
PSI from Ring-OLE

Wutichai Chongchitmate
Chulalongkorn University, Thailand

wutichai.ch@chula.ac.th

Yuval Ishai∗

Technion, Israel
yuvali@cs.technion.ac.il

Steve Lu
Stealth Software Technologies, Inc.
steve@stealthsoftwareinc.com

Rafail Ostrovsky†

UCLA, USA
rafail@cs.ucla.edu

Abstract

Private set intersection (PSI) is one of the most extensively studied instances of secure
computation. PSI allows two parties to compute the intersection of their input sets without
revealing anything else. Other useful variants include PSI-Payload, where the output includes
payloads associated with members of the intersection, and PSI-Sum, where the output includes
the sum of the payloads instead of individual ones.

In this work, we make two related contributions. First, we construct simple and efficient
protocols for PSI and PSI-Payload from a ring version of oblivious linear function evaluation
(ring-OLE) that can be efficiently realized using recent ring-LPN based protocols. A standard
OLE over a field F allows a sender with a, b ∈ F to deliver ax+ b to a receiver who holds x ∈ F.
Ring-OLE generalizes this to a ring R, in particular, a polynomial ring over F. Our second
contribution is an efficient general reduction of a variant of PSI-Sum to PSI-Payload and secure
inner product.

Our protocols have better communication cost than state-of-the-art PSI protocols, espe-
cially when requiring security against malicious parties and when allowing input-independent
preprocessing. Compared to previous maliciously secure PSI protocols that have a similar com-
putational cost, our online communication is 2x better for small sets (28 − 212 elements) and
20% better for large sets (220 − 224). Our protocol is also simpler to describe and implement.
We obtain even bigger improvements over the state of the art (4-5x better running time) for our
variant of PSI-Sum.

∗Research supported in part by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20.
†Research supported in part by DARPA under Cooperative Agreement HR0011-20-2-0025, NSF grants CNS-

2001096 and CCF-2220450, US-Israel BSF grant 2015782, Cisco Research Award, Google Faculty Award, JP Morgan
Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA Foundation Research Award,
B. John Garrick Foundation Award, Teradata Research Award, Lockheed-Martin Research Award and Sunday Group.
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of DARPA, the Department of Defense, or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes not
withstanding any copyright annotation therein.

1

1 Introduction

Secure computation protocols allow two or more parties to perform a distributed computation while
hiding their inputs from each other. A special type of secure computation protocol that has recently
attracted a lot of research effort is private set intersection (PSI). A PSI protocol allows the parties to
compute the intersection of their input sets without revealing anything except the output. PSI has
found a wide array of applications, including private contact discovery, matching problems arising
in business and data management, contact tracing and much more. See, e.g., [FNP04, IKN+20,
PRTY19, DPT20, CM20, MPR+20, RT21, RS21, GPR+21] and references therein.

In this work we make two related contributions: we design new efficient protocols for a basic
flavor of PSI, and present a general technique for extending it to a richer flavor that enables
aggregating values associated with members of the intersection.

Asymmetric 2-party PSI. We consider asymmetric 2-party PSI protocols in which only one
party, called the receiver, learns the intersection. The other party, called the sender, does not learn
anything. In the following, the term PSI refers to asymmetric 2-party PSI by default.

1.1 Prior Work

To put our contributions in the proper context, we start with an overview of previous approaches
to concretely efficient PSI. The first is based on the hardness of Decisional Diffie–Hellman (DDH)
problem [Sha80, Mea86]. PSI protocols based on this approach are less efficient than newer ap-
proaches, especially when considering their computational cost. These protocols are difficult to
apply to other variants of the PSI problem or strengthened for malicious security [DCKT10], and
are inherently not post-quantum secure. Recent protocols that follow this approach but improve
and extend it in several ways were given in [IKN+17, IKN+20, MPR+20, RT21].

Another approach, known as circuit-based PSI, reduces PSI to efficient secure computation
for general circuits [HEK12, PSTY19, RS21]. This approach has an advantage of flexibility, as
protocols that rely on this approach can be easily modified to securely compute any function on
the intersection. This includes, in particular, the cases of “PSI with payloads” and “PSI-Sum”
that we will discuss later. On the down side, achieving security against a malicious adversary
is expensive. Even for the easier case of semi-honest security, this approach has relatively large
communication and computation costs compared to more specialized approaches.

A more recent approach to practical PSI is via oblivious transfer (OT) [Rab05, EGL85]. The
PSI protocols from [KKRT16, PRTY19, RR17a, RR17b, PRTY20, MRR20, CM20, DPT20, RS21,
GPR+21] combine random instances of OT and relaxed forms of oblivious pseudorandom functions
(OPRF) [FIPR05]. This approach allows efficient communication and running time by exploiting
efficient OT extension techniques [IKNP03]. However, these techniques are less modular and thus
more difficult to modify to accommodate other PSI variants or to benefit from input-independent
preprocessing. Moreover, improving the security from semi-honest to malicious requires more
work [RR17a, RR17b, PRTY20, GPR+21] and typically incurs a significant communication over-
head.

The final approach, which is the most relevant to the present work, is an algebraic one [FNP04,
FIPR05, KS05, GN19]. The high-level idea is to encode the elements in each set as roots of a
polynomial, and securely compute a polynomial whose roots are the members of the intersection.
The main advantages of this approach are simplicity and modularity, which make it easier to achieve
malicious security. Our protocols will be based on this approach, and specifically the recent instance
of this approach proposed by Ghosh and Nilges [GN19]. Whereas much of the effort in [GN19] is
spent on extending malicious security to the symmetric and multi-party case, our work will focus

2

0 20 40 60 80 100
0

5

10

15

[KKRT16]

[PRTY19]

[CM20]

[PRTY20]

[RT21]

[PRTY20]

[RT21]

Ours (online)
Ours

Running Time (s)

C
om

m
u

n
ic

at
io

n
(M

B
)

Communication vs Running Time of PSI

Figure 1: Communication vs running time in low bandwidth setting (1 Mbps) of PSI protocols
for n = 216. Red dots represent PSI with semi-honest security. Blue dots represent PSI with
malicious security. The green dot represents our PSI protocol (end-to-end and online time, both
with malicious security).

on further improving efficiency in the two-party case and extending the functionality to other useful
variants of PSI we discuss next.

PSI with payloads. PSI payload is a variant of PSI where each member a of the sender’s
input set has an associated value ta ∈ {0, 1}`, referred to as a payload. The receiver obtains the
associated payload values of members of the intersection along with the intersection. While some
PSI constructions, such as ones that follow the circuit-based approach, can be easily modified to
PSI payload, for others this incurs a substantial overhead. The algebraic approach that we follow
in this work can be modified to securely compute a polynomial that evaluates to (0λ‖ta) on member
a of the intersection. Thus, our PSI protocol can be extended to PSI payload with only a small
communication overhead.

PSI with sum. PSI-Sum (also called Sum-PSI or Private Intersection-Sum) is a variant of PSI
where each member of the sender’s input set has an associated integer value, similar to PSI payload.
The receiver, however, only obtains the sum of the payloads of the elements in the intersection
without learning individual payloads. Our implementation of PSI-Sum is different in that it also
reveals the intersection to the receiver. That is, our version can be viewed as a standard PSI
protocol with an additional output that includes the sum of the payloads. To distinguish this
version from the standard one [IKN+17, IKN+20, MPR+20], which only reveals the cardinality
of the intersection, we call it PSI+Sum. While the extra information revealed to the receiver in
PSI+Sum is problematic for some applications, it can be harmless or even useful for others. For
instance, the receiver may be an analyst who wishes to learn aggregate statistics of a secret set of
individuals (e.g., customers or patients) which she already knows to be part of the sender’s data
set.

Existing constructions of PSI-Sum are either OT-based, using an OPRF to hide the inter-
section while allowing computation of the payload sum [IKN+17, IKN+20, MPR+20], or simply
use the circuit-based approach [PSTY19, RS21, HMS21]. The general approach for PSI-Sum

3

0 10 20 30 40 50
0

50

100

150

[RS21]

[RS21]

[HMS21]

[PSTY19]

[IKN+20][IKN+20]

Ours

Running Time (s)

C
om

m
u

n
ic

at
io

n
(M

B
)

Communication vs Running Time of PSI with Sum

Figure 2: Communication vs running time of “PSI with sum” protocols for n = 216 with 32-
bit payloads. Red dots represent circuit-based PSI-Sum protocols. Blue dots represent PSI-Sum
protocols using other approaches. The green dot represents our (intersection-revealing) PSI+Sum
protocol. The numbers are from the respective papers or estimated.

in previous works is to start with a protocol for PSI payload, and use ad-hoc techniques to
mask the payloads in a way that only their sum can be recovered by the receiver. For exam-
ple, [IKN+17, IKN+20, MPR+20] use different kinds of homomorphic encryption to hide individual
payloads while allowing their aggregation. (See [CO18] for discussion of the underlying challenges.)
These previous approaches result in either high communication or slow running time, as shown in
Figure 2. By revealing the intersection to the receiver, we significantly improve the communication
and running time. Jumping ahead, we will present an efficient general transformation from PSI
with payload to PSI+Sum.

The preprocessing model. While our PSI protocols are competitive also when considering
end-to-end costs, they are particularly attractive when allowing input-independent preprocessing
as in [RR17a, RR17b, RS21]. A protocol in the preprocessing model consists of two phases. In
the offline phase, which can be executed before the inputs are known (say, during an idle time of
the system), the parties can interact in order to securely generate correlated randomness that is
stored for future use. In the online phase, which is executed once the inputs are known, the parties
use the correlated randomness generated in the offline phase to perform the PSI computation
more efficiently. Most of PSI protocols from the literature can benefit from the preprocessing
model by moving steps that can be computed without the inputs, such as setting up OTs or Bloom
filters [KLS+17], to the offine phase. However, the extent to which this helps varies greatly between
different PSI techniques. In particular, PSI protocols based on DDH or OPRF require the inputs
to be known before most of the work can be performed, and thus only modestly benefit from
preprocessing. In contrast, the algebraic approach we pursue here can be used to shift the vast
majority of the work to the offline phase, where the cost of the latter can be minimized using
recent techniques of Boyle et al. [BCG+19, BCG+20]. Moreover, the offloading other protocols can
perform in the offline phase are mainly computation, not communication. As shown in Figure 1, in
a low bandwidth setting, our protocol is the only one benefit from preprocessing. It spends 25-30%

4

of both communication and running time in the offline phase, and thus represented by two dots for
total and online. Other PSI protocols run mostly in the online phase and are represented by one
dot.

(Ring) OLE. The oblivious linear-function evaluation (OLE) functionality [NP99, IPS09] is an
algebraic generalization of OT. Recall that the OT functionality allows a sender with two inputs
b0, b1 ∈ {0, 1} to send bi to a receiver whose input is i ∈ {0, 1}. The receiver only learns bi but
learns nothing about b1−i, while the sender also learns nothing about i. In the OLE functionality
over a finite field F, the sender instead holds a, b ∈ F, the receiver holds an input x ∈ F, and the
receiver obtains the output ax+ b. An OT functionality is equivalent to a special case of an OLE
functionality with F = F2. Efficient OLE protocols can be constructed either from OT alone [Gil99,
IPS09, KOS16, HMRT22] or, more efficiently, from OT and noisy Reed-Solomon codes [NP99,
IPS09, GNN17] or lattice-based additively homomorphic encryption [JVC18, BEP+20]. An efficient
“black-box” technique for protecting OLE protocols against malicious parties has been proposed
in [HIMV19].

Our main PSI protocol is based on a generalized version of OLE we refer to as ring-OLE. In a
ring-OLE protocol, the inputs a, b, x are in a (finite) ring R. In this work we consider a quotient
ring R = F[X]/〈p(X)〉 where each element can be represented by a polynomial of bounded degree.
Standard OLE over F can be viewed as a special case in which the degree-bound is 0. Ring-OLE
for R = F[X]/〈p(X)〉 where p(X) has n distinct roots in F can be constructed from OLE as follows.
For each root c of p(X), the parties engage in an instance of OLE to send a(c)x(c) + b(c) to the
receiver. Then, the receiver can use polynomial interpolation to reconstruct ax + b. In order to
ensure that the degree of ax does not exceed that of p, one can use 2 additional instances of OLE
to check the result, analogously to the technique used in [GN19]. However, better efficiency can
be obtained by using a ring-LPN based construction from [BCG+20], which generates a random
instance of degree-n ring-OLE with sublinear communication cost in n while achieving security
against malicious parties.

1.2 Our Results

In this paper, we obtain the following results.

Maliciously secure PSI from ring-OLE. We present a 2-party PSI protocol with security
against malicious parties from ring-OLE. Our protocol is particularly attractive in the preprocessing
model, but also has competitive end-to-end costs. Since ring-OLE can be easily reduced to OLE,
our protocol can also be cast in the OLE-hybrid model.

