
A Faster Software Implementation of SQISign

Kaizhan Lin1, Weize Wang1, Zheng XuB2,3, and Chang-An Zhao1,4

1 School of Mathematics, Sun Yat-sen University, Guangzhou, China
linkzh5@mail2.sysu.edu.cn
wangwz@mail2.sysu.edu.cn

zhaochan3@mail.sysu.edu.cn
2 Ding Lab, Yanqi Lake Beijing Institute of Mathematical Sciences and Applications,

Beijing, China
xuzheng@bimsa.cn

3 Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
4 Guangdong Key Laboratory of Information Security, Guangzhou, China

Abstract. Isogeny-based cryptography is famous for its short key size.
As one of the most compact digital signatures, SQISign (Short Quater-
nion and Isogeny Signature) is attractive among post-quantum cryptog-
raphy, but it is inefficient compared to other post-quantum competitors
because of complicated procedures in ideal to isogeny translation, which
is the efficiency bottleneck of the signing phase.
In this paper, we recall the current implementation of SQISign and
mainly discuss how to improve the execution of ideal to isogeny transla-
tion in SQISign. To be precise, we modify the SigningKLPT algorithm
to accelerate the performance of generating the ideal Iσ. In addition, we
explore how to save one of the two elliptic curve discrete logarithms and
compute the remainder with the help of the reduced Tate pairing cor-
rectly and efficiently. We speed up other procedures in ideal to isogeny
translation with various techniques as well. It should be noted that our
improvements also benefit the performances of key generation and ver-
ification in SQISign. In particular, in the instantiation with p3923 the
improvements lead to a speedup of 8.82%, 8.50% and 18.94% for key
generation, signature and verification, respectively.

Keywords: Isogeny-based Cryptography · SQISign · Pairings · Dis-
crete Logarithms

1 Introduction

Among post-quantum cryptography, isogeny-based cryptography is famous for
its short key size. In the last two decades, various isogeny-based key exchange
schemes were proposed, such as SIDH [24], CSIDH [8] and OSIDH [10,31]. These
protocols also motivate cryptographers to construct digital signatures. Until now,
there are mainly three kinds of isogeny-based signatures: SIDH-based [14,9],
CSIDH-based [15,6,1], and quaternion-based [22,16,17,13].

Authors are listed in alphabetical order.

SQISign (Short Quaternion and Isogeny Signature) was first proposed by De
Feo, Kohel, Leroux, Petit and Wesolowski [16]. Compared with other isogeny-
based signatures, the bitlength of the prime field characteristic used in SQISign
is relatively small. Besides, the public key of SQISign does not reveal torsion
point information (and thus it is not vulnerable to the Castryck-Decru-Maino-
Martindale-Robert attacks [7,29,35]). Furthermore, the signer needs to respond
for each challenge bit respectively in most of isogeny-based signatures, but there
is no need for such a procedure in SQISign. Therefore, as one of the most compact
signatures, SQISign is competitive in post-quantum cryptography.

SQISign is obtained by applying the Fiat–Shamir transform [19] to an identi-
fication protocol. The signing phase of SQISign mainly involves two procedures:
ideal generation with the SigningKLPT algorithm and ideal to isogeny transla-
tion.

The SigningKLPT algorithm is based on the KLPT algorithm, which was
first proposed by Kohel et al. [25] in 2014. Given a left ideal I, the SigningKLPT
algorithm outputs another left ideal J of a smooth power reduced norm which
is equivalent to I. After obtaining J , the signer needs to translate it into the
corresponding isogeny φJ and compress it to be a part of the signature. The
translation from the ideal J to the isogeny φJ is the efficiency bottleneck of
SQISign, since it involves expensive procedures such as large degree isogeny
computations. Recently, De Feo et al. [17] proposed a novel approach to speed
up the performance of ideal to isogeny translation. Besides isogeny computations,
the current implementation contains torsion point generation, discrete logarithm
computations, etc.

In this paper, we explore the current SQISign implementation and further
accelerate it by utilizing several techniques, especially the performance of the
ideal to isogeny translation procedure, as we summarize in the following:

1. In the SigningKLPT algorithm, the output Iσ is required to be an ideal of
a fixed reduced norm, which corresponds to a cyclic isogeny σ. Besides, the
composition σ◦φI2 should also be cyclic, where φI2 is the secret isogeny from
E0 to EA of degree 2•. To achieve this goal, one may repeat the SigningKLPT
algorithm with high probability. We improve this procedure by giving a
modified SigningKLPT algorithm, which generates Iσ such that σ ◦ φI2 is
always cyclic. Heuristically, we save about one third of the computational
cost of generating the required Iσ.

2. In [17], each step of the new algorithm for ideal to isogeny translation requires
computing two elliptic curve discrete logarithms, i.e.,

θ(P) = [x1]P + [x2]Q,

θ(Q) = [x3]P + [x4]Q,

where P,Q ∈ E[2a], and the endomorphism θ is of reduced norm coprime
to 2. For efficiency, the previous work used an x-only arithmetic to obtain
the absolute values of x1, x2, x3 and x4, then employed the reduced trace
of the endomorphism to confirm the signs of them. We claim that one can

2

avoid the second elliptic curve discrete logarithm computation by making
full advantage of the properties of θ. We also provide a much more efficient
approach to solve the other elliptic curve discrete logarithm by utilizing
pairing computations and discrete logarithm computations over the finite
field Fp2 . The experimental results show that our method leads to 4.8×
faster execution time in the implementation with p3923. It should be noted
that the improvement benefits not only signature but also key generation.

3. We propose new techniques to optimize other procedures in ideal to isogeny
translation. In particular, our algorithm offers a speedup of about 1.5× to
torsion point generation. Besides, we improve the performance of isogeny
computations in SQISign, leading to a considerable improvement. We also
show that one can accelerate the first step of ideal to isogeny translation in
the signing phase via precomputation in the key generation phase. It may
enlarge the cost of key generation, but reduces the signing cost. This would
be preferred when the signer wants to sign a number of messages with the
same secret key.

4. Based on the code presented in [17], we complied and benchmarked our
code. The experimental results show that our techniques yield a significant
acceleration of all the above procedures. Besides, we not only improve the
signing phase but also key generation and verification of SQISign: the in-
stantiation with p3923 of key generation, signature and verification with our
techniques are 8.82%, 8.50% and 18.94% faster than those of the state-of-
the-art, respectively. In particular, when the precomputation technique in
the key generation phase is adapted, the performance of the signing phase
can be up to 11.93% faster than that of the previous work.

The remainder of this paper is organized as follows. In Section 2 we explain
some mathematical concepts and review SQISign, especially ideal to isogeny
translation. In Section 3 we propose the modified SigningKLPT algorithm to ac-
celerate the implementation of SQISign. Section 4 presents an efficient approach
to compute discrete logarithms in ideal to isogeny translation. In Section 5 we
give other improvements to speed up the performance. Finally, we report ex-
perimental results and give a performance comparison between ours and the
previous work in Section 6 and conclude in Section 7.

2 Notations and Preliminaries

In this section, we provide the required background that will be used throughout
the paper. We also recap SQISign and the implementation of ideal to isogeny
translation.

2.1 Mathematical background

In this subsection we recall supersingular elliptic curves, isogenies and ideals in
quaternion algebras, for more in-deep details see [39,37].

3

Elliptic curves and isogenies Elliptic curves are nonsingular projective curves
with genus 1. We denote the infinity point of an elliptic curve E as ∞E . An
isogeny φ : E1 → E2 is a non-constant morphism, which sends ∞E1 to ∞E2 .
If the degree of isogeny φ is equal to the size of ker(φ), we call φ a separable
isogeny. We abbreviate a separable isogeny of degree ℓ as ℓ-isogeny. For any
subgroup G of an elliptic curve E, we can compute an isogeny with kernel G by
Vélu’s formula [38,4]. For any isogeny φ from E1 to E2, there exists a unique
isogeny φ̂ from E2 to E1 such that φ̂ ◦ φ = φ ◦ φ̂ = [deg(φ)]. We call φ̂ the dual
isogeny of φ.

An endomorphism is an isogeny from E to itself. The set of endomorphisms
forms a ring under addition and composition. We call the ring endomorphism
ring, denoted by End(E). Since the scalar multiplication [n] is an isogeny, we
have Z ⊆ End(E). Moreover, if End(E) 6= Z, we say that E has complex multi-
plication.

Each of elliptic curves over finite fields has complex multiplication, and they
can be divided into two types by endomorphism rings. The curve E is said to
be ordinary if End(E) is isomorphic to an order in a quadratic imaginary field.
Otherwise, the elliptic curve E is said to be supersingular if End(E) is isomorphic
to a maximal order in a quaternion algebra.
Orders and ideals in quaternion algebra A quaternion algebra over Q ram-
ified only at p and ∞ is of the form Bp,∞ = Q+Qi+Qj +Qk, where i2 = −1,
j2 = −p and k = ij = −ji. For any α = a1 + a2i + a3j + a4k ∈ Bp,∞, the
canonical involution is the map sending α to ᾱ = a1 − a2i − a3j − a4k. The
reduced trace and the reduced norm of α are respectively defined by

Trd(α) = α+ ᾱ = 2a1,

Nrd(α) = αᾱ = a1
2 + a2

2 + pa3
2 + pa4

2.

An order in Bp,∞ is a full-rank lattice and it is also a subring. A maximal
order is an order which is not contained in any other order. The endomorphism
rings of supersingular elliptic curves over Fp are isomorphic to maximal orders
in Bp,∞. Let O be a maximal order. A full-rank lattice I ⊆ O is a left O-ideal
if OI ⊆ I, and it is a right O-ideal if IO ⊆ I. For any left ideal I of a maximal
order O in Bp,∞, define the left order and right order of I as

OL(I) = {x ∈ Bp,∞ | xI ⊆ I}, OR(I) = {x ∈ Bp,∞ | Ix ⊆ I}.

