
1

Finding Desirable Substitution Box with
SASQUATCH

Manas Wadhwa; Indian Institute of Technology, Bhilai, India; Email: manasw@iitbhilai.ac.in
Anubhab Baksi; Nanyang Technological University, Singapore; Email: anubhab001@e.ntu.edu.sg

Kai Hu; Nanyang Technological University, Singapore; Email: kai.hu@ntu.edu.sg
Anupam Chattopadhyay; Nanyang Technological University, Singapore; Email: anupam@ntu.edu.sg

Takanori Isobe; University of Hyogo, Kobe, Japan; Email: takanori.isobe@ai.u-hyogo.ac.jp
Dhiman Saha; Indian Institute of Technology, Bhilai, India; Email: dhiman@iitbhilai.ac.in

Abstract—This paper presents “SASQUATCH”, an open-
source tool, that aids in finding an unknown substitution
box (SBox) given its properties. The inspiration of our work
can be directly attributed to the DCC 2022 paper by Lu,
Mesnager, Cui, Fan and Wang. Taking their work as the
foundation (i.e., converting the problem of SBox search to
a satisfiability modulo theory instance and then invoking a
solver), we extend in multiple directions (including – but not
limiting to – coverage of more options, imposing time limit,
parallel execution for multiple SBoxes, non-bijective SBox),
and package everything within an easy-to-use interface. We
also present ASIC benchmarks for some of the SBoxes.

Index Terms—sbox, ddt, lat, dbn, lbn, apn, linear
structure

I. INTRODUCTION

The ‘substitution box’ (‘SBox’, for short) is an impor-
tant component in modern cipher construction. In many
ciphers, this is the only component that introduces non-
linearity. Although in simple terms, it is a look-up table
(often a permutation of 2n; common choice of n being 4
and 8), the security claims/proofs of a cipher are heavily
dependent on the cryptographic properties of the SBox
used. For this reason, and also because it is an interesting
theoretical problem to study; there have been a number of
attempts to find a desirable SBox. For instance, the works
of [1] or [2, Section 3.3] go into details of finding a good
SBox to be used in the context of a cipher construction,
the work of [3] deals with classifying SBox according
to its certain properties.

In this work, we closely follow the DCC’22 paper
by Lu, Mesnager, Cui, Fan and Wang [4]. This paper
targets to find an unknown SBox from its properties (this
is a hard problem in general, due to the large search
space). The authors convert the problem of SBox search
to a Satisfiability Modulo Theory (SMT) instance, before
passing the instance to a solver. The solver which is used
in this case is the Simple Theorem Prover (STP), which

takes an SMT instance in a particular format. In this way,
they managed to find some 4- and 5-bit SBoxes from the
user-specified properties. No source-code is made public
by [4] though, only some code snippets are given within
the paper. This motivates us to create a complete and
easy-to-use open-source tool.

Contribution & Organization

The background material is covered in Section II. After
this, the basic SMT model is described in Section III.
At its core, our tool uses SMT conversion and solving,
similar to that of [4]. In other words, given the desired
properties (which are taken from configuration file in
JSON format), our tool converts the search problem to
an instance of SMT problem. Thereafter an SMT solver
(in this case, an STP solver) is used. The source-code
of our tool can be accessed as an open-source project
online1. Thereafter, we present some ASIC benchmarks
in Section VII where we show the reduced costs from
what are currently reported. The newly found SBoxes
(and impossibility results) are abridged in Section VI.
Finally, the paper concludes in Section VIII.

II. BACKGROUND/PREREQUISITES

A. SBox and Its Cryptographic Properties

Bijective SBoxes are used almost exclusively; Non-
bijective SBoxes are used sporadically, such as in the
legacy cipher DES (6×4) or GAGE/INGAGE [5]. However,
search for both bijective and non-bijective SBox is an
interesting area of research [3].