Our protocol builds on the OLE-based PSI protocol of Ghosh and Nilges [GN19] but improves
it in several ways.1 First, our protocol significantly increases efficiency in the online phase by
moving all calls to the (ring-)OLE functionality to the offline phase. Our online phase is “non-
cryptographic” and typically has higher efficiency in both communication and running time com-
pared to other PSI protocols, even those with only semi-honest security. Second, we combine O(n)
calls to OLE functionality, where n is the size of the input set, into a single call to ring-OLE
functionality for a quotient ring of polynomials of bounded degree. This makes our construction
modular and easier to analyze, and allows us to take advantage of recent efficient random (ring-
)OLE setup [BCG+20], to minimize communication costs with reasonable amortized overhead.
Third, we simplify the approach taken in [GN19] to achieve malicious security. Instead of using
two OLE calls to prevent a malicious receiver from sending x = 0 and learning a(0) + b = b, we

1Abadi et al. [AMZ21] recently presented several attacks on PSI protocols from [GN19]. These attacks mainly
target the symmetric variant, where both parties receive the output, and do not apply to our version of this protocol.

5

use the special-purpose ring-OLE to push this check to the online phase where the sender aborts
unless x ∈ F[X] is a monic polynomial of degree n. Even when instantiating this method with
OLE (instead of ring-OLE), it almost halves the number of OLE calls in [GN19]. Combining both
the offline and online phase, our protocol decreases the communication complexity of [GN19] by
50%-75% and its running time by 35%-45% even when OLE in [GN19] is generated by the PCG.
In particular, the online phase of our PSI protocol communicates 80%-90% less bits than that
of [GN19] and is almost twice as fast when compared to the original.

Compared to the state-of-the-art OT-based PSI [PRTY19, PRTY20, CM20, GPR+21] with
semi-honest security, the communication complexity of our PSI protocol in the online phase is
up to 50% smaller while remaining competitive in the running time for small (28, 212 elements)
sets. The vector-OLE-based PSI [RS21] and DH-based PSI [RT21] only outperform ours in term of
communication for large (220, 224 elements) sets. In the malicious setting, our advantages are even
bigger. The communication complexity of our PSI protocol in the online phase is up to 50% less
than any other known PSI for small sets and 20% less for large sets. In the low bandwidth setting,
our protocol outperforms other PSI protocols in the running time as well, as shown in Figure 1. See
Table 2 for a detailed comparison of communication costs, Section 4.2 for analysis of computation
costs, and Section 8 for comparison to other approaches.

A major additional advantage of our protocol is that it can be easily extended to PSI with
payload and PSI with sum, which we discuss next.

PSI payload. We modify our PSI construction to support payload. In particular, we construct
a protocol for PSI payload with security against malicious parties from ring-OLE. As in the basic
PSI case, we may instantiate the ring-OLE with OLE and obtain a PSI payload protocol in the
OLE-hybrid model. The online phase of the protocol is very communication efficient and does not
involve any use of cryptography. The payloads in our protocol can be encoded using the same
polynomials that are used to compute the intersection. The technique can be adapted to oblivious
programmable PRF (OPPRF)-based PSI [PRTY20, RS21] and oblivious key-value store (OKVS)-
based PSI [GPR+21], but not (non-programmable) OPRF [CM20] or DH-based [RT21] PSI. In
some cases, masked values of the payload need to be sent separately, usually encrypted [IKN+20].
They cannot be sent as random (hashed) values together with the set elements as only one party
knows them. Efficient decryption and exchange of these values are done with only semi-honest
security. Our approach avoids these limitations with little additional communication overhead.

From PSI payload to PSI+Sum. Our second main contribution is a general construction of
a PSI+Sum protocol from any PSI payload and secure inner product. Informally, the protocol
works as follows: The sender masks the payload for each element of her set with an evaluation of a
random polynomial at this element. The receiver can only get rid of the masked value of the sum
by performing a secure inner product between a sum of each power of the intersection members
and the coefficients of the masked polynomial.

Secure inner product can be efficiently reduced to OLE, which in turn has a low cost in the
preprocessing model. Instantiating this reduction with our PSI payload protocol, we obtain an
efficient PSI+Sum protocol with security against semi-honest parties from OLE. Similar to the
previous construction, calls to OLE are made only in the offline phase, and thus the online phase is
entirely non-cryptographic. When the (offline) random OLE functionality is instantiated with the
recent ring-LPN based protocol from [BCG+20] our protocol is competitive in both communication
complexity and running time even when combining the offline and online phases into a single
end-to-end protocol. See Table 3 for a comparison with prior works.

6

1.3 Applications

PSI is motivated by a growing number of real-world applications that are thoroughly discussed
in prior works (see, e.g., [FNP04, IKN+20, PRTY19] and references therein). We would like to
motivate our two main points of departure from most of these prior works.

Offline-online setting. Many practical MPC protocols, including the popular SPDZ line of
protocols, heavily rely on the premise that offline work (including communication and computation)
is a much cheaper resource than online work. It is therefore very natural to take advantage of the
same premise in the context of PSI. Moreover, given the new techniques for generating (ring-)OLE
correlations from ring-LPN [BCG+20], we get significant efficiency gains even with respect to the
total cost (counting both offline and online). In particular, we can delegate about 40% of the
communication and 25%-50% of the running time to the offline phase in our PSI protocol.

Relaxed security for PSI+Sum. Unlike other PSI-Sum protocols, our general transformation
from PSI payload to PSI+Sum reveals not only the sum of the payloads in the intersection but also
reveals (to the receiver) the intersection itself. (Note that the set of payloads in the intersection
still remains secret, except for revealing the sum.) This can be a significant limitation for some
applications. However, in other applications this may not be a concern. For instance, in classical
use-cases of PSI (e.g., ones related to matching problems) the ideal functionality reveals the actual
set intersection either to both parties or to one of the parties. In the same use-cases, there may
be additional payloads containing sensitive information (e.g., salaries) that can only be revealed
in aggregate form. Finally, as discussed above, there are many use-cases in which the intersection
itself reveals no information to the receiver because its data set is always a subset of the sender’s.
This is the case, for instance, when the sender is a company or a hospital and the receiver wants
to obtain some aggregate statistics of a secret subset of customers or patients that are known to
be associated with the sender.

1.4 Organization

The rest of the paper is organized as follows. We present the PSI functionality and fast algorithms
for polynomial evaluation, polynomial interpolation and power sum in Section 2. In Section 3, we
describe OLE-related functionalities and reductions between them. Section 4 describes our main
ring-OLE based PSI protocol in the preprocessing model, along with a proof of malicious security
and performance analysis. In Section 5, we extend the protocol to include payloads. In Section 6,
we describe and analyze our general construction of PSI+Sum from PSI Payload and secure inner
product. In Section 7, we briefly discuss how to extend the ring-OLE based construction to other
PSI varaints. Finally, in Section 8, we analyze the concrete performance of our PSI protocols and
compare it to other PSI protocols.

2 Preliminaries

We use λ and κ to denote the statistical and computational security parameters, respectively.
We use [n] to denote {1, 2, . . . , n}. We use the standard definition of negligible functions and
computational indistinguishability [GM84]. We will denote by Prr[X] the probability of an event
X over coins r, and Pr[X] when r is not specified. The abbreviation “PPT” stands for probabilistic
polynomial time. For a finite set S, we denote a← S a uniformly random choice of a from S. For
a randomized algorithm A, let A(x; r) denote running A on an input x with random coins r. If r is
chosen uniformly at random with an output y, we denote y ← A(x). For a vector ~v ∈ Fm, we use
~v[i] to denote the i-th element. We denote the inner product of ~u,~v ∈ Fm by 〈u, v〉.

7

2.1 Polynomial Operations

Our algorithms for PSI and its variants use an algebraic approach and thus need to perform several
polynomial operations including (multi-point) polynomial evaluation, polynomial interpolation and
power sum, that is computing

∑m
j=1 c

i
j for i = 0, . . . , n.

2.1.1 Polynomial Evaluation

Our PSI protocols and its variants need to evaluate polynomials at a large number of points. We
use an efficient algorithm in [BM74, BLS03] to evaluate a given polynomial at all points at once.
The idea is that evaluating a polynomial f(x) ∈ F[x] at a ∈ F is f(a) = f(x) mod (x− a). Instead
of computing f(x) mod (x−a) for each evaluation point, the algorithm first constructs a subproduct
tree, which is a binary tree where each node contains the product of polynomials in its children. The
leaves of the subproduct tree contain x−ai where a1, . . . , an are evaluation points. The subproduct
tree can be constructed from leaves where polynomial multiplications are computed using FFT.
To evaluate a polynomial f , we compute modulo of f down along the subproduct tree from its
root. The result at each leaf will be the evaluation. This fast multi-point polynomial evaluation
algorithm, called FastEval, allows our algorithms to evaluate a polynomial at n distinct points
using 17n log2 n field multiplications [BLS03] as opposed to point-wise evaluation using O(n2) field
multiplications.

2.1.2 Polynomial Interpolation

The subproduct tree can also be used to compute polynomial interpolation [BM74, BLS03]. We
may think of the polynomial evaluation at a1, . . . , an ∈ F as a linear function. Then polynomial

interpolation at the same points is simply its inverse. For a polynomial f(x) =
n∑
i=0

aix
i, we let

f ′(x) =

n∑
i=1

iaix
i−1 denote its formal derivative. From Lagrange interpolation formula, the unique

polynomial f of degree n− 1 that satisfies f(ai) = bi for i = 1, . . . , n is

f(x) =
n∑
i=1

bi

∏
j 6=i

(x− aj)∏
j 6=i

(ai − aj)

 =
n∑
i=1

bi
m′(ai)

· m(x)

x− ai

where m(x) =

n∏
i=1

(x − ai) and m′(x) =

n∑
i=1

∏
j 6=i

(x − aj) is its formal derivative. We can compute

m′(ai) using FastEval and m(x)
x−ai using the subproduct tree. This algorithm uses 20n log2 n field

multiplications to interpolate n points [BLS03].

2.1.3 Power Sum

Our algorithm for PSI+Sum also requires the receiver to compute
∑

c∈I c
i for i = 0, . . . , d where

both |I| and d are linear in the input size n. A direct computation would require O(n2) multi-
plications and additions. We consider this computation as a multiplication between the transpose
of the Vandermonde matrix of elements of I and a vector of all 1’s. Thus, this computation can

8

be done using the algorithm in Figure 3. For a polynomial f(x) =

n∑
i=0

aix
i with an 6= 0, we

let rf(x) =
n∑
i=0

an−ix
i = xnf(x−1) denote its reverse-coefficient polynomial. This algorithm is a

simplified version of an algorithm in [BLS03] using the subproduct tree.

PowerSum

1. Compute f(x) =
∏
c∈I(x− c)

2. Compute the reverse-coefficient polynomial rf(x)

3. Compute the inverse of rf(x) modulo xd+1, denoted g(x)

4. Compute the reverse-coefficient polynomial of the derivative f ′(x), denoted t(x)

5. Output the coefficient vector ~v of t(x)g(x) modulo xd+1

Figure 3: Power Sum

Theorem 2.1. vi =
∑

c∈I c
i for i = 0, . . . , d.

Proof. From f(x) =
∏
c∈I(x− c), we have rf(x) =

∏
c∈I(1− cx). Since we can write the derivative

f ′(x) =
∑

c∈I
∏
c′ 6=c(x− c′), we get t(x) =

∑
c∈I
∏
c′ 6=c(1− c′x). Thus,

t(x)g(x) =
∑
c∈I

∏
c′ 6=c

(1− c′x)g(x) (mod xd+1)

=
∑
c∈I

(1− cx)−1 (mod xd+1)

=
∑
c∈I

(
1 + cx+ (cx)2 + . . .+ (cx)d

)
(mod xd+1)

=
d∑
i=0

(∑
c∈I

ci

)
xi (mod xd+1)

2.2 Private Set Intersection

We define the security of the two-party private set intersection (PSI) as a special case of a secure two-
party computation (2PC). We follow the standard security notions for semi-honest and malicious
securities. The ideal functionality of PSI is defined in Figure 4.

2.3 Secure Inner Product

A secure inner product functionality allows two parties to compute an inner product of each party’s
input vector and output as an additive share to each party. We define an ideal functionality for
secure inner product in Figure 5.

9

FPSI

Parameters. n is the upper bound of the size of parties’ input sets; n′ ≥ n is the upper
bound of the corrupted sender’s input set.

Functionality.

1. Upon receiving a message (inputS, A) from the sender with A ⊆ {0, 1}∗, if |A| > n and
the sender is honest, or |A| > n′ and the sender is corrupted, ignore that message.
Otherwise, store A and send (inputS) to A.

