BAKSHEESH: Similar Yet Different From GIFT
Introducing a Lightweight Cipher

Anubhab Baksi', Jakub Breier?, Anupam Chattopadhyay', Tom&s Gerlich3, Sylvain Guilley?, Naina Gupta!,
Takanori Isobe®, Arpan Jati', Petr Jedlicka?, Hyunjun Kim®, Fukang Liu®, Zdenék Martindsek?, Kosei
Sakamoto®, Hwajeong Seo®, Rentaro Shiba®, and Ritu Ranjan Shrivastwa?

NANYANG
L TRVNOLOSICAL Nanyang Technological University, Singapore

SINGAPORE

—
—— SAL Silicon Austria Labs, Graz, Austria
2 === SILICON AUSTRIA LABS

BRNO
s .' UNIVERSITY Brno University of Technology, Brno, Czechia

OF TECHNOLOGY

TELECOM|

, Télécom Paris, Paris, France; SECURE-IiC Secure-IC, Cesson-Sévigné, France

5 @ UNIVERSITY OF HYOGO University of Hyogo, Kobe, Japan

. D PTE:CEHE"?L' Hansung University, Seoul, South Korea
anubhab001@e.ntu.edu.sg, jbreier@jbreier.com, anupam@ntu.edu.sg, xger1li020@stud.feec.vutbr.cz,
sylvain.guilley@telecom-paristech.fr, naina003Qe.ntu.edu.sg, takanori.isobe@ai.u-hyogo.ac. jp,

arpan. jati@ntu.edu.sg, xjed1i23@vut.cz, khj930704@gmail.com, liufukangs@gmail.com,
martinasek@feec.vutbr.cz, k.sakamoto07280gmail . com, hwajeong84@gmail.com, rentaro.shiba@gmail.com,
ritu-ranjan.shrivastwa@secure-ic.com

Abstract. We propose a lightweight block cipher named BAKSHEESH, which follows up on the popular
cipher GIFT-128 (CHES’17). BAKSHEESH runs for 35 rounds, which is 12.50 percent smaller compared
to GIFT-128 (runs for 40 rounds) while maintaining the same security claims against the classical attacks.
The crux of BAKSHEESH is to use a 4-bit SBox that has a non-trivial Linear Structure (LS). An SBox
with one or more non-trivial LS has not been used in a cipher construction until DEFAULT (Asiacrypt’21).
DEFAULT is pitched to have inherent protection against the Differential Fault Attack (DFA), thanks to
its SBox having 3 non-trivial LS. BAKSHEESH, however, uses an SBox with only 1 non-trivial LS; and is
a traditional cipher just like GIFT-128, with no claims against DFA.

The SBox requires a low number of AND gates, making BAKSHEESH suitable for side channel counter-
measures (when compared to GIFT-128) and other niche applications. Indeed, our study on the cost of
the threshold implementation shows that BAKSHEESH offers a few-fold advantage over other lightweight
ciphers. The design is not much deviated from its predecessor (GIFT-128), thereby allowing for easy
implementation (such as fix-slicing in software). However, BAKSHEESH opts for the full-round key XOR,
compared to the half-round key XOR in GIFT.

Thus, when taking everything into account, we show how a cipher construction can benefit from the unique
vantage point of using 1 LS SBox, by combining the state-of-the-art progress in classical cryptanalysis
and protection against device-dependent attacks. We, therefore, create a new paradigm of lightweight
ciphers, by adequate deliberation on the design choice, and solidify it with appropriate security analysis
and ample implementation/benchmark.

Keywords: lightweight cryptography - block cipher - threshold implementation - gift - default - linear
structure

The authors are in alphabetical order of (Romanised) surnames. Corresponding author: Anubhab Baksi.

J

g o @w »

Table of Contents

Introduction 4
Background 5
2.1 Prelminaryo e e e 5
2.2 Side-Channel Attack and Countermeasure uouneune e 5
2.3 Countermeasure to Power Analysist 6
2.3.1 Cipher Level Construction: Role of XOR e 6
2.3.2 Cipher Level Construction: Specialisation to SBox.........o i, 6
2.3.3 Resisting Side Channel Attack: Threshold Implementation 6
Construction 6
3.1 SubCells (SBOX LAYET)ttt e 7
3.2 PermBits (Bit-permutation as Linear Layer)o 7
3.3 AddComstants (Round Constant XOR Layer) ..ot 7
3.4 Key Schedule Subroutine and AddRoundKey Layer i 7
Design Rationale 7
4.1 Motivation and ODbJective e 7
4.2 Rationale behind Choice of Design Componentst . 9
4.2.1 Linear Layer e 9
4.2, 2 OB OX t ittt e 9
4.2.3 Key Schedule and Round Key XOR e 10
4.2.4 Round Constantsttt e e 11
Security Claims and Analysis 11
5.1 Classical Attacks o 11
5.1.1 Differential and Linear Attacks e 11
5.1.2 Algebraic Attack. e 12
5.1.3 Integral Attack 13
5.1.4 Impossible Differential Attack i e 13
5.1.5 Invariant Subspace Attack e 14
5.1.6 Other Attacks ot 15
5.2 Side-Channel Attackso e e 15
Implementation and Performance 16
6.1 Unprotected Benchmark. e 16
6.1.1 Hardwareot e e 16
6.1.2 Software (FIx-slCe) 17
6.2 Side-Channel Protected Benchmark: Threshold Implementation 18
0.2.1 SBOXK « vt 18
6.2.2 ENCryption . ..ot e 18
Conclusion 19
More Cryptographic Properties of BAKSHEESH SBox 20
Implementations of BAKSHEESH SBox 20
Threshold Implementation (Combinational SBox) 22
More Information on BAKSHEESH Construction 23
D.1 Structure and Test VECtOrsottt e e e e 23

