring to the hashed ciphertext in the key derivation step as the
remaining obstacle. While the authors do not explicitly state what the issue is, their proof strategy
relies on a technique that uses a plaintext checking oracle—an oracle PCO that given a plaintext-
ciphertext pair (m, c) returns true if m is the decryption of c—which requires knowledge of (m, c).
Indeed, as H2 is compressing, one cannot recreate (m, c) given (K̃,H2(c)). In this note we show
that there is no problem because the alternative proof strategy in [BHH+19] does not require the
explicit construction of a PCO. As already conjectured in [GMP22] this does add an additive
collision term to the bound, but otherwise works the same.

An alternative approach to prove the same result was given in [MX23]. There, the authors
reduce the IND-CCA security of FO⊥ to that of FOKyber in an elegant way. Their approach avoids
struggling with implementing the decapsulation oracle, by using the oracle of FO⊥ in their simula-
tion. Nevertheless, their proof also has to consider the possibility of H2 collisions which allows to
detect the simulation. Hence, they also get a collision term. However, they can avoid the second
collision term that our bound contains, which is caused by a proof step that replaces H ′1 by a
random permutation.

Implications for Kyber. Incurring a collision bound term in the security bound for Kyber seems
unavoidable when using the modified FO transform without resorting to a different failure notion.
This means, that the latest parameters of Kyber for levels III and V which instantiate H2 with
SHA3-256 cannot be justified by the proven bound when using the modified FO transform. The
recent proposal by the Kyber team to switch to the standard FO transform therefore seems a good
choice from a provable security point of view.

3 This kind of trick was first suggested in the QROM by Unruh [Unr15]

2

Keygen():

1 (pk, skP)← KeygenP()

2 prfk
$← KF

3 sk← (skP, pk, H3(pk),prfk)
4 return (pk, sk)

Encaps(pk):

1 m
$←M

2 (K̃, r)← H1(m,H3(pk))
3 c← Encr(pk,m; r)
4 K ← H(K̃,H2(c))
5 return (K, c)

Decaps(sk, c):

1 parse sk = (skP,pk, hpk, prfk)
2 m′ ← Decr(skP, c)
3 if m′ = ⊥:
4 return F(prfk,H2(c))
5 else if Encr(pk,m′;(H1(m

′, hpk))2) ̸= c:
6 return F(prfk,H2(c))
7 else: return H((H1(m

′))1, H2(c))

Fig. 2. Transform FOKyber(P,F, H,H1, H2) := (Keygen,Encaps,Decaps). Modifications in blue.

1.1 OW-CPA dPKE
QROM⇒ IND-CCA UKyber(P, F,H,H ′

1,H2)

We now give a security analysis of the U̸⊥ part of FOKyber (see Figure 4), which we obtain by consid-
ering the split of H1 discussed above, i.e., H1(x) := H ′1(x)||G(x). The full proof of the Kyber CCA
KEM then follows from instantiating UKyber with the output of the standard T transform, which
in turn is instantiated with the Kyber IND-CPA-secure PKE (PKyber). Recall that the standard
T transform yields a deterministic encryption scheme P := T(PKyber, G), which is shown to be a
OW-CPA secure dPKE in [BHH+19]).

The proof of UKyber follows very closely the proof in [BHH+19], with minor presentation changes
for readability. The proof makes use of a correctness notion called Find Failing Ciphertexts (FFC).
Moreover, we require the underlying dPKE to be ϵ-injective as also defined in [BHH+19]. We recall
the two definitions here.

Definition 1 (Finding Failing Ciphertext). The find-failing-ciphertexts experiment (FFC) is
shown in Figure 3. The FFC-advantage of an adversary A is defined by

AdvFFCP (A) := Pr[ExptFFCP (A)→ 1].

ExptFFCP (A):

1 H
$← H

2 (pk, sk)← Keygen()
3 L← AH(pk)
4 return [∃m ∈M, c ∈ L : Encr(pk,m) = c ∧ Decr(sk, c) ̸= m]

Fig. 3. FFC experiment on a dPKE P. The instantiation of H generalizes to any number of random oracles, including zero.

Definition 2 (Injectivity of PKEs). A dPKE P = (Keygen,Encr,Decr) is ϵ-injective if

Pr
[
Encr(pk,m) is not injective : (pk, sk)← Keygen(), H

$← H
]
≤ ϵ.

We say P is injective if ϵ = 0. We say that an rPKE is injective if for all public keys pk, all
m ̸= m′ and all coins r, r′, we have Encr(pk,m, r) ̸= Encr(pk,m′, r′).