Note that OL(I) and OR(I) are also maximal orders. We say that I connects
OL(I) and OR(I), and the corresponding Eichler order of I is defined as O =
OL(I)∩OR(I). The reduced norm of I can be defined by Nrd(I) = gcd({Nrd(α) |
α ∈ I}). The conjugate of I, denoted by Ī, is the set of conjugates of elements
of I satisfying IĪ = Nrd(I)OL(I) and ĪI = Nrd(I)OR(I). Two left ideals I and
J in O are equivalent if there exists α ∈ B×

p,∞ such that J = Iα, and we denote
the set of such classes by cl(O).
Isogeny graphs The ℓ-isogeny graph is denoted by Gℓ(Fp). A vertex in this
graph is an Fp-isomorphism class [E] of supersingular elliptic curves defined

4

over Fp, and all the elliptic curves in the Fp-isomorphism class have the same
j-invariant. Let φ1 and φ2 be two isogenies from E1 to E2 with degree ℓ. We say
that φ1 and φ2 are equivalent if ker(φ1) = ker(φ2). Then an edge in this graph
is an equivalent class of ℓ-isogenies. From [32], the ℓ-isogeny graph Gℓ(Fp) is a
Ramanujan graph.
Deuring Correspondence Suppose that E is a supersingular elliptic curve
over Fp2 , and its endomorphism ring End(E) is isomorphic to a maximal order
of Bp,∞, denoted by O.

For a left integral ideal I of O, let E[I]={P ∈ E | α(P) = ∞E for any
α ∈ I}, then the isogeny

φI : E → EI = E/E[I]

has ker(φI) = E[I] and deg(φI) = Nrd(I). On the other hand, if φ : E → E′ is
an isogeny of degree n, then the cardinality of ker(φ) is n and Iφ = {α ∈ O |
α(P) =∞E for any P ∈ ker(φ)} is a left O-ideal of reduced norm n.

The Deuring Correspondence Theorem gives the connection between isoge-
nies and ideals:

There is a one-to-one correspondence between left O-ideals I of reduced norm
n and equivalent classes of isogenies φ : E → E′ of degree n given by I 7→ [φI]
and [φ] 7→ Iφ. If φ : E → E′ and I are corresponding to each other, then End(E′)
is isomorphic to the right order of I in Bp,∞. Particularly, φ ∈ End(E) if and
only if I = Oφ is a principal ideal. Furthermore, suppose that φ1 : E → E1

and φ2 : E → E2 are two isogenies corresponding to the left ideals I1, I2 ⊆ O,
respectively. Then E1 and E2 are in the same isomorphism class if and only if
I1 and I2 are equivalent.

Here we illustrate the endomorphism ring of E0 : y3 = x3 + x, which is the
starting curve of the SQISign implementation.
Example of endomorphism ring Let p ≡ 3 (mod 4) and E0 : y2 = x3 +x be
a supersingular elliptic curve with j-invariant 1728. The endomorphism ring of E
is isomorphic to the maximal order O0 = Z+Zi+Z i+j

2 +Z 1+k
2 , where i2 = −1,

j2 = −p and ij = −ji = k. Indeed, the Frobenius map π : (x, y) → (xp, yp)
corresponds to j, while the distortion map ω : (x, y) → (−x, iy) corresponds
to i. By abuse of notation, we sometimes use i and j to represent ω and π,
respectively when there is no ambiguity in the context.

2.2 SQISign

SQISign (Short Quaternion and Isogeny Signature) was first introduced by De
Feo et al. [16] in 2020 and it is known as a compact post-quantum signature. This
signature is based on an identification protocol with Fiat-Shamir transform [19].
The main procedures of the identification protocol are as follows:

– Setup: Generate a prime p ≡ 3 (mod 4) of 2λ bits, where λ is the security
parameter. Define a supersingular elliptic curve E0 : y2 = x3 + x over Fp
with j(E) = 1728, and End(E0) = O0. Pick an odd smooth number Dc of λ
bits and D = 2e, where e is larger than the diameter of G2(Fp).

5

– Key Generation: Choose a prime Nτ ∼ p
1
4 and randomly select a Nτ -

isogeny τ : E0 → EA. The secret key is the isogeny τ (note that the degree
of τ is also private), and the public key is the image curve EA.

– Commitment: The prover generates a random isogeny ψ1 : E0 → E1, and
sends E1 to the verifier.

– Challenge: The verifier sends a cyclic isogeny ψ2 : E1 → E2 of degree Dc

to the prover.
– Response: From the knowledge of the isogeny ψ2 ◦ ψ1 ◦ τ̂ : EA → E2, the

prover constructs an isogeny σ : EA → E2 of degree D such that ψ̂2 ◦ σ is
cyclic. After that, the prover sends σ to the verifier.

– Verification: The verifier accepts if the isogeny σ : EA → E2 has degree D
and ψ̂2 ◦ σ is cyclic. It rejects otherwise.

E0 E1

EA E2

ψ1

τ
ψ2

σ

Fig. 1: Sketch of the identification protocol.

Since the reduced norm of Iτ is a large prime, it is expensive to compute the
corresponding isogeny τ directly by Vélu’s formula. To compute the coefficient
of EA efficiently, one can use the KLPT algorithm to translate Iτ to another
equivalent ideal I2 of reduced norm 2eτ , which corresponds to an isogeny from
E0 to EA of degree 2eτ . An alternative approach is to generate Iτ and I2 simul-
taneously by finding γ′ ∈ Z+ Zi+ Zj + Zk with reduced norm Nτ2

eτ , then set
Iτ = 〈γ′, Nτ 〉 and I2 = 〈γ′, 2eτ 〉. Compared to the former one, the latter method
is more efficient, and thus it is applied to the current implementation.

The response phase is the most complicated procedure. To avoid revealing
the secret, one should first construct a new ideal Iσ using the SigningKLPT
algorithm from the knowledge of ψ2 ◦ψ1 ◦ τ̂ , and then translate Iσ to the corre-
sponding isogeny σ of degree D. In the following, we review the SigningKLPT
algorithm and ideal to isogeny translation.

2.3 SigningKLPT algorithm

The KLPT algorithm was first proposed by [25]. To compute the equivalent ideal
Iσ in End(EA) ∼= OA, the authors in [16] generalized the KLPT algorithm to
propose the SigningKLPT algorithm (Algorithm 1). We summarize the main
procedures as follows:

1. EquivlantRandomEichlerIdeal(I,Nτ): Given a left OA-ideal I, outputs
an ideal K of reduced norm coprime to Nτ which is equivalent to I.

6

2. EquivlantPrimeIdeal(I): Given a left O0-ideal I, outputs the smallest
equivalent left O0-ideal of prime reduced norm.

3. RepresentIntegerO0
(M): Given an integer M > p, outputs γ ∈ Z + Zi +

Zj + Zk ⊆ O0 of reduced norm M .
4. IdealModConstraint(I, γ): Given a left-O0 ideal I of reduced norm N

and γ ∈ O0, outputs (C0 : D0) ∈ P1(Z/NZ) such that γµ0 ∈ I, where
µ0 = j(C0 + iD0).

5. EichlerModConstraint(I, γ, δ): Given a left O0-ideal I of reduced norm
N , γ, δ ∈ O0 of reduced norms coprime to N , outputs (C1 : D1) ∈ P1(Z/NZ)
such that γµ1δ ∈ Z+ I, where µ1 = j(C1 + iD1).

6. StrongApproximationℓe(N , C,D): GivenN,C,D ∈ Z, outputs µ = λµ0+
Nµ1 of reduced norm ℓe, where µ0 = j(C + iD) and µ1 ∈ Z+Zi+Zj +Zk.

Algorithm 1 SigningKLPT(Iτ , I)
Require: An (O0,OA)-ideal Iτ of reduced norm Nτ , a left OA-ideal I.
Ensure: A left O-ideal J of reduced norm ℓe such that I ∼ J .
1: K ←EquivlantRandomEichlerIdeal(I,Nτ);
2: K′ ← [Iτ]

∗(K);
3: L←EquivlantPrimeIdeal(K′), N ← Nrd(L);
4: Select δ ∈ K′ such that L = K′ δ̄

Nrd(K′) ;
5: e0 ← e0(N) and e1 ← e− e0;
6: γ ←RepresentIntegerO0(Nℓe0);
7: (C0 : D0)←IdealModConstraint(L, γ);
8: (C1, D1)← EichlerModConstraint(Iτ , γ, δ);
9: C ← CRTN,Nτ (C0, C1), D ← CRTN,Nτ (D0, D1). If ℓep(C2 + D2) is not a

quadratic residue, go back to Step 6;
10: µ←StrongApproximationℓe1 (NNτ , C, D);
11: β ← γµ;
12: J ← [Iτ]∗

(
L β̄

Nrd(L)

)
;

13: return J .

However, De Feo et al. [17] found that Algorithm 1 results in the invalid
security proof of SQISign. To overcome this problem, they replaced Repre-
sentInteger by FullRepresentInteger (defined below) to compute γ in the
SigningKLPT algorithm. Heuristically, this modification leads to the uniform
distribution of outputs.
FullRepresentIntegerO0(M): Given an integer M > p, outputs γ ∈ O0\2O0

of reduced norm dividing M .

2.4 Ideal to isogeny translation

The efficiency bottleneck of SQISign is the translation from the ideal Iσ to
the corresponding isogeny σ. In the current implementation of SQISign, the

7

signer needs to decompose the isogeny σ of degree 2e into the isogenies φi,
i = 1, 2, · · · , n of degree 2a such that

σ = φn ◦ · · · ◦ φ2 ◦ φ1,

where a is the integer such that 2a‖p+1. Here we review ideal to isogeny trans-
lation in detail. For simplicity, we only analyze how to generate φ1, while the
procedures to generate φi, i = 2, · · · , n are similar.