Differential Distribution Table Let S: Fn
2 → Fn

2

be an SBox. For any α ∈ Fn
2 and β ∈ Fn

2

DDT or δS(α, β) is defined as : δS(α, β) =
{x ∈ Fn

2 | S(x)⊕ S(x⊕ α) = β}

1Located at https://github.com/mnswdhw/Sasquatch-public.

https://github.com/mnswdhw/Sasquatch-public

2

Differential Uniformity [6] The differential uniformity
of an SBox S: Fn

2 → Fn
2 is defined as : U(S) ≜

maxα∈Fn
2 \{0},β∈Fm

2
δS(α, β) The U(S) of a SBox is ≥

2. When U(S) is 2, we call the SBoxalmost perfect
non-linear (APN).

Differential Branch Number The differential
branch number (DBN) of an SBox is defined as:
min {HW(α) + HW(β) | δS(α, β) ̸= 0, 0 ≤ α, β < 2n}

Linear Approximation Table Let S: Fn
2 → Fn

2

be an SBox.For any α ∈ Fn
2 and β ∈ Fn

2

LAT or λS(α, β) is defined as : λS(α, β) =
{x ∈ Fn

2 | α · x⊕ β · S(x) = 0} − 2n−1 =
1
2

∑
x∈Fn

2
(−1)α·x⊕β·S(x)

The Walsh Fourier Transform is defined as :
WS(α, β) ≜

∑
x∈Fn

2
(−1)α·x⊕β·S(x)

Linearity [6] The Linearity of an SBox S: Fn
2 → Fn

2

is defined as :
L(S) = maxα∈Fn

2 ,β∈Fm
2 \{0} |WS(α, β)|

For bijective SBoxes, L(S) ≥ 2(n+1)/2. When the
linearity of an SBox S reaches the lower bound, this
S is called almost bent (AB) function. It is advised to
keep the linearity as low as possible for better resistance
against linear cryptanalysis. An AB function has the
maximum resistance against both differential and linear
cryptanalysis, as an AB function is also APN function.

Linear Branch Number (LBN) The linear
branch number (LBN) of an SBox is defined as:
min {HW(α) + HW(β) | λS(α, β) ̸= 0, 0 ≤ α, β < 2n}

B. SMT Problem

In computer science, a Boolean satisfiability problem
(SAT) [7] is the problem of determining if there exists
an interpretation that satisfies a given Boolean formula,
i.e., it asks whether the variables involved in a given
Boolean formula can be consistently replaced by True or
False. If this is the case, the formula is called satisfiable,
otherwise unsatisfiable. In certain application, we also
consider arithmetic operations, for instance, the arithmetic
sum of Boolean variables, which leads to the satisfiability
modulo theory (SMT) problem. In an SMT [8] problem,
some functions and predicate symbols have additional
interpretations for the decision formula, which makes
it become a much richer language than SAT. Solving
SAT and SMT problems, there are many public available
solvers. In this paper, we translate our problem that
determining a division trail of a non-binary matrix is
valid to an SMT problem, and deploy the STP [9] and
Cryptominisat-5 [10] as our solvers.

SMT has certain similarity with the 0-1 integer pro-
gramming problem or mixed integer linear programming
(MILP), while the underlying ideas of solving them differ

significantly. For the MILP, linear programming solvers
first regard the problem as a general linear programming
problem in real numbers, then by branch-and-cut strategy,
they carefully rule out the illegal branches and then limit
the solution to 0-1 integers. SMT solvers try to translate
the problem to SAT, then solve it in a binary field. Due to
the different methodologies of solvers, their performances
depend heavily on the background and the structure of
the underlying problem.

C. SBox Search Strategy in Other Works

In general, a new SBox is either presented in a new
cipher construction (such as, APN function [11], [12] or
linear structure [13, Chapters 7, 8]) or a paper specializing
in finding new SBoxes (such as, [3], [14]).

III. SMT MODEL FOR SBOX SEARCH

In [4], Lu et al. introduce a general SMT/SAT model
of searching for SBoxes with desirable cryptographic
properties such as the differential branch number (DBN),
linear branch number (LBN) or differential uniform
and so on. Here we adapted their paper to search
for SBoxes with a proper number of LS, DBN and
LBN. Following [4], we also take the STP [9] and
Cryptominisat-5 [10] as our solvers. Note that other
solvers do exist, e.g., Z32 is used in [15], [16].