2. Upon receiving a message (inputR, B) from the receiver with B ⊆ {0, 1}∗, if |B| > n,
ignore that message. Otherwise, store B and send (inputR) to A.

3. Upon receiving a message (deliver) from A, check if both A and B are stored, else ignore
that message. Otherwise, set I = A ∩B and send (output, I) to the receiver. Ignore all
further messages.

Figure 4: Ideal functionality for private set intersection (PSI)

We show how to construct a protocol realizing FnInnerProduct in the FOLE-hybrid model in Figure 6.
The idea behind this construction is similar to the secure inner product protocols in OT-hybrid
model in [KOS16, GSB+17]. We note that the degree of the polynomial p′B is set to d−1 instead of
d to allow Sender to check that pB has degree exactly d. This prevents a malicious Receiver from
learning some parts of pA from pQ. While p∗B = pB − p′B exposes the coefficient of xd from pB, this
coefficient can be chosen uniformly at random from F \ {0} independent of B.

Theorem 2.2. Πn
innerProduct unconditionally realizes FnInnerProduct in the FOLE-hybrid model.

Proof. By the correctness of FOLE, we have zi = ~u[i]~v[i]− ~r[i]. Thus, z = 〈~u,~v〉 − r. Hence,

oA + oB = 〈~a, ~w2〉 − r + 〈~b, ~w1〉 − z

= 〈~a,~b− ~v〉+ 〈~a+ ~u,~v〉 − 〈~u,~v〉

= 〈~a,~b〉 − 〈~a,~v〉+ 〈~a,~v〉+ 〈~u,~v〉 − 〈~u,~v〉

= 〈~a,~b〉

When the adversary A corrupts Alice, we construct a simulator SA interacting with A as follows.
It first simulates FOLE in the offline phase to extract ~u and ~r Upon receiving ~w1 in the online phase,
SA computes ~a = ~w1 − ~u and sends it to FnInnerProduct and receives oA. Finally, it sends a uniformly
random ~w2 with 〈~a, ~w2〉 = oA +

∑
i ~r[i] to A. Since Bob is honest, ~v is uniformly random, and

so is ~w2 in the real world. Thus, the ideal world interaction and the real world interaction are
indistinguishable.

When the adversary A corrupts Bob, we construct a simulator SB interacting with A as follows.
It first simulates FOLE in the offline phase to extract ~v, and send uniformly random zi to A. It sends
a uniformly random ~w1 to A in the online phase. Upon receiving ~w2, SB computes ~b = ~w2 +~v. and
sends it to FnInnerProduct and receives oB. Since Alice is honest, ~r and ~u are uniformly random, so is
~w1 and zi = ~u[i]~v[i] − ~r[i] in the real world. Thus, the ideal world interaction and the real world
interaction are indistinguishable.

10

FInnerProduct

Parameters. F is a finite field; n is the length of input vectors.

Functionality.

1. For i ∈ {1, 2}, upon receiving a message (inputi, ~vi) from Pi with ~vi ∈ Fn, verify that
there is no stored vector ~vi, else ignoring that message. Otherwise, store ~vi and send
(inputi) to A.

2. Upon receiving a message (deliver) from A, check if both ~v1 and ~v2 are stored else
ignoring that message. Otherwise, set c = 〈~v1, ~v2〉 ∈ F, sample o1 ← F, set o2 = c− o1,
and send (outputi, oi) to Pi for i ∈ {1, 2}. Ignore all further messages.

Figure 5: Ideal functionality for secure inner product

The secure inner product functionality can also be instantiated from a random inner product
in [BCG+20]. The random inner product instance can replace ~u and r for Alice, and ~v and z for
Bob in Figure 6 where 〈~u,~v〉 = r+z. This method is more efficient than using OLE or random OLE
in both computation and communication in the offline phase. The online phase and the security
remain the same.

2.4 Polynomial Ring modulo p(X)

We view the ring R = F[X]/〈p(X)〉 as a collection of equivalence classes of polynomials modulo
p(X) where

[f] = {g ∈ F[X] : f ≡ g (mod p(X))}

denote the equivalence class of f in R This means that if two polynomials have the same remainder
when divided by p(X), they are in the same class, i.e. the same element in R. This way, any
polynomial can be viewed as an element of R by considering its equivalence class. Moreover, each
polynomial f (of any degree) in F[X] is uniquely identified with the representative f (mod p(X))
of degree less than that of p.

3 Oblivious Linear Evaluation

Let F be a finite field. An oblivious linear function evaluation (OLE) allows two parties, a sender
with input a, b ∈ F and a receiver with input x ∈ F, to securely compute ax + b and output
to the receiver. The OLE can be seen as a generalization of an oblivious transfer (OT) where
F = F2. The OLE protocols are usually constructed in batches from various techniques and
primitives such as noisy Reed Solomon codes in the OT-hybrid model in [NP99, IPS09, GNN17],
an additive homomorphic encryption [JVC18], pseudorandom correlation generator (PCG) based
on ring-Learning Parity with Noise (ring-LPN) [BCG+20].

3.1 Ring-OLE

In this work, we consider a generalization of OLE, called ring-OLE (rOLE), where the inputs a, b, x
are from a ring R instead of a field. The rOLE functionality is defined in Figure 7.

11

Πn
innerProduct

Offline Phase.

1. Alice samples random vectors ~u,~r ∈ Fn.

2. Bob samples a random vector ~v ∈ Fn.

3. For i = 1, . . . , n,

• Alice sends (inputS, (~u[i],−~r[i])) to FOLE.

• Bob sends (inputR, ~v[i]) to FOLE and receives (output, zi).

4. Alice computes r =
∑

i ~r[i] ∈ F.

5. Bob computes z =
∑

i zi ∈ F.

Online Phase. Alice on input ~a ∈ Fn, Bob on input ~b ∈ Fn

1. Alice sends ~w1 = ~a+ ~u ∈ Fn to Bob.

2. Bob sends ~w2 = ~b− ~v ∈ Fn to Alice.

3. Alice outputs oA = 〈~a, ~w2〉 − r.

4. Bob outputs oB = 〈~w1, ~v〉 − z.

Figure 6: Protocol realizing secure inner product in the FOLE-hybrid model

When R = F[X]/〈p(X)〉, a quotient ring of a polynomial ring F[X], where p(X) is a product of
d distinct linear terms, a ring-OLE for R can be constructed from d instances of (standard) OLE
over F. When R is finite, a variant of rOLE where both parties’ inputs are replaced by uniformly
sampled elements of R is called a random rOLE (rrOLE). A malicious variant where malicious
party may choose their inputs is defined in [BCG+20] as shown in Figure 8.

In [BCG+20], rrOLE protocol for R = F[X]/〈p(X)〉 can be constructed from pseudorandom
correlation generator (PCG) based on ring-Learning Parity with Noise (ring-LPN). The resulting
rrOLE correlation can be split into d instances of random OLE correlation by evaluating at each
root of p(X) (or by dividing by each linear factor).

3.2 Ring-OLE from Random Ring-OLE in the Offline Phase

In this section, we construct a rOLE protocol from rrOLE functionality in the offline phase. This
protocol will later be used in our PSI protocol. By moving the rrOLE functionality to the offline
phase, the rOLE protocol and the upcoming PSI protocol will have efficient online phase in both
communication and computation. Let FrrOLE be the rrOLE functionality. We describe the rOLE
protocol Πoffline

rOLE in Figure 9.
Informally, in the offline phase, the sender and the receiver execute rrOLE for randomly chosen

ring elements (a′, b′) and (x′, c′) where c′ = a′x′ + b′. In the online phase, they use a′, b′ and x′, c′

to additively mask their inputs, and send the masked values in clear. We can show that the joint

12

FrOLE

Parameters. a ring R

Functionality.

1. Upon receiving a message (inputS, (a, b)) from the sender with a, b ∈ R, verify that there
is no stored tuple else ignoring that message. Otherwise, store (a, b) and send (inputS)
to A.

2. Upon receiving a message (inputR, x) from the receiver with x ∈ R, verify that there is
no stored value else ignoring that message. Otherwise, store x and send (inputR) to A.

3. Upon receiving a message (deliver) from A, check if both (a, b) and x are stored else
ignoring that message. Otherwise, set c = ax+ b ∈ R and send (output, c) to the
receiver. Ignore all further messages.

Figure 7: Ideal functionality for ring oblivious linear function evaluation (rOLE)

distribution of masked messages completely hide each party’s inputs while allowing the receiver to
recover ax+ b. We prove the security of Πoffline

rOLE in Figure 9 in the following theorem.

Theorem 3.1. Assuming FrrOLE functionality, Πoffline
rOLE securely realizes FrOLE using FrrOLE only in

the offline phase with perfect security.

Proof. (Sketch) The correctness of FrOLE implies that c′ = a′x′ + b′. Thus,

c = b∗ + a∗x− c′ = (b+ b′ − a′(x− x′)) + (a+ a′)x− (a′x′ + b′)

= ax+ b.

So, Πoffline
rOLE is correct. Suppose the sender is corrupted. We construct a simulator SSender that follows

the protocol except that it simulates FrrOLE in the offline phase to extract a′, b′. In the online phase,
it sends x∗ chosen uniformly at random from R to the sender. Upon receiving a∗, b∗, it computes
a = a∗− a′ and b = b∗− b′+ a′x∗ for the functionality. Since x′ is also chosen uniformly at random
from R, x∗ from SSender and x∗ = x− x′ in the real protocol as they have the same distribution.

Now suppose the receiver is corrupted. We construct a simulator SReceiver that simulates FrrOLE

in the offline phase to extract x′, c′. In the online phase, upon receiving x∗ from A, the simulator
sends x̃ = x∗ + x′ to the functionality to get c̃ = ax̃ + b. It chooses ã∗ uniformly at random,
computes b̃∗ = c̃− ã∗(x∗ + x′) + c′, and sends ã∗, b̃∗ to A.

Lemma 3.2. The distribution of (a∗, b∗) given (x∗, x′, c, c′) in Πoffline
rOLE and the distribution (ã∗, b̃∗)

given (x∗, x′, c̃, c′) are identical.

Proof. Since for any a′, x′ ∈ R there exists b′ = c′−a′x′ satisfying c′ = a′x′+b′. Thus, a′ is uniform
given c′, so is a∗. Hence, a∗ and ã∗ has the same distribution. Given x∗, x′, c, c′, a∗, we can write

b∗ = b+ b′ − a′x∗

= (c− ax) + (c′ − a′x′)− a′x∗

= c− ax− a′(x′ + x∗) + c′

= c− a∗(x′ + x∗) + c′

13

FrrOLE

Parameters. a finite ring R

Functionality.

1. If both parties are honest or A is semi-honest, uniformly sample a, b, x← R and
compute c = ax+ b.

2. If A is malicious and the sender is corrupted, upon receiving a message (a, b) from A, if
a, b ∈ R, uniformly sample x← R and compute c = ax+ b, else ignore the message.

3. If A is malicious and the receiver is corrupted, upon receiving a message (x, c) from A,
if x, c ∈ R, uniformly sample a← R and compute b = ax− c, else ignore the message.

4. Upon receiving a message (deliver) from A, check if a, b, c, x are stored, else ignoring
that message. Send (a, b) to the sender and (x, c) to the receiver, respectively. Ignore all
further messages.

Figure 8: Ideal functionality for random ring oblivious linear function evaluation (rrOLE) [BCG+20]

Both b∗ and b̃∗ can be determined by the same expression given x∗, x′, c, c′, a∗ or x∗, x′, c̃, c′, ã∗.
Therefore, the distribution of (a∗, b∗) and the distribution (ã∗, b̃∗) are identical.

Thus, the real protocol and the simulated one are indistinguishable.

This protocol is highly efficient. The online phase consists of sending 3 ring elements, and the
computation is dominated by 2 ring multiplications. Combining the above theorem with any rrOLE
protocol with semi-honest or malicious security gives rOLE protocol with the same level of security.
Since OLE is a special case of rOLE with R = F, the above construction gives an efficient OLE
protocol using random OLE in the offline phase, and sending 3 fields elements in the online phase.

However, rOLE for a ring R = F[X]/〈p(X)〉 can not be used to compute PSI using the algebraic
approach in [FNP04, FIPR05, KS05, GN19] as operations modulo p(X) do not preserve roots. We
thus need to consider a polynomial ring R = F[X]. Since the polynomial ring is not finite, the
previous construction which relies on rrOLE does not directly apply. We then consider a special-
purpose rOLE for R = F[X] with some additional restriction on the degree and leading coefficient
of each polynomial. The functionality for this special-purpose rOLE is defined in Figure 10.