E0 EA E
φI2

φK φ1

σ

φ2 ··· φn

Fig. 2: Sketch of ideal to isogeny translation.

The core of ideal to isogeny translation is, given an isogeny φK of degree
2a with kernel 〈P 〉, one can find the corresponding isogeny of I = 〈α, 2a〉 by
computing the kernel 〈[C]P + [D]θ(P)〉, where θ ∈ OA\(Z + K + 2OA) has
smooth reduced norm and satisfies that α(C +Dθ) ∈ K [17, Lemma 2]. To do
this, the following two algorithms are required:
SpecialEichlerNormT (O,K): Given a maximal order O and a left O-ideal K
of reduced norm ℓ, outputs β ∈ O\(Z+K) of reduced norm dividing T 2, where
T is a parameter such that gcd(T, ℓ) = 1 and T |p2 − 1.
IdealToIsogeny(I): Given an ideal I ⊆ O0 of reduced norm dividing T , outputs
the corresponding isogeny φI .

Algorithm 2 describes how to translate each φi. In the first execution to
compute φ1, the signer takes O = OA, I = Iσ + 2aOA, J = I2, φJ = φI2 and
the generator P of EA[2a] ∩ ker(φ̂J) as the input.

Algorithm 2 IdealToIsogenyEichler2a(O, I, J , φJ , P)
Require: A left O-ideal I of reduced norm 2a, an (O0,O)-ideal J of reduced

norm 2• and φJ : E0 → E the corresponding isogeny, a generator P of E[2a]∩
ker(φ̂J).

Ensure: φI of degree 2a.
1: K ← J + 2aO;
2: θ ← SpecialEichlerNormT (O, K + 2O);
3: Select α ∈ I such that I = O〈α, 2a〉;
4: Compute C,D such that α(C +Dθ) ∈ K and gcd(C,D, 2) = 1;
5: Take any n1 | T and n2 | T such that n1n2 = Nrd(θ). Compute H1 =
O〈θ, n1〉 and H2 = O〈θ, n2〉;

6: Li ← [J]∗Hi, ϕi ← [φJ]∗IdealToIsogeny(Li) for i ∈ {1, 2};
7: Compute Q← ϕ̂2 ◦ ϕ1(P);
8: Compute φI of kernel 〈[C]P + [D]Q〉;
9: return φI .

8

Remark 1. It should be noted that the implementation of ideal to isogeny trans-
lation also requires that the isogeny corresponding to the ideal I2 · Iσ is cyclic. If
not, in the second execution to compute φ2, the input J ⊆ 2O0, which implies
that K = J + 2aO ⊆ 2O. Hence, the isogeny φK is not cyclic. Therefore, one
may repeat executing the SigningKLPT algorithm to generate Iσ until σ ◦ φI2
is cyclic.

The most expensive step of Algorithm 2 is to compute Q = θ(P) = ϕ̂2◦ϕ1(P).
To reduce the computational cost, one can utilize Algorithm 3 to obtain the x-
coordinate of [C]P + [D]Q from the knowledge of Trd(θ). Compared to directly
compute Q = θ(P), one isogeny construction could be saved.

Algorithm 3 EndomorphismEvaluation(ϕ1, ϕ2, C, D, t, P)
Require: Two isogenies ϕ1, ϕ2 from E to E′, scalars C and D, the reduced trace

Trd(θ) = Trd(ϕ̂2 ◦ ϕ1) and a point P ∈ E[2a].
Ensure: The x-coordinate of [C]P + [D]θ(P).
1: Compute Q such that ⟨P,Q⟩ = E[2a] and compute P +Q;
2: Compute xϕ1(P), xϕ1(Q), xϕ2(P), xϕ2(Q), xϕ2(P+Q);
3: Compute s1, s2 such that xϕ1(P) is equal to the x-coordinate of [s1]ϕ2(P) +

[s2]ϕ2(Q);
4: Compute s3, s4 such that xϕ1(Q) is equal to the x-coordinate of [s3]ϕ2(P) +

[s4]ϕ2(Q);
5: Change the signs of (s1, s2), (s3, s4) until (s1 + s4) deg(ϕ2) ≡ Trd(θ) mod 2a;
6: Compute the x-coordinate of [C + s1D deg(ϕ2)]P + [s2D deg(ϕ2)]Q and set it as

xR;
7: return xR.

2.5 Reduced Tate pairing

Let E be an elliptic curve over Fp, the reduced Tate pairing is a map :

en : E(Fq)[n]× E(Fq)/nE(Fq)→ µn,

where q is the power of p and µn is the n-roots of unity in Fp. There are some
properties of the reduced Tate pairing [21, Theorems IX.7, IX.9]:

1. Assume P1, P2 ∈ E(Fq)[n], P3, P4 ∈ E(Fq)/nE(Fq). Then

en(P1 + P2, P3) = en(P1, P3)en(P2, P3),

en(P1, P3 + P4) = en(P1, P3)en(P1, P4).

2. Let P ∈ E(Fq)[n]. If en(P,Q) = 1 for any Q ∈ E(Fq)/nE(Fq), then P =∞E .
3. Let Q ∈ E(Fq)/nE(Fq). If en(P,Q) = 1 for any P ∈ E(Fq)[n], then Q ∈
nE(Fq).

9

4. Let φ : E → E′ be an isogeny, P ∈ E(Fq)[n], Q′ ∈ E′(Fq)/nE′(Fq), then

en(φ(P), Q
′) = en(P, φ̂(Q

′)).

5. Let P ∈ E(Fq)[N] and Q ∈ E(Fq), where N = nn′. Then

en ([n
′]P,Q) = eN (P,Q)n

′
.

3 Faster Generation of Iσ

The aim of this section is to speed up the performance of generating the required
Iσ in the signing phase. As mentioned in Remark 1, the isogeny σ ◦ φI2 should
be cyclic. Indeed, there exist three edges from the vertex [EA] in G2(Fp). Heuris-
tically, there is a 33.3% probability that the isogeny is not cyclic. Therefore, one
may try several times to obtain Iσ by applying the SigningKLPT algorithm to
satisfy the above condition. It enlarges the computational cost of SQISign. For
the rest of this section, we propose Propositions 1, 2 and 3 to present a modified
SigningKLPT algorithm to overcome this issue, i.e., avoiding repeated calls to
the SigningKLPT algorithm.

In the key generation phase we have Iτ = 〈γ′, Nτ 〉 and I2 = 〈γ′, 2eτ 〉,
where γ′ ∈ Z + Zi + Zj + Zk of reduced norm Nτ2

eτ . In the following, we
give Proposition 1 to show that γ′ is always contained in O0(1 + i), where
O0 = Z+ Zi+ Z i+j

2 + Z 1+k
2 .

Proposition 1. Assume that α ∈ Z + Zi + Zj + Zk ⊆ O0. If Nrd(α) is even,
then α ∈ O0(1 + i).

Proof. Since α ∈ Z + Zi + Zj + Zk, we can assume α = a + bi + cj + dk with
a, b, c, d ∈ Z, then α can be written as

α = (a− d) + (b− c)i+ 2c
i+ j

2
+ 2d

1 + k

2
.

Denote S = {a, b, c, d}. Since the reduced norm of α is even, we have a2 + b2 +
pc2 + pd2 is even. Now we prove that a− d and b− c are both odd or even. On
the contrary, if one of a− d, b− c is odd and the other is even, then one of the
following statements holds:

– The set S contains only one odd element.
– The set S contains only one even element.

In both cases, we can deduce that a2+b2+pc2+pd2 is odd. It is a contradiction.
Hence, it implies that (a− d)− (b− c) is even, and

α = [(a− d)− (b− c)] + (b− c)(1 + i) + 2c
i+ j

2
+ 2d

1 + k

2

=

[
(a− d)− (b− c)

2
(1− i) + (b− c) + c

i+ j

2
(1− i) + d

1 + k

2
(1− i)

]
(1 + i).

Therefore, α ∈ O0(1 + i). □

10

Now we propose Proposition 2, which can be used to check whether the
composition of two cyclic isogenies is still cyclic or not.

Proposition 2. Assume φ1 : E1 → E2, φ2 : E2 → E3 are two cyclic isogenies.
Then φ2 ◦ φ1 is cyclic if and only if ker(φ̂1) ∩ ker(φ2) = {∞E2

}.

Proof. If ker(φ̂1)∩ker(φ2) 6= {∞E2
}, there exists a point P of prime order ℓ such

that P ∈ ker(φ̂1) ∩ ker(φ2). Since the isogeny φ1 is surjective, we can assume
φ1(P

′) = P . Obviously, 〈P ′〉 ⊆ ker(φ2 ◦ φ1). Besides, it is clear that ker(φ1) ⊆
ker(φ2 ◦φ1) and 〈P ′〉∩ker(φ1) = {∞E1

}. Therefore, E1[ℓ] ⊆ ker(φ2 ◦φ1), which
implies φ2 ◦ φ1 is not cyclic.

On the other hand, if φ2 ◦ φ1 is not a cyclic isogeny, then there exists a
prime ℓ such that ℓ|deg(φ1) and E1[ℓ] ⊆ ker(φ2 ◦ φ1). Let 〈P 〉 ⊆ ker(φ1) be
a subgroup of order ℓ. Suppose that 〈P,Q〉 = E0[ℓ], then φ1(Q) ∈ ker(φ̂1)
and φ1(Q) ∈ ker(φ2). This deduces that φ1(Q) ∈ ker(φ̂1) ∩ ker(φ2), which is a
contradiction. □
Remark 2. The proof of Proposition 2 also implies that the isogeny φ2 ◦ φ1 is
cyclic if and only if (ker(φ̂1)∩E2[ℓ])∩ (ker(φ2)∩E2[ℓ]) = {∞E2

} for any prime ℓ
dividing gcd(deg(φ1),deg(φ2)), which is equivalent to the first steps (ℓ-isogeny)
of φ̂1 and φ2 are different.