D.2 Details on Round Constants and Tap Positions. i 23

E Annex to Security Claims and Analysis

E.1 Trivial Differential and Linear Transitions
E.2 Key Recovery with Algebraic Methods
E.3 Integral Attack: Comparison with GIFT-128

F Postscript

F.1 Similarities and Differences between GIFT-128 and BAKSHEESHt

F.2 BAKSHEESH: Advantages over GIFT-128
F.3 Search for BAKSHEESH SBox
F.4 Number of Slack Rounds

F.5 How BAKSHEESH Improves State-of-the-art/Novelty

References

25
25
25
26

26
26
26
27
27
27

28

1 Introduction

With the shrinkage of available space for cryptographic modules in an IoT chip, the role and importance of
so-called lightweight cryptography are becoming increasingly prominent. The major driving force here is to find
interesting cost savings by either employing sophisticated implementations (say [1]), or designing a brand new
cipher that attains a lower cost than existing ciphers. In the latter case, the cipher is designed to take leverage
of the state-of-the-art progress the research community has access to, thereby streamlining design choices. This
ultimately results in reducing the cost of the cipher, while retaining a strong security margin. It is an extremely
popular research direction in the community now-a-days, as evident from recent cipher proposals like GIFT [22]
or PYJAMASK-128 [63]; as well as two competitions, CAESAR" and LWC®.

Going with the trend, here we analyse and improve upon an immensely popular lightweight block cipher,
GIFT [22]. Designed in 2017, GIFT-128 has gained serious attention; as evident from the third party analysis
(for example, [99,108]); as well as ciphers which are directly based on GIFT-128 (such as GIFT-COFB [21]).

Although the design of GIFT amasses new concepts to reduce the device footprint, the knowledge and
expertise of the community have come a long way in the last half a decade. With that it mind, it stands to
reason that a fresh look can yield improvement by pushing the limit even further. Indeed, a deeper look, when
equipped with the state-of-the-art progress in related disciples, reveals potential options to break the efficiency
records set by GIFT.

The objective here is to show a more efficient and versatile cipher construction based on the previously
untapped potential of SBoxes with non-trivial Linear Structures (LS, Definition 1). This has surfaced in the
literature merely as a theoretical interest (see, e.g., [82]). The first time the potential of an LS SBox is realised
is through DEFAULT [11, Chapter 8], as a way to have an innate protection against the Differential Fault Attack
(DFA, see [13, Section 5.1]). Now, in our quest to find an answer the conundrum (how can we find a more
efficient design than GIFT that will not only improve the benchmarks for the unprotected cipher, but also will
have an edge for the side-channel countermeasures?), we decide to entertain the possibility of a mainstream
block cipher with full classical security using an LS SBox. At first glance, this may not sound intuitive, however,
some advantages start to appear gradually (see Section 4.2.2).

To make BAKSHEESH a proper successor of GIFT, it is imperative not to stray away much from the main
design philosophy of GIFT. For this reason, it is decided to use a bit-permutation layer (it takes practically
zero area in ASIC, and efficient software implementation is possible [1]). As a self-imposed challenge, we keep
the same bit-permutation layer from GIFT-128, this additionally would help easy conversion of existing source
codes. We would like to emphasize that keeping the same bit-permutation as GIFT-128 does not make our life
easier, if anything it pushes us to a rather disadvantage — as we are facing the GIFT-128 challenge but with
less freedom in design. Considering the effort that has been put in finding the lightweight components for GIFT,
this unsurprisingly is no easy task. Consequently, the BAKSHEESH SBox, when paired with the linear layer of
GIFT-128, has to match (if not outperform) GIFT-128. For this, we ensure that our SBox fulfills two criteria.
First, we set the Linear Branch Number (LBN, see Definition 3) to be 3, this is the theoretical upper bound
for any 4 x 4 SBox [92]. Save for the newly proposed DEFAULT-LAYER [11, Chapters 7, 8] (or [10, Chapters
7, 8]) no cipher uses an SBox with LBN > 2. Second, the SBox is to have the maximum algebraic degree of
2. Indeed, the SBox used in BAKSHEESH possibly has the lowest number of AND operations (among all the
traditional ciphers using a 4 x 4 SBox), it arguably offers unparalleled advantage over any lightweight cipher
when it comes to an application that benefits from low number of AND operations (see Section 4.1). Despite
using a ‘bad’ SBox, BAKSHEESH passes the classical security requirement with flying colours (see Section 5.1).