When using the functionality to compute PSI, this restriction prevents high-degree terms of
polynomial b to be known by a malicious receiver choosing polynomial x of low degree. Since the
sender only receives a single message, we have lower restriction on the sender’s input. Note that
we also restrict the leading coefficient of x. This condition allows the protocol to efficiently check
for malicious receivers. When we use this protocol has a part of a PSI protocol, x is chosen by its
roots. Thus, the receiver may choose the polynomial to be monic. We show that doing so does not
reveal the rest of the polynomial, and thus its roots.

We construct a protocol realizing FF[X],d
rOLE using FrrOLE only in the offline phase in Figure 11.

The main distinction between this protocol and the previous one is that a corrupted receiver of
this protocol may try to choose x of degree less than d to expose some part of b. In order to do so
while passing the check on the degree of x∗, he must choose x′ of degree d instead. However, we

14

Πoffline
rOLE

Offline Phase.

1. Sender receives (a′, b′) from FrrOLE.

2. Receiver receives (x′, c′) from FrrOLE where c′ = a′x′ + b′.

Online Phase. Sender on input a, b ∈ R, Receiver on input x ∈ R

1. Receiver sends x∗ = x− x′ to Sender.

2. Sender computes b∗ = b+ b′ − a′x∗ and a∗ = a+ a′, and sends a∗, b∗ to Receiver.

3. Receiver outputs c = b∗ + a∗x− c′.

Figure 9: Protocol for FrOLE using FrrOLE in the offline phase

can show that any malicious choice of xi’s in the offline phase yields x′ of degree at most d− 1. We
refer to Subsection 2.4 for the ring structure and notations.

The following theorem shows security of Π
F[X],d
rOLE in the FrrOLE-hybrid model.

Theorem 3.3. Π
F[X],d
rOLE realizes FF[X],d

rOLE in the FrrOLE-hybrid model.

Proof. By the correctness of FrrOLE, we have c0 = a0x0 + b0 (mod p). Then

c′ = (a0x0 + b0)− a′′x′p1 (mod p)

= (a′ + a′′p1)(x
′ + x′′p2) + (b′ − a′x′′p2)− a′′x′p1 (mod p)

= a′x′ + b′ + a′′x′′p1p2 = a′x′ + b′ (mod p)

Since deg c′ ≤ 2d− 1, deg a′ = d, deg x′ ≤ d− 1, and deg b′ ≤ 2d− 1, c′ = a′x′+ b′. The same proof
correctness as Πoffline

rOLE gives the correctness of the protocol.
Security against corrupted Sender: We construct a simulator SSender that interacts with A

as follows. It simulates FrrOLE honestly to extract a0, b0, c0, x0, x
′, x′′. Upon receiving a′′ from A, it

computes ã′ = a0−a′′p1. If ã′x′ has degree at most 2d−1, let b̃′ = b0 + ã′x′′p2 (mod p). Otherwise,
it sets ã′ = 0 and b̃′ = c′ = c0 − a′′x′p1 (mod p). In the online phase, it sends x∗ chosen uniformly
at random from monic polynomials of degree d to the sender. Upon receiving a∗, b∗, if deg a∗ ≤ d

and deg b∗ ≤ 2d, it computes ã = a∗− ã′ and b̃ = b∗− b̃′+ ã′x∗, and sends (inputS, (ã, b̃)) to FF[X],d
rOLE .

Otherwise, it aborts.
We prove the indistinguishability through the following hybrids:

• H0: This is the real world interaction of the protocol Π
F[X],d
rOLE .

• H1: The same as H0 except that SSender simulates FrrOLE honestly to extract a0, b0, c0, x0
(which gives x′, x′′). Upon receiving a′′ from A, SSender computes ã′ = a0 − a′′p1. If ã′x′

has degree at most 2d − 1, let b̃′ = b0 + ã′x′′p2 (mod p). Otherwise, it sets ã′ = 0 and
b̃′ = c′ = c0 − a′′x′p1 (mod p). Note that c′ = ã′x′ + b̃′ in both cases, and b̃′ = c′ is uniformly
distributed among polynomials of degree at most 2d− 1. This hybrid is identical to H0 as ã′

and b̃′ are not used.

15

FF[X],d
rOLE

Parameters. a finite field F, an upper bound parameter d Functionality.

1. Upon receiving a message (inputS, (a, b)) from the sender with a, b ∈ F[X], verify that
there is no stored tuple, deg a ≤ d and deg b ≤ 2d, else ignore the message. Otherwise,
store (a, b) and send (inputS) to A.

2. Upon receiving a message (inputR, x) from the receiver with x ∈ F[X], verify that there
is no stored value, x is monic and deg x = d, else ignore the message. Otherwise, store x
and send (inputR) to A.

3. Upon receiving a message (deliver) from A, check if both (a, b) and x are stored else
ignore the message. Otherwise, set c = ax+ b, send (output, c) to the receiver. Ignore all
further messages.

Figure 10: Ideal functionality for the special-purpose rOLE for R = F[X] where deg a ≤ d, deg b ≤
2d and deg x = d

• H2: The same as H1 except that SSender, upon receiving a∗, b∗, if deg a∗ ≤ d and deg b∗ ≤ 2d,
it ã = a∗− ã′ and b̃ = b∗− b̃′+ ã′x∗. Otherwise, it aborts. The receiver outputs ãx+ b̃ instead
of b∗ + a∗x− c′. From

(a∗ − ã′)x+ (b∗ − b̃′ + ã′x∗) = a∗x+ b∗ − (ã′(x+ x∗) + b̃′) = a∗x+ b∗ − c′

This hybrid is identical to H1.

• H3: The same as H2 except that SSender uniformly samples a monic polynomial x̃∗ of degree
d and sends to A instead of x∗ = x− x′ and b̃ = b∗− b̃′+ ã′x̃∗. Since the receiver is honest, x
is a monic polynomial of degree d and x′ the remainder of dividing a uniformly chosen x0 of
degree at most 2d − 1 by p2. Thus, it is uniform among polynomials of degree d − 1. Thus,
x∗ and x̃∗ has the same distribution. Hence, H2 and H3 have the same distribution.

• H4: The same as H3 except that SSender sends (inputS, (ã, b̃)) to FF[X],d
rOLE instead of interacting

with the receiver. This is the ideal world interaction. If SSender does not abort, deg a∗ ≤ d
and deg b∗ ≤ 2d, so are ã and b̃. The receiver in the ideal world will receive (output, ãx+ b̃).
This hybrid is identical to H3.

Security against corrupted Receiver: We construct a simulator SReceiver that interacts with
A as follows. It simulates FrrOLE honestly to extract a0, b0, c0, x0, samples a′′ honestly and computes
a′ of degree d. Upon receiving x′′ from A, it computes x̃′ = x0 − x′′p2. If x̃′ has degree at most
d− 1, let c̃′ = c0 − a′′x̃′p1 (mod p). Otherwise, it sets x̃′ = 0 and c̃′ = b′ = b0 + a′′x′′p1 (mod p).In
the online phase, upon receiving x∗ from A, if x∗ is not a monic polynomial of degree d, it aborts.

Otherwise, it computes x̃ = x∗ + x̃′, and sends (inputR, x̃) to FF[X],d
rOLE and receives (output, c̃). It

sends ã∗ chosen uniformly at random from polynomials of degree at most d, and b̃∗ = c̃− ã∗x̃+ c̃′

to A.
We prove the indistinguishability through the following hybrids:

16

Π
F[X],d
rOLE

Parameters. F is a finite field. R = F[X]/〈p(X)〉 where p(X) is a product of 2d distinct
linear terms. Elements in R can be represented by a polynomial of degree at most 2d− 1. Let
p(X) = p1(X)p2(X) where pi has degree d.

Offline Phase.

1. Sender receives polynomials ([a0], [b0]) from FrrOLE where a0, b0 ∈ F[X] are
representatives of the equivalence classes with degree at most 2d− 1.

2. Receiver receives polynomial ([x0], [c0]) from FrrOLE where x0, c0 ∈ F[X] are
representatives of the equivalence classes with degree at most 2d− 1.

3. Sender computes (random) a′′ ∈ F[X] of degree at most d− 1 such that a′ := a0 − a′′p1
has degree d. Sender sends a′′ to Receiver.

4. Receiver computes (unique) x′′ ∈ F[X] of degree at most d− 1 such that x′ := x0 − x′′p2
has degree at most d− 1. Receiver sends x′′ to Sender.

5. If deg x′′ ≥ d, Sender aborts; otherwise, computes b′ = b0 + a′x′′p2 (mod p).

6. If deg a′′ ≥ d, Receiver aborts; otherwise, computes c′ = c0 − a′′x′p1 (mod p).

Online Phase. Sender on input a, b ∈ F[X] with deg a ≤ d and deg b ≤ 2d, Receiver on input
x ∈ F[X] monic with deg x = d

1. Receiver sends x∗ = x− x′ to Sender.

2. If x∗ is not a monic polynomial of degree d, Sender aborts. Otherwise, Sender computes
b∗ = b+ b′ − a′x∗ and a∗ = a+ a′, sends a∗, b∗ to Receiver

3. If deg b∗ > 2d or deg a∗ > d, Receiver aborts; otherwise, outputs c = b∗ + a∗x− c′.

Figure 11: Protocol realizing special-purpose ring-OLE FF[X],d
rOLE using FrrOLE only in the offline phase

17

• H0: This is the real world interaction of the protocol Π
F[X],d
rOLE .

• H1: The same as H0 except that SReceiver simulates FrrOLE honestly to extract a0, b0, c0, x0.
It receives a′′ from the receiver and passes it to A. Upon receiving x′′ from A, it computes
x̃′ = x0 − x′′p2. If x̃′ has degree at most d − 1, let c̃′ = c0 − a′′x̃′p1 (mod p). Otherwise, it
sets x̃′ = 0 and c̃′ = b′ = b0 + a′′x′′p1 (mod p). Note that c̃′ = a′x̃′ + b′ in both cases, and
c̃′ = b′ is uniformly distributed among polynomials of degree at most 2d − 1. This hybrid is
identical to H0 as x̃′ and c̃′ are not used.

• H2: The same as H1 except that SReceiver, upon receiving x∗ from A, if x∗ is not a monic
polynomial of degree d, aborts. Otherwise, it computes x̃ = x∗ + x̃′. Let c̃ = ax̃ + b. It
uniformly samples a polynomial of degree at most d ã∗, compute b̃∗ = c̃− ã∗x̃+ c̃′, and send
ã∗ and b̃∗ to A. Due to the bounded degrees, the additions and multiplications of polynomials
and the ring are the same. By the same argument as Lemma 3.2, the distribution (a∗, b∗)
and (ã∗, b̃∗) are identical.

• H3: The same as H2 except that SReceiver samples a′′ on behalf of the sender, and sends

(inputR, x̃) to FF[X],d
rOLE to receive (output, c̃). This is the ideal world interaction. If SReceiver

does not abort, x∗ is monic of degree d, so is x̃. By the correctness of FF[X],d
rOLE , c̃ = ax̃ + b.

This hybrid is identical to H2.

3.3 Ring-OLE from PCG based on Ring-LPN

In this section, we describe an efficient construction of rrOLE protocol for R = F[X]/〈p(X)〉 that
can be instantiated in the previous constructions. The PCG protocol in [BCG+20] allows two
parties to efficiently generate n pairs of random OLE correlated randomness (a, b) and (x, ax+ b)
for a, b, x ∈ F by communicating only O(log n) bits. Their protocol generates a batch of random
OLE instances through rrOLE for the ring R = F[X]/〈p(X)〉 where p(X) is a product of n distinct
linear terms by breaking up the result into n instances of random OLE. Since our goal is to
generate rrOLE, we modify this construction by simply not breaking up the rrOLE. The security of
the protocol in [BCG+20] is based on the following assumption, which is a variant of the ring-LPN
assumption.

Definition 3.4 (Module-LPN [BCG+20]). Let R = F[X]/〈F (X)〉 for some prime-order field F =
Fp and a degree-N polynomial F (X) ∈ F[X], and let c,m, t ∈ N. Let HWt be the distribution of
uniformly random polynomials in R with exactly t nonzero coefficients. The Rc−LPNp,m,t problem is
hard if for any PPT adversary A, it holds that Pr[A((ai, 〈ai, e〉+ fi)

m
i=1) = 1]−Pr[A((ai, ui)

m
i=1) =

1] ≤ negl(κ) where the probabilities are taken over a1, . . . , am ← Rc−1, u1, . . . , um ← R, e ←
HWc−1

t , f1, . . . , fm ← HWt and the randomness of A

We denote w = c · t = O(κ) the total number of noise positions.

Theorem 3.5 (PCG for OLEs [BCG+20]). Assuming Rc − LPNp,1,t, there exists a protocol that
securely generates correlated randomness (a, b) and (x, ax + b) where a, b, x ← R = F[X]/〈F (X)〉
where F (X) is a product of n distinct linear terms. The communication complexity of the protocol
is O(log n) and the computation complexity is O(n log n).