E0 EA E0

γ′

τ φ̂I2

Fig. 3: Decomposition of γ′.

Since IτI2 = 〈γ′, Nτ 〉〈γ′, 2eτ 〉 = 〈γ′〉, we can deduce that the endomorphism
γ′ = φ̂I2 ◦ τ (illustrated in Figure 3). Therefore,

γ′(ker(1 + i)) = φ̂I2 ◦ τ(ker(1 + i)).

Note that γ′ ∈ Z + Zi + Zj + Zk and its reduced norm is even. Thanks to
Proposition 1, γ′(ker(1 + i)) = {∞E2

} and thus τ(ker(1 + i)) ⊆ ker(φ̂I2), i.e.,
τ(ker(1 + i)) = ker(φ̂I2) ∩ EA[2].

According to Proposition 2, the isogeny σ◦φI2 is cyclic if and only if ker(φ̂I2)∩
ker(σ) = ker(φ̂I2) ∩ τ(ker(φI′)) = {∞EA

}, where I ′ = L γµ
Nrd(L) and γ, µ, L are

obtained in the SigningKLPT algorithm.
Since the endomorphism µ̄γ̄ is the composition φL̄ ◦ φI′ (illustrated in Fig-

ure 4), the first step (2-isogeny) of φI′ is that of γ̄, which has kernel ker(γ̄)∩E0[2].
It implies that the kernel of the first step of σ is τ(ker(γ̄)∩E0[2]). Note that the
kernel of the first step of φ̂I2 is ker(φ̂I2) ∩ EA[2] = τ(ker(1 + i)). Therefore, we
have the following proposition:

11

E0 E′ E0

φI′

µ̄γ̄

φL̄

Fig. 4: Decomposition of φI .

Proposition 3. Using the same notation as before, the isogeny σ ◦φI2 is cyclic
if and only if the first step of γ̄ is not the loop 1 + i, i.e., γ /∈ (1 + i)O0.

We propose the modified SigningKLPT algorithm in Algorithm 4. The main
difference between ours and the previous work is that we ensure γ /∈ (1 +
i)O0 in Steps 5-7. Analogous to the previous work, we first use Algorithm
FullRepresentInteger to generate γ. If γ ∈ (1 + i)O0, we set γ = (1+i)

2 γ.
With this minor modification, we can ensure the isogeny σ corresponding to the
output of Algorithm 4 always satisfies that σ ◦ φI2 is cyclic. Heuristically, this
modification does not lead to biased distributions of the first several steps of the
response σ, as we report in Figure 5.

0

2,000

4,000

6,000

(a) First step
0

1,000

2,000

3,000

(b) Second step
0

500

1,000

1,500

(c) Third step

Fig. 5: Distribution of first three steps of the response σ for 10 secret keys and
random ideal in input over 1000 attempts.

Even though the generator γ′ is not in O0(1 + i), one can modify the Sign-
ingKLPT algorithm to achieve the goal with Lemma 1.

Lemma 1. Let p ≡ 3 (mod 4), p > 8, E0 be a supersingular elliptic curve with
j-invariant 1728. Then in G2(Fp), the vertex [E0] has one loop which corresponds
to the ideal O0(1 + i), and connects to the vertex [E6] (E6 : y2 = x3 + 6x2 + x)
by 2 edges which correspond to the non-principal ideals I0 and I0i, respectively.

Proof. The proof follows from [26, Section 5]. □

12

Algorithm 4 ModifiedSigningKLPT(Iτ , I)
Require: An (O0,OA)-ideal Iτ of reduced norm Nτ , a left OA-ideal I.
Ensure: Left integral O-ideal J of reduced norm ℓe such that I ∼ J .
1: K ←EquivlantRandomEichlerIdeal(I,Nτ);
2: K′ ← [Iτ]

∗(K);
3: L←EquivlantPrimeIdeal(K′), N ← Nrd(L);
4: Select δ ∈ K′ such that L = K′ δ̄

Nrd(K′) ;
5: e0 ← e0(N);
6: γ ←FullRepresentIntegerO0(Nℓe0);
7: if (1 + i)γ ∈ 2O0 then
8: γ ← (1+i)γ

2
;

9: end if
10: e′0 ← log2(Nrd(γ)/N), e1 ← e− e′0.
11: (C0 : D0)←IdealModConstraint(L, γ);
12: (C1, D1)← EichlerModConstraint(Iτ , γ, δ);
13: C ← CRTN,Nτ (C0, C1), D ← CRTN,Nτ (D0, D1). If ℓep(C2 + D2) is not a

quadratic residue, go back to Step 6;
14: µ←StrongApproximationℓe1 (NNτ , C, D);
15: β ← γµ;
16: J ← [Iτ]∗

(
L β̄

Nrd(L)

)
;

17: return J .

Assume that the first step (2-isogeny) of γ′ corresponds to the non-principal
ideal I0, while the other case is similar. As above, the isogeny σ ◦φI2 is cyclic if
and only if the first steps of γ̄ and γ′ have distinct kernels. If the first step of γ̄
is not φI0 , then the isogeny σ ◦ φI2 is cyclic. Otherwise, we can modify γ by iγ
or (1 + i)γ to ensure the first step of γ̄ is i(ker(φI0)) or (1 + i)(ker(φI0)), which
is not equal to ker(φI0), i.e., the isogeny σ ◦ φI2 is cyclic.

4 Efficient Elliptic Curve Discrete Logarithm
Computations

In this section, we focus on how to solve the two elliptic curve discrete logarithms
in Algorithm 3 and propose a more efficient approach to obtain s1 and s2.

In the current implementation, each ideal to isogeny translation requires
computing two elliptic curve discrete logarithms. To be precise,

ϕ1(P) = [s1]ϕ2(P) + [s2]ϕ2(Q),

ϕ1(Q) = [s3]ϕ2(P) + [s4]ϕ2(Q).
(1)

where ϕ1, ϕ2 are two isogenies of odd degree. For simplicity, we denote Pi = ϕi(P)
and Qi = ϕi(Q), i = 1, 2.

The authors in [17] used the Pohlig-Hellman algorithm [33] with a balanced
strategy to simplify the above two elliptic curve discrete logarithms in the group
EA[2

a] into multiple elliptic curve discrete logarithms in the group EA[2]. For

13

efficiency, they suggested using the x-only arithmetic to recover the absolute
values of s1, s2, s3 and s4 by computing two elliptic curve discrete logarithms
in Equation (1), and then determine the signs of them with the help of Trd(θ).
However, the cost is still relatively large. This method needs to compute the
x-coordinates of Pi+Qj and P1+P2+Qi (i, j = 1, 2) in advance and store all of
them into a stack. During the computation, all the elements in the stack need to
be updated frequently in order to entirely utilize the x-only arithmetic. On the
other hand, as we can see in Algorithm 3, the goal of computing the absolute
values of s3 and s4 in the second elliptic curve discrete logarithm is merely to
confirm the signs of s1 and s2. It is natural to ask whether one could compute
only one elliptic curve discrete logarithm to obtain the exact values of s1 and
s2.

In the following, we propose a more efficient method to obtain the exact
values of s1 and s2. Firstly, we show how to avoid the second elliptic curve
discrete logarithm computation in Equation (1) with the knowledge of θ. Next,
inspired by previous works, we take full advantage of pairing computations to
translate the first elliptic curve discrete logarithm into two discrete logarithms in
the finite field Fp2 . Finally, we show how to compute the two discrete logarithms
in Fp2 efficiently.

4.1 Saving one elliptic curve discrete logarithm computation

Now we propose Theorem 1, a key observation leading to the saving of the second
elliptic curve discrete logarithm computation in Equation (1):

Theorem 1. Assume that φJ is a cyclic 2•-isogeny from E0 to E, and J is the
corresponding right O-ideal. Suppose that K = J + 2O. If the endomorphism
θ ∈ O\(Z +K) and P is a point of order 2a such that 〈P 〉 = E[2a] ∩ ker(φ̂J),
then θ([2a−1]P) 6= [2a−1]P .

Proof. Clearly, the ideal corresponding to the isogeny φ̂J is J . Hence, for any
δ ∈ K = J + 2O, we have

δ([2a−1]P) =∞E .

Suppose that θ([2a−1]P) = [2a−1]P . Since θ([2a−1]P)− [2a−1]P =∞E , we have
θ−1 ∈ K from the Deuring Correspondence Theorem. It implies that θ ∈ Z+K.
This contradicts the fact that θ ∈ O\(Z+K). □

Theorem 1 implies that in each ideal to isogeny translation, the endomor-
phism θ we handle always maps [2a−1]P to a point which is not [2a−1]P . Since
the reduced norm of θ divides T 2 and T is odd, θ([2a−1]P) is not the point at
infinity. This implies that the endomorphism θ maps [2a−1]P to another point
of order 2.

In the following, we show that s2 in Equation (1) is always odd. It confirms
that s−1

2 mod 2a exists, which can be employed to accelerate the performance.

Corollary 1. At Step 3 of Algorithm 3, we have s2 ≡ 1 mod 2.

14

Proof. From P1 = [s1]P2 + [s2]Q2, we have

[2a−1]P1 = [s1]([2
a−1]P2) + [s2]([2

a−1]Q2).

Suppose for contradiction that s2 is even. Since the order of [2a−1]Q2 is 2,
[s2]([2

a−1]Q2) is the point at infinity. Therefore,

[2a−1]P1 = [s1]([2
a−1]P2).

Applying ϕ̂2 to the above equation yields:

θ([2a−1]P) = [s1 deg(ϕ2)]([2
a−1]P).

