
Note on Subversion-Resilient Key Exchange

Magnus Ringerud ID

Department of Mathematical Sciences
NTNU – Norwegian University of Science and Technology, Trondheim, Norway,

magnus.ringerud@ntnu.no

Abstract. In this work, we set out to create a subversion resilient authenticated
key exchange protocol. The first step was to design a meaningful security model
for this primitive, and our goal was to avoid using building blocks like reverse
firewalls and public watchdogs. We wanted to exclude these kinds of tools be-
cause we desired that our protocols to be self contained in the sense that we could
prove security without relying on some outside, tamper-proof party. To define the
model, we began by extending models for regular authenticated key exchange, as
we wanted our model to retain all the properties from regular AKE.
While trying to design protocols that would be secure in this model, we discov-
ered that security depended on more than just the protocol, but also on engineer-
ing questions like how keys are stored and accessed in memory. Moreover, even
if we assume that we can find solutions to these engineering challenges, other
problems arise when trying to develop a secure protocol, partly because it’s hard
to define what secure means in this setting. It is in particular not clear how a
subverted algorithm should affect the freshness predicate inherited from trivial
attacks in regular AKE. The attack variety is large, and it is not intuitive how one
should treat or classify the different attacks.
In the end, we were unable to find a satisfying solution for our model, and hence
we could not prove any meaningful security of the protocols we studied. This
work is a summary of our attempt, and the challenges we faced before concluding
it.

Keywords: Authenticated key exchange, subversion-resilient protocols, reverse fire-
walls, unique signatures.

1 Introduction

The goal of this work was to create a model for subversion resilient authenticated key
exchange protocols. We desired for it to retain all the properties for regular AKE, while
adding some form of subversion resilience. We initially based our model on the AKE
model in [HJK+21], and treated subversions as an oracle an adversary can query, analo-
gous to how it’s done in [BCJ21, AMV15, BJK15, BPR14]. Our goal was to avoid using
primitives like reverse firewalls [AMV15, DMS16] or watchdogs [BCJ21], keeping the
already complicated model as self contained as possible.

One of the most significant challenges is to determine how subversions should affect
the freshness predicate inherited from the trivial attacks in regular AKE given in Table 1.

https://orcid.org/0000-0002-1276-3350


In short, we say that a session is fresh if the adversary cannot trivially learn the session
key from queries it made, such as through corrupting the long term secret key before
creating the session key, or revealing the session key of a partnered session.

Our naive model is given in Section 3. We knew from the start that the subversion
oracle should have some influence on the freshness predicate, but we did not know
exactly how. Hence we went forward with analyzing protocols without changing the
predicate, aiming to revisit the issue when we had developed more knowledge of the
properties we desired. When we later on acknowledged that it might not be possible to
properly define a model with the desired properties, we stopped working on this and
hence never went back to change anything in this section.

In Sections 4 and 5, we discuss and construct attacks and countermeasures for a
signed Diffie-Hellman protocol. Without the proper countermeasures, several of the at-
tacks make the protocol insecure, but again it is not clear how one should treat the
freshness predicate with regards to the attacks. In regular AKE, once a user has been
corrupted and given its long term secret key to the adversary, a session involving this
user cannot be used to break the AKE game. While some of the subversion attacks we
present require multiple sessions to perform, the end result is the same in that the ad-
versary learns the secret key, and hence it’s not clear how or if one should treat these
attacks differently from regular corruptions. If one decides to treat these types of subver-
sions like regular corruptions, the question then becomes whether the extended model
provides any useful security guarantees that regular AKE models do not.

Regardless of how one treats the freshness predicate discussed above, the model
should also capture the attacks that do not outright break the protocol by leaking secret
information, but simply makes it less secure. Examples of such are attacks in which
an adversary is able to choose randomness such that the final session key has low or
high weight, specific weight, starts with a certain amount of zeros, and so forth. One
could also consider subversions that remove countermeasures to side channel attacks,
like swapping a constant time algorithm for a non-constant time one. Formally treating
this is challenging, as the attack surface for such subversions is huge, and it’s hard to
quantify them in a meaningful manner.

At this point we concluded our work, as we could not see any clear way to define a
useful freshness predicate, nor how or if one could distinguish certain subversions from
regular corruptions, or in general how to classify which types of subversions should be
allowed or not in the model.

We note that the paper by Dodis et al. [DMS16] solves many of the challenges
we face by using a reverse firewall. While we set out to explicitly avoid this, we were
unable to do so in a satisfactory manner, and hence we refer readers to their paper for
what we believe to be the currently best model and practical protocol for subversion
resilient authenticated key exchange.

2 Preliminaries

For a randomized algorithm Π and some input X, we write Y ← Π(X) as the process
of randomly generating Y by running Π with input X. In some cases where we want
to specify the randomness r, we will write Y := Π(X; r). When we want to sample an



element r uniformly at random from a setR, we write this as r ←$ R. For an algorithm
A returning a bit b after running in some game, we write A ⇒ b.

Definition 1 (Signature Scheme). A signature scheme SIG = (SIG.Setup,SIG.Gen,
Sign,Ver) is defined by the following algorithms:

– SIG.Setup: The setup algorithm takes a security parameter 1λ as input and outputs
public parameters ppSIG which defines a message spaceM, signature spaceΣ and
public key and secret key spaces PK × SK. If the scheme is probabilistic, it also
defines a randomness spaceR.

– SIG.Gen(ppSIG): The key generation inputs ppSIG and outputs a key pair (pk, sk) ∈
PK × SK.

– Sign(sk,m): The signing algorithm inputs the secret (signing) key sk and a message
m and outputs a signature σ ∈ Σ.

– Ver(pk,m, σ): The deterministic verification algorithm inputs a public key pk, a
message m and a signature σ on the message, and outputs 1 or 0 indicating whether
σ is a valid signature on m under sk.

We require that for all ppSIG ∈ SIG.Setup(1λ), (pk, sk) ∈ SIG.Gen(ppSIG), we have
Ver(pk,m,Sign(sk,m)) = 1.

Definition 2 (Min-entropy of signatures). We say that a signature scheme has η bits
of min-entropy if the following holds:

2−η = max
sk∈SK,m∈M,σ∈Σ

Pr[Sign(sk,m; r) := σ], (1)

where the probability is taken over the random coins r ∈ R.

Definition 3. A signature scheme SIG has unique signatures if for all pk output by Gen
and all m ∈M, there exists a unique value σ ∈ Σ such that Ver(pk,m, σ) = 1.