STP and Cryptominisat-5 are already popular in
cryptographic research community, where these have
been used; for instance, to search for differential and
linear characteristics [17], impossible differentials [18]
and division properties [19], [20]. The Sage3 binding for
Cryptominisat is used in other areas in cryptography
[21], [22]. Since Cryptominisat-5 is called by STP
automatically, we only need to concentrate on the STP
itself. The grammar of STP can be found in its website4,
we also introduce some basic statements here for the sake
of clarity.

The SMT solver STP takes CVC language as one of
its input language and it focuses on the bit vectors. There
are two main variable types in STP.

• BITVECTOR(n): Declares a bit vector variable of
length n;

• BITVECTOR(n) of BITVECTOR(m): Declare an
array with n-bit index and the value of each element
is an m-bit vector, and we denote it as ARRAY (n,m)
in this document.

2Available at https://github.com/Z3Prover/z3.
3https://doc.sagemath.org/html/en/reference/sat/sage/sat/solvers/

cryptominisat.html.
4Available at https://stp.github.io.

https://github.com/Z3Prover/z3
https://doc.sagemath.org/html/en/reference/sat/sage/sat/solvers/cryptominisat.html
https://doc.sagemath.org/html/en/reference/sat/sage/sat/solvers/cryptominisat.html
https://stp.github.io

3

ARRAY is the key component which can be used to model
an SBox or its differential distribution table (DDT). STP
supports almost all the word-wise and bit-wise functions
between vectors and arithmetic operations. We focus on
bit-wise operations such as XOR and arithmetic operations
such as PLUS in our models to simulate the generation
of the DDT from an SBox. STP also allows condition
statements IF-ELSE-THEN. With these operations, we
can model any constraints in order to accumulate the
difference pairs.

The core of Lu et al.’s [4] model is to construct
constraints on the conversion between an SBox and its
differential distribution table (DDT) or linear approxima-
tion table (LAT) based on the STP grammars. Here we
briefly recall these constraints.

Constraints for SBox and DDT

For an SBox: S : Fn
2 → Fn

2
5, each entry of the

corresponding DDT which is a two-dimensional table
with 2n rows and 2n columns that can be calculated as

DDT(∆i,∆o) = #{x ∈ Fn
2 : S(x)⊕ S(x⊕∆i) = ∆o},

where ∆i and ∆o are called the input and output
difference, respectively. The SBox can be represented by
an ARRAY variable while the DDT can be represented
by 22n BITVECTOR variables. The SBox should be a
map, then we add the first 22n constraints on SBox as

S(x) ̸= S(y), if x ̸= y, ∀ x, y ∈ Fn
2 .

To link an SBox S with its DDT, we use the STP
language to simulate the process of generating the DDT
from an SBox. For any input/output difference pair
(∆i,∆o), we introduce 2n binary (one-bit BITVECTOR
variable) dummy variables X (∆i,∆o, x) for x ∈ Fn

2

indicating whether S(x)⊕ S(x⊕∆i) = ∆o, concretely,

X (∆i,∆o, x) =

{
1, if S(x)⊕ S(x⊕∆i) = ∆o

0, if S(x)⊕ S(x⊕∆i) ̸= ∆o
.

This can be implemented by the IF-ELSE-THEN state-
ment of STP. Additionally, due to the symmetry of the
XOR operation, we also require

X (∆i,∆o, x) = X (∆i,∆o, x⊕∆i). (1)

Then for all 22n possibilities of (∆i,∆o), we totally need
23n binary dummy variables. The entry of DDT(∆i,∆o)
is then calculated by

DDT(α, β) =
∑
x∈Fn

2

X (∆i,∆o, x).

The summation is easy to implement using the BVPLUS
statement.

5For simplicity, here we only consider the SBoxes that are
permutations.