From the deduction above, we know that θ([2a−1]P) is of order 2. It implies that
θ([2a−1]P) = [2a−1]P , which is a contradiction with Theorem 1. Hence, we have
s2 ≡ 1 mod 2. □

With the investigation above, we can directly compute the absolute values of
s3 and s4 with the help of Trd(θ) and Nrd(θ) instead of computing the second
elliptic curve discrete logarithm in Equation (1). To be precise, after recovering
the absolute values of s1 and s2 in the first elliptic curve discrete logarithm
computation, one can suppose

s4 =Trd(θ)− s1 mod 2a,

s3 =
s1s4 −Nrd(θ)

s2
mod 2a.

(2)

Then, compute the x-coordinate of [s3]P2+[s4]Q2. If the x-coordinate of [s3]P2+
[s4]Q2 is equal to that of Q1, then the signs of s1 and s2 are correct. Otherwise,
we need to change the signs of them. The main procedure is summarized in
Algorithm 5:

Algorithm 5 EndomorphismEvaluation(φ1, φ2, C, D, t, n, P)
Require: Two isogenies ϕ1, ϕ2 from E to E′, scalars C and D, the reduced trace

Trd(θ) = Trd(ϕ̂2 ◦ ϕ1), the reduced norm Nrd(θ) = Nrd(ϕ̂2 ◦ ϕ1) and a point
P ∈ E[2a].

Ensure: The x-coordinate of [C]P + [D]θ(P).
1: Compute Q such that ⟨P,Q⟩ = E[2a] and compute P +Q;
2: Compute xϕ1(P), xϕ1(Q), xϕ2(P), xϕ2(Q), xϕ2(P+Q);
3: Compute s1, s2 such that xϕ1(P) is equal to the x-coordinate of [s1]ϕ2(P) +

[s2]ϕ2(Q);
4: Let s4 = Trd(θ)− s1 mod 2a and s3 = (s1s4 −Nrd(θ))/s2 mod 2a;
5: Compute the x-coordinate of [s3]ϕ2(P) + [s4]ϕ2(Q) and set it as xt;
6: if xt ̸= xϕ1(Q) then
7: s1 ← −s1, s2 ← −s2;
8: end if
9: Compute the x-coordinate of [C + s1D deg(ϕ2)]P + [s2D deg(ϕ2)]Q and set it as

xR;
10: return xR.

15

At the beginning of this section, we reviewed the current implementation of
computing discrete logarithms on elliptic curves in SQISign. Even though the
authors in [17] utilized the x-only arithmetic, it is still an expensive procedure. A
question raised here is how to compute the first elliptic curve discrete logarithm
in Equation (1) more efficiently.

Our optimization is reminiscent of public-key compression in SIDH [3]. That
is, applying pairings (note that the pairing we use should satisfy e2a(R,R) = 1
for any R ∈ E(Fp2)[2a]) to translate the elliptic curve discrete logarithm into
two discrete logarithms in the cyclic group µ2a = {h2a = 1|h ∈ Fp2}:

h0 = e2a(P2, Q2),

h1 = e2a(P2, P1) = e2a(P2, [s1]P2 + [s2]Q2) = e2a(P2, [s2]Q2) = hs20 ,

h2 = e2a(Q2, P1) = e2a(P2, [s1]P2 + [s2]Q2) = e2a(Q2, [s1]P2) = h−s10 .

(3)

In Sections 4.2 and 4.3, we show how to efficiently compute the pairings
in Equation (3) and the two discrete logarithms in µ2a to recover s1 and s2,
respectively.

4.2 Pairing computations

In this subsection, we show why we can adapt the reduced Tate pairing in Equa-
tion (3) and explore how to compute h0, h1 and h2 efficiently. Besides, we analyze
the situation when using the Weil pairing. For simplicity, we write eT,n(·, ·) and
eW,n(·, ·) to denote the reduced Tate pairing and the Weil pairing, respectively.

Since the embedding degree is equal to 1, one may doubt whether eT,2a(R,R)
is equal to 1 for any R ∈ E(Fp2)[2a] in this case. Hence, the deduction of Equa-
tion (3) when applying the reduced Tate pairing may not be convinced. Indeed,
the fact that eT,2a(R,R) = 1 has been applied into public-key compression in
SIDH [11]. It seems that the correctness of the above fact has been well known
to the experts. However, we do not find a relevant proof in the literature. There-
fore, we propose Theorem 2 for illustrating the special feature of the reduced
Tate pairing in our case.

Theorem 2. Suppose that E is a supersingular elliptic curve over Fp2 , where
2a‖p + 1 and E[2a] ⊆ E(Fp2) with a > 2. Then eT,2a(R,R) = 1 for any R ∈
E(Fp2)[2a].

Proof. Since isogeny graphs for supersingular elliptic curves have the Ramanujan
property [32], there exists an isogeny ψ : E0 → E of degree coprime to 2.
Therefore,

eT,2a(R,R)
deg(ψ) = eT,2a(ψ̂(R), ψ̂(R)).

It implies that eT,2a(R,R) = 1 if and only if eT,2a(ψ̂(R), ψ̂(R)) = 1 for any
R ∈ E(Fp2)[2a].

16

As E0(Fp)[2a] ∼= Z/2aZ, one can select a point P0 ∈ E0(Fp) of order 2a

such that [2a−1]P0 = (0, 0). Since End(E0) ∼= O0 = 〈1, i, i+j2 , 1+k2 〉, we set Q0 =

ι(P0) ∈ E0(Fp2), where ι corresponds to i+j
2 . Due to the fact that

i+ j

2
(1 + i) =

−1 + i+ j − k
2

/∈ 2O0,

we have i+j
2 /∈ O0(1 + i). This implies that ι((0, 0)) 6=∞E0

. Since

[2a−1]Q0 = [2a−1]ι(P) = ι([2a−1]P) = ι((0, 0)) 6=∞E0
,

we have the order of Q0 is also 2a. Now we show 〈P0, Q0〉 = E0(F2
p)[2

a]. Sup-
pose for contradiction that [2a−1]Q0 = [2a−1]P0 = (0, 0). Then [2a−1]ι(P0) =
ι((0, 0)) = (0, 0), i.e.,

(ι− 1) ((0, 0)) =∞E0
.

However, noting that Nrd
(
i+j
2 − 1

)
= 1 + p+1

4 is odd, the point (ι− 1) ((0, 0))
is not equal to ∞E0

, which is a contradiction.
As a consequence, there exist r, s ∈ Z/2aZ such that ψ̂(R) = [r]P0 + [s]Q0.

Using the properties of the reduced Tate pairing,

eT,2a(ψ̂(R), ψ̂(R))

=eT,2a([r]P0 + [s]Q0, [r]P0 + [s]Q0)

=eT,2a([r]P0, [r]P0)eT,2a([r]P0, [s]Q0)eT,2a([s]Q0, [r]P0)eT,2a([s]Q0, [s]Q0)

=eT,2a(P0, P0)
r2eT,2a(P0, Q0)

rseT,2a(Q0, P0)
rseT,2a(Q0, Q0)

s2 .

Since

eT,2a(P0, Q0)
rseT,2a(Q0, P0)

rs =eT,2a(P0, ι(P0))
rseT,2a(ι(P0), P0)

rs

=eT,2a(P0, ι(P0))
rseT,2a(P0, ι̂(P0))

rs

=eT,2a(P0, ι(P0) + ι̂(P0))
rs

=eT,2a(P0,Trd(ι)(P0))
rs

=eT,2a(P0,∞E0
)rs

=1,

and
eT,2a(Q0, Q0)

s2 =eT,2a(ι(P0), ι(P0))
s2

=eT,2a(P0, ι̂ ◦ ι(P0))
s2

=eT,2a(P0,Nrd(ι)(P0))
s2

=eT,2a(P0, P0)
Nrd(ι)s2 ,

we have
eT,2a(ψ̂(R), ψ̂(R)) =eT,2a(P0, P0)

r2+Nrd(ι)s2 .

17

Note that P0 is defined on E0(Fp) and the final exponentiation is an exponenti-
ation to the power p2−1

2a . We can deduce that eT,2a(P0, P0) = 1 and therefore,

eT,2a(ψ̂(R), ψ̂(R)) = 1.

This concludes the proof. □

It remains to explore how to efficiently compute the reduced Tate pairings. In
the SIDH/SIKE implementation [2], Naehrig et al. [30] used the dual isogeny to
pull back the pairing computations from the image curve to the starting curve.
However, this technique does not work here because

h0 = e2a(φ̂J(P), φ̂J(Q)) = e2a(P,Q)deg(φJ) = e2a(P,Q)2
a+•

= 1.

Similarly, we have h1 = h2 = 1. Therefore, we have to compute the three pairings
in Equation (3) on the image curve E, as did in [3,11].

The reduced Tate pairing computations mainly contain two procedures: Miller
function construction and the final exponentiation. Compared to the latter, the
former one consumes larger computational resources because of the low embed-
ding degree. In the SIDH/SIKE implementation, the state-of-the-art improves
the Miller loop computation by the following formula with precomputation [27]:

div(f4n+1,R) = div
([

f24n,R ·
(
λ1(x− x[2·4n]R)− (y + y[2·4n]R)

)]2
λ2(x− x[2·4n]R)− (y + y[2·4n]R)

)
, (4)

where the function fN,R is rational with divisor div(fN,R) = N(R) − ([N]R) −
(N − 1)(∞E), the value λ1 is the slope of the line passing through [4n]R twice
and the value λ2 is the slope of the line passing through [−2 · 4n]R twice. In
our case, we are not able to apply the precomputation technique since the two
arguments are unknown, but we can still use Equation (4) instead of adapting
the usual doubling step:

div(f2n+1,R) = div
(
f22n,R

λ1(x− x[2n]R)− (y − y[2n]R)
x− x[2n+1]R

)
, (5)

where λ1 is the slope of the line passing through [2n]R twice.
For efficiency, we use modified Jacobian coordinates to compute the pair-

ings. The doubling operation requires only 3M + 5S [5], where S,M are the
cost of an Fp2 field squaring and multiplication, respectively. Another advan-
tage of adapting modified Jacobian coordinates is that during the computation
of doubling/quadrupling of R one could also obtain λ1 and λ2 easily.