More specifically, the communication for setting up the seed for rrOLE is w2·(2 log n+ 3 log |F|+ (2κ+ 3) log(2n))
for semi-honest security, and w2 · (34 log n+ 10 log |F|+ (2κ+ 3) log(2n) + 4κ) +w · (log n+ log |F|)

18

for malicious security. The computation consists of 4w2n PRG and O(c2n log n) field operations
for semi-honest security and additional w2 random oracle evaluations for malicious security.

Combining this theorem with our rOLE construction gives a protocol computing rOLE in the
preprocessing model communicating O(n log n) bits and the computation complexity is O(n log2 n)
based on Rc − LPNp,1,t.

Amortized setup for rrOLE. Since the communication is O(log n) with relatively large constant,
the setup communication is small fraction of the total communication when n is large (n ≥ 220).
For smaller n, it is more efficient to run a single setup for a large number of rOLE (and PSI)
instances. As shown in Table 1, the amortized communication cost for n = 28, 212, 216 can be
reduced significantly by setup for large number of instances. The same techniques may not apply
to other setup such as VOLE [RS21].

4 PSI from Ring-OLE

In this section we construct a maliciously secure two-party PSI with output for one party in Fig-
ure 12 realizing the PSI functionality in Figure 4. We first assume that the input sets A,B are
subsets of some finite field F. This assumption can be dropped by assuming a random oracle
H : {0, 1}∗ → F when |F| is sufficiently large as shown in [RT21]. The idea of the construction
is similar to the protocol in [KS05, GN19]. The receiver obtains a polynomial pQ that is a linear
combination of polynomials pA and pB whose roots include elements in the input sets of the sender
and the receiver, respectively. Thus, all elements in the intersection will be roots of pQ. Note
that pA has degree 2n in order to match the degree of the product pBpR. The sender chooses pA
uniformly random subjected to at most n elements in his input set. Our protocol assumes the

special-purpose rOLE FF[X],n
rOLE described in Figure 10.

ΠPSI

Parameters. Sender on input A ⊆ F of size at most n for honest sender or 2n for corrupt.
Receiver on input B ⊆ F of size at most n.

1. Receiver samples a monic polynomial pB of degree n such that pB(b) = 0 for all b ∈ B,

and sends (inputR, pB) to FF[X],n
rOLE .

2. Sender samples a polynomial pA of degree at most 2n such that pA(a) = 0 for all a ∈ A
and a random polynomial pR of degree at most n, and sends (inputS, (pR, pA)) to FF[X],n

rOLE .

3. Receiver receives (output, pQ) and outputs I = {b ∈ B : pQ(b) = 0}.

Figure 12: Protocol realizing PSI in the FF[X],n
rOLE -hybrid model

The following theorem shows the security of ΠPSI in the FF[X],n
rOLE -hybrid model.

Theorem 4.1. Suppose log |F| ≥ 2 log n + λ. Then the protocol Πd
PSI realizes FPSI in the FF[X],n

rOLE -
hybrid model with λ bits of statistical security.

Proof. We first show the correctness of ΠPSI. By the correctness of FF[X],n
rOLE , pQ = pA+pBpR. Thus,

19

for b such that pB(b) = 0, pQ(b) = 0 iff pA(b) = 0. Since except with probability

1−
(

1− 2n

|F \A|

)|B\A|
≤ 2n|B \A|
|F| − n

≤ 2n2

|F| − n

all b ∈ B \A are not roots of pA. Therefore, I = A ∩B except with probability at most 2−λ when
log |F| ≥ 2 log n+ λ. Now we consider the security of ΠPSI.

Security against corrupted Sender: We construct a simulator SSender that interacts with

A as follows. It simulates FF[X],n
rOLE honestly to receive pA and pR from A. It computes Ã = {a ∈ F :

pA(a) = 0}. Note that |Ã| ≤ deg pA = 2n. It sends (inputS, Ã) and deliver to FPSI. We prove the
indistinguishability through the following hybrids:

• H0: This is the real world interaction of the protocol ΠPSI.

• H1: The same as H0 except that SSender simulates FF[X],n
rOLE honestly. This hybrid is identical

to H0.

• H2: The same as H1 except that SSender sends (inputS, Ã) and deliver to FPSI instead of sending
pQ = pA + pBpR to the receiver. This is the ideal world interaction. Since the receiver is
honest, pB(b) = 0 for all b ∈ B. For each b ∈ B, pQ(b) = 0 if and only if pA(b) = 0. Thus,
Ã ∩B = {b ∈ B : pQ(b) = 0}. This hybrid is identical to H1.

Security against corrupted Receiver: We construct a simulator SReceiver that interacts with

A as follows. It simulates FF[X],n
rOLE honestly to receive pB from A. It computes B̃ = {b ∈ F : pB(b) =

0}. Note that |B̃| ≤ deg pB = n. It sends (inputR, B̃) and deliver to FPSI and receives (output, Ĩ).
It samples uniformly p̃Q of degree at most 2n such that p̃Q(c) = 0 for all c ∈ Ĩ and p̃Q(c) 6= 0 for
all c ∈ B̃ \ Ĩ. Finally, it sends (output, p̃Q) to A. We prove the indistinguishability through the
following hybrids:

• H0: This is the real world interaction of the protocol ΠPSI.

• H1: The same as H0 except that SReceiver simulates FF[X],n
rOLE honestly. This hybrid is identical

to H0.

• H2: The same as H1 except that SReceiver computes Ĩ = {c ∈ F : pB(c) = 0 and pA(c) = 0},
then uses it to samples uniformly p̃Q of degree at most 2n such that p̃Q(c) = 0 for all c ∈ Ĩ
and p̃Q(c) 6= 0 for all c ∈ B̃ \ Ĩ. We consider the following lemma, which is similar to Lemma
1 of [SCK12].

Lemma 4.2. Let f, g ∈ F[X] with max(deg f,deg g) = c ≤ d and gcd(f, g) = 1 and r, s ∈
F[X] are chosen uniformly and independently with degree at most d. Then fr+gs is uniformly
distributed among polynomials degree at most c+ d.

Proof. Define M(r, s) = fr+gs for polynomials r, s ∈ F[X] of degree at most d. By identifying
polynomials with the vectors of its coefficients, we may consider M : Fd+1 × Fd+1 → Fd+c+1.
Suppose r, r′, s, s′ be polynomials of degree at most d with M(r, s) = M(r′, s′). Then (r −
r′)f = (s′− s)g. Since gcd(f, g) = 1, there exists a polynomial h of degree at most d− c such
that r − r′ = gh and s′ − s = fh. For any r, s of degree at most d, we can find r′, s′ with the
same image for each h of degree at most d − c. Thus, the number of pre-images is |F|d−c+1

for polynomial in the range of M . Since |Fd+1 × Fd+1|/|F|d−c+1 = |F|d+c+1, M is surjective.
Therefore, choosing r, s uniformly and independently gives uniform M(r, s) = fr + gs.

20

Since the sender is honest, we can write pA = pa · pi · r where pi(X) =
∏
c∈Ĩ(x − c) and

pa(X) =
∏
a∈A\Ĩ(x − a) and r = pA/(pa · pi). Then pB = pb · pi for some polynomial

pb. Applying the above lemma to pa, pb gives par + pbpR being uniform if r, pR are chosen
uniformly with degree at most n. This is the case as the sender is honest. (Assuming |A| = n
or add dummy elements.) We can write pQ = pA + pBpR = pi(par + pbpR) and p̃Q = pip̃ for
a uniformly chosen p̃ of degree at most 2n− deg pi = n+ deg pb. Thus, pQ = pA + pBpR has
the same distribution as p̃Q. Thus, H1 and H2 have identical distribution.

• H3: The same as H2 except that SReceiver sends (inputR, B̃) and deliver to FPSI and receives
(output, Ĩ). It samples uniformly p̃Q of degree at most 2n such that p̃Q(c) = 0 for all c ∈ Ĩ
and p̃Q(c) 6= 0 for all c ∈ B̃ \ Ĩ. Finally, it sends (output, p̃Q) to A. This is the ideal world
interaction. As discussed above, except with probability at most 2−λ, all b ∈ B \ A are not
roots of pA. If this is the case, Ĩ output from FPSI and Ĩ computed in H2 are identical. Thus,
H2 and H3 are statistically close.

We note that by assuming FF[X],n
rOLE , the protocol is statistically secure with statistical security

parameter λ. By instantiating FF[X],n
rOLE with Π

F[X],n
rOLE , we obtain the following corollary.

Corollary 4.3. There exists a protocol realizing FPSI in the FrrOLE-hybrid model with n′ = 2n and
statistical security parameter λ having communication complexity O(n(log n+λ)) and computation
complexity O(n log2 n).

Next, we will analyze communication and computation complexity of this protocol.

4.1 Communication

The communication complexity of ΠPSI consists of bits communicated during the rrOLE for R =
F[X]/〈p(X)〉, two polynomials of degree at most n − 1 in the offline phase, two polynomials of
degree at most n and a polynomial of degree at most 2n in the online phase. Let crrOLE(n) be the
number of bits exchanged for rrOLE for R = F[X]/〈p(X)〉 with deg p = n. Then the total number
of bits communicated is

(crrOLE(2n) + 2n log |F|) + (4n+ 3) log |F|
where crrOLE(2n) + 2n log |F| bits are communicated in the offline phase and (4n+ 3) log |F| bits in
the online phase. Since crrOLE(2n) = O(log n), the total communication is approximately 6n log |F|.

The previous OLE-based construction uses 4n+O(1) instances of OLE in the online phase [GN19].
Each instance requires at least 9 log |F| bits using homomorphic encryption (GAZELLE) for semi-
honest security. Upgrading to malicious security doubles the communication [GN19, HIMV19].
Using the random OLE in the offline phase using PCG setup [BCG+20] can reduce the communi-
cation to 3 log |F| bits in the online phase. Even in that case, the online communication is at least
12 log |F| which is 3x our construction while the total communication is 2x our construction.

4.2 Computation

We consider only rrOLE, polynomial evaluation and interpolation as they are much slower than
other operations. Note that polynomial interpolation where the given points are roots is much
faster than the general case. In the offline phase, the sender’s and the receiver’s computation are
dominated by one instance of rrOLE(2n). In the online phase, the sender’s computation is domi-
nated by degree 2n polynomial interpolation on n roots. The receiver’s computation is dominated
by degree n polynomial interpolation on n roots and degree 2n polynomial evaluation on n values.

21

More Detailed Analysis of Computation Complexity Using FFT-based polynomial evalu-
ation and interpolation algorithms, we can approximate the number of field operations for our PSI
algorithm. One FFT on a polynomial of degree n − 1 uses 1

2n log n field operations. Polynomial
multiplication using FFT thus uses 3

2n log n field operations. The FastEval algorithm consists of
building a subproduct tree using log n multiplications and using the tree to compute the evalua-
tion. The total field operations used in FastEval to evaluate n values is 17n log2 n. Note that the
degree of the polynomial has little influence on this number when n is large. Using FastEval to
interpolate a polynomial on n points requires additional 2 log n multiplications. Thus, interpolation
uses 20n log2 n field operations. Its special case of interpolation on roots can be done similar to
computing subproduct tree. Thus, it requires 3

2n log2 n field operations.

5 PSI payload from Ring-OLE

In this section, we modify our PSI protocol to support payload. Payload is a value associated with
each element in the sender’s set. PSI payload protocol allows the receiver to learn not only the
intersection but also the payload associated with elements in the intersection. On the other hand,
the receiver learns nothing about the payload of elements not in the intersection. PSI payload
functionality is described in Figure 13.

FPSIPayload

Parameters. n is the upper bound of the size of parties’ input sets; n′ ≥ n is the upper
bound of the corrupted sender’s input set; ` is the bit length of payloads.

Functionality.

1. Upon receiving a message (inputS, A, (ta)a∈A) from the sender with A ⊆ {0, 1}∗ and
ta ∈ {0, 1}` for each a ∈ A, if |A| > n and the sender is honest, or |A| > n′ and the
sender us corrupted, ignoring that message. Otherwise, store A, (ta)a∈A and send
(inputS) to A.

2. Upon receiving a message (inputR, B) from the receiver with B ⊆ {0, 1}∗, if |B| > d,
ignoring that message. Otherwise, store B and send (inputR) to A.

3. Upon receiving a message (deliver) from A, check if both A and B are stored, else
ignoring that message. Otherwise, set I = A ∩B and send (output, I, (tc)c∈I) to the
receiver. Ignore all further messages.

Figure 13: Ideal functionality for PSI payload

As in the PSI case, we may assume A,B ⊆ F and the payloads are in a different field F′ with
` = blog |F′|c. For λ0 ∈ N (to be determined later), let F′′ be a field of size at least max(2λ0 |F′|, |F|).
Throughout the protocol, we may consider an element x ∈ F as its embedded element in F′′ as well.
Our PSI payload protocol is described in Figure 14.