The main technical novelty in [BHH+19] was the following one-way to hiding lemma which is
used in the proof:

3

Lemma 1 (Double-sided O2H [BHH+19, Lemma 5]). Let G,H : X → Y be random
functions, let z be a random value, and let S ⊂ X be a random set such that ∀x /∈ S,G(x) = H(x).
(G,H, S, z) may have arbitrary joint distribution. Let AH be a quantum oracle algorithm. Let
f : X → W ⊆ {0, 1}n be any function, and let f(S) denote the image of S under f . Let Ev be an
arbitrary classical event.

We will define another quantum oracle algorithm BG,H(z). This B runs in about the same
amount of time as A, but when A queries H, B queries both G and H, and also runs f twice. Let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)], Pextract := Pr[BG,H(z) ∈ f(S)].

If f(S) = {w∗} is a single element, then B will only return ⊥ or w∗, and furthermore

|Pleft − Pright| ≤ 2
√

Pextract and
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ 2
√

Pextract.

Keygen():

1 (pk, skP)← KeygenP()

2 prfk
$← KF

3 sk← (skP, prfk)
4 return (pk, sk)

Encaps(pk):

1 m
$←M

2 K̃ ← H ′
1(m)

3 c← Encr(pk,m)
4 K ← H(K̃,H2(c))
5 return (K, c)

Decaps(sk, c):

1 parse sk = (skP, prfk)
2 m′ ← Decr(skP, c)
3 if m′ = ⊥:
4 return F(prfk, H2(c))
5 else if Encr(pk,m′) ̸= c:
6 return F(prfk, H2(c))
7 else
8 return H(H ′

1(m
′), H2(c))

Fig. 4. Transform UKyber(P,F, H,H ′
1, H2) := (Keygen,Encaps,Decaps).

The following theorem which states that breaking the IND-CCA security of UKyber(P,F, H,H ′1, H2)
requires either breaking the OW-CPA security of P, causing a decapsulation failure, breaking the
PRF property of F used in implicit rejection, noticing when H ′1 is replaced by a random permuta-
tion, or finding a collision in H2. For this, P has to be an ϵ-injective dPKE as in Definition 2.

Theorem 1. Let H : M× CH → K, H ′1 : M → M, and H2 : C → CH be quantum-accessible
random oracles. Let F : KF×CH → K be a PRF. Let P be an ϵ-injective dPKE which is independent
of H,H ′1, H2. Let A be an IND-CCA KEM adversary against UKyber(P,F, H,H ′1, H2), and suppose
that A makes at most qdec decryption queries, and q1 queries to H ′1. Then we can construct four
adversaries running in about the same time and resources as A:

– a OW-CPA-adversary B against P
– a PRF-adversary B1 against F
– FFC-adversaries B5 and B9 against P, returning a list of at most qdec ciphertexts

such that

AdvIND-CCA
UKyber(P)(A) ≤ 2 ·

(√
AdvOW-CPA

P (B) + AdvPRFF (B1) + AdvFFCP (B5) + AdvFFCP (B9) + 2ϵ

+
C(q1 + qdec + 1)3

|M|
+

C(q2 + qdec + 1)3

|CH |

)
,

where C is the universal constant in the collision finding bound of [Zha15]

4

This bound assumes access to further random functions and random permutations. Both can be
efficiently simulated using quantum secure PRFs and PRPs, adding a respective additive distin-
guishing term. The main difference to the original bound in [BHH+19] comprises the collision
terms caused by collisions in H2 and the switch from random function to random permutation for
H ′1 during the proof. Additional multiplicative factors in the reductions to FFC and ϵ-injectivity
are due to a slightly modified game sequence that explicitly introduces (and sometimes removes)
explicit aborts when bad events are detected. In the original proof this was avoided in order to
optimize the bound, but here this allows a modular analysis of the various bad events and, in
particular, the self-contained bounding of collision events.

Before we present the proof, we should also comment on the impact of the collision terms on
the choice of security parameters for Kyber. Each term depends on the number of queries made by
the adversary to the corresponding hash function, q1 and q2. These parameters can only be bound
by the security parameter, as the H ′1 and H2 oracles model local computation. These terms also
seem to be unavoidable using current proof techniques, and they reflect a potential entropy loss
due to the use of additional hashing steps that may impact the security level. For this reason, it
would be advisable to remove these additional hash computations from the UKyber transformation
and revert to a standard form of FO.

Proof. The proof is constructed using a sequence of games. We use Wi to denote the event that
the adversary wins, i.e., guesses the secret bit correctly, in Game i and the game returns 1.