According to our estimate, each quadrupling Miller loop using Equation (4)
with modified Jacobian coordinates costs 17M + 13S. It saves 3M + 1S com-
pared to computing two doubling Miller loops using Equation (5) with modified
Jacobian coordinates.

The final exponentiation is an exponentiation to the power p2−1
2a = (p− 1) ·

p+1
2a . Raising to the power p−1 is an easy part, since it only costs one application

18

of the Frobenius map and one inversion in Fp2 . As for the exponentiation to
the power p+1

2a , one could use the efficient formulas in the cyclotomic subgroup
µp+1 = {hp+1 = 1|h ∈ Fp2} [11, Section 5.1]. Another effective method, which
is proposed by Scott et al. [36], is to raise the power with the help of Lucas
sequences [34, Section 3.6.3]. In the implementation, we employ the latter one
since it performs better.

In fact, we can further optimize the computation from the relations of h0
and h1. Adapting the reduced Tate pairings in Equation (3),

h0 = eT,2a(P2, Q2) = f2a,P2
(Q2)

p2−1
2a ,

h1 = eT,2a(P2, P1) = f2a,P2
(P1)

p2−1
2a ,

h2 = eT,2a(Q2, P1) = f2a,Q2(P1)
p2−1
2a .

(6)

Note that the first two pairings share the same first argument. Therefore, when
applying the reduced Tate pairing, we can further improve the computations of
h0 and h1 by combining them together and one Miller function construction can
be saved.

Remark 3. The techniques proposed above can not be directly applied into the
case when the order of the pairing is 2a

′ , where a′ < a. It is because given
a class in E(Fp2)/2a

′
E(Fp2), we may not find an element in E(Fp2)[2a

′
] to

be the representative of the class. Assume that 〈P,Q〉 = E(Fp2)[2a
′
]. Since

〈[2a−a′]P, [2a−a′]Q〉 ∈ [2a
′
]E(Fp2) and the second argument of the reduced Tate

pairing is a representative of the class in E(Fp2)/2a
′
E(Fp2), the order of the

reduced Tate pairing e2a′ (P,Q) is of order 22a
′−a in Fp2 . For example, set

a′ = a − 1. In this situation, all the points in E(Fp2)[2] represent the same
class [∞E] in E(Fp2)/2E(Fp2). If the second argument is a point of order 2a−1,
then e2a−1(P,Q) is of order 2a−2 in Fp2 . Especially, if we consider the pairing
of order 2a

′ satisfying 2a′ < a, the value e2a′ (P,Q) is always equal to 1. For-
tunately, we always handle the case a′ = a except for the last step of ideal to
isogeny translation.

An alternative approach to compute pairings in Equation (3) is to utilize the
Weil pairing:

eW,2a(P2, P1) =
f2a,P2

(P1)

f2a,P1
(P2)

,

eW,2a(P2, Q2) =
f2a,P2

(Q2)

f2a,Q2
(P2)

,

eW,2a(Q2, P1) =
f2a,Q2(P1)

f2a,P1
(Q2)

.

(7)

Clearly, we need to construct three Miller functions. For the reduced Tate
pairing computation, Miller function construction is more expensive than the
final exponentiation. Furthermore, according to Equation (6), only two Miller

19

function constructions are needed, while there are three Miller functions to be
constructed in Equation (7). Therefore, the Weil pairing computation is still not
as efficient as the reduced Tate pairing computation. But in parallel implemen-
tation the Weil pairing computation would be more competitive since it does not
need the final exponentiation and all Miller function evaluations could be exe-
cuted simultaneously. Another advantage compared to the reduced Tate pairing
is that one can apply the Weil pairing into the situation when the order of the
pairing is less than 2a.

4.3 Discrete logarithm computations in µ2a

Since the order of µ2a is smooth, one can use the Pohlig-Hellman algorithm
with an optimal strategy to translate discrete logarithms in µ2a into discrete
logarithms in µ2w , where w is a small integer. It remains to compute discrete
logarithms in µ2w efficiently. In this subsection, we first consider the two methods
proposed in [28] which could be applied to improve the performance. Second,
we give a novel approach to compute discrete logarithms when the storage is
available. Finally, we give a comparison between the three methods by estimating
the computational costs.

The authors in [28] proposed two methods to accelerate discrete logarithm
computations. The first one is to compute a lookup table with respect to the
base h0:

T sgn1 [r][c] = (h0)
(c+1)2wr+m

, r = 0, 1, · · · , b a
w
c − 1, c = 0, 1, · · · , 2w−1 − 1, (8)

where m ≡ a mod w. Since h0 is not fixed, we can not compute the lookup table
in advance. As the base power w increases, the lookup table construction would
be more expensive, and it would consume more storage at the same time, while
the discrete logarithm computations would be more efficient.

The second method proposed in [28] is to compute only the first column and
the last row of the lookup table in Equation (8):

FC =
{
T sgn1 [r][0] = (h0)

2wr+m

, i = 0, 1, · · · , b a
w
c − 1

}
,

LR =
{
T sgn1 [b a

w
c − 1][c] = (h0)

(c+1)2a−w

, c = 0, 1, · · · , 2w−1
}
.

(9)

The discrete logarithm computations with Equation (9) would be more expen-
sive compared to that of the former method. However, the construction of Equa-
tion (9) is more efficient than the entire lookup table construction. Furthermore,
the latter method would be preferred in storage restrained environments.

In the following, we give another effective approach to improve the perfor-
mance of discrete logarithms in µ2a .

At first glance, as h0 is not fixed, it seems that we can not use precomputation
to save the computational cost. However, since the cyclotomic group µ2a in Fp2 is
fixed, one can find a primitive element g of µ2a in advance. Instead of computing

20

the two discrete logarithms of h1, h2 to the base h0, we compute three discrete
logarithms of h0, h1, h2 to the base g:

h0 = gs
′
0 , h1 = gs

′
1 , h2 = gs

′
2 . (10)

Hence, when the storage is available, we can use the precomputation to further
speed up the discrete logarithm computations in Equation (10). In this case, the
lookup table with respect to g is as follows:

T sgn1 [r][c] = g(c+1)2wr+m

, r = 0, 1, · · · , b a
w
c − 1, c = 0, 1, · · · , 2w−1 − 1. (11)

Note that h0 is also a primitive element in µ2a . Therefore, we can recover the
solutions by one inversion and two multiplications in Z/2aZ:

s1 = (s′0)
−1s′1, s2 = (s′0)

−1s′1.

Compared with the first two methods, our method avoids the lookup table
computation, but requires one more discrete logarithm computation in µ2a . We
respectively estimate the computational costs by utilizing the three methods we
presented above when setting the prime p as p3923 (a = 65). For simplicity, we
only consider multiplications and squarings, and assume that the cost of one Fp
multiplication is approximately equal to that of one Fp squaring. As shown in
Table 1, when the base power is small, the previous methods proposed in [28]
are more efficient than our new method. As the base power w increases, our new
method saves more computational resources. When the storage is limited, one
can adapt Method 2 proposed in [28] since it requires the least storage for the
lookup table.

Method w = 1 w = 2 w = 3 w = 4 w = 5 w = 6

Method 1 proposed in [28] 2068 1510 1219 1180 1171 1438
Method 2 proposed in [28] 2068 1560 1338 1375 1184 1389

Our method 2910 1980 1421 1179 855 825
Table 1: Cost estimates (in Fp multiplications) for the discrete logarithm com-
putation by different methods.

Based on [28, Algorithm 6], we present Algorithm 6 to solve discrete log-
arithms. Since the algorithm is non-recursive, it would be more attractive in
parallel environments.

Algorithm 6 PH_DLP(h, g, w, T sgn1 , Str)
Require: The challenge h, a primitive element g in the multiplicative group

µ2a , the base power w, the lookup table T sgn1 in Equation (11), the optimal
strategy Str.

Ensure: The array D such that h = g(D[⌊ a
w ⌋−1]···D[1]D[0])

2w .
1: Initialize a Stack Stack, which contains tuples of the form (ht, et, lt), where
ht ∈ µ2a , et, lt ∈ N.

21

2: LR ← the last row of the lookup table T sgn1 , i ← 0, j ← 0, k ← 0, m ←
2a mod w, ht ← h, y ← 1;

3: ht ← (ht)
2m ;

4: Push the tuple (ht, j, k) into Stack;
5: while k 6= b eℓw c − 1 do
6: while j + k 6= b eℓw c − 1 do
7: j ← j + Str[i];
8: ht ← (ht)

2w·Str[i]

;
9: Push the tuple (ht, j + k, Str[i]) into Stack;

10: i← i+ 1;
11: end while
12: Pop the top tuple (ht, et, lt) from Stack;
13: Find xt such that ht = (LR[0])xt with the help of LR;
14: D[k]← xt;
15: for each tuple (ht, et, lt) in Stack do
16: if xt 6= 0 then
17: if xt > 0 then
18: ht ← ht · T sgn1 [et][xt − 1];
19: else
20: ht ← ht · T sgn1 [et][−xt − 1];
21: end if
22: end if
23: end for
24: j ← j − lt, k ← k + 1;
25: end while
26: Pop the top tuple (ht, et, lt) from Stack;
27: Find xt such that ht = (LR[0])xt with the help of LR;
28: D[k]← xt;
29: if m 6= 0 then
30: y0 ← gD[0];
31: for i2 from 1 to b eℓw c − 1 do
32: if D[i2] < 0 then
33: y ← y · T sgn1 [i2 − 1][−D[i2]− 1];
34: end if
35: if D[i2] > 0 then
36: y ← y · T sgn1 [i2 − 1][D[i2]− 1];
37: end if
38: end for
39: y ← y2

w−m ;
40: y ← y0 · y, y ← h · y;
41: Find xt such that y = (LR[0])xt with the help of LR;
42: D[k + 1]← xt

2w−m ;
43: end if
44: return D.