Contribution/Organisation

Finding and perfecting novel concepts that can ultimately lead to extremely low cost — without jeopardizing
the security — is generally quite challenging as it typically involves studying and selecting a set of novel design
choices, choosing efficient parameters for the cipher, asserting security against classical attacks, optimizing the
cipher in hardware/software, and finally testing and protecting against the side-channel attacks. To this end,
we present a new lightweight block cipher, called BAKSHEESH.

BAKSHEESH consists of 35 rounds; which is 12.5% smaller than its predecessor, GIFT-128 from the beginning.
Also, the SBox used in BAKSHEESH is quite lightweight in hardware (as shown in Table 3, it rivals the major

"https://competitions.cr.yp.to/caesar.html.
8https://csrc.nist.gov/projects/lightweight-cryptography.
9This word in Persian translates to ‘tips’.

https://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/projects/lightweight-cryptography

lightweight SBoxes in ASIC) and software (requires only 10 instructions on ARM Cortex-M3), on top of having
probably the least number of AND operation (only 3, surpassing the SKINNY-64 SBox [24] that requires 4
operations).

Apart from GIFT, some inspiration of BAKSHEESH is drawn DEFAULT [11, Chapters 7, 8]. As DEFAULT uses
full round key XOR, the related security claims remain unchallenged. While having an SBox with a linear
structure, we do not raise any claims regarding DFA protection in BAKSHEESH.

With some background information covered in Section 2, the construction is described in Section 3, which is
then followed by design rationale in Section 4. Thereafter, a formal analysis of BAKSHEESH is given in Section 5
(we claim BAKSHEESH offers sufficient security against the classical attacks in Section 5.1, despite having an
SBox with non-trivial LS). In terms of performance, BAKSHEESH offers a noticeable improvement compared to
GIFT-128, as detailed in Section 6, in unprotected (Section 6.1) as well as in the threshold implementation
(Section 6.2). The paper concludes in Section 7.

All in all, we show how an unusual design choice can lead to improvement in a highly analyzed cipher
construction. The range of advantages of our cipher covers the full extent of classical analysis and side channel
analysis among others. Every minute detail of the design choice or security claim is scrutinized thoroughly.
On top of that, we offer a complete package of various implementations, enabling our user to readily deploy
BAKSHEESH''.

2 Background

2.1 Preliminary

The difference distribution table (DDT) for an n x n SBox S is basically the 2™ x 2" matrix; where the row
d € F4 and column A € F%, DDT[d, A] = number of z, 3 S(z) ® S(z®J) = A. The maximum entry in the DDT
except DDT|0, 0] is known as the differential uniformity (DU). The linear approximation table (LAT) for an
n x n SBox S is the 2" x 2" matrix; where the row v € F% and column I' € FY stores [{y-Z@® T -§ = 0}|—-2""1;
Z denotes the input variables to the SBox, i denotes the output variables, and - is the dot product.

Definition 1 (Linear Structure (LS)). For F : F3 — F3, an element a € F} is called linear structure (LS)
of F, if for some constant ¢ € Fy, F(z) ® F(xz ® a) = ¢ holds Va € F}.

Definition 2 (Non-linearity). The non-linearity of the Boolean function f : F} — Fo is the minimum
Hamming distance of f to the set of all affine functions. Further, the non-linearity of F : Fy — F§ is the
minimum of the non-linearities of all the component functions of F.

Definition 3 (Differential/Linear Branch Number). The Differential Branch Number (DBN) of F
is defined as minso{HW(d) + HW(F(x) @ F(x @ 9))}; and that of the Linear Branch Number (LBN) as
min{HW (a) + HW(8)} given « # 0, LAT[«v, 5] # 0; where HW(-) denotes the Hamming weight.

Definition 4 (Coordinate Function and Component Function). Suppose F : F} — F3 is defined as
F(z) = (folx),..., fuo1(x)) for all x € FY, where f; : FY — Fy for i =0,...,n— 1. Then each f; is called a
coordinate function of F. The linear combinations of f;’s are called the component functions of F'.

2.2 Side-Channel Attack and Countermeasure

Side channel attacks analyse physical characteristics of cryptographic devices related to the execution of the
implementation of a cryptographic algorithm. The physical analysis aims to extract a secret component such as
the key. The rationale is that there is a relationship between the manipulated data, the executed operations and
the physical properties observed during the execution of the cipher on the device. The physical properties that
can be extracted are, for example, the execution time of a cryptographic algorithm [76], the electromagnetic
emanation [59] or the power consumption of the device [77]. From a different point of view, side channel attacks
lead to extremely effective and successful attacks against industrial products [18,88].

We focus on the side channel attack based on the power consumption although the same can be applied
similarly to other physical properties. This attack is introduced by Kocher [76]. A more systematic approach is
to use the so-called Correlation Power Attack (CPA) [42], where the correct (sub-)key is recovered by taking
the candidate which gives maximum (absolute) correlation.