Game 0 (IND-CCA). This is the original IND-CCA game against UKyber(P,F, H,H ′1, H2).

By definition we have AdvIND-CCA
UKyber(P)(A) =

∣∣W0 − 1
2

∣∣.
Game 1 (PRF is random). Game 1 is the same as Game 0, except we replace F(prfk, ·) with
a random function R

$← KCH .

We construct a PRF-adversary B1 which simulates Game 1 replacing calls to F(prfk, ·) by calls to
its oracle, runs A, and outputs 1 if A wins and 0 otherwise. Now, by construction

Pr
k

$←K

[
BF(k,·)
1 = 1

]
= W0 Pr

R
$←KCH2

[
BR(·)
1 = 1

]
= W1 .

Hence,
|W1 −W0| = AdvPRF

F (B1).

Game 2 (Replace H ′1 by random permutation π). Game 2 is the same as Game 1, but the
game implements H ′1 using a random permutation π for which it also knows the inverse π−1.

If A could change its behavior from one game to another, we could use A to distinguish random
functions from random permutations. Indeed, one can construct an adversary C2 that, given oracle
access to a function F :M→M that is sampled uniformly at random from either all functions or a
permutation π sampled uniformly at random from the set of all permutations with the respective
domain and co-domain, simply sets H ′1 as its own oracle and runs A according to the rules of
Game 2. C2 returns 1 if A wins. If interacting with a random function, we perfectly simulate
Game 1, otherwise, Game 2. By [Zha15], there exists a constant C such that the advantage of any
q query quantum adversary in distinguishing a random function from a random permutation over
M is upper-bounded by Cq3/|M|, hence,

|W2 −W1| ≤ AdvPRF-PRP
H′

1
(C2) ≤

C(q1 + qdec + 1)3

|M|
.

5

In the next games we will introduce changes to Decaps. We show Decapsi for Game i in Figure 5
for clarity, as well as the change in H introduced in Game 6.

Game 3 (Exclude collisions in H2 during decapsulation). In this game we modify the
decapsulation oracle once more. Game 3 is the same as Game 2, but the game keeps a list of all
the decapsulation queries and their hashes (ci, H2(ci)). On every new query c, the game checks
for event Bad3: there exists a pair (ci, H2(c)) in the list with c ̸= ci. If so, then the game aborts
outputting a random bit.

Decaps2(sk, c):

1 parse sk = (skP,prfk)
2 m′ ← Decr(skP, c)
3 if m′ = ⊥:
4 return R(H2(c))
5 else if Encr(pk,m′) ̸= c:
6 return R(H2(c))
7 else
8 return H(π(m′), H2(c))

Decaps3(sk, c):

1 Append (c,H2(c)) to L
2 if Bad3 then abort
3 parse sk = (skP, prfk)
4 m′ ← Decr(skP, c)
5 if m′ = ⊥:
6 return R(H2(c))
7 else if Encr(pk,m′) ̸= c:
8 return R(H2(c))
9 else
10 return H(π(m′), H2(c))

Decaps4(sk, c):

1 Append (c,H2(c)) to L
2 if Bad3 then abort
3 parse sk = (skP,prfk)
4 m′ ← Decr(skP, c)
5 if m′ = ⊥:
6 return R′(c)
7 else if Encr(pk,m′) ̸= c:
8 return R′(c)
9 else

10 return H(π(m′), H2(c))

H6(K̄, hc):

1 c′ ← Encr(pk, π−1(K̄))
2 if H2(c′) = hc

3 return R′(c′)
4 Else return H(K̄, hc)

Decaps7(c):

1 if Bad5 then abort
2 Append (c,H2(c)) to L
3 if Bad3 then abort
4 return R′(c)

Fig. 5. Decapsulation oracle in Games 2 to 7. H6 is H as reprogrammed in Game 6.

As decapsulation queries are classical, the notion of identical until Bad3 is well defined. Fur-
thermore, we construct an algorithm C3 that uses A to find collisions in H2 whenever the games
diverge. By [Zha15], there exists a constant C such that the probability of any q query quantum
adversary in finding a collision in a function with co-domain CH is upper-bounded by Cq3/|CH |.
Hence,

|W3 −W2| ≤ Pr[Bad3 : Game 3] = AdvCol
H2

(C3) ≤
C(q2 + qdec + 1)3

|CH |
.

One important observation at this point is that, on inputs c ̸= c′ the Decapsulation oracle never
places two queries to R such that H2(c) = H2(c

′).

Game 4 (Replace R(H2(c)) by random R′(c)). Game 4 is the same as Game 3, but the game

samples a fresh random function R′
$← KC. And replaces all calls R(H2(c)) in Decaps by R′(c).

