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Abstract—Algebraic Constructions of Extremal Graph Theory
were efficiently used for the construction of Low Density Par-
ity Check Codes for satellite communication, constructions of
stream ciphers and Postquantum Protocols of Noncommutative
cryptography and corresponding El Gamal type cryptosystems.
We shortly observe some results in these applications and present
idea of the usage of algebraic graphs for the development
of Multivariate Public Keys (MPK). Some MPK schemes are
presented at theoretical level, implementation of one of them is
discussed.

I. INTRODUCTION

EXTREMAL algebraic graphs were traditionally used for
the construction of stream ciphers of multivariate nature

(see [46] and further references). We introduce the first graph
based multivariate public keys with bijective encryption maps.
We hope that new recent results on algebraic constructions of
Extremal Graph Theory [49] will lead to many applications in
Algebraic Cryptography which includes Multivariate cryptog-
raphy and Noncommutative Cryptography. Some graph based
algebraic asymmetrical algorithms will be presented in this
paper.

NIST 2017 tender starts the standardisation process of
possible Post-Quantum Public keys aimed for purposes to be
(i) encryption tools, (ii) tools for digital signatures (see [1]).

In July 2020 the Third Round of the competition started.
In the category of Multivariate Cryptography (MC) remaining
candidates are easy to observe. For the task (i) multivariate
algorithm was not selected, single multivariate candidate is
”The Rainbow Like Unbalanced Oil and Vinegar” (RUOV)
digital signature method. As you see RUOV algorithm is
investigated as appropriate instrument for the task (ii). During
Third Round some cryptanalytic instruments to deal with
ROUV were found (see [48]). That is why different algorithms
were chosen at the final stage. In July 2022 first four winners
of NIST standardisation competition were chosen. They all
are lattice based algorithms. They all are not the algorithms
of Multivariate Cryptography.

Noteworthy that all considered multivariate NIST candidates
were presented by multivariate rule of degree bounded by
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constant (2 or 3) of kind
x1 → f1(x1, x2, . . . , xn),
x2 → f2(x1, x2, . . . , xn),
. . .,
xn → fn(x1, x2, . . . , xn).
We think that NIST outcomes motivate investigations of

alternative options in Multivariate Cryptography oriented on
encryption tools for

(a) the work with the space of plaintexts Fq
n and its

transformation G of linear degree cn, c > 0 on the level of
stream ciphers or public keys

(b) the usage of protocols of Noncommutative Cryp-
tography with platforms of multivariate transformations
for the secure elaboration of multivariate map G from
End(Fq[x1, x2, . . . , xn]) of linear or superlinear degree and
density bounded below by function of kind cnr, where c > 0
and r > 1.

Some ideas in directions of (a) and (b) are presented in [43].
We hope that classical multivariate public key approach i.

e. usage of multivariate rules of degree 2 or 3 is still able to
bring reliable encryption algorithms. In this paper we suggest
new cubic multivariate public rules.

Recall that the density is the number of all monomial terms
in a standard form xi → gi(x1, x2, . . . , xn), i = 1, 2, . . . , n of
multivariate map G, where polynomials gi are given via the
lists of monomial terms in the lexicographical order.

We use the known family of graphs D(n, q) and A(n.q) of
increasing girth (see [2], [3] and further references) and their
analogs D(n,K) and A(n,K) defined over finite commutative
ring K with unity for the construction of our public keys.
Noteworthy to mention that for each prime power q, q > 2
graphs D(n, q), n = 2, 3, . . . form a family of large girth
(see [3]), there is well defined projective limit of these graphs
which is a q-regular forest. in fact if K is an integral domain
both families A(n,K) and D(n,K) are approximations of
infinitedimensional algebraic forests. The definitions of such
approximations are given in Section 3 together with short
survey of their applications.

In Section 2 we present the known mathematical definitions
of algebraic geometry for further usage of them as instruments
of Multivariate Cryptography. In particular definition of affine



Cremona semigroup of endomorphisms of multivariate ring
K[x1, x2, . . . , xn] defined over commutative ring K and affine
Cremona group nCG(K) are presented there.

The concept of trapdoor accelerator of the transformation
from affine Cremona semigroup nCS(K) is presented there as
a piece of information which allows computation of reimage
of the map in time O(n2).

This is a weaker version of the definition of trapdoor one
way function. The definition of the trapdoor accelerator is
independent from the conjecture P 6= NP of the Complexity
theory. Section 2 also contains some statements on the exis-
tence of the trapdoor accelerator with the restrictions on the
degrees on maps and their inverses for families of elements of
the affine Cremona group nCG(K).

Section 3 is dedicated to infinite forests approximations
and their connections with Algebraic Geometry and Extremal
Graph Theory.

The description of linguistic graphs D(n,K) and A(n,K)
and some their properties are presented in Section 4, 5. These
sections contain the descriptions of subgroups and subsemi-
groups of nCS(K) defined via walks in graphs D(n,K) and
their extensions D(n,K[x1, x2, . . . , xn]) and graphs A(n,K)
and A(n,K[x1, x2, . . . , xn]) respectively. Some statements
about degrees of elements of these semigroups are given.

Section 6 contains examples of cryptographic applications
of graph based trapdoor accelerators in the form of cubic
multivariate public key.

Detailed description of multivariate public key related to
one of presented families is presented in in the Section 7.

Remarks on security level connected with girth studies of
tree approximations reader can find in section 8. Last Section
9 presents short conclusions.

II. ON ELEMENTS OF ALGEBRAIC GEOMETRY AND
TRAPDOOR ACCELERATORS

Let K be a commutative ring with a unity. We consider
the ring K ′ = K[x1,
x2, . . . , xn] of multivariate polynomials over K.
Endomorphisms δ of K ′ can be given via the values of
δ(xi) = fi(x1, x2, . . . , xn), fi ∈ K ′. They form the semi-
group End(K[x1, x2, . . . , xn]) = nCS(K) of K ′ known also
as affine Cremona semigroup (see [3], [4]) after the famous
Luigi Cremona (see [5]). The map δ̃ : (x1, x2, . . . , xn) →
(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))
is polynomial transformation of affine space Kn. These
transformations generate transformation semigroup CS(Kn).
Note that the kernel of homomorphism of nCS(K)
to CS(Kn) sending δ to δ̃ depends on the choice of
commutative ring K.

Affine Cremona Group nCG(K) =
Aut(K[x1, x2, . . . , xn]) acts bijectively on Kn. Noteworthy
that some elements of nCS(K) can act bijectively on Kn

but do not belong to nCG(K). For instance endomorphism
x → x3 of R[x] acts bijectively on set R of real number
but the inverse x → x1/3 of this map is birational element
outside of 1CG(R).

Recall that degree of δ is the maximal degree of polynomials
δ(xi), i = 1, 2, . . . , n. The density of δ is a total number of
monomial terms in all δ(xi).

Assume that automorphism F from nCG(K) has constant
degree d, d ≥ 2. It is given in its standard form written
as x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . .,
xn → fn(x1, x2, . . . , xn) where fi, i = 1, 2, . . . , n are
elements of K[x1, x2, . . . , xn] and used as public rule to
encrypt plaintexts from Kn.

The following definition was motivated by the idea to have
a weaker version of trapdoor one way function.