3 Security Model for Subversion-Resilient Authenticated Key
Exchange

In this section, we propose a model for Subversion-Resilient Authenticated Key Ex-
change (SRAKE) which is similar to regular models for AKE [BHJ+15, LS17, GJ18,
HJK+21], with the addition of subversions. We model subversions by following the
approaches in [BCJ21, AMV15, BJK15, BPR14], where an adversary supplies a sub-
verted implementation Π̃ of protocol Π to the challenger. Such an attack is called an
Algorithm-Substitution Attack (ASA). In our case, the adversary supplies subverted
algorithms to the parties in the AKE-game. In the security game, this behavior is mod-
eled by an oracle Subv(n, Π, Π̃) that replaces Pn’s protocol Π with Π̃ . This might be
a whole other protocol, or just changes to one of the internal algorithms.

We build our security model by extending and adjusting the model in [HJK+21]
to define the security of subversion-resilient authenticated key exchange protocols, and
hence this section closely resembles Section 4 of [HJK+21]. In this work, we do not
consider state reveal and replay attacks as is done in [HJK+21]. In their work, replay
attacks are handled by including a nonce as the first message, which we could also do
here, but that would only complicate the analysis. Since our main focus is subversions,
we aim at creating a functional model for this setting, which can later be extended.



3.1 Definition of Subversion Resilient Authenticated Key Exchange

We will often write SR instead of SRAKE to save space.

Definition 4 (Subversion resilient authenticated key exchange scheme). A sub-
version resilient authenticated key exchange scheme SRAKE = (SR.Setup, SR.Gen,
SR.Protocol) consists of two probabilistic algorithms and an interactive protocol.

– SR.Setup: The setup algorithm outputs the public parameter ppSR.
– SR.Gen(ppSR,Pi): The generation algorithm takes as input ppSR and a party Pi,

and outputs a key pair (pki, ski).
– SR.Protocol(Pi(resi) 
 Pj(resj)): The protocol involves two parties Pi and Pj,

who have access to their own resources, resi := (ski, ppSR, {pku}u∈[µ], Π) and
resj := (skj, ppSR, {pku}u∈[µ], Π), respectively. HereΠ contains the protocol spec-
ifications, and µ is the total number of users. After execution, Pi outputs a flag
Ψi ∈ {∅, accept, reject}, and a session key ki (ki might be the empty string ∅), and
Pj outputs (Ψj, kj) similarly.

Correctness of SRAKE. Any pair of distinct and honest parties Pi and Pj should share
the same session key after the execution of SR.Protocol(Pi(resi) 
 Pj(resj)), which
implies that Ψi = Ψj = accept and ki = kj 6= ∅.

We note that these algorithms are identical to those in a regular AKE protocol
AKE = (AKE.Setup,AKE.Gen,AKE.Protocol), and hence we don’t provide a sepa-
rate definition for AKE.

3.2 Security Model of SRAKE

We will adapt the security model formalized by [BHJ+15, LS17, GJ18], which in turn
followed the model proposed by Bellare and Rogaway [BR94]. We use multiple test
queries with respect to the same random bit [JKRS21].

First, we will define oracles and their static variables in the model. Then we describe
the security experiment and the corresponding security notions.

Oracles. Suppose there are at most µ users P1,P2, ...,Pµ, and each user will involve
at most ` instances. Pi is formalized by a series of oracles, π1

i , π
2
i , ..., π

`
i . Oracle πs

i
formalizes Pi’s execution of the s-th protocol instance. Each oracle πs

i has access to
Pi’s resource resi := (ski, ppSR,PKList := {pku}u∈[µ], Π), and it has its own variables
vars

i := (sts
i ,Pids

i , k
s
i , Ψ

s
i ).

– sts
i : State information that has to be stored between two rounds in order to execute

the protocol.
– Pids

i : The intended communication peer’s identity.
– ks

i ∈ K: The session key computed by πs
i . Here K is the session key space. We

assume that ∅ ∈ K.
– Ψ s

i ∈ {∅, accept, reject}: Ψ s
i indicates whether πs

i has completed the protocol exe-
cution and accepted ks

i .
At the beginning, (sts

i ,Pids
i , k

s
i , Ψ

s
i ) are initialized to (∅,∅,∅,∅). We declare that ks

i 6=
∅ if and only if Ψ s

i = accept.

Security Experiment. To define the security notion of SRAKE, we first formalize
the security experiment ExpSRAKE,µ,`,A with the help of the oracles defined above.



ExpSRAKE,µ,`,A is a game played between a SRAKE challenger C and an adversary A.
C will simulate the executions of the ` protocol instances for each of the µ users with
oracles πs

i . We give a formal description in Figure 1.

ExpSRAKE,µ,`,A:

00 ppSR ← SR.Setup
01 for i ∈ [µ]:
02 (pki, ski)← SR.Gen(ppSR,Pi);
03 crpi := false �Corruption variable
04 PKList := {pki}i∈[µ]; b ←$ {0, 1}
05 for (i, s) ∈ [µ]× [`]:
06 vars

i := (Pids
i , ks

i , Ψ
s
i ) := (∅,∅,∅);

07 Aflags
i := false �Whether Pids

i is corrupted when πs
i accepts

08 Ts
i := false; kRevs

i := false � Test, Key Reveal variables
09 b∗ ← AOSR(·)(ppSR,PKList)

10 WinAuth := false
11 WinAuth := true, If ∃(i, s) ∈ [µ]× [`] s.t.
12 (1) Ψ s

i = accept �πs
i is τ -accepted

13 (2) Aflags
i = false �Pj is τ̂ -corrupted with j := Pids

i and τ̂ > τ
14 (3) (3.1) ∨ (3.2) ∨. Let j := Pids

i
15 (3.1) @ t ∈ [`] s.t. Partner(πs

i ← πt
j )

16 (3.2) ∃ t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

17 Partner(πs
i ← πt

j ) ∧ Partner(πs
i ← πt′

j′ )

18 WinInd := false
19 if b∗ = b:
20 WinInd := true; return 1
21 else : return 0

Partner(πs
i ← πt

j ): �Checking whether Partner(πs
i ← πt

j )
22 if πs

i sent the first message and ks
i = K(πs

i , π
t
j ) 6= ∅:

23 return 1
24 if πs

i received the first message and ks
i = K(πt

j , π
s
i ) 6= ∅:

25 return 1
26 return 0

πs
i (msg, j): � πs

i executes the protocol according to the specification
27 if Pids

i = ∅: Pids
i := j

28 if Pids
i = j:

29 πs
i receives msg and uses resi, vars

i to generate the next
message msg′ of SRAKE, and updates (Pids

i , ks
i , Ψ

s
i );

30 if msg = >: πs
i generates the first message msg′ as initiator;

31 if msg is the last message of SRAKE: msg′ := ∅;
32 return msg′
33 if Pids

i 6= j: return⊥

OSR(query):
34 if query=Send(i, s, j,msg):
35 if Ψ s

i = accept: return⊥
36 msg′ ← πs

i (msg, j)
37 if Ψ s

i = accept:
38 if crpj = true: Aflags

i := true;
39 return msg′

40 if query=Corrupt(i):
41 if i 6∈ [µ]: return⊥
42 crpi := true
43 return ski

44 if query=RegisterCorrupt(u, pku):
45 if u ∈ [µ]: return⊥
46 PKList := PKList ∪ {pku}
47 crpu := true
48 return PKList