Given that A only has indirect access to R via Decaps, and the game aborts upon colliding Decaps
queries under H2, this change cannot be noticed by A and we have W4 = W3.

Game 5 (Bad on fail or non-injective pk). Let Fail be the event that the adversary submitted
a ciphertext to decapsulation D(c) which fails to decrypt because c = Encr(pk,m) for some m,
but Decr(sk, c) = m′ ̸= m and c ̸= Encr(pk,m′). Let NonInj be the event that Encr(pk, ·) is not
injective, and let Bad2 := Fail∨NonInj. In Game 5 and onward, if Bad5 occurs then the game aborts
outputting a random bit.

Again, Bad5 is a well-defined classical event and does not depend on H,H ′1, H2 (even though it
might not be possible to determine efficiently whether it occurred). Let B5 be the algorithm which,

6

given a public key pk, simulates Game 5 for A and outputs a list L of all of A’s decapsulation
queries. Then B5 is a FFC-adversary against P which runs in about the same time as A and succeeds
whenever Fail occurred. Consequently,

|W5 −W4| ≤ Pr[Bad5] ≤ Pr[Fail] + Pr[NonInj] = AdvFFCP (B5) + ϵ.

Game 6 (Reprogram H(K̃, x) to R′(Encr(pk, π−1(K̃))). Game 6 is the same as Game 5,
but the game now reprograms H(K̃, hc) as follows: if hc = H2(Encr(pk, π

−1(K̃))) then return
R′(Encr(pk, π−1(K̃)) else return H(K̃, hc).

We now show that this change has no impact on the adversary’s view, so W6 = W5. This is the
case because:

– For each K̃, only a single value H(K̃,H2(Encr(pk, π
−1(K̃)))) is changed.

– This value is uniformly random because R′ is uniformly random.
– This value is independent of all values of H(K̃ ′, hc) for K̃ ′ ̸= K̃ because π is a permutation

(thereby injective) and Encr(pk, ·) is injective (as no abort occurred, and note that the input
to R′ is the full ciphertext).

– The previous observations imply that the distribution of the modified points will look indepen-
dent when observed using only information collected from H. Indeed, the adversary could only
detect this modification if it indirectly observes that the Decapsulation oracle is now returning
correlated values caused by reprogramming H using R′.

– We know that reprogrammings use values R′(c) corresponding to valid ciphertexts, meaning
that c = Encr(pk,m′), for some m′. On the other hand, the decapsulation oracle only calls
R′(c′) for rejected ciphertexts c′, i.e. ones where Decr(sk, c′) =⊥ or c′ ̸= Encr(pk,Decr(sk, c′)).
A valid ciphertext being rejected and passed to R′ in Decapsulation is excluded by Bad2. This
means that direct calls to R′ by the Decapsulation oracle do not help the adversary detect
reprogrammings.

– It remains the possibility that the decapsulation of a non-rejected (and hence valid) ciphertext
uses a value of R′ via the reprogrammed H that could also be used in decapsulating a rejected
ciphertext. However, this is again excluded by the above observation that all reprogrammed
values correspond to valid ciphertexts.

Game 7 (Decapsulation oracle returns R′(c)). Game 7 is the same as Game 6, but the
decapsulation oracle simply returns R′(c) for all ciphertexts (other than the challenge).

This modification changes nothing. In fact, the decapsulation oracle was already using R′ on
all execution paths in Game 6: The original decapsulation returns either H(K̃,H2(c)) with c =
Encr(pk,Decr(sk, c)) or F(prfk, H2(c)), but both of those have been changed to return R′(c). There-
fore W7 = W6. As of this game, the private key is not used anymore.

Game 8 (Change shared secret encrypted by challenge ciphertext). In Game 8, the
shared secret is changed to a uniformly random value r. More in detail, if b = 1, then for all inputs
(K̃, hc) such that Encr(pk, π−1(K̃)) = c∗ and hc = H2(c

∗), the oracle H(K̃, hc) is reprogrammed to
return r. If b = 0, then H is not reprogrammed.

If Encr(pk, ·) is injective, which is the case if the game does not abort, then this is the same
distribution as Game 7. Therefore W8 = W7.

7

Game 9 (Remove aborts on Fail). In this game, we stop aborting due to event NonInj intro-
duced in Game 5.

Following the same up to bad reasoning, let B9 be the algorithm which, given a public key pk,
simulates Game 9 for A and outputs a list L of all of A’s decapsulation queries. Note that, in order
to be efficient, B9 cannot simulate the check for NonInj, so we get again:

|W9 −W8| ≤ AdvFFCP (B9) + ϵ.