We say that family Fn ∈n CG(K) of bijective nonlinear
polynomial transformations of affine space Kn of degree ≤ 3
has trapdoor accelerator nT of level ≥ d if

(i) the knowledge of piece information nT (”trapdoor ac-
celerator”) allows to compute the reimage x for Fn in time
O(n2)

(ii) the degree of Fn−1 is at least d, d ≥ 3.
Notice that if Fn are given by their standard forms and

degrees of Fn
−1 are equal to d then the inverse can be

approximated in polynomial time f(n, d) = O(nd
2+1) via lin-

earisation technique. One can see that the approximation task
becomes unfeasible if d is ”sufficiently large” like d = 100.
Examples of cubic families Fn with trapdoor accelerator of
high level t are given in the case of special finite fields Fq in
the section 3.

III. ON ALGEBRAIC FOREST APPROXIMATIONS AND THEIR
APPLICATIONS

We define thick forest as simple graph without cycles such
that each of its vertex has degree at least 3. In probability
theory branching process is a special stochastic process cor-
responding to a random walk on a thick forest. A genealogy
of single vertex is a tree. One of the basic properties of finite
tree is the existence of a leaf, i. e. vertex of degree 1. Thus
each thick tree is an infinite simple graph.

Let K be a commutative ring and Kn be an affine space
of dimension n over K (free module in other terminology).
A subset M in Kn is an algebraic set over K if it is a
solution set for the system of algebraic equations of kind
f = 0 or inequalities of kind g0 where f and g are elements
of K[x1, x2, . . . , xn]. There are several alternative approaches
to define dimension of M . In the case when K is a field
these approaches are equivalent and dimension of M can be
computed with the usage of Groőbner basis technique (see
[47], [48], [49]).

We say that graph Γ is algebraic over K if its vertex and
edge sets are algebraic sets over K

We investigate a possibility to define thick forest F by
system of equations over some commutative ring K, i.e.
construct F as a projective limit of algebraic over K bipartite
graphs Γi, i = 1, 2, . . .. Noteworthy that the girth gi = g(Γi),
which is the length of minimal cycle in Γi tends to infinity
when i is growing. In this situation we refer to F as algebraic
forest over K.



We say that the family Γi is an algebraic forest approx-
imation over the ring K. In the case gi ≥ cni, where ni
are dimensions of the algebraic sets V (Γi) of vertices of the
graph Γi and c is some positive constant we use term algebraic
forest approximation of large girth. Note that algebraic forest
approximations of large girth over finite field Fq , q > 2 are
families of graphs of large girth in sense of P. Erdős’(see
[1], [2] and further references). The first algebraic forest
approximation of a large girth was introduced by F. Lazebnik
and V. Ustimenko (see [3], [4]) in the case of K = Fq .

The properties of trees of this algebraic forest and their
approximations over Fq were investigated in the paper by [5].

In 1998 more general algebraic graphs D(n,K) defined
over arbitrary commutative ring K were introduced [6]. It was
stated that a girth of D(n,K) is ≥ n+5 in the case of arbitrary
integrity domain K. This inequality insures that D(n,K) ,
n = 2, 3, . . . is algebraic forest approximation of large girth.
The prove of the inequality reader can find in [7], simpler
prove of this fact the reader can find in [44].

Noteworthy that in the case of integrity domain K together
with D(n,K), n = 2, 3, . . . one can consider another thick
forest approximation D(n,K[x1,
x2, . . . , xm]) for each parameter m. Thus paper [6] opened
a possibility to use extremal properties of these graphs in the
Theory of Symbolic Computations and its various applications
to Cryptography.

The paths of even length t on trees and their approximations
can be used to induce multivariate transformations on varieties
Pi and Li of points and lines of V (Γi). These transformations
can serve as encryption maps acting on the potentially infinite
space Pi of plaintexts (see [9]-[17]). They form a group
Gi = G(Γi) which can be a platform for the protocols of
Noncommutative Cryptography (see [18]-[23]). Noteworthy
that if t is at most half of the girth of Γi then different paths
produce distinct transformations. So, forest approximations of
large girth are preferable for cryptographic applications.

Other tree approximation over the integrity domain K is
formed by graphs A(n,K) defined in [8]. In fact these graphs
were defined earlier [7] as homomorphic images E(n,K) of
graphs D(n,K) or their connected components CD(n,K). As
it was stated recently in short paper [50] for each integrity do-
main K, K 6= F2 graphs A(n,K) form a tree approximation
of large girth. For each vertex v of graph G we define its cycle
indicator Cind(v) as length of the shortest cycle through v. We
define cycle indicator Cind(G) of the graph as maximal value
of Cind(v) via all vertexes of the graph. Let family Γi be an
algebraic forest approximation over the ring K. In the case
Cind(Γi) ≥≥ cni, where ni are dimensions of the algebraic
manifolds V (Γi) of vertices of the graph Γi and c is some
positive constant we use term algebraic forest approximation
with the large cycle indicator. We can assume that c is the
largest possible constant for the property in the definition.
As it was established in [44] for each integrity domain K
algebraic graphs A(n,K) form algebraic forest approximation
with large cycle indicator for which c = 2.

We can compare properties A(n, Fq) and widely known

family X(p, q) of Cayley Ramanujan graphs of large girth
introduced by G. Margulis [28], [29] and investigated by A.
Lubotzky, P. Sarnak and R. Phillips [30]. Both families are
families of small world graphs in sense of [25]. Noteworthy
that projective limit of X(p, q) does not exist and this family
is not a tree approximation. The speed of girth growth for
X(p, q) is 4/3. A. Lubotzky conjectured that this is the highest
possible speed of girth growth.

Noteworthy that speed of girth growth for A(n, Fq) is
not evaluated properly yet. Graphs X(p, q), D(n, Fq) and
A(n, Fq) were used for the construction of Low Density
Parity Check Codes (LDPC) for satellite communications. The
families X(p, q), CD(n, q) and A(n, q) can be used for the
constructions of LDPC codes for the noise protection in satel-
lite communications. D. MacKay and M. Postol [40] proved
that CD(n, q) based LDPC codes have better properties than
those from X(p, q) for the constructions of LDPC codes.
It was established that A(n, q) based LDPC codes are even
better than those from CD(n, q) (see [39]). Some encryption
algorithms (stream ciphers) based on A(n,K) and D(n,K)
were already introduced (see [9], [10], [11], [12], [13], [14],
[15], [16], [17], [42], [45] and further references).

Noteworthy that the study of homogeneous algebraic graphs
of prescribed girth or diameter is classical area of Algebraic
Geometry ([33]-[38]). Projective plane can be defined as a
homogeneous algebraic graph of girth 6 and diameter 3 (see
[33]). J. Tits defined generalized m-gon as homogeneous
algebraic graph of diameter m and girth 2m (see [34]-[37]).
Geometries of Chevalley groups A2(F ), B2(F ) and G2(F )
are homogeneous algebraic graphs over the field F which are
generalized m-gons for m = 3, 4 and 6 (see [37]).

IV. ON LINGUISTIC GRAPHS A(n,K), RELATED
SEMIGROUPS AND GROUPS AND SYMMETRIC CIPHERS

Regular algebraic graph A(n, q) = A(n, Fq) is an important
object of Extremal Graph Theory. In fact we can consider more
general graphs A(n,K) defined over arbitrary commutative
ring K.

This graph is a bipartite graph with the point set P = Kn

and line set L = Kn (two copies of Cartesian power of K
are used). It is convenient to use brackets and parenthesis to
distinguish tuples from P and L.