49 if query=SessionKeyReveal(i, s):
50 if Ψ s

i 6= accept: return⊥
51 if Ts

i = true: return⊥ �avoid TA2
52 Let j := Pids

i
53 if ∃t ∈ [`] s.t. Partner(πs

i ↔ πt
j ):

54 if T t
j = true: return⊥ �avoid TA4

55 kRevs
i := true; return ks

i

56 if query=Subv(i, Π, Π̃):
57 resi := (ski, ppSR,PKList, Π̃)
58 return⊥ �Nothing gets returned

59 if query=Test(i, s):
60 if Ψ s

i 6= accept ∨ Aflags
i = true

∨ kRevs
i = true ∨ Ts

i = true:
61 return⊥ �avoid TA1, TA2, TA3
62 Let j := Pids

i
63 if ∃t ∈ [`] s.t. Partner(πs

i ↔ πt
j ) :

64 if kRevt
j = true ∨ T t

j = true:
65 return⊥ �avoid TA4, TA5
66 Ts

i := true; k0 := ks
i ; k1 ←$ K;

67 return kb

Fig. 1. The security experiment ExpSRAKE,µ,`,A. The list of trivial attacks is given in Table 1.

Adversary A may copy, delay, erase, and interpolate the messages transmitted in
the network. This is formalized by the query Send to oracle πs

i . With Send, A can
send arbitrary messages to any oracle πs

i . Then πs
i will execute the SRAKE protocol

according to the protocol specification Π for Pi.

We also allow the adversary to observe session keys of its choices. This is reflected
by a SessionKeyReveal query to oracle πs

i .



A Corrupt query allows A to corrupt a party Pi and get its long-term secret key ski.
With a RegisterCorrupt query, A can register a new party without public key certifica-
tion. The public key is then known to all other users.

A query to Subv allowsA to subvert a user and substitute an algorithm or the entire
protocol specification.

We introduce a Test query to formalize the pseudorandomness of ks
i . Therefore, the

challenger chooses a bit b←$ {0, 1} at the beginning of the experiment. WhenA issues
a Test query for πs

i , the oracle will return ⊥ if the session key ks
i is not generated yet.

Otherwise, πs
i will return ks

i or a random key, depending on b. The task of A is to tell
whether the key is the true session key or a random key. The adversary is allowed to
make multiple test queries.

Formally, the queries by A are described as follows.

– Send(i, s, j,msg): If msg = >, it means that A asks oracle πs
i to send the first

protocol message to Pj. Otherwise, A impersonates Pj to send message msg to πs
i .

Then πs
i executes the SRAKE protocol with msg as Pi does, computes a message

msg′, and updates its own variables vars
i = (Pids

i , k
s
i , Ψ

s
i ). The output message msg′

is returned to A.
If Send(i, s, j,msg) is the τ -th query asked by A and πs

i changes Ψ s
i to accept after

that, then we say that πs
i is τ -accepted.

– Corrupt(i): C reveals party Pi’s long-term secret key ski to A. After corruption,
π1

i , ..., π
`
i will stop answering queries from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.
If A has never asked Corrupt(i), we say that Pi is∞-corrupted.

– RegisterCorrupt(i, pki): It means that A registers a new party Pi (i > µ). C dis-
tributes (Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.

– SessionKeyReveal(i, s): The query means that A asks C to reveal πs
i ’s session key.

If Ψ s
i 6= accept, C returns ⊥. Otherwise, C returns the session key ks

i of πs
i .

– Subv(i, Π, Π̃): replaces Pi’s algorithm or protocol specification Π with Π̃ .
– Test(i, s): If Ψ s

i 6= accept, C returns ⊥. Otherwise, C sets k0 = ks
i , samples

k1 ←$ K, and returns kb to A. We require that A can ask Test(i, s) to each ora-
cle πs

i only once.

Informally, the pseudorandomness of ks
i asks that any PPT adversary A with access to

Test(i, s) cannot distinguish ks
i from a uniformly random key. Yet, we have to exclude

some trivial attacks. We will define them later and first introduce partnering.

Definition 5 (Original Key [LS17]). For two oracles πs
i and πt

j , the original key, de-
noted as K(πs

i , π
t
j), is the session key computed by the two peers of the protocol under a

passive adversary only, where πs
i is the initiator.

Remark 1. We note that K(πs
i , π

t
j) is determined by the identities of Pi and Pj and the

internal randomness.



Types Trivial attacks Explanation

TA1 Ts
i = true ∧ Aflags

i = true πs
i is tested but πs

i ’s partner is corrupted
when πs

i accepts session key ks
i

TA2 Ts
i = true ∧ kRevs

i = true πs
i is tested and its session key ks

i is revealed

TA3 Ts
i = true when Test(i, s) is queried Test(i, s) is queried at least twice

TA4 Ts
i = true ∧ Partner(πs

i ↔ πt
j) ∧ kRevt

j = true π
s
i is tested, πs

i and πt
j are partnered to each other,

and πt
j ’s session key kt

j is revealed

TA5 Ts
i = true ∧ Partner(πs

i ↔ πt
j) ∧ T t

j = true πs
i is tested, πs

i and πt
j are partnered to each other,

and πt
j is tested

Table 1. Trivial attacks TA1-TA5 for security experiment ExpSRAKE,µ,`,A. Note that “Aflags
i =

false” is implicitly contained in TA2-TA5 because of TA1.

Definition 6 (Partner [LS17]). Let K(·, ·) denote the original key function. We say that
an oracle πs

i is partnered to πt
j , denoted as Partner(πs

i ← πt
j)3, if one of the following

requirements holds:
– πs

i has sent the first message and ks
i = K(πs

i , π
t
j) 6= ∅, or

– πs
i has received the first message and ks

i = K(πt
j , π

s
i ) 6= ∅.

We write Partner(πs
i ↔ πt

j) if Partner(πs
i ← πt

j) and Partner(πt
j ← πs

i ).

Trivial Attacks. In order to prevent the adversary from trivial attacks, we keep track of
the following variables for each party Pi and oracle πs

i :
– crpi: whether Pi is corrupted.
– Aflags

i : whether the intended partner is corrupted when πs
i accepts.

– Ts
i : whether πs

i was tested.
– kRevs

i : whether the session key ks
i was revealed.

Based on that we give a list of trivial attacks TA1-TA5 in Table 1.

Definition 7 (Security of SRAKE). Let µ be the number of users and ` the maximum
number of protocol executions per user. The security experiment ExpSRAKE,µ,`,A (see
Fig. 1) is played between the challenger C and the adversary A in the following way:
1. C runs SR.Setup to get SRAKE public parameter ppSR.
2. For each party Pi, C runs SR.Gen(ppSR,Pi) to get the long-term key pair (pki, ski).