Constraints for SBox and LAT

The LAT of a SBox is also a two-dimensional
table with 2n rows and 2n columns, represented by
22n BITVECTOR variables. Each entry of the LAT is
calculated by

LAT(Γi,Γo) = {x ∈ Fn
2 : Γi · x = Γo · S(x)},

where Γi,Γo ∈ Fn
2 are the input and output masks,

respectively, α · β is the inner product of α and β.
Since STP supports the bit operation AND (&) and XOR
(BVXOR), with 23n binary dummy variables X ′(Γi,Γo, x)
we are easy to simulate the generation of the LAT akin
to the generation of the DDT. Note we do not need
Equation (1) to explicitly require the symmetry.

Constraints for DBN and LBN

We have set up the constraints binding the SBox and
its DDT and LAT, then we can add more constraints on
DDT or LAT to obtain some fine properties we want.
The DBN is defined and calculated as

min
∆i,∆o∈Fn

2

{wt(∆i) + wt(∆o) : DDT(∆i,∆o) ̸= 0} .

Similarly, LAT is defined and calculated as,

min
Γi,Γo∈Fn

2

{
wt(Γi) + wt(Γo) : LAT(Γi,Γo) ̸= 2n−1

}
.

Hence, to force the DBN be a given value, we add the
following constraints,{

DDT(∆i,∆o) = 0, ∀ ∆i,∆o ∈ Fn
2 s.t. wt(∆i) + wt(∆o) < DBN

CON
wt(∆i)+wt(∆o)=DBN

̸= 0||0|| · · · ||0 ,

where CON
wt(∆i)+wt(∆o)=DBN

stands for the concatenation

of all entries of DDT with the DBN being DBN. The
first equation lets all entries be zero if the branch number
of the corresponding input and output differences are
less than the DBN, while the second forces at least one
entry with the branch number equaling DBN to meet the
definition of the DBN.

For the LBN of the LAT, the process is almost the same
except that we focus on the bias. Then the constraints
for the LBN are

{
LAT(Γi,Γo) = 2n−1, ∀ Γi,Γo ∈ Fn

2 s.t. wt(Γi) + wt(Γo) < LBN,

CON
wt(Γi)+wt(Γi)=LBN

LAT(∆i,∆o) ̸= 2n−1||2n−1|| · · · ||2n−1 .

4

Constraints for number of LS

The constraints for the number of linear structure is
not included in the original model of [4]. To construct
the constraints forcing the DDT have a given number
of LS, we need 22n binary dummy variables S(∆i,∆o)
satisfying

S(∆i,∆o) =

{
1, if DDT(∆i,∆o) = 2n

0, if DDT(∆i,∆o) < 2n
.

Then the number of LS denoted by NLS can be
constrained by

∑
∆i,∆o∈Fn

2
S(∆i,∆o).

IV. SASQUATCH DESCRIPTION

Using this tool, we can search multiple SBoxes
concurrently or in sequence. This section will elaborate on
the cryptographic properties that are currently supported
as well as other crucial features.

A. Global Parameters

• Global Timeout: Specify the time in seconds, it
will wait for finding the SBoxes. If this parameter is
specified then it will override the individual timeout
option of particular SBox.

• Sequential: Boolean True/False, to control parallel
processing of SBoxes.

• Output Directory: User specified results directory.
• Debug: Boolean True/False. If True, Store debug

files to assist the developer.

B. SBox Specific Parameters

• Size: Size of the SBox.
• Fixed Point: If false, then SBox will not have any

fixed point.
• Differential Uniformity: Specify the required dif-

ferential uniformity value of the SBox and the sign
==,≥ or ≤. == means the SBox will have the
specified value (≥ will make the SBox will have
differential uniformity at least the specified value, ≤
will make the SBox will have differential uniformity
at most the specified value).

• Frequency DU: Specify the number of differential
uniformity values required in the DDT table.

• Linearity: Specify the required linearity value and
the sign ==,≥ or ≤. The interpretations of these
signs are the same as in differential uniformity.

• Frequency DU: Specify the number of linearity
values required in the LAT table.