22

ΠPSIPayload

Parameters. Sender on input A of size at most n for honest sender or 2n for corrupt, and
associated payload T = (ta)a∈A. Receiver on input B of size at most n.

1. Receiver samples a polynomial pB of degree n with coefficients in F′′ such that

pB(b) = 0 for all b ∈ B, and sends (inputR, pB) to FF′′[X],n
rOLE .

2. Sender samples a polynomial pA of degree 2n with coefficients in F′′ such that
pA(a) = (0λ0‖ta) for all a ∈ A and a random polynomial pR of degree n, and sends

(inputS, (pR, pA)) to FF′′[X],n
rOLE .

3. Receiver receives (output, pQ) and outputs I = {b ∈ B : ∃tb ∈ F′, pQ(b) = (0λ0‖tb)} and
(tb)b∈I .

Figure 14: Protocol realizing PSI payload in the FF′′[X],n
rOLE -hybrid model

5.1 Correctness and Security

Similar to the non-payload version, we have pQ = pA + pBpR. Thus, for b such that pB(b) = 0,
pQ(b) = pA(b). By the union bound, the probability that some b ∈ B \A will have pA(b) = (0λ0‖tb)
for some tb, that is pA(b) ≤ |F′|, is |B \A| · |F

′|
|F′′| ≤

n
2λ0

Therefore, I = A∩B except with probability

2−λ when λ0 = log n+ λ.
The proof of security is similar to the non-payload version.

5.2 Communication

To achieve the correctness, we have |F′′| ≥ 2λ0 |F′|. Let ` be the bit length of payload. We have
log |F′| ≥ ` and thus log |F′′| ≥ ` + log n + λ. The communication complexity of ΠPSIPayload then
is the same as ΠPSI except with log |F| is replaced by log |F′′| = ` + λ + log n. When λ is the
security parameter, the communication is crrOLE(2n) + 2n(` + λ + log n) in the offline phase and
(4n + 3)(` + λ + log n) in the online phase. Note that this communication is exactly the same as
the non-payload version if the size of payload is the same as the set size.

5.3 Computation

Unlike the communication, the computation of our PSI payload for the sender increases from the
non-payload version quite significantly even when the field size is the same. This increase comes
from the interpolation in the Online phase. In the non-payload version, the sender computes pA
by interpolating at roots, which is easy to compute. However, in PSI payload, the sender has to
compute interpolation at pA(a) = (0λ0‖ta). This almost doubles the computation of the Online
phase. Also, the increase in the field size discussed above also causes the computation of every
evaluation and interpolation to increase as well.

23

FPSI+Sum

Parameters. n is the upper bound of the size of parties’ input sets; n′ ≥ n is the upper
bound of the corrupted sender’s input set; payloads are in a finite field F′.

Functionality.

1. Upon receiving a message (inputS, A, (ta)a∈A) from the sender with A ⊆ {0, 1}∗ and
ta ∈ F′, if |A| > n and the sender is honest, or |A| > n′ and the sender is corrupted,
ignoring that message. Otherwise, store A, (ta)a∈A and send (inputS) to A.

2. Upon receiving a message (inputR, B) from the receiver with B ⊆ {0, 1}∗, if |B| > n,
ignoring that message. Otherwise, store B and send (inputR) to A.

3. Upon receiving a message (deliver) from A, check if both A and B are stored, else
ignoring that message. Otherwise, set I = A ∩B, s =

∑
c∈I tc, sample oA ← F′, send

(outputS, oA) to the sender, and send (outputR, S∩, oB = s− oA) to the receiver. Ignore
all further messages.

Figure 15: Ideal functionality for PSI+Sum

6 PSI+Sum

Private set intersection sum (PSI-Sum) is a natural extension of PSI payload. Instead of learning
the intersection and the associated payloads, a receiver only learns the sum of the associated
payloads. In this setting, similar to PSI payload, there are two parties, a sender with a set A and
associated payload set T , and a receiver with set B. The goal of PSI-Sum is to compute the sum
s of {tc}c∈A∩B. In most cases, the receiver learns s while one of the party or both learn the size of
the intersection |A ∩B| [IKN+17, IKN+20, MPR+20].

In this work, we consider a variant of PSI-Sum where the receiver also learn the intersection as
well, but not individual associated payload. Moreover, the sum value is secret-shared between the
sender and the receiver. To distinguish from the above variant, we call this variant PSI+Sum, as
it is the basic PSI functionality (computing the intersection) plus computing the sum. The ideal
functionality is defined in Figure 15. The secret share allows any party to learn s by obtaining other
party’s share and thus more flexible compared to [IKN+17, IKN+20] where different protocols are
defined to give each party the sum, or to both parties in [MPR+20]. We refer to Section 7 for more
details.

6.1 PSI+Sum from Any PSI Payload and Secure Inner Product

We construct a PSI+Sum from PSI payload functionality and a secure inner product functionality
in Figure 16. Informally, the protocol runs PSI payload on masked payload by a random polynomial
evaluated at each element of A (embedded in the same field as the payload). The mask can be
computed via the inner product. The secure inner product outputs secret shares of the mask, which
then combine with the sum of the output of the PSI payload. The computation of ~vB in Step 5
can be done efficiently in O(n log2 n) using PowerSum described in Section 2.1.3.

We note that the intersection-revealing property follows from the intersection revealed in FPSIPayload.

24

ΠPSI+Sum

Parameters. Sender on input A of size at most n for honest sender or n′ for corrupt, and
associated payload T = (ta)a∈A. Receiver on input B of size at most n.

1. Sender samples a random polynomial p of degree n, and compute T ′ = (ta − p(a))a∈A.
Let ~vA ∈ F′n+1 be the coefficient vector of p.

2. Sender sends (inputS, A, T ′) to FPSIPayload.

3. Receiver sends (inputR, B) to FPSIPayload and receives (output, I, T ′I) where T ′I = (t′c)c∈I .

4. Sender sends (input1, ~vA) to Fn+1
InnerProduct.

5. Receiver computes ~vB ∈ F′n+1 where ~vB[i] =
∑

c∈I c
i and sends (input2, ~vB) to

FInnerProduct.

6. Sender and Receiver receive (output1, oA) and (output2, o
′
B) from FInnerProduct, and

output oA and oB =
∑

c∈I t
′
c + o′B, respectively.

Figure 16: Protocol realizing PSI+Sum in the FPSIPayload and FInnerProduct-hybrid model

Replacing the functionality with intersection-hiding PSI payload gives standard PSI-Sum in [IKN+20].
Similar to the protocols in [IKN+20], our protocol is only secure against semi-honest receiver. A
malicious adversary corrupting the receiver can choose to proceed with any subset of the inter-
section after learning it. On the other hand, as we can see in the following security analysis, a
malicious sender for ΠPSI+Sum learns nothing from the protocol. Thus, by instantiating FPSIPayload

and FInnerProduct with maliciously secure construction, we obtain a more secure sum PSI protocol.

6.2 Correctness and Security

Here we provide a security proof for ΠPSI+Sum.

Theorem 6.1. ΠPSI+Sum realizes FPSI+Sum in the FPSIPayload and FInnerProduct-hybrid model against
malicious sender and semi-honest receiver.

Proof. (Sketch) By the correctness of FPSIPayload, I = A∩B and t′c = tc−p(c). By the correctness of
FInnerProduct, oA+o′B = 〈~vA, ~vB〉 =

∑
c∈I p(c). Thus, oA+oB =

(∑
c∈I t

′
c

)
+
∑

c∈I p(c) =
∑

c∈A∩B tc.
Now suppose the sender is corrupted. We construct the simulator by simulating FPSIPayload and

FInnerProduct to extract A, T ′ and ~vA. It then reconstructs the polynomial p of degree n and uses it
to compute T . It sends (inputS, A, T) to FPSI+Sum and receive (outputS, oA) and sends oA to the
adversary. oA from FPSI+Sum and from FInnerProduct have the same distribution.

Now suppose the receiver is corrupted. We construct the simulator by simulating FPSIPayload

to extract B It sends (inputR, B) to FPSI+Sum and receives (outputR, I, oA). It generates T ′I by
sampling each element from F′ and sends I, T ′I to the adversary. The simulator then simulates
FInnerProduct to extract ~vB, and sends o′B = oB −

∑
c∈I t

′
c. Since |I| < d = deg p, then T ′I is also

uniformly random in ΠPSI+Sum. Since the receiver is semi-honest, ~vB is computed from T ′I and thus
o′B has the same distribution.

25

We can instantiate FPSIPayload and FInnerProduct by ΠPSIPayload in Figure 14 and ΠinnerProduct in
Figure 6. We obtain the following corollary.

Corollary 6.2. There exists a protocol realizing FPSI+Sum from rrOLE against malicious sender
and semi-honest receiver.

We will then analyze the performance of ΠPSI+Sum with the above instantiation.

6.3 Communication

The communication complexity of ΠPSI+Sum consists entirely of the communication of ΠPSIPayload

and ΠinnerProduct in both Offline and Online phases. From Section 5, the communication complexity
of ΠPSIPayload consists of the communication of rrOLE and 2n(` + λ + log n) in the Offline phase,
and 4n(`+ λ+ log n) bits in the Online phase, for `-bit payload and statistical security parameter
λ. From Section 2.3, the communication complexity of ΠInnerProduct consists of the communication
of n instances of random OLE over F′ in the Offline phase and 2n` bits in the Online phase. Using
PCG setup [BCG+20] reduces the communication to O(log n) bits in the offline phase. Thus, the
communication in the offline phase is O(log n) + 2n(` + λ + log n), and the communication in the
online phase is 4n(`+ λ+ log n) + 2n`.

Table 1: Communication of PSI protocols when instantiated with computational security parameter
κ = 128 and statistical security parameter λ = 40 and n = 28, 212, 216, 220, 224. In Tiny-PSI, φ = 256
is the element size for an elliptic curve. In PaXoS and OKVS-PSI, `, `1 for n = 212, 216, 220, 224 are
provided in [PRTY20] based on the security parameters. We amortize the rrOLE setup over 220

and split it into 220/n smaller instances. See Section 3.3 for more information. The lowest online
communication is denoted in bold font. The lowest total communication is underlined.
Protocol Communication

Set size
Assumption

28 212 216 220 224

semi-honest

OLE [GN19]+PCG [BCG+20] (online) 12(λ + 2 logn)n 672n 768n 864n 960n 1056n rLPN
SpOT-low [PRTY19] 3.5κn + 1.02(2 + λ + logn)n 501n 505n 509n 513n 517n CDH
SpOT-fast [PRTY19] 3.5(1 + 1/λ)κn + 2(λ + 2 logn)n 571n 587n 603n 619n 635n CDH
PaXoS [PRTY20] 2.4n` + (λ + 2 logn)n - 1139n 1207n 1268n 1302n CDH
CM [CM20] 4.8κn + (λ + 2 logn)n 670n 678n 686n 694n 702n CDH

VOLE+PaXoS (online) [RS21] 2.4κn + (λ + 2 logn)n + 213κn1/8 8547n 1083n 502n 398n 396n
LPN+CDH

VOLE+PaXoS (total) [RS21] 2.4κn + (λ + 2 logn)n + 217κn1/20 86838n 6580n 914n 426n 398n
MiniPSI [RT21] φn + (λ + 2 logn)n 312n 320n 328n 336n 344n CDH

OKVS-PSI [GPR+21] 1.3n` + (λ + 2 logn)n - 646n 687n 724n 746n CDH

Ours (online) 4(λ + 2 logn)n 224n 256n 288n 320n 352n
rLPNOurs (total)

6(λ + 2 logn)n + (κ3/8 + κ2) logn
9360n 1215n 500n 485n 528n

Ours (total, amortized) 341n 389n 437n 485n 528n

malicious

OLE [GN19]+PCG [BCG+20] (online) 24(λ + 2 logn)n 1344n 1536n 1728n 1920n 2112n rLPN
PaXoS [PRTY20] 2.4n` + `1n + 2.4λn - 2191n 2164n 2098n 2061n CDH

VOLE+PaXoS (online) [RS21] 3.4κn + 213κn1/8 8627n 1159n 558n 446n 436n
LPN+CDH

VOLE+PaXoS (total) [RS21] 3.4κn + 217κn1/20 87038n 6772n 960n 474n 438n
MiniPSI [RT21] 2κn + φn 512n 512n 512n 512n 512n CDH

OKVS-PSI [GPR+21] 1.3n` + `1n + 1.3λn - 1294 1275n 1236n 1213n CDH

Ours (online) 4(λ + 2 logn)n 224n 256n 288n 320n 352n
rLPNOurs (total)

6(λ + 2 logn)n + (κ3/8 + 3κ2) logn
11960n 1423n 516n 486n 528n

Ours (total, amortized) 342n 390n 438n 486n 528n

6.4 Computation

The computation complexity of ΠPSI+Sum consists of the computation of ΠPSIPayload and ΠinnerProduct

in both Offline and Online phases, n-point polynomial evaluation by the Sender in the Offline phase
and PowerSum by the Receiver in the Online phase. The computation of ΠPSIPayload consists of
the computation of rOLE in the Offline phase while the Online phase is dominated by 2n-point

26

polynomial interpolation and n point polynomial evaluation. The computation of ΠinnerProduct

consists of the computation of n OLE in the Offline phase, and 4n field additions and 2n field
multiplications, which are dominated by other operations. The computation complexity of ring-
OLE and OLE depend on how each OLE implementation handles fields of different size. In any
case, the increase is at most 50%, from PSI payload, which is the same as standard PSI when the
field size is the same. Since PowerSum is as difficult as multi-point evaluation, the computation in
the Online phase thus increases by about 50%.