So, (p) = (p1, p2, . . . , pn) ∈ Pn) and [l] = [l1, l2, . . . , ln] ∈
Ln. The incidence relation I = A(n,K) (or corresponding
bipartite graph I) is given by the following condition.

pIl if and only if the equations
p2−l2 = l1p1, p3−l3 = p1l2, p4−l4 = l1p3, p5−l5 = p1l4,

. . ., pn− ln = p1ln− 1 hold for odd n and pn− ln = l1pn−1
for even n.

In the case of K = Fq , q > 2 of odd characteristic graphs
A(n, Fq), n > 1 form a family of small world graphs because
their diameter is bounded by linear function in variable n (see
[8]).

Recall that the girth of the graph is the length of its minimal
cycle. We can consider an infinite bipartite graph A(K) with
points (p1, p2, . . . , pn, . . .) and lines [l1, l2, . . . , ln, . . .] which



is a projective limit of graphs A(n,K) when n tends to
infinity. If K, |K| > 2 is an integrity domain then A(K)
is a tree and the girth gn of A(n,K), n = 2, 3, . . . is bounded
below by linear function cn for some positive constant c [50].

As a byproduct of this result we get that A(n, q), n =
2, 3, . . . for each fixed q, q > 2 form a family of large girth
in sense of Erdős’. In fact graphs A(n,K) were obtained in
[7] as homomorphism images of known graphs CD(n,K) of
large girth (see [3], [4], [5]).

Let K be a commutative ring with a unity. Graphs A(n,K)
belong to the class of linguitic graphs of type (1, 1, n − 1)
[40], i.e. bipartite graphs with partition sets P = Kn

(points of kind (x1, x2, . . . , xn), xi ∈ K) and L = Kn

(lines [l1, l2, . . . , ln], li ∈ K) and incidence relation I =
I(n,K) such that (x1, x2, . . . , xn)I[y1, y2, . . . , yn] if and only
if a2x2+b2x2 = f2(x1, y1), a3x3+b3x3 = f3(x1, x2, y1, y2),
. . ., anxn + bnxn = fn(x1, x2, . . . , xn), where ai and bi are
elements of multiplicative group K∗ of K and fi are multivari-
ate polynomials from K[x1, x2, . . . , xi−1, y1, y2, . . . , yi−1] for
i = 2, 3, . . . , n.

The colour of ρ(v) of vertex v of graph I(K) is defined as
x1 for point (x1, x2, . . . , xn) and y1 for line [y1, y2, . . . , yn].

The definition of linguistic graph insures that there is a
unique neighbour with the chosen colour for each vertex of the
graph. Thus we define operator u = Na(v) of taking neighbour
u with colour a of the vertex v of the graph. Additionally we
consider operator aC(v) of changing colour of vertex v, which
moves point (x1, x2, . . . , xn) to point (a, x2, x3, . . . , xn) and
line [x1, x2, . . . , xn] to line [a, x2, x3, . . . , xn].

Let us consider a walk v, v1, v2, . . . , v2s of even length 2s
in the linguistic graph I(K). The information on the walk is
given by v and the sequence of colours ρ(vi), i = 1, 2, . . . , 2s.
The walk will not have edge repetitions if ρ(v2) 6= ρ(v),
ρ(vi) 6= ρ(vi−2) for i = 3, 4, . . . , n. Notice that v and v2s are
elements of the same partition set (P or L). For each vertex
v of I(K) we consider a variety of walks with jumps, i. e.
totality of sequences of kind v, v1 = a1C(v), v2 = Na2(v1),
v3 = a3C(v2), v4 = Na4(v3), . . ., v5 = a5C(v4), . . .,
v4s = Na4s(v4s−1), v4s+1 = a4s+1C(v4s). Note that for each
s , s ≥ 0 vertices v, v1, v4s, v4s+1 are elements of the same
partition. Let u = (a1, a2, . . . , a4s, a4s+1) be the colours of
the walk with jumps.

We introduce the following polynomial transformations of
partition sets P and L. Firstly we consider the pair of linguistic
graphs I(K) and I(K[x1,
x2, . . . , xn]). These graphs are defined by the same equations
with coefficients from the commutative ring K. We look
at sequences of walks with jumps of length 4s + 1 where
s ≥ 0 starting in the point v = (x1, x2, . . . , xn) (or line
[x1, x2, . . . , xn]) of the graph K[x1, x2, . . . , xn] which uses
colors a1(x1), a2(x1), . . ., a4s+1(x1) from K[x1]. The final
vertex of this walk is v4s+1 with coordinates a4s+1(x1),
f2(x1, x2), f3(x1, x2, x3), . . ., fn(x1, x2, . . . , xn)). Let us
consider the transformations uTP and uTL sending starting
vertex to the destination point of the walk with jumps act-
ing via the rule x1 → a4s+1(x1), x2 → f2(x1, x2), . . .,

xn → fn(x1, x2, . . . , xn) on the partition sets P and L
isomorphic to Kn. It is easy to see that transformations of kind
uTP (or uTL) form the semigroup LSP (I(K)) (LSL(I(K))
respectively). We refer to this transformation semigroup as
linguistic semigroup of graph I(K).

Let us consider an algebraic formalism for the introduc-
tion of linguistic semigroups. We take the totality of words
F (K[x]) in the alphabet K[x] and define the product of u =
(a1(x), a2(x), . . . , ak(x)) and w = (b1(x), b2(x), . . . , bs(x))
as word = (a1(x), a2(x), . . ., ak(x)) × (b1(x), b2(x), . . .,
bt(x)) = (a1(x), a2(x), . . ., ak−1(x), b1(ak(x)), b2(ak(x)),
. . ., bt(a(x))).

Obtained semigroup F (K[x]) is slightly modified free prod-
uct of End(K[x]) with itself. Note that we can identify a(x)
from K[x] with the map x→ a(x) from End(K[x]).

Let FK be a subsemigroup of words of length of kind 4s+1,
s ≥ 0.

PROPOSITION. Let I(K) be a linguistic graph defined
over commutative ring K with unity. The map I(K)ηP :
FK → End(K[x1, x2, . . . , xn]) such that I(K)η(u) =u TP
(or η(u)L =u TL) is a semigroup homomorphism.

It is easy to see that I(K)ηP (FK) = LSP (I(K) and
I(K)ηL(FK) = LSL(I(K).

PROPOSITION. (see [45] and further references)
The image of u = (a1(x), a2(x), . . . , ak(x)) from FK

under the map I(K)ηP (or I(K)ηP is invertible element of
LSP (I(K) (or LSL(I(K) if and only if the map x→ ak(x)
is an element of Aut(K[x]).

REMARK. The transformations (I(K)ηP (u), P ) and
(I(K)ηL(u), L) are bijective if and only if the map x→ b(x)
is bijective.

ILLUSTRATIVE EXAMPLE.
Let K = R (real numbers) or K be algebraically closed

field of characteristic 0 and b(x) = x3. The inverse map
for x → x3 is birational automorphism x → x1/3 of K[x].
Thus gP =I(K) ηP (u) and g

I(K)
L ηL(u) do not have inverses

in End(K[x]). They have bijective birational inverses. Note-
worthy that gP and gL are transformations of infinite order.
Degree of polynomial transformations of gP s and gLs are at
least 3s.

So we have an algorithm of generation bijective polynomial
maps of arbitrary large degree on variety Kn.

We refer to subgroups GP (I(K)) and GL(I(K)) of invert-
ible elements of LSP (I(K)) and LSL(I(K)) as groups of
linguistic graphs I(K). They are different from automorphism
group of I(K).