• Bad Input Bad Output DDT: Here, BIBO means
that the hamming weight of both input and output

CODE 1: CVC formulation for DDT

1 //Initialize Variables
2 DDT(a,b) : BITVECTOR(n) //for all a,b
3 istrue(a,b,x) : BITVECTOR(1) //for all

a,b,x↪→

4

5 //Compute DDT
6

7 ASSERT(IF BVXOR(S[x], b) = S[BVXOR(x,
a)] THEN↪→

8 IsTrue[a, b, x] = 0bin1 ELSE IsTrue[a, b,
x] = 0bin0 ENDIF);↪→

9 ASSERT(DDT[a, b] = BVPLUS(n, IsTrue[a,
b, 0], IsTrue[a, b, 1],....));↪→

differences (or masks) is exactly one. Specify the
number of BIBO patterns in the DDT table.

• Bad Input Bad Output LAT: Specify the number
of BIBO patterns in the LAT table.

• Differential Branch Number: Specify the DBN of
the SBox and the associated sign from ==,≥ or ≤.

• Linear Branch Number: Specify the LBN of the
SBox and the associated sign from ==,≥ or ≤.

• Boomerang Connectivity Table: Boolean
True/False. If True, it will compute the BCT table
of the SBox.

• Involution: Boolean True/False. If true, the SBox
will be equal to it’s inverse construction.

• Look-up: Specify the entries in the lookup table of
the SBox and the corresponding signs ==,≥ or ≤.

• Time-out: Specify the timeout of individual SBox.

V. CVC CODES

The Simple Theorem Prover (STP) is a constraint
solver for the theory of quantifier-free bitvectors that
can solve many kinds of problems generated by program
analysis tools, theorem provers, automated bug finders,
cryptographic algorithms, intelligent fuzzers and model
checkers.The file based input formats that STP reads are
the: CVC, SMT-LIB1, and SMT-LIB2 formats. STP also
offers the functionality to convert from one format to
another seamlessly. We need to model the problem of
finding the SBox, satisfying the required constraints into
a satisfiability problem. For doing this first we need to
model the DDT and LAT table using CVC.

Codes 1, 2, 3, 4, 5 and 6 show the basic CVC
formulation for DDT, LAT, DU, linearity, DBN and
LBN, respectively with inline comments. Any of the
CVC codes are for representation purposes only (not
directly executable). Note that is used concatenate two
binary strings; and there is no inherent comment character,
but we use // to write inline comments.

5

CODE 2: CVC formulation for LAT

1 // Initialize Variables (for a 4 bit
S-box)↪→

2 LAT(a,b) : BITVECTOR(6) //for all a,b
3 istrue(a,b,x) : BITVECTOR(1) //for all

a,b,x↪→

4 H: ARRAY BITVECTOR(4) OF BITVECTOR(4)
//define hamming weight table↪→

5 ASSERT(H[0bin0001] = 0bin0001) // assert
for all values↪→

6 W(a,b) : BITVECTOR(7)
7

8 //Compute LAT
9 ASSERT(IF ((H[BVXOR((a & x),(b &

S[x]))] & 0bin0001) = 0bin0000) THEN
istrue(a,b,x) = 0bin1 ELSE
istrue(a,b,x) = 0bin0 ENDIF); //for
all a,b,x

↪→

↪→

↪→

↪→

10

11 ASSERT(LAT(a,b) = BVSUB(6, BVPLUS(6,
0bin00000@istrue(a,b,x),
0bin00000@istrue(a,b,x1)......,
0bin001000));

↪→

↪→

↪→

12 W(a,b) = 2* LAT(a,b) //for all a,b

CODE 3: CVC formulation for DU

1 //Initialize Variables
2 #Freq[a,b] : BITVECTOR(<size>)
3 Freq[a,b] : BITVECTOR(1) // for all a,b
4

5 // U(S) is the given DU value
6 DDT[a,b] <= U(S) // for all a,b
7 ASSERT(IF DDT[a, b] = U(S) THEN
8 Freq[a, b] = 0bin1 ELSE Freq[a, b] =