7 Other Variations

In this section, we briefly discuss the possibility of extending our algebraic construction to other
PSI variants, in particular, threshold PSI and PSI cardinality.

7.1 Threshold PSI

We consider a variant of PSI, called threshold PSI where the receiver only learns the intersection
if the intersection size satisfies a certain condition. Concretely, we consider the version of threshold
PSI defined in [GS19, BMRR21], where the receiver only learns the intersection when the size of
the difference between the two input sets is smaller than a given (publicly known) threshold. Since
the protocol in [GS19] is also using algebraic technique, we can modify it to our ring-OLE and
preprocessing model. The protocol in [GS19] consists of two steps. First, the protocol checks if the
difference satisfies the condition using additively homomorphic encryption. Second, the protocol
computes the intersection using the rational function V (x)

pB(x) where pA, pB are polynomials whose

roots are sender’s and receiver’s input set, respectively, and V (x) is a linear combination of pA, pB.
The linear factors corresponding to the intersection cancel out, and the rational function can be
written as U(x)

pB\A(x)
which can be reconstructed to find B\A and the intersection. V (x) are computed

point-wise via OLE.
To increase the efficiency, especially in the ring-OLE and preprocessing model, we consider the

Reversed Laurent Series (RLS) introduced for algebraic construction of private set union (PSU)
protocol in [SCK12]. Any rational functions can be represented by the RLS, which in turn can be
represented by a polynomial up to a certain number of terms. With sufficient number of terms,
the rational function can be recovered. Similar to their reconstruction of rational functions, this
number of terms comes from the threshold. Since the RLS can be represented by a polynomial, we
can use ring-OLE in the preprocessing model to compute the linear combination.

7.2 PSI Cardinality with Payload

We consider a variation of PSI payload where the receiver only learns the payload of the elements
of the intersection, but not the intersection itself. Since the number of payloads the receiver learns
is the same as the size of the intersection, the receiver also learns the size of the intersection, hence,
PSI cardinality.

Before discussing this PSI payload variant, we consider how the algebraic technique can be used
to compute PSI cardinality. Our algebraic technique computes a polynomial whose roots include
the members of the intersection. Unfortunately, this polynomial is a random linear combination of
polynomials representing input sets. It also has other roots that, with overwhelming probability,
do not correspond to members of either set. Thus, we cannot simply compute the cardinality from
its degree. In our PSI protocol, the receiver computes the intersection from this polynomial by

27

evaluating it at each member of his input set. To hide the intersection, we need to replace each
member of the receiver’s input set by a random number (possibly in a different field).

We can use an oblivious pseudorandom function (OPRF), as described in [KKRT16, PSTY19,
PRTY19, IKN+20]. An OPRF allows the receiver to learn Fk(b) for each b in his input set without
learning the pseudorandom function Fk. The sender knows Fk but not Fk(b), and he can compute
Fk(a) for each a in his input set. Finally, the sender simply sends his Fk(a)’s to the receiver. The
OPRF by itself already allows one to compute PSI as in [KKRT16].

We can apply batch OPRFs to each element in the set and permute the resulting random
numbers for the receiver’s input set. We call this variation of batch OPRFs a batch shuffled
OPRFs, where the receiver evaluates Fk on every member of his input set at once without learning
their order. The receiver will construct his polynomial from this numbers while the sender can
compute the same PRF for elements in his input set. This way, the receiver will know only the
payload associated with each element in the intersection but not the element itself. Thus, we get
a PSI cardinality. Finally, combining the OPRF with our PSI payload gives PSI cardinality with
payload.

We can construct a batch shuffled OPRF using polynomials and homomorphic encryption as
follows. The receiver computes a polynomial whose roots are members of his input set. He then
encrypts the coefficients with homomorphic encryption and sends them to the sender. The sender
picks a random polynomial f of degree n and homomorphically computes a polynomial whose roots
are f(bi)’s where bi’s are the roots. This transformation only consists of fixed number of additions
and multiplications of the coefficients. Finally, the sender sends the transformed polynomial to the
receiver, who can decrypt and factor to find f(bi)’s in a random order. The problem of computing
the transformed polynomial using only ring-OLE in the preprocessing model is still open.

Finally, we consider the Sum PSI variant in [IKN+20] where the receiver learns the size of the
intersection and the sum of the payload associated with the members of the intersection, but not
the intersection itself. As we mentioned above, we can achieve this result by applying Πd

SumPSI to
the PSI cardinality with payload.

7.3 PSI Payload from Other PSI Protocols

We can modify the existing PSI protocols based the OPRF approach from [PRTY19, PRTY20,
RS21, GPR+21], and other techniques from [CM20, RT21] to allow payload as follows. In these
protocols, each element in the sender’s and the receiver’s input sets are mapped in some ways using
pseudorandom functions or encodings. This mapping is defined in a way that the receiver can
interactively computed the mapping on only their input set. The sender then sends hashed values
of the output of this mapping on his input set. This allows the receiver to compare by hashing
his own, but not other elements that are not in his input set. The sender can use the output of
this mapping to derive keys to encrypt the payload associating to each element of the sender’s set,
and send the encrypted payloads to the receiver. Since the receiver can only compute these keys
associating to elements in his set, he can only decrypt the payload associating to the intersection.

Comparing to our PSI payload, this modification is not as efficient. As we mentioned in Sec-
tion 5, our PSI payload communicates the same number of bits as our PSI protocol when the
payload length is smaller than log n where n is the set size. While both this modification and our
PSI payload require more computation from the sender, the receiver in our protocol does about the
same work as without payload.

Among these protocols, the protocols in [RS21, GPR+21] use a programmable PRF (PPRF)
instead, which allows the sender to choose the outputs of the function for his inputs. Thus, a similar
technique to our PSI payload can be used by attaching the payload to the programmed outputs.

28

Thus, they can be modified into PSI payload quite efficiently as well.

8 Performance Evaluation

In this section, we compare the communication and computation complexity of our PSI protocol
and its variants against other recent results both theoretically and experimentally.

8.1 Theoretical Comparison

PSI. We instantiate our PSI protocol in Figure 12 with rOLE in Figure 11 and rrOLE from [BCG+20].
We compare the theoretical communication complexity of the resulting PSI protocol against several
PSI protocols in literature including OLE-based PSI [GN19], OPRF-based PSI [PRTY19, PRTY20,
CM20, RS21] and its variant [GPR+21], and Diffie-Hellman (DH)-based PSI [RT21]. We instantiate
the OLE PSI from [GN19] using random OLE from [BCG+20]. We exclude VOLE+Interpolation
variant of [RS21] as it has impractical computation complexity of O(n3) despite it has the lowest
communication for n = 220, 224. We only consider the case where both parties’ input sets have
size n, computational security parameter κ and statistical security parameter λ. Since some pro-
tocols have additional parameters, we also consider the case where all parameters are fixed for
n = 28, 212, 216, 220, 224, κ = 128 and λ = 40. The result is shown in Table 1. While our protocol
originally supports elements of size λ+ 2 log n which would be 72− 88 bits for the parameters used
in the table, while other OPRF-based PSI protocols allow elements of size κ which would be 128
bits, we may use a random oracle mapping larger elements to the smaller set as in [RT21].

Our protocol has better online communication than other PSI protocols when the set size of
both parties are the same n = 28, 212, 216, 220 in both semi-honest and malicious settings. In semi-
honest setting, the communication of our protocol is up to 30% lower than the most communication
efficient PSI protocol. When n = 224, the online communication of Tiny-PSI [RT21] is slightly
smaller. Even when the total communication is concerned, our protocol still remains competitive,
especially for smaller set size.

In malicious setting, our protocol has the best online communication among the PSI protocols
considered in the table, between 20% to 60%. In fact, it should remain competitive up to very
large set of size n = 230. In this setting, the total communication is also better for smaller set of
size n = 28, 212, 216. For larger set sizes, VOLE+PaXoS [RS21] takes over.

Our protocol is statistically secure given the rrOLE functionality in the offline phase. Thus,
the communication is exactly the same as in the semi-honest case. The VOLE PSI also requires
minimal change in the field size of OPRF output from λ+ 2 log n to κ. Thus, the communication
increases by the size difference per element. When compared to the other OLE-based PSI [GN19],
our protocol reduces the total communication by half in semi-honest setting and 75% in malicious
setting. When only the online communication is considered, the reduction doubles in both cases.

The theoretical computation complexity is more difficult to compare as each protocol relies
on different kinds of primitive computation steps. Our PSI protocol and OLE-based PSI [GN19]
mainly uses field operations. Thus, the main computation measurement is the number of field
multiplications. On the other hand, the OPRF-based PSI protocol such as solving linear systems via
garbled Cuckoo hash graph [PRTY20, RS21, GPR+21] and Elliptic curve group operations [RT21].

PSI payload. We instantiate our PSI payload protocol in Figure 14 with rOLE in Figure 11 and
rrOLE from [BCG+20]. While few PSI papers consider this variant, we can turn linear-solver-based
PSI into PSI payload using a similar technique as our construction. In particular, a payload can be
concatenated to the value part of a key-value pair where the key relates to the element associated

29

Table 2: Running time of PSI protocols for computational security parameter κ = 128, statistical
security parameter λ = 40, 128-bit elements, and for set size d = 28, 212, 216, 220 in LAN and
WAN (10 Mbps and 1 Mbps) network. The lowest runtime/communication for each setting is
denoted in bold font. Our protocol uses amortized rrOLE setup with degree parameter 220. See
Section 3.3 for more information about amortization. The method of adding payload is not discussed
in [PRTY19, PRTY20]. See Section 7.3 for an extension of these protocols to PSI payloads, albeit
at a higher cost that has not been benchmarked.

protocols
runtime (s) communication

LAN 10 Mbps 1 Mbps (MB)
212 216 220 212 216 220 212 216 220 212 216 220

semi-honest
KKRT [KKRT16] 0.135 0.31 5.22 2.79 9.07 135.1 5.41 74.44 1155 0.43 6.91 114.3

SpOT-low [PRTY19] 0.463 8.74 296.1 2.37 16.86 374.3 2.94 36.63 713.6 0.25 3.9 63.2
SpOT-fast [PRTY19] 0.116 1.51 28.55 4.31 17.64 42.50 4.06 38.42 493.4 0.3 4.61 76.5
PaXoS [PRTY20] 0.146 0.345 5.41 1.903 9.97 128 5.57 101.2 1719 0.59 9.9 169.7

CM [CM20] 0.145 0.482 9.28 2.83 7.15 85.45 3.61 46.43 754.8 0.36 5.34 86.9
MiniPSI [RT21] 0.722 11.45 305.9 1.12 13.29 342.8 1.82 26.35 615.1 0.16 2.69 44
ours - online 0.1 1.6 45.05 0.198 3.65 76.11 1.11 19.66 359.2 0.125 2.25 30
ours - total* 0.203 2.93 72.45 0.332 5.45 110.4 1.48 25.77 468.5 0.191 3.415 50.47

malicious
RR [RR17b] 0.267 3.045 - 8.93 101.1 - 91.1 1525 - 9.08 154.17 -

PaXoS [PRTY20] 0.209 0.359 6.07 2.2 10.04 133.3 5.74 104 1882 0.93 14.58 236
MiniPSI [RT21] 0.729 11.24 313.4 1.14 15.68 363 1.87 31.44 659.6 0.26 4.19 67.1
ours - online 0.1 1.6 45.05 0.198 3.65 76.11 1.11 19.66 359.2 0.125 2.25 30
ours - total* 0.204 2.95 72.48 0.333 5.45 110.5 1.49 25.84 469.3 0.192 3.421 50.57

to the payload. Thus, the PSI protocols in [PRTY20, RS21, GPR+21] can be transformed into PSI
payload. However, some parameters in these constructions are experimental.

PSI+Sum. We instantiate our PSI+Sum protocol in Figure 16 with PSI payload protocol in
Figure 14, rOLE in Figure 11 and rrOLE from [BCG+20]. We also instantiate the PSI+Sum
protocol with PSI payload protocol transformed from the PSI protocols in [RS21].