Next it chooses a random bit b←$ {0, 1} and providesA with the public parameter
ppSR and the list of public keys PKList := {pki}i∈[µ].

3. A queries Send, Corrupt, RegisterCorrupt, SessionKeyReveal, Subv and Test to C
adaptively.

4. At the end of the experiment, A terminates with an output b∗.
• Strong Authentication. Let WinAuth denote the event thatA breaks authentication

in the security experiment. WinAuth happens iff ∃(i, s) ∈ [µ]× [`] s.t.
(1) πs

i is τ -accepted.
(2) Pj is τ̂ -corrupted with j := Pids

i and τ̂ > τ .

3 The arrow notion πs
i ← πt

j means πs
i (not necessarily πt

j ) has computed and accepted the
original key.



(3) Either (3.1) or (3.2)happens1Let j := Pids
i .

(3.1) There is no oracle πt
j that πs

i is partnered to.
(3.2) There exist two distinct oracles πt

j and πt′
j′ , to which πs

i is partnered.
• Indistinguishability. Let WinInd denote the event thatA breaks indistinguishability

in the experiment ExpSRAKE,µ,`,A above. Let b∗ be A’s output. Then WinInd hap-
pens iff b∗ = b. Trivial attacks are already considered during the execution of the
experiment. A list of trivial attacks is given in Table 1.

Note that ExpSRAKE,µ,`,A ⇒ 1 iff WinInd happens. Hence, the advantage ofA is defined
as

AdvSRAKE,µ,`(A) : = max{Pr[WinAuth], |Pr[WinInd]− 1/2|}
= max{Pr[WinAuth], |Pr[ExpSRAKE,µ,`,A ⇒ 1]− 1/2|}.

Remark 2 (Perfect Forward Security and KCI Resistance). The security model of AKE
supports (perfect) forward security (a.k.a. forward secrecy [Gün90]). That is, if Pi or
its partner Pj has been corrupted at some moment, then the exchanged session keys
computed before the corruption remain hidden from the adversary. Meanwhile, πs

i may
be corrupted before Test(i, s), which provides resistance to key-compromise imperson-
ation (KCI) attacks [Kra05].

3.3 Goals for SAs

We continue by defining undetectability of subverted algorithms. Note that we don’t
specify the inputs to the algorithms, as we want to play the same game for various
algorithms which take different inputs. Recall that we write generating an output by
running an algorithm Π on some input as Y ← Π(X). We assume that a subverted al-
gorithm has access to the same or sometimes additional inputs as the original algorithm.
In the case where some specific input, say a secret key sk, is important, we write this as
Y ← Π(sk,X).

Definition 8 (Undetectability). A subverted algorithm Π̃ is (t, ε, q)-undetectable if for
all detection algorithms D playing the game in Figure 2 and running in time t, we have∣∣∣∣Pr[DetectD

Π,Π̃
⇒ 1]− 1

2

∣∣∣∣ ≤ ε.
Other works [AMV15, BJK15] specify that a successful adversary should also re-

cover a key from the subverted party. We don’t set this as a required goal for a success-
ful subversion in this work, as a key recovery will eventually break the security of, and
hence is already captured by, the standard definitions for AKE security.

One could also argue that such a subversion closely mirrors the intended function-
ality of the corruption oracle already included in AKE models, and as such should not
be of any more concern than regular corruptions. However, due to the effectiveness and
simplicity of the attack, it could enable corruptions on a large scale, which is clearly
something we would like to avoid, even if the model allows it.

1 Given (1) ∧ (2), (3.1) indicates a successful impersonation of Pj, (3.2) suggests one instance
of Pi has multiple partners.



GAME DetectD
Π,Π̃

00 b ←$ {0, 1}
01 cnt := 0
02 b′ ← DRun

03 return Jb = b′K ∧ cnt ≤ q

Run(X)
04 cnt ++
05 if b = 1
06 Y ← Π(X)
07 else Y ← Π̃(X)
08 return Y

Fig. 2. Game Detect for algorithm Π , where X is some unspecified input.

We will still formally define key recovery under subversion for two message AKE,
as it will make discussions easier. Note that in this game we only let our adversary
act passively, and he is thus unable to edit the messages being sent. This is because
the fewer abilities the adversary has, the stronger a successful attack becomes. Hence,
the adversary is effectively limited to subverting algorithms and creating protocol tran-
scripts, which extends to multi-round protocols in a natural way.

The relevant oracles in the security game for AKE are defined analogously to those
for SRAKE in Figure 1, i.e. OAKE(query) = OSR(query). We write OAKE(Send′) for
the adjusted send oracle where the adversary is not able to edit the messages being sent,
but can redirect, interleave, and otherwise change the flow of the protocol.

Definition 9 (Private key recovery). Let A be a passive adversary against an AKE
protocol AKE = (AKE.Setup, AKE.Gen, AKE.Protocol) with µ parties P1, . . . ,Pµ.
We say that A (t, ε, µ, S)-recovers the private key of a party Pi if A runs in time t with
µ users, creates at most S session oracles πs

i , and Pr[KRA ⇒ 1] ≥ ε in the KR game
described in Figure 3.

GAME KRA

00 ppAKE ← AKE.Setup
01 for i ∈ [µ]:
02 (pki, ski)← AKE.Gen(ppSR,Pi)
03 PKList := {pki}i∈[µ]
04 (i, sk′)← AO(ppAKE,PKList)
05 return Jski = sk′K

Fig. 3. Game KR for AKE. Adversary A has access to oracles O := {OAKE(Send′),Subv}
defined in Figure 1 and the text above.

4 Breaking Probabilistic Explicitly Authenticated Key Exchange

Recall that for implicit authentication, we require that only the owner of a correspond-
ing private key can obtain the shared session key, while for explicit authentication we
additionally require key confirmation, i.e. “the property whereby one party is assured
that a second (possibly unidentified) party actually has possession of a particular secret
key” [MVOV18].



We argue that for any protocol achieving explicit authentication, at least one mes-
sage in the transcript must depend on the secret key sk of the authenticated party. If this
was not the case, then one could obtain explicit authentication using only public/random
information. This further implies that anyone could impersonate the party, as proving
key confirmation could be done without using, and therefore also without access to, said
key.

Note that this is not a problem for implicit authentication, as Eve can initiate a
session with Bob claiming to be Alice, in which the implicit authentication then, from
Bobs point of view, implies that only the owner of Alice’s private key can obtain the
session key. Hence, Eve never actually obtains the key.

We adapt the stateless attacks described in [BPR14, BJK15, AMV15] to our setting
to break the security of any protocol which inputs the long term secret key of a party
when randomly generating parts of the transcript. With the above discussion in mind,
we then argue that the attack breaks any one-round, probabilistic, explicit authentication
protocol.