Onttps://github. com/anubhab001/baksheesh/.

https://github.com/anubhab001/baksheesh/

2.3 Countermeasure to Power Analysis

Power attacks can be prevented by means of countermeasure techniques. The goal of every countermeasure is to
make the power consumption of a cryptographic device independent of intermediate values that are processed
during its operation phase. Generally, countermeasure techniques are divided into two basic groups: Hiding [50]
and Masking [84]. In the masking approach, which is the common choice in recent times, each intermediate
value is concealed by a random mask. The main advantage of this approach is that it can be realised at the
implementation level. By contrast, hiding tries to break the link between the power consumption and the
processed data values utilizing two approaches. The first approach is to build devices whose power consumption
is random and the second is to build devices whose power consumption is constant. However, these goals cannot
be reached in practice though there are several methods to get as close as possible to this goal, by affecting
amplitude and time dimension of power traces.

2.3.1 Cipher Level Construction: Role of XOR It is reported in [107] (and also in [10, Chapter 4])
that the XOR operation creates ambiguity with respect to the side-channel attacks, at least with respect to
CPA [42]. Stated briefly, under noiseless assumption; if z has a correlation of p then T @ z has a correlation of
—p, for all z, where 1 is the Boolean vector (of suitable length) with all bits set at logic high.

2.3.2 Cipher Level Construction: Specialisation to SBox The notion of inherent side channel security
of an SBox is not new, one may look into [48,90]. However, none of these notions appears to capture the nature
of an SBox with non-zero LS (Definition 1). Since such an SBox mimics the XOR operation to some extent, it
is possible to generalize the SCA-related property of the XOR operation to an SBox [44]. Under the noiseless
assumption, it can be described as follows: For an n x n SBox S if S~! has a linear structure at T (ie., f for a
4-bit SBox), the correlation coefficients corresponding to S(a) and S(a @ ®) will be of equal magnitude (but
with opposite signs) Va, where ® = S~1(z) & S~ (z @ T) Vz. Stated in a different way, S has a linear structure
at ® such that the corresponding output difference is at 1 for all input difference. As a consequence, it will not
be possible to uniquely identify which between o and o @ ® is the correct input to the SBox, for any «.

In the simulation, we observe that the attacker cannot identify which between x and x & « is the correct
input up to a certain threshold of noise. Beyond that threshold, the attacker cannot identify any of the inputs.
With our experiments with the BAKSHEESH SBox (Section 5.2), we see that indeed that attacker cannot find the
correct key to the SBox, but can find the correct key (with the software traces) for the GIFT SBox. Still, we do
not claim any inherent side channel security, as one may object based on the precision of the testing equipment
and/or the analysis method.

2.3.3 Resisting Side Channel Attack: Threshold Implementation The threshold implementation is
among the prominent masking countermeasures against side channel attacks based on secret sharing, threshold
cryptography, and multi-party computation protocols [87]. It is shown to be provably secure against higher
order DPA attacks [33]. Threshold implementation, although originally proposed for hardware, can also be
used for software implementations [96].

3 Construction

BAKSHEESH is a 35-round block cipher that receives a 128-bit plaintext as the state X = bia7b126 - - - by, Where
by is the least significant bit. The state can also be expressed as X = wsjwsg - - - wo, where w; is a 4-bit (nibble)
word. We do not describe the inverse layer here for the sake of brevity, but it can be derived. The round function
of BAKSHEESH consists of 4 steps'! (in order): SubCells — applying a 4-bit SBox to the state, PermBits —
permute the bits of the state (same as GIFT-128 [22]), AddRoundConstants — XORing a 6-bit constant as well
as another bit to the state (same as GIFT-128), and AddRoundKey — XORing the round key to the state. One
may refer to Figure 1 for an overview where Figure 1(a) shows encryption and Figure 1(b) shows decryption
(-Inv indicates the inverse). For more details including test vectors, see Section D.

HEollowing GIFT [22, Section 2], BAKSHEESH too can be conceptually thought as gift wrapping, i.e., putting an item in
a box — wrapping a ribbon around the box — tying a knot; or virtually any sequential process that can be described in
three simple steps (like, putting on the socks — slipping feet into the shoes — tying the shoe laces).

Plaintext Key Ciphertext Key

v 35 rounds v
? [’ @
| 1

R N e i AddConstants
! (306DB5SECF924A71) ; .
: T ! PermBitsInv ‘l’ keiyisicihiealiﬂie““
' PermBits . Key Schedule | ' o
: + . SubCellsInv
| AddConstants | | 77777 (1FBOC52E6AD48379)
1 35 rounds l AddRoundKey ‘l’ AddRoundKey
_____________ %

? (for each round) ? (for each round)

Ciphertext Plaintext
(a) Encryption (b) Decryption

Figure 1: Schematic of BAKSHEESH

3.1 SubCells (SBox Layer)

The SBox layer uses the 4-bit LS SBox S = 306DB58ECF924A71 which is applied to every nibble of the state:

3.2 PermBits (Bit-permutation as Linear Layer)

The bit-permutation is the same as permutation Pjog in GIFT-128 [22]. It maps bits from bit location ¢ of the
internal state to bit location Piag(i), i <= 0,1,...,127: bp,, ;) < b;, Vi € {0,...,127}; and is given by: (0, 33,
66, 99, 96, 1, 34, 67, 64, 97, 2, 35, 32, 65, 98, 3, 4, 37, 70, 103, 100, 5, 38, 71, 68, 101, 6, 39, 36, 69, 102, 7, 8, 41,
74,107, 104, 9, 42, 75, 72, 105, 10, 43, 40, 73, 106, 11, 12, 45, 78, 111, 108, 13, 46, 79, 76, 109, 14, 47, 44, 77,
110, 15, 16, 49, 82, 115, 112, 17, 50, 83, 80, 113, 18, 51, 48, 81, 114, 19, 20, 53, 86, 119, 116, 21, 54, 87, 84, 117,
22, 55, 52, 85, 118, 23, 24, 57, 90, 123, 120, 25, 58, 91, 88, 121, 26, 59, 56, 89, 122, 27, 28, 61, 94, 127, 124, 29,
62, 95, 92, 125, 30, 63, 60, 93, 126, 31).

3.3 AddConstants (Round Constant XOR Layer)

The following 6 tap positions are used to XOR the constants at each round: 8, 13, 19, 35, 67, 106. The round
constants are given respectively by: (2, 33, 16, 9, 36, 19, 40, 53, 26, 13, 38, 51, 56, 61, 62, 31, 14, 7, 34, 49, 24,
45, 54, 59, 28, 47, 22, 43, 20, 11, 4, 3, 32, 17, 8). Notice that the bit at the last tap location (106) toggles in
each round.

3.4 Key Schedule Subroutine and AddRoundKey Layer

The first round key is the same as the master key. The next round keys are generated with 1-bit right
rotation, i.e., ki*! <~ k7 > 1. The round key for the j*® round, denoted by k, is bit-wise XORed to the state:

b; + b; @kf7 Vi € {0,...,127}. Unlike GIFT-128, BAKSHEESH has the key XOR at the beginning of encryption/at
the end of decryption (can be seen from Figure 1).

4 Design Rationale

4.1 Motivation and Objective

The main motivation for BAKSHEESH comes from the question: Can we push the classical security bound of
GIFT? Thus, we set the constraint of making a GIFT-like cipher, but with improved efficiency. By extension,
BAKSHEESH can be considered as the newest member in the SERPENT [31] ~» PRESENT [38] ~» GIFT [22] line-up,

as shown in Figure 2. For the culture, we could recall that SERPENT is among the five finalists and ultimately
ranking 2" in the NIST AES competition'?. Also note that, PRESENT is an anagram of SERPENT; and most
importantly that, PRESENT is an international standard (ISO/IEC 29192-2:2019).

& &

&
-8

X &
& &
1998 2001 2004 2007 2010 2013 2016 2019 2022

Figure 2: Evolution of ciphers in current context

One of the main differences of BAKSHEESH from its predecessors is that it uses an SBox with 1 non-zero LS.
In general, LS SBoxes have a lower cost in hardware and software (follows from [104]), lower number of AND
operations, and higher LBN.

However, an attempt to design a cipher with such an SBox meets some obstacles. Most notably, the
traditional method of minimum ‘minimum number of active SBoxes’ does not work anymore, since this method
will always return trivial classical security. For example, the security proof of AES against the differential
attacks is completely based on the fact that its four consecutive rounds have at least 25 active SBoxes and the
maximum probability of its SBox is 27¢ [53]. Doing an analogous analysis with a cipher with the SBox having
1 or more non-trivial LS would only lead to a trivial upper bound of the differential probability, i.e., 1. This
problem is tackled in DEFAULT [11, Chapter 8], by incorporating the recent advancement in usage of automated
tools in cipher design/cryptanalysis. In this case, the bulk load is taken up by the tools, thus it is possible to
show that the maximum probability is indeed much less than 1 over a large number rounds (the probability is
typically 1 for a small number of rounds). BAKSHEESH, too, is leveraged from the recent improvement.

The main objectives for BAKSHEESH can be summarised as follows:

® Reuse the same structure as GIFT-128 [22], but replace the half round key XOR with a full round key
XOR. Since GIFT-128 is quite lightweight and has gained popularity, we naturally accept the challenge to
make it even more streamlined.

® Use an SBox with 1 non-zero LS. It can be taken that the GIFT designers have already searched for a vast
pool of SBoxes. Now, in all likelihood, the SBoxes with non-zero LS have not been kept within the search
space, simply because such an SBox has traditionally been considered too weak (as it somwhat resembles
the XOR operation) to have any significance in cipher design [14]. With the advent of DEFAULT [14],
however, this status-quo has altered. In terms of advantage, such an SBox typically has less number of
AND operations and is more efficient to implement.

® Reduce the cost of unprotected implementation to set a new benchmark for lightweight ciphers. In some
sense, BAKSHEESH hits theoretical end-of-the-line research (particularly, the same category as PRESENT [38]
or GIFT [22]), since any SBox with lower cost will likely have more (non-zero) LS — thus would most likely
require more rounds.