8.2 Experimental Evaluation

In this section, we implement our PSI protocols using NTL library to measure concrete communi-
cation and computation complexity. We compare them against some previous results. We bench-
marked our protocol on Intel Core i5 2.3 GHz, 4GB RAM, 4 physical cores (all implementations
are single-threaded).

PSI. We implement our PSI protocol described in Section 4, and compare our communication
and computation complexity against other PSI protocols.Table 2 gives a comparison between our
protocol against other protocols in the semi-honest setting [KKRT16, PRTY19, PRTY20, CM20,
RT21] and in the malicious setting [RR17b, PRTY20, RT21]. We do not include PSI protocols
from [RS21, GPR+21] as we do not have codes to run their protocols. We consider computational
security parameter κ = 128, statistical security parameter λ = 40 and 128-bit elements for set size
d = 212, 216, 220. Thus, our protocol uses a random oracle to map each element into the field of
appropriate size as described in each protocol’s description. Our protocol uses amortized correlation
setup over n = 220 for n = 212, 216.

The communication complexity of our protocol is better than all but MiniPSI [RT21] in semi-
honest setting. This leads to better running time in low-bandwidth settings. On the other hand,
our protocol is much faster than MiniPSI, up to 5x. Thus, our protocol still has better running
time even in low-bandwidth settings. In malicious setting, our protocol communicates fewer bits

30

Table 3: Communication cost and running time of our PSI+Sum protocol and PSI-Sum protocols
for 128-bit elements with 32-bit payload and statistical security parameter λ = 40. Each party’s
input set has n = 212, 216, 220 elements. The lowest runtime/communication for each setting is
denoted in bold font. Our protocol uses amortized rrOLE setup over 220. See Section 3.3 for more
information about amortization.

protocols
communication (MB) running time (s)

malicious
212 216 220 212 216 220

PSI-Sum
Bloom Filter+RLWE [IKN+20] 37 629 - 76.13 1318 - none
Random-OT+RLWE [IKN+20] 5 84 1380 40.05 644.1 10601 none
DDH+RLWE [IKN+20] 0.38 5.5 87 1.95 30.98 499.47 none
DDH+Paillier [IKN+20] 0.33 5.1 84 3.165 48.93 776.46 none
DOPRF [MPR+20] 1.26 17.3 269.21 1150 17865 284075 both
Circuit [PSTY19] 9 149 2540 1.20 8.49 120.7 both
Circuit [HMS21] - 36.1 585 - 1.85 24.7 both
VOLE+PaXoS+Circuit (IKNP) [RS21] 13.4 171 2830 0.495 1.52 23.3 both
VOLE+PaXoS+Circuit (SilentOT) [RS21] 4.79 21.1 277 0.737 4.05 103 both
PSI+Sum
ours - online 0.203 3.25 56.73 0.25 5.01 118.55

sender
ours - total* 0.291 4.664 81.2 0.339 6.41 144.72

than all previous known PSI protocols. While PaXoS [PRTY20] is faster than our protocol in LAN
setting, our protocol performs better in low-bandwidth settings. Comparing to the experimental
results in [RS21, GPR+21], our protocol has better communication complexity than both, and
should perform better in low-bandwidth settings as well.

The PSI protocols in [PRTY19, CM20, PRTY20], the running time are mostly in the online
phase as most computation requires inputs. Our protocol, similar to MiniPSI [RT21], can perform
some computation in the offline phase. Our protocol, in particular, communicates about 40% in
the offline phase. Thus, the performance in the online phase compares even better to other PSI
protocols when restrict to the online phase. We note that the experimental results are performed
on a single-core machine. We expect a similar comparison on a multiple-core machine as well.

PSI-Sum and PSI+Sum. We implement our PSI+Sum protocol in Section 6 based on our PSI
Payload protocol in Section 5. Unlike its standard variant, we do not have codes of other PSI
Payload and PSI-Sum protocols. Thus, the comparison here is estimated based on the published
results.

Table 3 shows the comparison of the communication and computation complexity between our
PSI+Sum protocol and other PSI-Sum protocols, both semi-honest [IKN+20] and malicious [MPR+20]
security, some of which are circuit-based [PSTY19, HMS21, RS21]. The two previous approaches
give lower communication (DDH-based in [IKN+20]) versus faster running time (circuit-based).
Our protocol communicates fewer bits than all PSI-Sum protocols. In particular, the communi-
cation of the circuit-based PSI-Sum is 3.5x-35x compared to our PSI+Sum. On the other hand,
our protocol is much faster compared to non circuit-based protocols while still quite competitive
compared to circuit-based ones. Our protocol would outperform other PSI-Sum in WAN setting.
The transformation can be applied to other PSI such as VOLE-PSI [RS21] or OKVS-PSI [GPR+21]
to achieve faster running time at the cost of additional communication. See Section 7.3 for more
details.

31

References

[AMZ21] Aydin Abadi, Steven J Murdoch, and Thomas Zacharias. Polynomial representation is
tricky: Maliciously secure private set intersection revisited. In European Symposium on
Research in Computer Security, volume 12973 of Lecture Notes in Computer Science,
pages 721–742. Springer, 2021.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In Ad-
vances in Cryptology - CRYPTO 2019, volume 11694 of Lecture Notes in Computer
Science, pages 489–518. Springer, 2019.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators from Ring-LPN. In Advances in Cryp-
tology – CRYPTO 2020, volume 12171 of Lecture Notes in Computer Science, pages
387–416. Springer, 2020.

[BEP+20] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and
Juan Ramón Troncoso-Pastoriza. Efficient protocols for oblivious linear function eval-
uation from Ring-LWE. In Clemente Galdi and Vladimir Kolesnikov, editors, Inter-
national Conference on Security and Cryptography for Networks. SCN 2020, volume
12238 of Lecture Notes in Computer Science, pages 130–149. Springer, 2020.

[BLS03] Alin Bostan, Grégoire Lecerf, and Éric Schost. Tellegen’s principle into practice. In Pro-
ceedings of the 2003 international symposium on Symbolic and algebraic computation,
ISSAC 2003, pages 37–44. ACM, 2003.

[BM74] Allan Borodin and Robert Moenck. Fast modular transforms. Journal of Computer
and System Sciences, 8(3):366–386, 1974.

[BMRR21] Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter Rindal.
Multi-party threshold private set intersection with sublinear communication. In IACR
International Conference on Public-Key Cryptography, volume 12711 of Lecture Notes
in Computer Science, pages 349–379. Springer, 2021.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious prf. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology – CRYPTO 2020, pages 34–63, Cham, 2020. Springer International
Publishing.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure
two-party computation. In International Conference on Security and Cryptography for
Networks, volume 11035 of Lecture Notes in Computer Science, pages 464–482. Springer,
2018.

[DCKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set
intersection protocols secure in malicious model. In International Conference on the
Theory and Application of Cryptology and Information Security, volume 6477 of Lecture
Notes in Computer Science, pages 213–231. Springer, 2010.

[DPT20] Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated psi cardinality
with applications to contact tracing. In International Conference on the Theory and

32

Application of Cryptology and Information Security, volume 12493 of Lecture Notes in
Computer Science, pages 870–899. Springer, 2020.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Theory of Cryptography Conference, TCC
2005, volume 3378 of Lecture Notes in Computer Science, pages 303–324. Springer,
2005.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2004.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science,
pages 116–129. Springer, 1999.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer and
system sciences, 28(2):270–299, 1984.

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure private
set intersection. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture
Notes in Computer Science, pages 154–185. Springer, 2019.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivi-
ous linear function evaluation with constant overhead. In International Conference on
the Theory and Application of Cryptology and Information Security, volume 10624 of
Lecture Notes in Computer Science, pages 629–659. Springer, 2017.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Annual Inter-
national Cryptology Conference, volume 12826 of Lecture Notes in Computer Science,
pages 395–425. Springer, 2021.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold pri-
vate set intersection. In Annual International Cryptology Conference, volume 11693 of
Lecture Notes in Computer Science, pages 3–29. Springer, 2019.

[GSB+17] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans. Privacy-preserving distributed linear regression on
high-dimensional data. Proceedings on Privacy Enhancing Technologies, 2017(4):345–
364, 2017.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In 19th Annual Network and Distributed System

33

Security Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012,
2012.

[HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkitasub-
ramaniam. Leviosa: Lightweight secure arithmetic computation. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, United Kingdom, November 11 - 15, 2019, pages 327–344. ACM, 2019.

[HMRT22] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad Tsfadia. Highly
efficient ot-based multiplication protocols. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 13275 of Lecture Notes
in Computer Science, pages 180–209. Springer, 2022.

[HMS21] Kyoohyung Han, Dukjae Moon, and Yongha Son. Improved circuit-based psi via
equality preserving compression. Cryptology ePrint Archive, Paper 2021/1440, 2021.
https://eprint.iacr.org/2021/1440.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. Private intersection-sum protocol with applications
to attributing aggregate ad conversions. Cryptology ePrint Archive, Paper 2017/738,
2017. https://eprint.iacr.org/2017/738.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure com-
puting: Private intersection-sum-with-cardinality. In 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 370–389. IEEE, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious trans-
fers efficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceed-
ings, volume 2729 of Lecture Notes in Computer Science, pages 145–161. Springer, 2003.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with
no honest majority. In Theory of Cryptography Conference, volume 5444 of Lecture
Notes in Computer Science, pages 294–314. Springer, 2009.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A
low latency framework for secure neural network inference. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1651–1669, Baltimore, MD, August 2018.
USENIX Association.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious prf with applications to private set intersection. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 818–829.
ACM, 2016.

[KLS+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and Benny Pinkas. Private set
intersection for unequal set sizes with mobile applications. Proceedings on Privacy
Enhancing Technologies, 2017(4):177–197, 2017.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster malicious arithmetic
secure computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 830–842. ACM, 2016.

34

https://eprint.iacr.org/2021/1440
https://eprint.iacr.org/2017/738

[KS05] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual International
Cryptology Conference, volume 3621 of Lecture Notes in Computer Science, pages 241–
257. Springer, 2005.

[Mea86] Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In 1986 IEEE Symposium on Security
and Privacy, pages 134–134. IEEE, 1986.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided
malicious security for private intersection-sum with cardinality. In Annual International
Cryptology Conference, volume 12172 of Lecture Notes in Computer Science, pages 3–
33. Springer, 2020.

[MRR20] Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast database joins and psi for
secret shared data. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, page 1271–1287, New York, NY, USA, 2020.
Association for Computing Machinery.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proceed-
ings of the thirty-first annual ACM symposium on Theory of computing, pages 245–254.
ACM, 1999.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
private set intersection from sparse ot extension. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 401–431, Cham,
2019. Springer International Publishing.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Psi from paxos: Fast,
malicious private set intersection. In Advances in Cryptology – EUROCRYPT 2020,
volume 12106 of Lecture Notes in Computer Science, pages 739–767. Springer, 2020.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, volume 11478 of Lecture
Notes in Computer Science, pages 122–153. Springer, 2019.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005.

[RR17a] Peter Rindal and Mike Rosulek. Improved private set intersection against malicious
adversaries. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, volume 10210 of Lecture Notes in Computer Science, pages
235–259. Springer, 2017.

[RR17b] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual exe-
cution. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1229–1242. ACM, 2017.

[RS21] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from vector-
ole. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 12697 of Lecture Notes in Computer Science, pages 901–930.
Springer, 2021.

35

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small
sets. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1166–1181. ACM, 2021.

[SCK12] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. Constant-round multi-party
private set union using reversed laurent series. In International Workshop on Public
Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages 398–412.
Springer, 2012.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In International Col-
loquium on Automata, Languages, and Programming, volume 85 of Lecture Notes in
Computer Science, pages 582–595. Springer, 1980.

36

	Introduction
	Prior Work
	Our Results
	Applications
	Organization

	Preliminaries
	Polynomial Operations
	Polynomial Evaluation
	Polynomial Interpolation
	Power Sum

	Private Set Intersection
	Secure Inner Product
	Polynomial Ring modulo p(X)

	Oblivious Linear Evaluation
	Ring-OLE
	Ring-OLE from Random Ring-OLE in the Offline Phase
	Ring-OLE from PCG based on Ring-LPN

	PSI from Ring-OLE
	Communication
	Computation

	PSI payload from Ring-OLE
	Correctness and Security
	Communication
	Computation

	PSI+Sum
	PSI+Sum from Any PSI Payload and Secure Inner Product
	Correctness and Security
	Communication
	Computation

	Other Variations
	Threshold PSI
	PSI Cardinality with Payload
	PSI Payload from Other PSI Protocols

	Performance Evaluation
	Theoretical Comparison
	Experimental Evaluation