Let us consider semigroup F̃K of words of kind u =
(x, f1, f1, f2, . . . , fs, fs). It is easy to see that for each lin-
guistic graph I(K) the transformations gP (u) = I(K)ηP (u)
and gL

I(K)ηL(u) are computed via consecutive usage of
Nfi in the linguistic graph. Thus we refer to SWP (I(K) =
{gP (u)|u ∈ F̃K} and SWL(I(K) = {gL(u)|u ∈ F̃K} as
semigroups of symbolic walks on partition sets of I(K).
We refer to GWP (I(K) = SWP (I(K) ∪ GP (I(K)) and
GWL(I(K) = SWL(I(K)∩GL(I(K)) as groups of symbolic
walks.



Finally we consider the semigroup St(K) of words u =
(x + α1, x + α2, . . . , x + αk) where αi are elements of K.
We consider FK = FK ∩ StK F̃K = F̃K ∩ StK = ΣK and
introduce groups I(K)ηP (FK) = H̃P (I(K)), I(K)|ηP (FK) =
H̃P (I(K)), I(K)|ηP (ΣK) = HP (I(K)), I(K)|ηP (ΣK) =
HP (I(K)).

We can change set P for the line set L and introduce
I(K)|ηL(ΣK) = HL(I(K)).

We refer to groups HP (I(K)), HL(I(K)) as groups of
walks on partition sets of linguistic graph I(K).

PROPOSITION.
If a linguistic graph I(K) is connected then groups

HP (I(K)) and HL(I(K)) are acting transitively on Kn.
The following statement was formulated in [15].
THEOREM. (see [45] or [15])
For each commutative ring K groups HP (A(n,K)) =

GA(n,K) and HL(A(n,K)) = ∗GA(n,K) are totalities
of cubical automorphisms of K[x1, x2, . . . , xn].

COROLLARY.
Let us consider element u = (x, x+ a1, x+ a1, x+ a2, x+

a2, . . . , x+ ak−1, x+ ak−1x+ ak, x
t of FK for commutative

ring K with unity with finite multiplicative group of order
d, d > 2 where t = 2 or t = 3 and (d, t) = 1. Then
transformation A(n,K)η(u) is a cubical one.

V. ON LINGUISTIC GRAPHS D(n,K) AND
CORRESPONDING TRAPDOOR ACCELERATORS

As we already mentioned graphs A(n,K) appear as
homomorphic quotients of linguistic graphs D(n,K) or
their connected components CD(n,K). Isomorphic groups
HP (D(n,K) and HL(D(n,K) were introduced in [12]. The
fact that elements of HP (D(n,K)) (GD(n,K) in other
notation) are transformations of degree ≤ 3 in other notations)
was proved later (see [31] and further references). Theorem 4.
1 was deduced from this fact.

We already mentioned that graphs A(m,K) were obtained
as quotients of graphs D(n,K)). This incidence structure was
defined in the following way.

Let K be an arbitrary commutative ring. We consider the
totality P ′ of points of kind
x = (x) = (x1,0, x1,1, x1,2, x2,2, . . . , xi,i, xi,i+1, . . .) with

coordinates from K
and the totality L′ of lines of kind
y = [y] = [y0,1, y1,1, y1,2, y2,2, . . . , yi,i, yi,i+1, . . .]. We

assume that tuples (x) and [y] has finite support and a point
(x) is incident with a line [y] , i. e. xIy or (x)I[y], if the
following conditions are satisfied:
xi,i − yii = yi−1,ix1,0,
xi,i+1 − yi,i+1 = y0,1xi,i (2)
where i = 1, 2, . . ..
We denote the graph of this incidence structure as A(K).

We consider the set Root of indexes of points and lines of
A(K) as a subset of the totality of all elements (i+ 1, i+ 1),
(i, i+1), (i+1, i), i ≥ 0 of root system Ã1 of affine type. We
see that Root = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), . . .}.
So we introduce R1,0 = Root − {0, 1} and R0,1 = Root −

{(1, 0)}. It allows us to identify sets P ′ and L′ with affine
subspaces {f : R1,0 → K} and {f : R0,1 → K} of functions
with finite supports.

For each positive integer k ≥ 2, we obtain an incidence
structure (Pk, Lk, Ik) as follows. Firstly, Pk and Lk are
obtained from P ′ and L′, respectively, by simply projecting
each vector onto its k initial coordinates. The incidence Ik is
then defined by imposing the first k−1 incidence relations and
ignoring all the other ones. The incidence graph corresponding
to the structure (Pk, Lk, Ik) is denoted by A′(k,K). The
comparison of equations of A′(k,K) and A(k,K) allows to
justify the isomorphism of these graphs. It is convenient for
us to identify graphs A(k,K) with incidence structures Ik
defined via relations (2).

The procedure to delete last coordinates of points and
lines of graph A(n,K) defines the homomorphism n∆ of
A(n,K) onto A(n − 1,K), n > 2. The family of these
homomorphisms defines natural projective limit of A(n,K)
which coincides with A(K). We introduce the colour function
ρ on vertexes of graph A(K) or A(n,K) as x10 for the point
(x10, x11, x12, . . .) and y01 for the line [y01, y11, x12, . . .]. We
refer to ρ(v) for the vertex v as colour of vertex v.

The family of graphs D(n,K), n = 2, 3, . . . where
K is arbitrary commutative ring defines the projective
limit D(K) with points (p) = (p10, p11, p12, p21, p22,
p′22, . . ., p′ii, pii+1, pi+1,i, pi+1,i+1, . . .), and lines [l] =
[l01, l11, l12, l21, l22, l

′
22, . . . ,

l′ii, lii+1, li+1,i, li+1,i+1, . . .], which can be thought as infinite
sequences of elements in K such that only finitely many
components are nonzero.

A point (p) of this incidence structure I is incident with
a line [l], i.e. (p)I[l], if their coordinates obey the following
relations:
pi,i − li,i = p1,0li−1,i,
p′i,i − l′i,i = pi,i−1l0,1,
pi,i+1 − li,i+1 = pi,il0,1, (3)
pi+1,i − li+1,i = p1,0l

′
i,i.

(These four relations are well defined for i > 1, p1,1 = p′1,1,
l1,1 = l′1,1.)

Let D be the list of indexes of the point of the graph D(K)
written in their natural order, i. e. sequence (1, 0), (1, 1), (1, 2),
(2, 1) , (2, 2), (2, 2)′, . . .. Let kD be the list of k first elements
of D. The procedure of deleting coordinates of points and
lines of D(k,K) indexed by elements of D −k D defines
the homomorphism of D(K) onto graph D(k,K) with the
partition sets isomorphic to the variety Kn and defined by
the first k − 1 equations from the list (3). We can see that
the procedure of deleting of coordinates indexed by elements
D − (Root − {(0, 1)}) defines the homomorphism of graph
D(K) onto the graph isomorphic to A(K).

Let us consider the set kA = kD − kD ∩ Root. The
procedure of deleting coordinates of vertexes of D(k,K)
indexed by elements of kA defines the homomorphism ηk
of D(k,K) onto A(m, k) where m is the cardinality of
kD ∩Root. Both families A(n, K) and D(n, K) are linguistic
graphs of type (1, 1, n− 1).



THEOREM. (see [45]). For each commutative ring K
groups HP (D(n,K)) = GD(n,K) are totalities of cubical
automorphisms of K[x1, x2, . . . , xn].