4.1 Pseudorandom Functions

We recall the definition and security goals of a pseudorandom function (PRF). Let
F : {0, 1}κ × X → Y be a function which inputs a key k ∈ {0, 1}κ and an element
x ∈ X , and outputs an element y ∈ Y . We will often use the compressed notation
Fk(x) := F(k, x).

Definition 10 (Pseudorandom Function). A function F : {0, 1}κ × X → Y is a
(t, ε, q)-secure pseudorandom function if for all adversaries A running in time t we
have ∣∣∣Pr

[
AFk(·)(1κ)⇒ 1

]
− Pr

[
Af (·)(1κ)⇒ 1

]∣∣∣ ≤ ε (2)

where f (·) is a random function f : X → Y , and the adversary A queries the oracle at
most q times.

4.2 Generic attack description

To construct the attack, let ` = |sk| be the length of the secret key, and let Fk : {0, 1}∗ →
{0, 1}× [`] be a PRF with a pre-specified key k chosen by an adversary. Finally let Π̃k,τ

with τ ∈ N be the subverted implementation described in Figure 4.
The intuition behind the attack is that when Π̃k,τ returns Y , evaluating the PRF Fk

on Y (or parts of it) returns (v, t) such that v is the t’th bit of sk. Given that the adversary
knows Fk and Y is a public ciphertext, the adversary hence learns the t’th bit of sk.

4.3 Attack on one-round AKE

From the paragraphs at the start of this section, it follows that the attack can be mounted
against any one-round, probabilistic, explicitly authenticated key exchange protocol
AKE = (AKE.Setup,AKE.Gen,AKE.Protocol) and with high probability win the key



Π̃k,τ (sk)
00 X ←M �X can also be given as input to the algorithm.
01 j := 0
02 while j < τ
03 r ←$ R
04 Y := Π(sk,X; r)
05 (v, t) := Fk(Y)
06 if sk[t] = v
07 endwhile
08 j ++
09 return Y

Fig. 4. Description of subverted algorithm Π̃k,τ , where k is a PRF-key, τ ∈ N, and Π is a proba-
bilistic algorithm with message spaceM and randomness spaceR.

recovery game in the subversion model as described in Figure 3. Note that by the argu-
ment at the beginning of Section 4, we know that the protocol must use the target key
ski at some point, and hence we highlight this required access. For protocols which use
a signature scheme this follows naturally, but we note that our approach also works for
protocols which may not. This access implies that the check in line 06 of Figure 4 is
meaningful.

To illustrate the attack and provide a concrete analysis, we run it against the signed
Diffie-Hellman protocol in [PQR22], where the signing algorithm is probabilistic. The
protocol is presented in Figure 5, where ppAKE is computed as in lines 01 to 03 in
Figure 6. The subversion will explicitly target a party’s initiate algorithm Init by sub-
verting the underlying Sign algorithm, but as we will discuss in Section 5, there are
several different choices and combinations that would work.

Alice (pkA, skA) ppAKE = (G, g, ppSIG) Bob (pkB, skB)
x ←$ Zp, X := gx

σA ← Sign(skA,X) y ←$ Zp, Y := gy

σB ← Sign(skB, (X, Y))

KA := H(ctxt, Yx) KB := H(ctxt,Xy)

(X, σA)

(Y, σB)

ctxt := (pkA, pkB,X, σA, Y, σB)

Fig. 5. Regular signed Diffie-Hellman key exchange protocol. All signatures are verified upon
arrival with the corresponding messages, and the protocol aborts if any verification fails.

In Figure 6 we concretely define the algorithms in the protocol and specify the protocol
flow AKE.Protocol = (Init,DerR,DerI), to illustrate how the oracle πs

i (msg, j) behaves
with respect to different OSR(Send) queries.

The analysis is very similar to that of Theorem 1 in [AMV15], in that their attack
on signature schemes naturally carries over to when they are deployed in an AKE.



AKE.Setup():
01 Choose G = 〈g〉 with |G| = p for prime p
02 ppSIG ← SIG.Setup
03 return ppAKE = (G, g, ppSIG)

AKE.Gen(ppAKE,Pi):
04 return (pki, ski)← SIG.Gen(ppSIG)

Init(ski,>):
05 st := x ←$ Zp

06 X := gx

07 σi ← Sign(ski,X)
08 return (X, σi, st)

DerR(skr,X, σi)
09 if Ver(pki,X, σi) = 0
10 return ⊥
11 y ←$ Zp

12 Y := gy

13 σr ← Sign(skr, (X, Y))
14 K := H(ctxt,Xy)
15 return (Y, σr,K)

DerI(X, Y, σr, st)
16 if Ver(pkr, (X, Y), σr) = 0
17 return ⊥
18 K := H(ctxt, Yst)
19 return K

Fig. 6. A signed Diffie-Hellman protocol AKEDH = (AKE.Setup,AKE.Gen,AKE.Protocol),
with the specification AKE.Protocol = (Init,DerR,DerI) and ctxt := (pki, pkr,X, σi, Y, σr).

Theorem 1. Let AKEDH = (AKE.Setup,AKE.Gen,AKE.Protocol) be a signed Diffie-
Hellman protocol like in Figure 5, with AKE.Protocol specified by the algorithms
Init,DerR, and DerI. Let SIG be the probabilistic signature scheme used in AKEDH,
with signature space Σ, randomness space R, signing key space SK = {0, 1}` and
min-entropy η. Let F : {0, 1}κ ×Σ → {0, 1} × [`] be a (tPRF, εPRF, qPRF)-secure PRF.

(i) Then there exists an adversaryA that (t, ε, µ, S)-recovers the private key of a party
Pi with

ε ≥ 1− εPRF −
S2τ2

2 · 2−η − S · 2−τ − ` · e−S/`, (3)

when qPRF ≥ S · τ and tPRF is at least S times the running time of computing
X = gx plus S · τ times the running time of running Sign on X. The running time
of A is at most S times the running time of computing Fk. The running time of the
subverted party Pi is at most τ times the running time of Sign and Fk for each of
the S sessions.

(ii) The algorithm Ĩnitk,τ in Figure 7 is (tPRF, εPRF+S2τ2·2−(η+1), qPRF)-undetectable
for qPRF, tPRF as above.

Proof. (Part i) The adversary interacts with a challenger as in the KR game in Figure 3.
The KR challenger begins by running the setup and key generation algorithms to create
public parameters ppAKE and key-pairs (pki, ski) ← AKE.Gen(ppAKE,Pi) for all i ∈
[µ]. Then it sends the public parameters and keys to the adversary.

The adversary starts by choosing a target Pi, and creates a subversion of the initiate
algorithm Init by sampling a PRF-key k ←$ {0, 1}κ, and defining Ĩnitk,τ as in Figure 7.
Note that while we here restrict ourself to one target, it is possible to extend the approach
to multiple targets.