22

5 Other Improvements

In this section, we propose other techniques to speed up the signing phase.
Some of the improvements also benefit the performances of key generation and
verification.

5.1 Torsion point generation

To accelerate torsion basis generation in compressed SIDH, Costello et al. [11]
proposed a method to find out a torsion basis of E(Fp2)[2a]. The main idea is as
follows: Firstly, precompute a list L of non-squares in Fp2 . Then, randomly select
v1 ∈ L until v31 +Av21 +v1 is a square. It confirms that (v1,

√
v31 +Av21 + v1) is a

point on E(Fp2). According to [23, Ch. 1((§4))], the order of the point is divided
by 2a, thus one can perform scalar multiplication to obtain a point P of order
2a. Similarly, one can generate a point Q of order 2a until 〈P,Q〉 = E(Fp2)[2a],
which can be checked by [2a−1]P 6= [2a−1]Q. In this subsection, we will show
how to adapt this method to benefit the implementation of SQISign.

As we all know, the 2•-isogeny σ ◦ φI2 can be composed by multiple 2-
isogenies. In addition, for any 2-isogeny ϕ whose kernel does not contain the
point (0, 0), i.e.,

ϕ : (x, y) 7→ (f(x), y · f ′(x)),

where
f(x) = x ·

(
x · xP − 1

x− xP

)
, (12)

and f ′(x) is its derivative. It is easy to see that when applying the above formula
(it is also what the current implementation did), we have

ϕ((0, 0)) = (0, 0). (13)

Furthermore, we can imply that the composition of them maps (0, 0) on the
original curve to (0, 0) on the image curve. In the following, we will utilize this
property to show that in each ideal to isogeny translation the first step of φ̂J has
kernel 〈(0, 0)〉, which confirms the point P ∈ E[2a] ∩ ker(φ̂J) has the property
that [2a−1]P = (0, 0).

As we mentioned in Lemma 1, if the first step of φJ corresponds to the ideal
O0(1+i), then it is an endomorphism of E0. Besides, we have ker(1+i) = 〈(0, 0)〉
and 1 + i maps (±i, 0) to (0, 0). Therefore, the dual of 1 + i has kernel 〈(0, 0)〉.
Since the isogeny φJ is cyclic, it is clear that the second step of φJ is a 2-isogeny
from E0 to E6 whose kernel is not 〈(0, 0)〉. According to Equation (12), the
dual of the second step of φJ has kernel 〈(0, 0)〉. From φI2 is cyclic, the group
〈(0, 0)〉 is not the kernel of the third step of φJ . Analogously, one can deduce
that except for the first step of φJ , the kernels of all the other steps do not
contain (0, 0). It implies that from the second step, the image of (0, 0) is equal
to (0, 0). Therefore, the dual of each step of φJ has kernel 〈(0, 0)〉. In particular,
we have (0, 0) ∈ E[2a]∩ker(φ̂J), i.e., the generator P of the group E[2a]∩ker(φ̂J)

23

satisfies that [2a−1]P = (0, 0). Likewise, it is easy to deduce [2a−1]P = (0, 0) if
the first step of φJ is a 2-isogeny from E0 to E6.

Therefore, in each ideal to isogeny translation, the point P always satis-
fies that [2a−1]P = (0, 0). Now we need another point Q such that 〈P,Q〉 =
E(Fp2)[2a], i.e., [2a−1]Q 6= (0, 0). Obviously, the above method presented by
Costello et al. is exactly suitable for speeding up the generation of Q. Further,
there is no need to check [2a−1]Q 6= (0, 0) when applying this method since P
and Q are always linearly independent, according to Theorem 3.

Theorem 3. Assume that EA : y2 = x3 + Ax2 + x is a supersingular elliptic
curve defined on the finite field Fp2 , where 2a‖p + 1 and EA[2

a] ⊆ EA(Fp2).
Suppose that Q = (xQ, yQ) ∈ EA(Fp2) and denote ord(Q) the order of Q. If
2a‖ord(Q), then (xQ)

p2−1
2 = −1 if any only if

[
ord(Q)

2

]
Q 6= (0, 0).

Proof. Suppose that P is a point of order 2a defined on EA/Fp2 . Firstly, we prove
that P and Q are linearly independent if and only if eT,2a(P,Q) is a primitive
element of the group µ2a .

Let Q ∈ EA(Fp2) be a rational point such that P and Q are linearly inde-
pendent. Suppose for contradiction that eT,2a(P,Q) is not a primitive element
of the group µ2a . Then we have

eT,2([2
a−1]P,Q) = eT,2a(P,Q)2

a−1

= eT,2a

(
P,

[
ord(Q)

2a

]
Q

)2a−1

= 1, (14)

From Theorem 2 we can deduce that

eT,2([2
a−1]P, P) = eT,2a(P, P)

2a−1

= eT,2a(P, [2
a−1]P) = 1. (15)

Since EA(Fp2)/2EA(Fp2) = {∞EA
+2EA(Fp2), P +2EA(Fp2), Q+2EA(Fp2), P +

Q + 2EA(Fp2)}, we have eT,2([2a−1]P,R) = 1 for any R ∈ EA(Fp2)/2EA(Fp2).
According to the non-degeneracy property of the reduced Tate pairing, [2a−1]P =
∞EA

. This is a contradiction and thus eT,2a(P,Q) is a primitive element of the
group µ2a .

On the other hand, if eT,2a(P,Q) is of order 2a, then

eT,2a(P,Q)2
a−1

= eT,2a(P, [2
a−1]Q) = eT,2a

(
P,

[
ord(Q)

2

]
Q

)
= −1.

It follows from Equation (15) that
[

ord(Q)
2

]
Q 6= [2a−1]P . Hence, we can deduce

that P and Q are linearly independent.
Now assume that [2a−1]P = (0, 0). If [ord(Q)

2]Q 6= (0, 0), then Q and P are
linearly independent. Therefore, eT,2a(P,Q) is a primitive element of µ2a , i.e.,

eT,2a(P,Q)2
a−1

= eT,2((0, 0), Q) = (xQ)
p2−1

2 = −1. (16)

Conversely, if (xQ)
p2−1

2 = −1, from Equation (16) we can imply that P and Q

are linearly independent. It ensures that [ord(Q)
2]Q 6= (0, 0). This completes the

proof. □

24

With Theorem 3, we can efficiently generate the point Q in Algorithm 7. It
should be noted that this improvement benefits all the procedures of SQISign,
especially the verifying phase.

Algorithm 7 DeterministicSecondPoint(A)
Require: The coefficient A of the Montgomery curve EA : y2 = x3 +Ax2 + x.
Ensure: A point Q defined on EA of order 2a such that [2a−1]Q ̸= (0, 0).
1: Select a non-square element xQ ∈ Fp2 such that x3

Q +Ax2
Q + xQ is a square;

2: Q← (xQ,
√

x3
Q +Ax2

Q + xQ);
3: Q← [p+1

2a
]Q;

4: return Q.

5.2 Image curve recovery with three points in isogeny computations

In each ideal to isogeny translation, we need to construct the large degree isogeny
ϕ2 and evaluate ϕ2 at P , Q and P +Q. Invoking efficiency reasons, the compu-
tation of ϕ2 is composed by multiple odd degree isogeny computations. At each
odd degree isogeny computation, not only we need to evaluate it at the three
points, but the image curve should also be obtained. Fortunately, one can use
Equation (17), which is proposed in [12, Remark 4], to recover the image curve
coefficient A:

A =
(1− xP ′xQ′ − xP ′xQ′−P ′ − xQ′xQ′−P ′)

2

4xP ′xQ′xQ′−P ′
− xP ′ − xP ′ − xQ′−P ′ , (17)

where P ′ and Q′ are two points defined on the image curve. For large prime
degree isogeny computations, applying Equation (17) to obtain the image curve
coefficient is much more efficient than computing it with Vélu’s formula [38,4].
This trick not only accelerates the performance of signing but that of key gen-
eration. Note that this technique could also be adapted in the implementation
of other isogeny-based protocols, such as M-SIDH and MD-SIDH [20].

5.3 Precomputation for φ1

In the first execution of ideal to isogeny translation for σ, we compute φ1 with
OA, I2 and φI2 . All of these are obtained in the key generation phase, and thus
some procedures used to compute φ1 can be saved via precomputation in the
key generation phase. For example, the endomorphism θ ∈ OA can be computed
in advance, and hence we are able to evaluate Q = θ(P) before signing. Indeed,
except for C and D, all the other information does not depend on the ideal
Iσ. Therefore, one could precompute them to speed up the translation from the

25

ideal 〈Iσ, 2a〉 to the isogeny φ1. Consequently, we can compute φ1 efficiently by
Algorithm 8, which avoids large degree isogeny computations. Although the pre-
computation increases the required computational resources of key generation,
it reduces the signing cost.

Algorithm 8 FirstIdealToIsogenyEichler2a(OA, I, K, P , θ, Q)
Require: A left OA-ideal I of reduced norm 2a, a left OA-ideal K = I2 + 2OA, a

generator P of E[2a] ∩ ker(φ̂I2), an endomorphism θ ∈ OA\(Z+K) and the point
Q = θ(P).