COROLLARY. Let us consider element u = (x, x+a1, x+
a1, x+ a2, x+ a2, . . . , x+ ak−1, x+ ak−1, x+ ak, x

t) of FK
for commutative ring K with unity with finite multiplicative
group of order d, d > 2 where t = 2 or t = 3 and (d, t) = 1.
Then transformation D(n,K)η(u) is a cubical one.

VI. EXPLICIT CONSTRUCTIONS OF TRAPDOOR
ACCELERATORS AND THEIR APPLICATIONS

EXAMPLE 6.1
Let us consider general commutative ring K with unity

and Fn = T
A(n,K)
1 η(u)T2, where T1, T2 are elements of

AGLn(K) and the tuple (x, x+α1, x+α1, x+α2, x+α2,
. . ., x+α2,. . . , x+αs, x+αs) such that cn < s < n for some
constant c > 0. According to Theorem 3. 1 the transformations
Fn and Fn−1 are of degree 3. So T = {T1, T2, u} is a trapdoor
accelerator of Fn of degree 3 and level 3.

The following two constructions give families of cubic
multivariate map with trapdoor accelerator of rather large level.

EXAMPLE 6. 2
Let us consider family of fields Kn = F2na for some

constant a and transformation Fm = A(m,Kn)η(x, x+a1, x+
a1, x+a2, x+a2, . . . , x+as−1, x+as−1, x+as, x

2). Then the
map w: x→ x2 is an automorphism of Kn. It is easy to see
that wn

a

is identity map and wn
a−1is an inverse map for w.

Note that degree of wk is 2k. Thus the degree of inverse for
w is 2n

a−1. The degree tn of Fn−1 is proportional to degree
of w. In fact it can be shown that tn = 3× 2n

a−1.
Let us assume that αm < s < m where α is a positive

constant and two affine transformation T1 and T2 from the
group AGLm(Kn). We consider the family of bijective trans-
formation Gm = T1FmT2. Standard forms of cubical maps
Gm form family with trapdoor accelerators m,nT which are
triples T1, (x, x+ a1, x+ a1, x+ a2, x+ a2, . . ., x+ as−1,
x+as−1, x+as, x2) and T2 of level tn = 32n

a−1. Really, the
knowledge on the triples gives us T2−1, Rev((x, x+ a1, x+
a1, x + a2, x + a2, . . . , x + as−1, x + as−1, x + as, x

2)) and
T1
−1. It allows the computation of reimage of Gm in time

O(m2). Alice can use cubic standard form Gm as public rule
and trapdoor m,nT as her private key.

EXAMPLE 6.3.
We consider a modification of Example 6.1 in more general

case of finite fields Fq where q is such that (3, q−1) = 2. We
consider a triple which consists of T1 and T2 from AGLm(Fq)
and tuple u = (x, x+a1, x+a1, x+a2, x+a2, . . ., x+as−1,
x+ as−1, x+ as, x3). We use the assumption that α×m <
s < m and s is even where α is a positive constant. Let Gm
be the standard form of the composition of T1, A(m,q)η(u)
and T2. The degree of Gm−1 acting on Fq

m is ≥ 3t, where
t is maximal power of 3 which < q − 1 and transformations
of kind T1FmT2, Fm = A(m,q)η(u) can serve as public keys.
This algorithm is implemented in the case of finite fields F263 .

We modify previous example to get explicit construction of
family of cubic nonbijective trapdoor accelerators.

EXAMPLE 6.4.
We consider family A(m,K), m ≥ 2 defined over finite

commutative ring K such that d = |K∗ | > 3 and (3, d) = 1
to construct cubical map Gm of affine space Km, m ≥ 2
which acts injectively on Tm(K) = K∗m and has eulerian
inverse En which is an endomorphism of K[x1, x2, . . . , xm]
such that the composition of Gm and Em acts on n,mT (K)
as identity map. The degree of Em(K) is at least 3×t where
t is maximal power of 3 which is < d. So we take affine
transformation T1 from AGLm(K) such that T1(x1) = αx1
where α ∈ K∗ together with T2 ∈ AGLm(K) and tuple,
u =(x, x + a1, x + a1, x + a2, x + a2, . . ., x + as−1,
x + as−1, x + as, x3) where even s is selected as in the
previous example. Standard form Gm of T1A(n,K)η(u)T2 is a
toric automorphism of K[x1, x2, . . . , xm]. The knowledge of
trapdoor accelerator (T1, u, T2) allows to compute the reimage
of G(K∗m) in time O(m2). So we have cubic endomorphism
with trapdoor accelerator of level t. It can be used for the
construction of public keys with the space of plaintexts K∗m

and the space of ciphertexts Km.
We implement this algorithm in the case of K = Z2n , n =

7, 8, 16.32, 64. It uses cubical toric automorphism of level 3t
where t is maximal power of 3 from interval (0, 2n−1). In this
case we can use more general form for T1 defined by condition
T1(x1) = a1x1 + a2x2 + . . . + am(xm) where odd number
of ai are odd residues modulo 2n (see [26], [28]). In the case
of K = Fq we get an example 6.3. In these examples we can
change graph A(n,K) for graph D(n,K) and get Examples
6.5, 6.6 and 6.7 respectively.

Mentioned above examples were suggested in [43]. Let
us consider the implementation of public key based on the
trapdoor accelerator of Example 1.

VII. ON THE EXAMPLE OF PUBLIC KEY RULE

As usually name Alice corresponds to owner of the public
key and name Bob corresponds to public user of the cryp-
tosystem. Alice has to select size of finite field and dimension
of the space V of plaintexts. Assume that she takes field F232

and dimension n = 256. Additionally Alice has to identify
vector space V with point set P or line set L. Assume that
she select L. It means that her plaintext is the tuple [x0,1,
x1,1, x12, x22, . . . , x127,128, x128,128]. Additionally Alice has
to select parameter s corresponding to length of the path in
the graph A(256, F232). For proper selection of this parameter
one can investigate cycle indicator Cind(v) of the vertex v of
the graph, i. e minimal length of the cycle through v and
evaluate maximal value of Cind(v) via all possible vertexes
v (cycle indicator A(256, F232) of the graph). Accordingly
[Archive] cycle indicator of the graph A(n, Fq) is at least
2n+ 2. In fact Cind(A(n, Fq)) = 2n+ 2 for infinitely many
special parameters q. There are q[n/2] lines [l] ∈ L such that
Cind([l]) ≥ 2n + 2. Let [l] = [x01, x11, . . . , x[n/2],[n/2]] be
one of the lines with written above property where param-
eter n is even integer. The trapdoor accelerator uses path
p(t1, t2, . . . , ts) of even length s starting in [l] given by colours
of vertexes x01, x01 + t1, x0,1 + t2, . . ., x0,1 + ts where



t2 6= 0, ti 6= ti−2, for i = 3, 4, . . . , s. Let us assume that
s ≤ n and u be the last vertex of the path. Lower bound
for Cind([l]) insures that destination lines of p(t1, t2, . . . , ts)
and p(t′1, t