Now A initializes sk′i := 0`, and then queries Subv(i, Init, Ĩnitk,τ ). Given that A
only wishes to recover Pi’s private key, it has no need to create session oracles that
does not involve Pi, or to complete any session in which Pi has already computed a
signature. For simplicity, we therefore assume that all S session oracles are with Pi as
the initiator. Note that this means that we never actually complete any sessions, as this



Ĩnitk,τ (sk,>)
00 x ←$ Zp

01 X := gx

02 j := 0
03 while j < τ
04 r ←$ R
05 σ := Sign(sk,X; r)
06 (v, t) := Fk(σ)
07 if ski[t] = v
08 endwhile
09 j ++
10 return (X, σ)

Fig. 7. Description of subverted algorithm Ĩnitk,τ , where k is a PRF-key, τ ∈ N, for the proof of
Theorem 1.

would require us to create an additional session oracle for the intended partner Pids
i . For

a realistic model, where sessions are completed and keys derived, it would be natural to
restrict us to S/2 sessions for Pi and use the remaining S/2 for the intended partners.

Now, whenever a query to Send makes Pi output something, the output will be of
the form msg′ = (Xi, σi). When A receives (Xi, σi), he runs (v, t) := Fk(σi), and sets
sk′[t] = v. After creating all S sessions, A returns (i, sk′). The running time of A is
roughly that of S evaluations of Fk.

We analyze the success probability through a sequence of games in Figure 8.

GAMES G0, G1 , G2

00 ppAKE ← AKE.Setup
01 (pki, ski)← AKE.Gen(ppAKE)
02 k ←$ {0, 1}κ

03 L := ∅
04 for S times:
05 x ←$ Zp, X := gx �p and G = 〈g〉 implicitly defined by ppAKE
06 j := 0
07 while j < τ :
08 r ←$ R
09 σ := Sign(ski,X; r)
10 (v, t) := Fk(σ)
11 if L[σ] undefined: (v, t) ←$ {0, 1} × [`] and set L[σ] := (v, t)

12 (v, t) ←$ {0, 1} × [`]
13 if ski[t] = v
14 endwhile
15 j++

Fig. 8. Games G0-G2 for the proof of Theorem 1.



GAME G0: In this game a challenger will run the computations that the subverted algo-
rithm would do in the original KR-game. We define the event E := E′ ∨ E′′, where E′

and E′′ are defined in the probability space of G0:
– Event E′: The event is true if for at least one of the S repetitions, the counting

index j reaches τ , which means ski[t] 6= v for all the (v, t), in particular for the last
signature generated.

– Event E′′: The event is true if at the end of the S repetitions, the values v do not
cover the entire set [`], i.e. there exists an index t̂ such that for all pairs (v, t), we
have t 6= t̂.

Note that the distribution of the pairs (v, t) in G0 is identical to the one induced by
running the described subversion adversary against the game in Definition 9. 2 Since E
only depends on these pairs, we have that PrG0 [E] = PrKR[E]. If the event E does not
happen, each repetition terminates successfully by line 14 in Figure 8, and there are no
empty indexes in [`]. Hence, in the KR-game, A recovers the signing key of Pi with
probability one, and we therefore have Pr[KRA = 1] ≥ 1− PrKR[E], and it remains to
bound PrKR[E] = PrG0 [E].
GAME G1: In this game, instead of computing the pairs as (v, t) = Fk(σ), we sample
them uniformly at random from {0, 1}×[`], unless σ was previously generated, in which
case we return the previously sampled pair. Again following [AMV15], we claim that∣∣∣∣Pr

G0
[E]− Pr

G1
[E]
∣∣∣∣ ≤ εPRF. (4)

To sketch a proof, we construct a distinguisher D for the statement in Definition 10.
The distinguisher creates its own parameters ppAKE ← AKE.Setup and a key pair
(pk, sk) ← AKE.Gen(ppAKE), and then computes signatures as in lines 04 to 09 in
Figure 8. For each repetition it forwards the computed signature to the challenge oracle
and receives a pair (v, t). Finally it uses the received pairs to check whether event E has
happened or not. If E happened it outputs 1, otherwise it outputs 0. The distinguisher
thus queries the oracle S · τ ≤ qPRF times, and runs in time roughly S times the time
it takes to compute a message X = gx plus S · τ times the time it takes to compute a
signature σ. If the PRF-oracle is an actual PRF Fk(·), the probability that D outputs 1
is the same as the probability of E happening in game G0. If the oracle is a random
function f (·), the probability is the same as the probability of E happening in game G1.
Hence we get∣∣∣∣Pr

G0
[E]− Pr

G1
[E]
∣∣∣∣ =

∣∣∣Pr[DFk(·) ⇒ 1]− Pr[Df (·) ⇒ 1]
∣∣∣ ≤ εPRF. (5)

GAME G2: In this game, the pair (v, t) is sampled uniformly at random for each repe-
tition, regardless of previous queries (line 12). Hence, the only way to distinguish be-
tween games G1 and G2 is if there for some input is a collision in the computation of the

2 This is another reason for only considering sessions where Pi is the initiator, otherwise we
either need to describe a message sampler which for each repetition samples either X or (X, Y)
exactly as in the KR-game, or somehow otherwise argue that the distinction between such
messages does not impact the distribution of (v, t).



signatures. Let W denote the event that a collision happens, and note that games G1 and
G2 are identical if W does not happen. This means that PrG1 [E∧¬W] = PrG2 [E∧¬W].
Since the computation of signatures is independent of the pairs (v, t), we also have that
PrG1 [W] = PrG2 [W] = Pr[W]. By the difference lemma, we therefore have that∣∣∣∣Pr

G1
[E]− Pr

G2
[E]
∣∣∣∣ ≤ Pr[W]. (6)

We now want to bound Pr[W]. By the min-entropy of SIG, we know that the worst case
probability of a particular σ being hit is at most 2−η . There are at most S · τ signatures
generated, so a union bound gives

Pr[W] ≤
(

S · τ
2

)
· 2−η ≤ S2τ2

2 · 2−η, (7)

and hence we get ∣∣∣∣Pr
G1

[E]− Pr
G2

[E]
∣∣∣∣ ≤ S2τ2

2 · 2−η. (8)

Finally, it remains to bound PrG2 [E]. Note that in G2, all pairs (v, t) are now drawn
independently and uniformly at random. We analyze E = E′ ∨ E′′ by looking at the
sub-events:

– Event E′: For each repetition, we have at most τ trials where in each the value v hits
ski[t] with probability 1/2. The probability of all τ trials failing is 2−τ , and since
there are S repetitions, we get PrG2 [E′] ≤ S · 2−τ .

– Event E′′: Each index in [`] is hit with probability 1/` in each repetition, so the
probability of never hitting a particular index at the end of S repetitions is (1 −
1/`)S ≤ e−S/`. There are ` indexes, so a union bound gives PrG2 [E′′] ≤ ` · e−S/`.