@ Take advantage of fiz-slicing [1] to optimise implementation in software. This is the first cipher to take
leverage of it (fix-slicing is proposed after GIFT).

® Have low number of AND operations. BAKSHEESH only needs 3 AND operations per SBox. This facilitates a
highly efficient adoption of side channel countermeasures (as AND operations are considered the bottleneck
[34]). In this sense, BAKSHEESH fits well in the family of ciphers designed to be efficient in adopting side
channel countermeasures [61,64,74,91].
Apart from being beneficial for a side channel countermeasure, having a low number of AND operations
appears to be one holy grail in symmetric key cryptography, as it would make efficient incorporation of the
following niches:
(a) Fully Homomorphic Encryption (FHE, e.g., [2,3,43,56,68,86]);
(b) Multi-party Computation (MPC, e.g., [2-4,56]);
(¢) Zero Knowledge (ZK, e.g., [2,4]);

2https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/
aes-development.

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development

(d) Post-quantum signature [51, Section 1].

However, one needs to consider certain other aspects while designing a cipher with domain-specific application
like FHE/MPC, and hence these directions are kept out-of-scope for this work. We hope future iterations
of BAKSHEESH /similar ciphers would be streamlined to for such applications.

4.2 Rationale behind Choice of Design Components

4.2.1 Linear Layer The bit-permutation based linear layer is used in PRESENT [38] or more recently in
GIFT [22]. It acts as wiring in hardware, thus making it practically of zero cost. Thus, it comes as a natural
choice for BAKSHEESH as we want to keep the cost as minimal as possible. The same bit-permutation as GIFT-128
is chosen, this is to make use of an optimised software implementation of GIFT-128 known as fix-slicing [1].
Keeping the same bit-permutation as GIFT-128 but finding a different SBox is an extra challenge that we have
undertaken.

4.2.2 SBox We choose the SBox 306DB58ECF924A71 for BAKSHEESH. It has 1 non-zero LS (at 8), LBN of 3
and DBN of 2 (Definition 3). A comparison of cryptographic properties of few lightweight SBoxes are shown
in Table 2 (here ‘AD’ refers to algebraic degree and ‘NI’ refers to non-linearity). The coordinate functions
(Definition 4) of this SBox are given respectively (in ANF) by:

Yo = ToT2 D xo D w1 B w3 DI,
Y1 =20 D122 D3 B 1,
Y2 = ZoT2 D 122 O 21 O 23,

Y3 = Tox1 D ToT2 D T2 D T3.

It belongs to class AE# 294 (of the 302 AE classes) [55]. The DDT of this SBox is given in Table 1; where row
and column corresponding to 0, and zero entries are suppressed for better readability, and it can be seen that
the row 8 of the DDT contains only one 16 (at column f).

Table 1: DDT for BAKSHEESH SBox

5 A123456789abcde £
1 4 4 4 4
2 4 4 4 4
3 44 44
4 4 4 4 4
5 44 4 4
6 4 4 44
7 4 4 4 4
8 16
9 |4 4 4 4
a 4 4 4 4
b |44 44
c |4 4 4 4
d 4 4 44
e |44 4 4
£ 4 4 4 4

4.2.2.1 AND Count In the naive count, BAKSHEESH has by far the least number of AND operations (6 only)
compared to all other SBoxes, to our best information. This helps to achieve a highly optimised performance
in SCA countermeasure and a few other niches (see Section 4.1). For comparison with similar ciphers, one
may notice that PRINCE [39], SKINNY-64 [24] and GIFT [22] SBoxes respectively require 28, 16 and 10 AND

operations in the naive sense (though this count can be reduced through optimisation). Notice from Table 9
that the naive AND count plays a direct role in the cost for threshold countermeasure (also noted in [17]).

When optimised, the BAKSHEESH SBox can be implemented using only three AND gates — which finally
overtakes the SKINNY-64 SBox (that requires 4 AND operations when optimised), likely becoming the SBox
with the least AND count:

Yo = ToxT2 Dxo D1 Dz P 1,
Y1 =29 Dr122 B3 D1,
Y2 = Tox2 D 122 D X1 D T3,

Y3 = Xox1 D ToTo D T2 D T3.

Table 2: Cryptographic properties of few lightweight SBoxes

DBN[LBN | LS DU][AD (max) AD (min) | NI

BAKSHEESH 306DB58ECF924A71 | 2 3 [0,8 16 2 2 0
PRESENT [38] C56B90AD3EF84712 | 3 2 0o 4 3 2 4
SKINNY-64 [24] C6901A2B385D4ETF | 2 2 0o 4 3 2 4
GIFT [22] 1A4C6F392DB7508E | 2 2 0 6 3 2 4
PYJAMASK-128 [63] 2D397BAGEOF4851C | 2 2 0 4 3 2 4
1053E2F7DA9BC846 | 2 2 0o 4 3 3 4

MIDORT [20] CAD3EBF789150246 | 3 2 0 4 3 2 4

4.2.2.2 Implementation Cost (Unprotected and Side Channel Protected) The SBox is lightweight, as can be
seen from the comparative ASIC benchmarks given in Table 3 by using the look-up-based format following [92]
and the figures are rounded to the nearest integer. The BAKSHEESH SBox is cheaper compared to recent 4 x 4
SBoxes, except it is slightly worse than that of SKINNY-64 in Faraday 65nm library.