′
2, . . . , t

′
s), t1 6= t′1 are different. The accelerator

uses destination line [y] of path of A(n, Fq[x01, x11, . . . , xn,n]
with colours x01, x01 + t1, x0,1 + t2, . . . x0,1 + ts starting
in [l]. Assume that [y] = [x01 + ts, g11, g1,2, g2,2, . . ., gn,n],
where g11 , g1,2, . . ., gn,n are cubical or quadratic multivariate
polynomials in variables x01, x11, . . ., xn,n. The trapdoor
accelerator uses cubical transformation F (t1, t2, . . . , ts) of
L = Fq

n of kind x01 → x1,0 + ts,
x1,1 → g1,1,
. . .,
xnn → gn,n.
It is important that the map F (t1, t2, . . . , ts) differs from

each of (q − 1)s transformations F (t′1, t
′
2, . . . , t

′
s), t′1 6= t1 if

s ≤ n. So Alice can take s = 256 and select one of q(q−1)255

sequence t1, t2, . . ., t256.
To construct trapdoor accelerator Alice has to generate two

bijective linear transformations 1T and 2T of L of kind
x01 →i l01(x01, x11, . . . , x128,128)
x11 →i l11(x01, x11, . . . , x128,128)
x128,128 →i l11(x01, x11, . . . , x128,128) where i = 1, 2. In

a spirit of LU factorisation Alice can generate each iT as
a composition of lower triangular matrix iL, i = 1, 2 with
nonzero entries on diagonal and upper triangular matrices iU
with unity elements on diagonal. For selection of the tuple
ti, i = 1, 2, . . . , 256, iL and iU , i = 1, 2 Alice can use
pseudorandom generators of field elements or some methods
of generating genuinely random sequences (usage of existing
implementation the quantum computer, other Probabilistic
modifications of Turing machine, quasi-stellar radio sources
(quasars) and etc).

Alice takes tuple of variables [x] = (x0,1, x11, . . . , x128,128)
and conducts the following steps.

Step 1.
She compute a product of [x] and 1T . The output is a

string [1l01(x0,1, x11, . . . ,
x128,128), 1l11(x0,1, x11, . . . , x128,128), . . .
1l128,128(x0,1, x11, . . . , x128,128)] = [1u]. Alice treats the out-
put as the line of graph A(256, F232 [x01, x11, . . . , x128,128])

Step 2.
She computes the destination line [2u] of path with starting

line [1u] and colours 1u0,1, 1u0,1 + t1, 1u0,1 + t2, . . ., 1u0,1 +
t256.

Step 3.
Alice takes the tuple [2u] = [1u0,1 +

t256,
2 u1,1,

2 u1,2, . . . ,
2 u128,128] of elements

F232 [x01, x11, . . . , x128,128] and forms the line 3u =
[1u0,1)2, 2u1,1, . . . 2u128,128] of the vector space L.

Step 4.
She computes the composition of the tuple 3u and the

matrix of linear map 2T . So Alice has the tuple of cubic
multivariate polynomials 4u = (f01, f11, . . . ,
f128,128). She presents coordinates of 4u via their
standard forms, i. e sums of monomial terms

taken in the lexicographical order and writes the
public rule F x0,1 → f0,1(x01, x11, . . . x128,128),
x1,1 → f1,1(x01, x11, . . . x128,128), x1,2 →
f1,2(x01, x11, . . . x128,128), . . . x128,128 →
f128,128(x01, x11, . . . x128,128).

Finally Alice announces this multivariate rule for public
users. Noteworthy that for the development of this private key
Alice use only operations of addition and multiplication in the
commutative ring F232 [x01, x11, x1,2, . . . , x128,128].

ENCRYPTION PROCESS.
Public user Bob creates her message p =

(p0,1, from the space (F232)m, m = 256.
He computes tuple (f0,1(p01, p11, . . . , p128,128),
f1,1(p01, p11, . . . , p128,128), f1,2(p01, p11, . . . , p128,128),
. . ., f128,128(x01, x11, . . . x128,128)) of the ciphertext c.
Theoretical estimation of the execution time is O(m4). Let
D(m) be the density of the public rule F , which is a total
number of monomial terms in all multivariate polynomials
f01, f11, f12, . . .. Execution time is cD(m) where constant
c is time of the computation of single cubic monomial
term. This constant depends on the choice of the computer.
The following parameters can be useful. D(16) = 5623,
D(32) = 62252, D(64) = 781087, D(128) = 10826616,
D(256) = 138266164.

We can speed up the encryption process via reduction
of parameter s. If we take twice shorter of the path of
the graph, i.e. select s = m/2 then the values of D(m)
would be the following. D(32) = 5623, D(64) = 62252,
D(128) = 781087, D(256) = 10826616.

This numbers disclose an interesting remarkable coinci-
dences.

We can encode each character of F232 by four symbols of
F28 . Thus we can identify plaintext and the ciphertext with the
tuple of binary symbols of length 1024. So we can encrypt files
with extensions .doc, .jpg, .avi, .tif, .pdf and etc.

DECRYPTION PROCEDURE.
Alice has the private key which consists of the sequence

t1, t2, . . ., t256 and matrices 1T and 2T . Assume that she
got a ciphertext c from Bob. She computes 2T−1 × c =1 c
and treats this vector as line [1l] = [c01, c11, c12, . . .,
c128,128]. Alice computes parameter d = c01

31. She changes
the colour of [1l] for d + t256 and gets the line [l] =
[d + t256, c11, c12, . . . , c128,128]. Alice has to form the path
in the graph A(256, F232) with the starting line [l] and further
elements defined by colours d+ t255, d+ t254, d+ t253, . . .,
d+ t1 and d. So she computes the destination line [1l] = [d,
d1,1, d12, . . ., d128,128]. Finally Alice computes the plaintext
p as [1l]×2 T−1.

VIII. HEURISTIC ARGUMENTS ON SECURITY AND
CRYPTANALITIC ASPECTS

Recall that the piece of information T is a trapdoor ac-
celerator for nonlinear σ if the knowledge of T allows us to
compute the reimage of given value b in time O(n2).

Of course it is just instrument to search for practical
trapdoor function. Without knowledge of T one has to solve



nonlinear system of equations which generally is NP -hard
problem. As you know that the existence of trapdoor functions
is just a conjecture. In fact it is closely connected to Main
Conjecture of Cryptography P 6= NP . Finding of inverse for
σ is NP -hard problem if this map is in so called ”general
position”. In case of the knowledge of specific additional
information can lead to establishment of polynomial method
for the construction of the inverse map. For instance if cubical
σ has the inverse map of degree 3 then on can create O(n3)
pairs of kind (plaintext, ciphertext) and reconstruct the inverse
in time O(n10). In the case of our nonlinear graph based the
order of inverse is rather high. In fact we prove the following
statement via presentation of explicit construction.

THEOREM.
Let F2r be a finite field and r ≥ 3. Then for each n, n ≥

3 there exists an element σ ∈ (nCG(Fq)) of degree 3 with
trapdoor accelerator such that deg(σ−1 is ≥ 2r−1.

We hope that presented lower bound on the degree is far
from being sharp.

Specific multivariate candidates for being ”practical trap-
door functions” often refers to some specific hard problems
related to their cryptanalitic investigations. Recent example
is MiniRank problem connected with the studies of properties
Unbalanced rainbow Like Oil and Vinegar Cryptosystem. Last
cryptanalitic results on this subject reader can find in [46]. So
in the case of the cryptosystem we suggest in Example 6. 2
the following reference is relevant.

Cryptanalitic has to decompose Gm given in its standard
form into Gn = T1FnT2 where T1 and T2 are elements
of affine group AGLn(Fq) and Fm is graph based transfor-
mation. This is difficult group theoretical problem of triple
factorisation.