By a union bound we get PrG2 [E] ≤ S · 2−τ + ` · e−S/`. Putting everything together, we
get

Pr[KRA = 1] ≥ 1− Pr
KR

[E] ≥ 1− εPRF −
S2τ2

2 · 2−η − S · 2−τ − ` · e−S/`, (9)

which concludes part (i.)
(Part ii.) By part (ii) of Theorem 1 in [AMV15], it also follows that Ĩnitk,τ is

(tPRF, εPRF + S2τ2 · 2−(η+1), qPRF)-undetectable for qPRF ≥ S · τ and tPRF is at least S
times the running time of computing X = gx plus S ·τ times the running time of running
Sign on X.

An adversary A in the Detect-game in Figure 2 has to distinguish whether he is
interacting with a real or a subverted algorithm. We define games G0 and G1 as copies
of the Detect-game with b = 0 and b = 1, and we need to show that G0 and G1
are computationally indistinguishable. The idea is to create intermediate games H0-H2
where we change the subversion as in Figure 8. Game H0 is identical to G0, in H1 we
draw (v, t)←$ {0, 1} × [`] in a consistent way, and in H2 we draw at random in each
repetition.

For the adversary to win in H0 and H1, he needs to output b′ = 0. We create a
distinguisher D which creates parameters and computes signatures like the one used to



derive Equation (4), and which on input b′ outputs 1 − b′. Depending on whether we
are in G0 or G1, the challenge oracle is either a PRF Fk(·) or a random function f (·),
and we get

Pr
H0

[A wins] = Pr
H0

[A ⇒ 0] = Pr[DFk(·) ⇒ 1]

Pr
H1

[A wins] = Pr
H1

[A ⇒ 0] = Pr[Df (·) ⇒ 1],

which together imply∣∣∣∣Pr
H0

[A wins]− Pr
H1

[A wins]
∣∣∣∣ =

∣∣∣Pr[DFk(·) ⇒ 1]− Pr[Df (·) ⇒ 1]
∣∣∣ ≤ εPRF. (10)

Analogously to before, the games H1 and H2 are identical unless there is a collision
in the computation of signatures, so we let W be this event and we get the same result
as before: ∣∣∣∣Pr

H1
[A wins]− Pr

H2
[A wins]

∣∣∣∣ ≤ Pr[W] ≤ S2τ2

2 · 2−η. (11)

Finally we note that in H2, the pair (v, t) is independent of the signature σ for each
repetition, and hence does not affect the distribution. We therefore get that from the
perspective of A, the games are identical and therefore

Pr
H2

[A wins] = Pr
G1

[A wins], (12)

and by combining the above equations we get∣∣∣∣Pr
G0

[A wins]− Pr
G1

[A wins]
∣∣∣∣ ≤ εPRF + S2τ2

2 · 2−η. (13)

�

5 Countermeasures and discussion

In the above attack, for easier analysis we only focused on one user and only on the ini-
tiation algorithm. Given that there are µ parties in the key exchange game, in a practical
setting one could subvert both the Init and DerR algorithm of several parties. Note also
that while we required the entire key to be leaked for a successful attack, each leaked
bit halves the search space for a brute force attack on the key.

It turns out that defending against the attack is more difficult than one might think.
In Theorem 1, we targeted the Init algorithm through the signature algorithm Sign.
Hence, one might think that the problem could be solved by using a subversion resilient
signature scheme. As demonstrated in [AMV15], unique signatures (Definition 3) are
subversion resilient under some fairly weak additional assumptions on the signatures
generated. Using unique signatures, line 04 of Figure 7 becomes meaningless, which
turns this particular attack impossible.

However, this is not quite enough to fix our problems. The attack relied on exploiting
the randomness of the signature scheme, but we can modify this to instead exploit the



randomization of the underlying key exchange. Such variants of the attack are harder to
defend against, as non-randomized, i.e. static, key exchange does not provide features
like forward secrecy.

In the first such modification, the subverted algorithm picks an x ←$ Zp, compute
X = gx and a signature σ = Sign(sk,X), run the PRF to get (v, t) = Fk(σ) and finally
check if sk[t] = v. If not, we start again with a new x. This makes the attack work
again, at the cost of computing S · τ instead of S key-shares X. We can modify this to
get a more efficient version of the attack by noting that since X is sent along with the
signature, we can just run the PRF on X instead to get (v, t) = Fk(X). Like the previous
one, this attack creates at most S · τ random key-shares X, but only a single signature σ
for each of the S sessions.

While the original attack focused on protocols using signatures, this change also
means that we can apply the attack to any randomized explicitly authenticated key ex-
change protocol, due to the necessity of using the secret key at some point.

Hence, it seems like a required condition is to somehow separate the randomized
part of an algorithm from the part where it has access to the secret key. But even if
we could somehow generate an X in a secure way, i.e. making sure that the algorithm
does not have access to the secret key sk when doing the computation, it is still not
enough. Given that sk must be used at some point, regardless of whether the “honest”
algorithm has access to it when computing X, the subverted algorithm can do the bit-
check when, or after, using it. If the check fails, it will just restart and compute a new
X in an “honest” manner. For the signed Diffie-Hellman above, the subversion creates
a maximum of S · τ key-shares X and signatures σ, as a new signature will have to be
computed for each repetition.

5.1 Commitments

From the last argument, it becomes apparent that we need a way to make sure that
once the random values are computed, the subverted algorithm cannot simply restart
the process if the end result is not satisfactory.

This naturally leads us towards commitment schemes, and in general to “commit”
to a value by splitting the protocol into multiple rounds, where we make sure that there
is no randomization taking place in the round where the secret key is used.

Using commitments was also suggested by Dodis et al. [DMS16] in the context of
reverse firewalls. A reverse firewall is a third party that sits between a user and the out-
side world which cannot be tampered with, who obtains and “sanitizes” the transcript in
the protocol. These were also used in [AMV15], to provide subversion resilient signa-
ture schemes beyond the unique signatures discussed earlier. See [DMS16, AMV15] for
extensive analysis of reverse firewalls. The analysis in [DMS16] also brings up several
issues which makes our goal of creating subversion resilient authenticated key exchange
without additional trust assumptions much harder.

Note that while we so far have mostly considered the initiator, the arguments above
also apply to the responder in the protocol, and furthermore it becomes clear that we
need even more countermeasures than simply “committing” by splitting the process into
multiple rounds. This is due to a different class of attacks than above, namely: If the key
is simply computed as K = H(gxy), at the moment when the responder picks Y := gy,



he has all the required information to compute K, and hence he can keep randomizing
until he gets a key that for instance has low or hight weight, a specific target weight,
starts with a set amount of zero’s, and so on. In general, he is able to pick a weak key,
and hence we require that neither party has full information of the different components
going into the key during their final randomization.