It remains to bound A’s advantage in Game 9. Excluding the detection of the non-injectivity
of Encr(pk, ·), the game still runs in about the same time as A.4

Let us condition our analysis on Encr(pk, ·) being injective, so that the oracle H is repro-
grammed only at m∗. Then the b = 0 and b = 1 cases are now distinguished by a single return
value from the H oracle. Hence, we can consider two oracles H and H ′ := H[m∗ → r] as required
by Lemma 1. Then Lemma 1, states that there is an algorithm B, running in about the same time
as A, such that for all such pk∗:

|Pr[Win|b = 1 ∧ pk = pk∗]− Pr[Lose|b = 0 ∧ pk = pk∗]| ≤ 2
√

Pr[B(pk∗, c)→ m∗].

Here, c is defined according to the distribution of the challenge ciphertext in the CCA experiment.
Note also that we are checking on both sides for the same classical event: the adversary returning 1.
The same inequality holds if Encr(pk, ·) is not injective, for then the adversary wins with probability
1/2 and the left-hand side is zero. (The algorithm B still runs with the same efficiency in that case;
it just might not return m∗.)

The inequality also holds in expectation over pk by Jensen’s inequality:

E
[
2
√
Pr[B(pk, c)→ m∗] : (pk, sk)

$← KeygenP()
]

≤ 2

√
E
[
Pr[B(pk, c)→ m∗] : (pk, sk)

$← KeygenP()
]

= 2

√
AdvOW-CPA

P (B)

so that

|Pr[Win : b = 0]− Pr[Lose : b = 1]| ≤ 2

√
AdvOW-CPA

P (B).

and finally
∣∣w9 − 1

2

∣∣ ≤√
AdvOW-CPA

P (B).
Summing up the differences in the previous games, we have∣∣∣∣w0 −

1

2

∣∣∣∣ ≤√
AdvOW-CPA

P (B) + AdvFFCP (B9) + AdvFFCP (B5) + 2ϵ+AdvPRFF (B1)+

C(q1 + qdec + 1)3

|M|
+

C(q2 + qdec + 1)3

|CH |
The proof of Theorem 1 follows from the definition of CCA advantage. ⊓⊔
4 Recall that we take it as a given that π and the various random oracles can be efficiently simulated, possibly at the cost
of relying on additional computational assumptions.

8

References

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. Random
oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 41–69. Springer, Heidelberg, December 2011. doi:10.1007/978-3-642-25385-0_3.

BHH+19. Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti. Tighter
proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, edi-
tors, TCC 2019, Part II, volume 11892 of LNCS, pages 61–90. Springer, Heidelberg, December 2019. doi:

10.1007/978-3-030-36033-7_3.
FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.

In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg, August
1999. doi:10.1007/3-540-48405-1_34.

GMP22. Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum public key encryption.
In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May
30 - June 3, 2022, Proceedings, Part III, volume 13277 of Lecture Notes in Computer Science, pages 402–432.
Springer, 2022. doi:10.1007/978-3-031-07082-2_15.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto transfor-
mation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371.
Springer, Heidelberg, November 2017. doi:10.1007/978-3-319-70500-2_12.

HKSU20. Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated key exchange in the
quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part II, volume 12111 of LNCS, pages 389–422. Springer, Heidelberg, May 2020. doi:

10.1007/978-3-030-45388-6_14.
JZC+18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key encapsulation

mechanism in the quantum random oracle model, revisited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96–125. Springer, Heidelberg, August 2018. doi:10.1007/
978-3-319-96878-0_4.

JZM19a. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism with explicit rejection in the quantum
random oracle model. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages
618–645. Springer, Heidelberg, April 2019. doi:10.1007/978-3-030-17259-6_21.

JZM19b. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Tighter security proofs for generic key encapsulation mecha-
nism in the quantum random oracle model. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019, pages 227–248. Springer, Heidelberg, 2019.
doi:10.1007/978-3-030-25510-7_13.

MX23. Varun Maram and Keita Xagawa. Post-quantum anonymity of Kyber. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages 3–35. Springer, Heidelberg, May 2023.
doi:10.1007/978-3-031-31368-4_1.

SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mechanism in the quan-
tum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, vol-
ume 10822 of LNCS, pages 520–551. Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78372-7_
17.

Unr15. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 755–784. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_25.

Zha15. Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Info. Comput.,
15(7–8):557–567, May 2015.

9

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-031-07082-2_15
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-031-31368-4_1
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-46803-6_25

	 The security of Kyber's FO-transform