Let us assume that this problem is somehow solved.
Then he/she has to solve the problem to find algorithm
for the computation of reimages for Fm via investigation
the pathes between selected vector p = (p1, p2, . . . , pn)
and vector of kind (y, f2(p1, p2, . . . , pn),f3(p1, p2, . . . , pn),
. . . , fn(p1, p2, . . . , pn)). Let us assume that the length of
the pass s is chosen by Alice as αn + β, where α and
β are constant, and even k is less than half of the girth
of the graph A(n, k) which is also given by some linear
function from variable n (see [27]). Then specialisation
of y = b defines uniques path between (p1, p2, . . . , pn)
and bu =(b, f2(a1, a2, . . . , an),f3(x1, x2, . . . , xn),
. . . , fn(p1, p2, . . . , pn)). All specialisations of y are easy
to observe. The path for some specialisation will give us
remaining parameters a1, a2, . . ., as of the trapdoor. This
natural way to break the system is not easy to implement.
The path between p and bu can be computed with the usage
of general Dijkstra algorithm for arbitrary graph of order v.
The complexity of this algorith is just vln(v) but v is 2qn

and we have exponential complexity in term of our parameter
n. Alternatively one can use unknowns z1, z2, . . . , zs−1, b
corresponding to colours of the path with initial point p and
final point bu. He/ she can compute the coordinates hi of the
destination point of the path as polynomial expressionss from

variables zj , j = 1, 2, . . . , s− 1 and investigate the system of
equations hj(z1, z2, . . . , zj) =b uj , j = 2, 3, . . . , s − 1. This
system of equations has linear degree as the expression from
parameter n, secret length s is unknown. That is why this
system is hard to solve. As we mentioned above the graph
′′A(n, Fq) is an approximation of the infinite q-reqular tree
for which the complexity of finding the path between vertices
at length s is q(q − 1)s−1 (”breadth force search”). So the
task of finding the shortest path in the tree approximation will
lead to improvement of many applied algorithms in Computer
Science.

if parameter s is greater than (g − 2)/2 where g is the
girth then the path between two points at the distance s is not
uniquely determined. So the cryptanalisis becomes even more
sophisticated task.

REMARK. We can use tree approximation D(n, Fq) instead
of A(n, q). In the case the girth of the graph is at least n+ 5.

IX. ON THE GENERALISATIONS OF THE PUBLIC KEYS AND
THE IMPLEMENTATIONS

We suggest modifications of cubic D(n,K) transformations
presented before which is based on the descriptions of the
connected components of these graphs. Recall that the family
of graphs D(n,K), n = 2, 3, . . . where K is arbitrary com-
mutative ring defines the projective limit D(K) with points
(p) = (p10, p11,
p12, p21, p22,p′22, . . . , p

′
ii, pii+1,pi+1,i, pi+1,i+1, . . .), and lines

[l] = [l01, l11,l12, l21,
l22, l

′
22, . . . , l

′
ii, lii+1, li+1,i, li+1,i+1, . . .].

which can be thought as infinite sequences of elements
in K such that only finitely many components are nonzero.
The incidence of points and lines is given by the system of
equations (3).

Let k ≥ 6, t = [(k + 2)/4], and let
u = (ui, u11, . . . , utt, u

′
tt, ut,t+1, ut+1,t, ...) be a vertex

of D(k,K). We assume that u1 = u1,0(u0,1) if u be a
point (a line, respectively). It does not matter whether
u is a point or a line. For every r, 2 ≤ r ≤ t , let
ar = ar(u) = Σi=0,r(uiiu

′
r−i,r−iui,i+1ur−i,r−i−1)

and a = a(u) = (a2, a3, . . . , at).
The following statement was proved in [58] for the case

K = Fq . Its generalization on arbitrary commutative rings is
straightforward, see [6], [7].

PROPOSITION 4.1.
Let K be a commutative ring with unity and u and v be

vertices from the same connected component of D(k,K). Then
a(u) = a(v). Moreover, for any t1 ring elements xi ∈ K,
2 ≤ i ≤ [(k + 2)/4] = t, there exists a vertex v of D(k,K)
for which a(v) = (x2, x3, . . . , xt) = (x).

So the classes of equivalence for the relationτ =
{(u, v)|a(u) = a(v)} on the vertexes of the graph. D(n,K)
are unions of connected components.

THEOREM 4.1 [7]. For each commutative ring with unity,
the graph D(k,K) is edge transitive.

Equivalences classes of τ form an imprimitivity systems
of automorphism group of D(k,K). Graph C(n,K) was



introduced in [9] as the restriction of incidence relation of
D(k,K) on a solution set of system of homogeneous equa-
tions a2(x) = 0, a3(x) = 0, . . ., at(x) = 0. The dimension
of this algebraic variety is n − t = d. Thus d = [4/3n] + 1
for n = 0, 2, 3 mod 4, d = [4/3n] + 2 for n = 1 mod 4.
For convenience we assume that C(n,K) = Cd(K) Symbol
CD(k,K) stands for the connected component of graph
D(k,K). The following statement holds.

THEOREM 4.2 (see [45] and further references).
The diameter of the graph Cm(K), m ≥ 2, K is a

commutative ring with unity of odd characteristic, is bounded
by parameter f(m) which does not depend on K.

COROLLARY 4. 1.
If K is a commutative ring with unity of odd characteristics

then CD(n,K) = C(n,K).
Let us rename coordinates y1,0, y1,1, y1,2, y2,1, . . . of sym-

bolic line [y] of D(n,K) accordingly to the natural order on
them as y1, y2, . . . , yn and write the equations of the graph in
new coordinates. It allows as to write connectivity invariants
of the line y = [y1, y2, . . . , yn] as ai([y]) = ai(y1, y2, . . . , yn)
where i = 2, 3, . . . , t. Similar notations we will use in the case
of points.

We use graphs D(n,K) and D(n,K[y1, y2, . . . , yn])
to define family of cubic multivariate maps F of kind
y1 → f1(y1, y2, . . . , yn), y2 → f2(y1, y2, . . . , yn), . . .,
yn → fn(y1, y2, . . . , yn) with trapdoor accelerator F =
T1GAT2, T1, T2 ∈ AGLn(K).

We take the line [y1, y2, . . . , yn] of the graph
D(n,K[y1, y2, . . . , yn] and compute
ar = ar([y]) = ar(y1, y2, . . . , yn), for r = 2, 3, . . . , t. We

form the nonlinear expression sB = (ys1 + C(y2, y3, . . . , yn)
where C(y2, y3, . . . , yn) = λ2a2+λ3a3+. . .+lambdatat+λ1
with nonzero λi from K and parameter s is selected with the
usage of following options. We can use s = 2 if the order d
of K∗ is odd or s = 3 if (d, 3) = 1 and
s = 1 can be selected in the case of arbitrary commutative

ring. We form the walk in the graph D(n,K[y1, y2, . . . , yn])
starting from the line [y] of colour y1 and consecutive vertexes
of colours y1 + β1, y1 + α1, y1 + β2, y1 + α2,. . ., y1 + βl,
αl such that 0 6= α1, 0 6= β1, αi 6= αi+1, βi 6= βi+1 for
i = 1, 2, . . . , l − 1.

We form the path with the starting line v0 = [y]),
v1 = Ny1+β1(v0), v2 = Ny1+α1(v1), . . ., v2l−1 =
Ny1+βt(v2l−2, v2l−1 = Ny1+βl

, v2l = Nαl
(v2t−1 and

consider u = JsB(v2l). The vertex u allows us to de-
fine the following transformation sG =s GA, A =
(α1, α2, . . . , αl;β1, β2, . . . , βl, B(y1, y2, . . . , yn)) of Kn to it-
self
y1 → (y1)s + C(y1), y2, . . . , yn),
y2 → u2(y1, y2),
. . .

yn → un(y1, y2, . . . , yn).
We identify A =l A with the array

(α1, α2, . . . , αl;β1, β2, . . . , βl−1, λ1, λ2, , λt).
PROPOSITION.