Ensure: φ1 of degree 2a.
1: Select α ∈ I such that I = O⟨α, 2a⟩;
2: Compute C,D such that α(C +Dθ) ∈ K and gcd(C,D, 2) = 1;
3: Compute φ1 of kernel ⟨[C]P + [D]Q⟩;
4: return φ1.

6 Implementation Results

In this section, we present the implementation results of the procedures we have
improved in the signing phase, and report the performance of SQISign with our
techniques. We also give a concrete comparison between the previous work and
ours on efficiency. Based on the code1 provided in [17], we compile and bench-
mark our code on Intel(R) Core(TM) i9-12900K 3.20 GHz with TurboBoost and
hyperthreading features disabled. Except for the improvements we mentioned in
this paper, we also adapt some techniques proposed in the literature to further
improve the implementation. For example, one can adapt the three-point ladder
algorithm [18] when computing the kernel generator of the isogeny.

Table 2 reports the performance of the procedures we improved in the signing
phase. For elliptic curve discrete logarithm computations, we apply our new
method to compute discrete logarithms in the group µ2a and set the base power
w = 5. The results show that the performance are significantly accelerated with
our techniques. It should be noted that except for the ideal generation with
the improved SigningKLPT algorithm, all the other procedures are executed
multiple times during the key generation and signing phase. In addition, the
verification phase needs to generate the second torsion point frequently, thus our
improved algorithms for torsion point generation also save the verifying cost.

As shown in Table 3, we improve the performance of all the procedures in
SQISign without the technique proposed in Section 5.3. When using the pre-
computation technique, the key generation phase is less efficient, but we further
improve the signing phase. In particular, the signing performance is 11.93% faster
than that of the previous work. This would be preferred in the case when the
signer needs to sign a number of messages using the same secret key.
1 https://github.com/SQISign/sqisign-ec23

26

https://github.com/SQISign/sqisign-ec23

Phase p6983 p3923
SQISign2 [17] This work Speedup SQISign2 [17] This work Speedup

Generation of Iσ 58550 37331 36.2% 55614 37927 31.8%
Computations for s1 and s2 4177 1260 69.8% 6149 1287 79.1%

Torsion point generation 881 604 31.4% 605 400 33.9%
Isogeny computation of φ2 30254 27439 9.3% 23872 21628 9.4%

Table 2: Implementation results of the improved procedures in the signing phase
of SQISign. The results are expressed in thousands of clock cycles.

Setting Phase SQISign2 [17] This work
without precomp. Speedup precomp. Speedup

p6983

Keygen 2029.1 1965.0 3.16% 2039.1 -0.5%
Sign 3671.1 3398.5 7.43% 3312.5 9.77%

Verify 50.2 38.6 23.11% 38.6 23.11%

p3923

Keygen 361.5 329.6 8.82% 399.6 -10.54%
Sign 1677.7 1535.1 8.50% 1477.6 11.93%

Verify 26.4 21.4 18.94% 21.4 18.94%

Table 3: Implementation results of each phases in SQISign. The results are re-
ported in millions of clock cycles. We execute 1000 times and record the average
costs of key generation and signature. For verification we report the average of
2500 instances.

7 Conclusion

In this paper, we mainly focused on ideal to isogeny translation in the signing
phase of SQISign, and proposed several novel techniques to enhance its per-
formance. For each procedure we have considered, the improvements led to a
significant speedup. The implementation results showed that we also improved
the key generation phase and the verification phase of SQISign. As a future
work, we would like to explore how to further accelerate the implementation of
SQISign.

Acknowledgments

We thank Jintai Ding for his valuable comments and proofreading an earlier
version of this work. This work is supported by Guangdong Major Project of
Basic and Applied Basic Research (No. 2019B030302008), the National Natural
Science Foundation of China (No. 61972428).

27

References

1. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-FiSh with
Sharing-friendly Keys. Cryptology ePrint Archive (2022)

2. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key
Encapsulation (2020), http://sike.org

3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key Compression
for Isogeny-Based Cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1–10 (2016)

4. Bernstein, D.J., de Feo, L., Leroux, A., Smith, B.: Faster computation of isoge-
nies of large prime degree. In: Galbraith, S. (ed.) ANTS-XIV - 14th Algorithmic
Number Theory Symposium. Proceedings of the Fourteenth Algorithmic Number
Theory Symposium (ANTS-XIV), vol. 4, pp. 39–55. Mathematical Sciences Pub-
lishers, Auckland, New Zealand (Jun 2020). https://doi.org/10.2140/obs.2020.4.39,
https://hal.inria.fr/hal-02514201

5. Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.
hyperelliptic.org/EFD

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Advances in Cryptology–
ASIACRYPT 2019: 25th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kobe, Japan, December 8–12, 2019,
Proceedings, Part I. pp. 227–247. Springer (2019)

7. Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In: Advances
in Cryptology–EUROCRYPT 2023: 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part V. pp. 423–447. Springer (2023)

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an ef-
ficient post-quantum commutative group action. In: Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part III 24. pp. 395–427. Springer (2018)

9. Chi-Domínguez, J.J.: A Note on Constructing SIDH-PoK-based Signatures af-
ter Castryck-Decru Attack. Cryptology ePrint Archive, Paper 2022/1479 (2022),
https://eprint.iacr.org/2022/1479

10. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Journal of Mathemat-
ical Cryptology 14(1), 414–437 (2020)

11. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
Compression of SIDH Public Keys. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in
Cryptology – EUROCRYPT 2017. pp. 679–706. Springer International Publishing,
Cham (2017)

12. Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular
Isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptol-
ogy – CRYPTO 2016. pp. 572–601. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

13. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: New Dimensions
in Cryptography. Cryptology ePrint Archive, Paper 2023/436 (2023), https://
eprint.iacr.org/2023/436

28

http://sike.org
https://doi.org/10.2140/obs.2020.4.39
https://hal.inria.fr/hal-02514201
http://www.hyperelliptic.org/EFD
http://www.hyperelliptic.org/EFD
https://eprint.iacr.org/2022/1479
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436

14. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge. In:
Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on the
Theory and Application of Cryptology and Information Security, Taipei, Taiwan,
December 5–9, 2022, Proceedings, Part II. pp. 310–339. Springer (2023)

15. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Advances in Cryptology–EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38. pp. 759–789.
Springer (2019)

16. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
Post-quantum Signatures from Quaternions and Isogenies. In: Moriai, S., Wang,
H. (eds.) Advances in Cryptology – ASIACRYPT 2020. pp. 64–93. Springer Inter-
national Publishing, Cham (2020)

17. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New Algorithms
for the Deuring Correspondence: Towards Practical and Secure SQISign Signa-
tures. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT
2023. pp. 659–690. Springer Nature Switzerland, Cham (2023)

18. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A
Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key
Exchange Protocol. IEEE Transactions on Computers 67(11), 1622–1636 (2018)

19. Fiat, A., Shamir, A.: How To Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology —
CRYPTO’ 86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

20. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering SIDH
Attacks by Masking Information. In: Hazay, C., Stam, M. (eds.) Advances in Cryp-
tology – EUROCRYPT 2023. pp. 282–309. Springer Nature Switzerland, Cham
(2023)

21. Galbraith, S.: Pairings, pp. 183–214. London Mathematical Society Lecture Note
Series, Cambridge University Press (2005)

22. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature
schemes based on supersingular isogeny problems. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I 23. pp. 3–33. Springer (2017)

23. Husemöller, D.: Elliptic Curves. Graduate Texts in Mathematics 111, Springer New
York, 2nd ed edn. (2004)

24. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography.
pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

25. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion ℓ-isogeny path
problem. LMS Journal of Computation and Mathematics 17(A), 418–432 (2014)

26. Li, S., Ouyang, Y., Xu, Z.: Neighborhood of the supersingular elliptic curve isogeny
graph at j= 0 and 1728. Finite Fields and Their Applications 61, 101600 (2020)

27. Lin, K., Lin, J., Wang, W., Zhao, C.A.: Faster Public-key Compression of
SIDH with Less Memory. IEEE Transactions on Computers pp. 1–9 (2023).
https://doi.org/10.1109/TC.2023.3259321

28. Lin, K., Wang, W., Wang, L., Zhao, C.A.: An Alternative Approach for Comput-
ing Discrete Logarithms in Compressed SIDH. Cryptology ePrint Archive, Paper
2021/1528 (2021), https://eprint.iacr.org/2021/1528

29

https://doi.org/10.1109/TC.2023.3259321
https://eprint.iacr.org/2021/1528

29. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Advances in Cryptology–EUROCRYPT 2023: 42nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V. pp. 448–471.
Springer (2023)

30. Naehrig, M., Renes, J.: Dual Isogenies and Their Application to Public-Key Com-
pression for Isogeny-Based Cryptography. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology – ASIACRYPT 2019. pp. 243–272. Springer International
Publishing, Cham (2019)

31. Onuki, H.: On oriented supersingular elliptic curves. Finite Fields and Their Ap-
plications 69, 101777 (2021)

32. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society 23(1), 127–137 (1990)

33. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (Corresp.). IEEE Transactions on Infor-
mation Theory 24(1), 106–110 (1978)

34. Richard Crandall, C.B.P.: Prime numbers: a computational perspective. Springer,
2nd ed edn. (2005)

35. Robert, D.: Breaking SIDH in polynomial time. In: Advances in Cryptology–
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Pro-
ceedings, Part V. pp. 472–503. Springer (2023)

36. Scott, M., Barreto, P.S.L.M.: Compressed Pairings. In: Franklin, M. (ed.) Advances
in Cryptology – CRYPTO 2004. pp. 140–156. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

37. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd Edition. Graduate Texts
in Mathematics. Springer (2009)

38. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci., Paris, Sér. A 273,
238–241 (1971)

39. Voight, J.: Quaternion algebras. Springer Graduate Texts in Mathematics series.
(2021)

30

	A Faster Software Implementation of SQISign