Table 3: ASIC benchmarks for a few lightweight SBoxes
Cost (Gate Equivalent)

UMC 65nm | Faraday 65nm | STM 130nm
GIFT [22] 1A4C6F392DB7508E 28 22 21
PYJAMASK-128 [63} 2D397BAGEOF4851C 28 26 22
SKINNY-64 [24} C6901A2B385D4ETF 21 16 21
BAKSHEESH 306DB5SECF924A71 21 19 19

4.2.2.3 Branch Numbers The problem of finding SBoxes with higher LBN is studied before [74,92]. The
BAKSHEESH SBox has the LBN of 3, which is the upper limit for any 4 x 4 SBox and any such SBox has at least
1 non-zero LS [92, follows from Theorem 1]. Understandably, no other 4 x 4 SBox used in any cipher (save for
the LS SBox in DEFAULT-LAYER) has LBN of 3. During our search for a 4 x 4 SBox with DBN 3 (which is the
maximum per [92]), we observe that all such SBoxes have at least 3 non-zero LS (such as, 126CDE39F58BA047),
but we are not aware of any theoretical result. Having so many LS would likely slow down the propagation of
differential /linear trail significantly, thus requiring more rounds. Overall, 1LS/3LBN/2DBN seems to strike a
good balance in cost for implementation and number of rounds, while keeping the AND count considerably low.

4.2.3 Key Schedule and Round Key XOR Initially we consider the key schedule of BAKSHEESH as trivial
(i.e., the master key is XORed to the state), akin to LED [67] or PRINCE [39], to keep the implementation cost
low. However, an invariant subspace attack [79] is trivially observed for this design. This is partially due to the
sparse round constants, i.e., only 6 bits of fixed positions are affected by the constant addition operation. To

10

resist against this attack, we tweak the key schedule and choose 1-bit right rotation, i.e., Tt < k% » 1. A
detailed analysis is done thereafter, but no indication of an invariant subspace attack is found.

The full (128-bit) key is XORed to the state, which is changed from half key XOR, of GIFT-128. Though
the cost is increased because of this choice, we opt for a more conservative design.

4.2.4 Round Constants In GIFT [22, Section 2], a 6-bit Linear Feedback Shift Register (LFSR) is used to
generate the round constants (which are XORed at 6 tap positions), and the last bit is flipped at each round.

Likewise in BAKSHEESH, we generate the round constants from a 5-bit LFSR along with another bit that
toggles in each round are used to generate the round constants (which are XORed at 6 tap positions). Thus, we
have one less tap position than GIFT. Further, as can be read from Section D, we provide some justification
about the choice of the tap positions.

Our LFSR uses an irreducible polynomial as its feedback function: z* + x2 + 1. It is initialized with 00001,
and can be realized with one XOR gate. Together with the standalone bit (that toggles at each round), the
whole 6-bit state cycles through all integers from [2,63]. The other popular choice for deriving the round
constants, as used in [20,39,41], is to use the digits of 7. The reason we do not use something similar is, it does
not guarantee unique constant for each round.

5 Security Claims and Analysis

In this part, the security claims of BAKSHEESH are analyzed in terms of classical and side-channel attacks. In
summary, it offers full (2!2%) classical security (Section 5.1), with a possibility of a very efficient application
of the threshold countermeasure (Section 5.2). Note that, we do not claim any inherent side-channel security,
despite the unprotected cipher showing interesting properties with respect to side-channel attacks. An annex to
the analysis can be found in Section E. Also, here we presume that full round key XOR for GIFT-128 so that
the existing results on classical security are valid.

Table 4: Summary of security claims/analysis and features of BAKSHEESH

Claim/Bound Reference
Differential, Linear Section 5.1.1
Algebraic Section 5.1.2

9128 on 5L
Classical Integral Section 5.1.3
Impossible Differential Section 5.1.4
Invariant Subspace Section 5.1.5
Others o GIFT-128 or 2'%¥|Section 5.1.6

Inherent X Section 5.2

Side Channel

' M Countermeasure (Threshold®) Not feasible Section 6.2

®: Easier to implement compared to (traditional) lightweight ciphers like GIFT-128

5.1 Classical Attacks

5.1.1 Differential and Linear Attacks In Table 5, we present the differential'® and linear bounds as for
BAKSHEESH together with GIFT-128.

The original results on GIFT-128 are taken from [99, Table 5] which inherently assumes full round key
XOR). Further, GIFT-128 does not have the initial key XOR during encryption; therefore, the bounds are
automatically shifted by 1 place to the round; as shown in Table 5.

For the BAKSHEESH bounds, we follow the same SAT-based model from [99]; and for this purpose Logic
Friday'* is used to construct a Conjunctive Normal Form (CNF) of an SBox. Further, results till round 12 are
verified independently with the modelling from [9]'°.