TABLE I
PUBLIC MAP GENERATION TIME (MS), D(n;B(32)), CASE II,

LENGTH OF THE PATH (2l)

n 32 64 128 256
16 20 36 60 108
32 164 336 676 1352
64 2660 5480 11305 23502
128 82304 175455 362382 751748

Let T1 and T2 are bijective transformations from AGLn(K)
and K is arbitrary commutative ring with unity. Then the stan-
dard form of cubic transformation F = T s1GlAT2, l = O(n)
has a trapdoor accelerator given by coefficients of T1 and T2
together with the array A described above.

Proof.
We have to justify that the reimage x of v = sGA(x) can be

computed in time O(n2). The procedure of its computation is
the following.

Step 1. Let the value v of sGA is given. We have to
form z = [αl, v2, v3, . . . , vn] where x is a variable, compute
a2(z)λ2 + a3(z)λ3 + . . .+ at(z)λt +λ1 = C(y1), y2, . . . , yn)

Step 2. The computation of the solution y1 = c of the
equation y1s + b = v1.

Step 3. We form the parameters d1 = c+βl, d2 = c+αl−1,
d3 = c+βl−1, d4 = c+αl−2, . . . , d2l−1 = c+α1, d2l = c of
reverse path with the starting line [αl, v2, v3, . . . , vn] = [z].

Step 5. We conduct recurrent computations Nd1(z) =1 u,
Nd2(1u) =2 u, . . ., Nd2l−1(2l−2u)=2l−1u,Nc(2l−1 =2 lu = x
(the reimage)

The complexity of the algorithm is O(n2). So the map has
a trapdoor accelerator as it is stated.

The standard forms of transformations F = T s1GAT2 can
be used as a public keys.

The idea of D(n,K) based encryption with the usage of
connectivity invariants was suggested in [59].

X. ON THE EXECUTION TIME OF GENERATION OF D(n,K)
-BASED PUBLIC KEYS

We use computer simulation to generate maps of kind y =
T1GAT2h related to graphs D(n,K) where K is one of the
commutative rings: Boolean ring B(32)of order 232, modular
ring Z232 and finite field F232 .

We have implemented three cases of invertible affine trans-
formations: 1) T1 and T2 are identities, its just evaluation of
time execution of core quadratic transformation. 2) T1 and T2
are of kind x1x1 + a2x2 + a3x3 + . . .+ anxn (linear time of
computing execution of T1 and T2), 3) T1 = A1x+b1andT2 =
A2x + b2, nonsingular matrices A1, A2 have nonzero entries
and vectors b1, b2 with mostly all coordinates different from
zero.

Execution time for the computation of standard forms of
the maps in the cases 2 and 3 is presented in Tables 1-6. The
program is written in C++ and compiled with the gcc compiler.
We used an average PC with processor Pentium 3.00 GHz,
2GB memory RAM and system Windows 7.



TABLE II
PUBLIC MAP GENERATION TIME (MS), D(n;Z232), CASE II,

LENGTH OF THE PATH (2l)

n 32 64 128 256
16 16 28 56 104
32 168 344 700 1428
64 2856 6112 12620 25652

128 80227 179877 398918 842802

TABLE III
PUBLIC MAP GENERATION TIME (MS), D(n;F232), CASE II,

LENGTH OF THE PATH (2l)

n 32 64 128 256
16 48 100 212 420
32 648 1372 2816 5712
64 8397 19454 41568 85783

128 139366 357361 824166 1758059

XI. CONCLUSIONS

Multivariate Cryptography in wide sense is about construc-
tions and investigations of Public Keys in a form of nonlinear
Multivariate rule defined over some finite commutative ring
K.

These rule F has to be written as transformation xi → fi,
i = 1, 2, . . . , n, fi ∈ K[x1, x2, . . . , xn] over commutative ring
K. It can be used for the encryption of tuples (plaintexts) from
the affine space Kn. In the simplest case of bijective trans-
formation decryption process can be thought as application of
inverse rule G.

The rule F defines automorphism σn of multivariate ring
K[x1, x2, . . . , xn] into itself given by its values on variables
xi. Its degree can be defined as maximum of degrees of
polynomials fi. For the usage of F as efficient encryption
tool degree of σn can be bounded by some constant c, cases
of c = 2 or c = 3 are popular.

Multivariate public key scheme suggests that rule F is
given publicly. Public users use it for encryption, they are
unable to decrypt because the information on G is not given.
Presumably G hast to be of high degree to be resistant against
its approximation attempts. The key owner (Alice) suppose to

TABLE IV
PUBLIC MAP GENERATION TIME (MS), D(n;B(32)), CASE III,

LENGTH OF THE PATH (2l)

n 32 64 128 256
16 16 32 56 108
32 240 416 764 1464
64 5357 8509 14802 27391

128 192324 310666 547293 1020502

TABLE V
PUBLIC MAP GENERATION TIME (MS),D(n;Z232), CASE III,

LENGTH OF THE PATH (2l)

n 32 64 128 256
16 20 32 56 104
32 260 440 800 1520
64 5524 8780 15180 28381

128 180436 289475 507985 945409

TABLE VI
PUBLIC MAP GENERATION TIME (MS), D(n;F232), CASE III,

LENGTH OF THE PATH (2l)

n 32 64 128 256
16 140 268 524 1036
32 2328 4541 8968 17828
64 40417 77480 151592 299844
128 812140 1526713 2946022 5792889

have some additional piece T of private information about pair
(F,G) to decrypt ciphertext obtained from public user (Bob).
In [43] the following formalisation of T is given.

We say that family σn, n = 2, 3, . . . has trapdoor accelerator
nT if the knowledge of the piece of information nT allows to
compute reimage x of y = σn(x) in time O(n2).

We use families of extremal algebraic graphs which approx-
imate infinite forest (or tree) for the constructions of families
of automorphisms σn with trapdoor accelerators and (σn)−1

of large order. We use bipartite regular graphs nG(K) with
partition sets Kn (set of points and set of lines), such that
incidence relation between point and line is given by system of
linear equations over K and projective limit of bipartite graphs
nG(K) is well defined tends to infinite regular forest. Two
families D(n,K) and A(n,K) defined over arbitrary integrity
domain K, i. e. commutative ring without zero divisors, are
known.

To define trapdoor accelerator for the family σn, n =
2, 3, . . . we use special walks on graphs nG(K) and
nG(K[x1, x2, . . . , xn]). This way in the case of K = F2m

we construct trapdoor accelerator nT for the special map
σn with the inverse of order > 3 × 2m−1. So we can
construct a family of public keys working with the space of
plaintexts Fn264 and multivariate rule F with the inverse of
order > 3×263. In this paper we discuss the implemention of
not so ambitious case m = 32 which is also can give secure
and efficient cryptosystem. A generalisation and obfuscation
of this D(n, Fq) based public key is given in a previous section
on the case of general commutative ring K with unity. It uses
connectivity invariants of these graphs. These algorithms are
implemented in the cases of finite fields of characteristic 2,
arithmetic rings Zq where q is a power of 2 and Boolean
rings.

We describe several other trapdoor accelerators defined with
described above approach in selected cases of finite fields and
arithmetical rings Zm, where m is a prime power. They can be
used for the constructions of multivariate public keys which
is able to serve as tools for the encryption or construction of
digital signatures.
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