For the signed Diffie-Hellman case, one way to solve this is to include both signa-
tures in the final hash, so that K = H(ctxt, gxy) where ctxt := (pki, pkr,X, σi,Y, σr).
The final randomization happens before the signature is computed, and even though the
signature algorithm is deterministic, either party would have to forge their peer’s signa-
ture to use the above attacks. A more general solution is to use commitment schemes as
is done in [DMS16].

5.2 Final problems

In all of the examples above, we also encounter a problem with how keys are stored in
memory. Even if we are able to force the subverted algorithm to do “honest” computa-
tions, where the key is stored securely during computation of X, if the subversion can
copy and store it somewhere else after reading from the secure location, then the above
attacks are valid again even though the initial X is computed securely and the signature
scheme is subversion resilient. Hence, subversions are often distinguished by whether
they keep a state or not. In our case, a subversion keeping the secret key as part of an
internal state naturally requires even more countermeasures than before.

All of our examples and solutions above rely on being able to hide the secret key
from an algorithm at appropriate times. But is this a realistic property? Simply assuming
that such a property is achievable seems like a fairly strong claim.It is also unclear if one
can increase trust in this claim by proving that one has acted honestly. While proving
that you know, i.e have access to, a key is central to many cryptographic primitives like
identification and signature schemes, public key encryption, commitment schemes and
more, proving that one does not have knowledge of something is probably impossible.
For such an interaction, a prover can simply choose to never use their secret information,
and hence whether they actually possess it or not becomes irrelevant, and the outcome
provides no trust.

This combined with the dependency on that the subverted algorithm does not keep
the secret key in its state, suggests that unless everything is deterministic and verifiable
(like unique signatures), it is extremely hard to design protocols that provide trust in
that your device has not been tampered with, based on the output alone. One possible
way to counter, or at least detect, the attacks in this work is to set up internal tracking of
power and time consumption to register unusual behavior, but this is beyond the scope
of this work.

The remarks above suggest that reverse firewalls might be the best solution to our
problems, as their ability to sanitize transcripts means that any hidden message in the
algorithm output will be removed by the firewall. This means that we no longer require
“honest” computations, and hence both the problem of securely storing the key and
the subverted algorithm keeping state disappears. The only thing we need is a subver-
sion resilient signature scheme, for instance unique signatures, or one designed with a
reverse firewall.



Dodis et al. provide such a protocol and firewall in Figures 12 and 13 of [DMS16].
Their solution builds on commitment schemes which are malleable and rerandomiz-
able, which means that any commitment C to a value A := ga can be publicly turned
into a commitment C′ to Aα, and then further rerandomized to a uniformly random
commitment to the same value. These properties ensure that nothing leaks from either
the randomness used in the original message, or the randomness used when commit-
ting. Since neither operation requires a secret key, both can be performed by the reverse
firewall, which hides any underlying information in the original ciphertext.

An open problem would be to design post quantum alternatives to their protocols.

5.3 Comments on the model

So far in this section, we have discussed different attack strategies which require differ-
ent solutions. While our original goal was to create a meaningful model for subversion
resilient AKE without resorting to primitives like reverse firewalls, in the end it seems
like this is the solution that best satisfies the desired properties.

From the perspective of the model, we again want to highlight our problems with
classifying different types of subversions, and how they should be treated. To illustrate,
the remarks in Subsection 5.1 indicate that we need to separate randomization from
secret key usage. While we in this case can argue that this can be fixed by using com-
mitment schemes, the problem is that we currently do not have a model which captures
the attack, and hence we only end up developing a specific solution against a specific
attack. Building upon this, we expect that there are other attacks which require different
countermeasures, which also isn’t covered by the model, and since we’re able to find
attacks which aren’t covered, proving that something is secure in it is of little to no
value.

If one could find a way to classify subversions effectively, we might be able to fix
this. But where should we draw the line? From the example above, a key with a very
high weight could probably be detected and might be disregarded, but in Section 4 we
demonstrated an undetectable attack that breaks security. The attack leaked the secret
key, and hence could possibly be discarded as a trivial attack. There’s also the question
of what to do with subversions which simply introduces side channels, like swapping a
constant time implementation for a non-constant one.

We could argue that we should only care about subversions that do something to the
output of an algorithm, but given that the attack in Section 4 only uses output created
by the underlying honest algorithm, it is not clear how one should define this properly.

To summarize, it seems like for every problem, we get more questions than answers,
and we just keep kicking the can down the road to the next issue, instead of finding a
consistent way to deal with the problems. At this point, we conceded that we were
unable to define a meaningful model for subversions which could handle all the issues
we explained above, and be integrated into a key exchange model. Without a working
security model, any further analysis came down to creating countermeasures against
different attacks on an ad-hoc basis, and hence we stopped working on the project.



References

AMV15. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient sig-
nature schemes. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM
CCS 2015, pages 364–375. ACM Press, October 2015.

BCJ21. Pascal Bemmann, Rongmao Chen, and Tibor Jager. Subversion-resilient public key
encryption with practical watchdogs. In Juan Garay, editor, PKC 2021, Part I, volume
12710 of LNCS, pages 627–658. Springer, Heidelberg, May 2021.

BHJ+15. Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-
secure authenticated key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen, edi-
tors, TCC 2015, Part I, volume 9014 of LNCS, pages 629–658. Springer, Heidelberg,
March 2015.

BJK15. Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel, editors, ACM CCS 2015, pages 1431–1440. ACM Press,
October 2015.

BPR14. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19. Springer, Heidelberg,
August 2014.

BR94. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249.
Springer, Heidelberg, August 1994.

DMS16. Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message trans-
mission with reverse firewalls—secure communication on corrupted machines. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814
of LNCS, pages 341–372. Springer, Heidelberg, August 2016.

GJ18. Kristian Gjøsteen and Tibor Jager. Practical and tightly-secure digital signatures and
authenticated key exchange. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 95–125. Springer, Heidelberg,
August 2018.

Gün90. Christoph G. Günther. An identity-based key-exchange protocol. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS,
pages 29–37. Springer, Heidelberg, April 1990.

HJK+21. Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, and Sven
Schäge. Authenticated key exchange and signatures with tight security in the standard
model. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume
12828 of LNCS, pages 670–700, Virtual Event, August 2021. Springer, Heidelberg.

JKRS21. Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-secure authenti-
cated key exchange, revisited. In Anne Canteaut and François-Xavier Standaert, ed-
itors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 117–146. Springer,
Heidelberg, October 2021.

Kra05. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566.
Springer, Heidelberg, August 2005.

LS17. Yong Li and Sven Schäge. No-match attacks and robust partnering definitions: Defin-
ing trivial attacks for security protocols is not trivial. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1343–
1360. ACM Press, October / November 2017.



MVOV18. Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 2018.

PQR22. Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed (group) Diffie-Hellman key
exchange with tight security. Journal of Cryptology, 35(4):1–42, 2022.


	 Note on Subversion-Resilient Key Exchange 