3Note: As the BAKSHEESH SBox’s DDT only contains multiples of 4, the differential bounds are even.

Obtained from https://download.cnet.com/Logic-Friday/3000-20415_4-75848245 . html.

15 As a side note, it can be mentioned that this modelling is used in the initial search for the SBox (see Section F.3 for
more details).

11

https://download.cnet.com/Logic-Friday/3000-20415_4-75848245.html

Table 5: Optimal differential and linear bounds for GIFT-128 (full key XOR) and BAKSHEESH

Round 1 2 3 4 5 6 7 8 9 10 11
Differential 1415 | 3415 | 70800 | 11415 | 17600 | 22415 | 28415 | 39000 | 45415 | 49415 | 54415
CIFT-128 0.000 | 1.415 | 3.415 | 7.000 | 11.415 | 17.000 | 22.415 | 28.415 | 39.000 | 45.415 | 49.415
Linear 1660 | 2-660 | 3-800 | 5660 | 7800 | 10-600 | 13-000 | 17600 | 22-600 | 26-000 | 31-600
0.000 | 1.000 | 2.000 | 3.000 | 5.000 | 7.000 | 10.000 | 13.000 | 17.000 | 22.000 | 26.000
BAKSHEESH Differential|{ 0.000 | 2.000 | 4.000 | 8.000 | 14.000 | 20.000 | 30.000 | 40.000 | 48.000 | 54.000 | 60.000
Linear | 0.000 | 1.000 | 3.000 | 5.000 | 8.000 |12.000 | 14.000 | 18.000 | 22.000 | 26.000 | 30.000

Round 12 13 14 15 16 17 18 19 20 21 22
Diﬁerentialmmmww 96415 [103415 | 119:83 [123415 | 126415 | 132415
CIFT-128 54.415|60.415|67.830| 79.00 | 85.415 | 90.415 | 96.415 |103.415| 110.83 |121.415|126.415
Linear 36-000 | 38-600 | 41-600| 45-000| 48-600 | 51-000 | 56-600 | 59-600 | 64-600 | 68-600 | 74-600
31.00036.000|38.000{41.000| 45.000 | 48.000 | 51.000 | 56.000 | 59.000 | 64.000 | 68.000
BAKSHEESH Differential| 70.000 | 76.000|84.000| 92.000 {100.000{110.000| 120.000 {126.000| 132.000| 140.000 | 148.000
Linear |34.000|37.000|40.000{43.000| 46.000 | 49.000 | 52.000 | 55.000 | 58.000 | 61.000 | 64.000

If the absence of key XOR of a round key at the first round of encryption is not taken into account, then the
following observations can be drawn. It can be seen that BAKSHEESH has better differential bounds up to the
2274 round. Besides, linear bounds of BAKSHEESH are also better than GIFT-128 up to the 8" round. However,
the linear bound becomes equal at the 9" round and finally drops at the 11*" round, but is still competitive to
GIFT-128. Since the actual design of GIFT-128 misses the key XOR at the beginning of encryption, BAKSHEESH
outperforms GIFT-128 throughout (at least till 22 rounds) in differential, and falls behind in linear starting at
round 19 and does not recover at least till round 22.

In a nutshell, BAKSHEESH achieves the upper differential bound of 27'2® and the upper linear bounds of 2764
at the 20*" and 22" rounds, respectively. Based on this result, we argue that 35 rounds of BAKSHEESH would
be sufficient against differential and linear attacks.

An optimal differential and an optimal linear trail for reduced 22-round BAKSHEESH are shown in Table 6. It
can be noted that the trivial paths are taken for differential (i.e., input difference of 8) and linear (i.e., input
mask of 8) trails'®. Also, it can be seen from the optimal linear trail that an input mask is iterated (there exists
the one-round iterated linear trail from the 4*% to 21*" round with 3 active bits)!7.

5.1.2 Algebraic Attack The algebraic degree of the SBox and its inverse is 2 in either cases. Using Sage'®,
the inverse of the SBox can be represented as follows:

o= (Yo DY3)(Y1 B Y2) BY2 DYz & 1,
71 = yoy2 D Y3(yo © y2) © Yo D y1 D v,
T2 = Yo(y1 © Y2) D Yo D Y1y2 © Y2 © y3,
T3 = Yo D Y1 D Y.

It can be found that x3 is linear in the output bits. Combined with the special construction of the linear layer,
after reversing ry rounds, it is feasible to obtain at least 128 < 4 = 32 expressions in terms of the key whose
algebraic degree is upper bounded by 27°~!. Moreover, it is found with Sage that the SBox can be represented
as 21 quadratic Boolean expressions and 1 linear equation in terms of the input bits and output bits. Therefore,
for a fixed key, the primitive can be represented as 32 x 21 x 32 = 21504 quadratic Boolean expressions in
terms of 32 x 7 x 32 = 7168 variables. Even though the system of equations is over-defined, as far as we know,
there does not exist an efficient algorithm to solve it.

With the help of Sage again, we also compute the Boolean expressions (in ANF) of output bits of BAKSHEESH
after 1, 2, 3 and 4 rounds. The average number