0bin0 ENDIF);↪→

9 ASSERT(#Freq = BVPLUS(n, Freq[a1,b1],
Freq[a2,b2],....));↪→

10 ASSERT(#Freq = <required frequency du>)

CODE 4: CVC formulation for linearity

1 % //Initialize Variables
2 % #Freq[a,b] : BITVECTOR(<size>)
3 % Freq[a,b] : BITVECTOR(1) // for all a,b
4

5 % // L(S) is the given DU value
6 % abs(W[a,b]) <= L(S) // for all a,b
7 % ASSERT(IF W[a, b] = L(S) THEN
8 % Freq[a, b] = 0bin1 ELSE Freq[a, b] =

0bin0 ENDIF);↪→

9 % ASSERT(#Freq = BVPLUS(n, Freq[a1,b1],
Freq[a2,b2],....));↪→

10 % ASSERT(#Freq = <required frequency lu>)

CODE 5: CVC formulation for DBN

1 % //Here `wt` represents Hamming weight
2 % ASSERT(DDT[a,b] = 0bin0) //for each

wt(a) + wt(b) < DBN.↪→

3 % ASSERT(DDT[a,b] /= 0bin0) //for each
wt(a) + wt(b) = DBN.↪→

CODE 6: CVC formulation for LBN

1 % //Here `wt` represents Hamming weight
2 % ASSERT(LAT[a,b] = 0bin0) //for each

wt(a) + wt(b) < LBN.↪→

3 % ASSERT(LAT[a,b] /= 0bin0) //for each
wt(a) + wt(b) = LBN.↪→

VI. RESULTS (NEW SBOXES AND IMPOSSIBILITY)

A. Impact of Redundant Constraints

The search procedure is deterministic – the same output
will always be obtained for the same input constraints.
Being partly motivated from [23], we also experiment
with some redundant constraints.

Redundant constraints are those constraints that do not
affect the optimal solution found by the STP solver, but
they influence the solver’s run time. To reduce the run
time of the solver, the idea is to insert more constraints
so as to minimize its search space. This can also have the
opposite outcome of increasing the run-time sometimes.
In [24], the authors observe that the number of constraints
can influence the solution time taken by the MILP solver
Gurobi. Inspired by this, we also experiment with the
STP solver by putting redundant constraints in calculation
of DDT and differential uniformity. Table I captures the
impact on run-time in a nutshell.

1) DDT contains no odd value: The DDT of an SBox
cannot have odd values as its entries. To prevent the
STP solver from asserting the different constraints when
a value in DDT is considered odd, we can think of
asserting an extra condition (redundant) that no entry
of a DDT is odd. We conduct a simple experiment of
calculating the DU for different SBoxes under various
configurations.

2) Reducing variables: In this experiment, we check
the effect of reducing the number of variables controlled
by the STP solver for a computation. Under a special
case: sign in DU computation is == and frequency du
is null, we can significantly reduce the computation time.
This effect is more pronounced when the SBox search is
difficult or when the SBox is large (≥ 7-bit). Under the
case mentioned above, we can do away with the #Freq
and Freq mentioned in Code 3. We make the assertion
here, for at least one DDT entry to be equal to the
specified value and another assertion that all DDT values
be less than or equal to the specified value. This way the
only dependence for the computation of DU is on DDT
entries.

B. Outcome

We have found a 5-bit APN SBox with this tool.
Currently the only known 5-bit APN SBoxes are given

6

TABLE I: Impact of redundant constraints

(A) DDT odd value

Configuration Time w/o RC (sec) Time w RC (sec)
5 bit 16 DU 127.72 212.31
5-bit/8DU 22.8 30.76
4-bit/8DU 2.44 3.47

(B) With and without frequency

Configuration Time w/o RV (sec) Time w RV (sec)
4-bit/8 DU 2.64 2.46
5-bit/8DU 21.82 21.46
5-bit/16DU 122.64 41

by [6] and [25]. Our SBox is different from these SBoxes.
Although our SBox can be affine equivalent (AE) to [25]
(both have the same linearity and distribution of unique
values in LAT table), but it is difficult to ascertain because
proving two SBoxes to be AE is a difficult problem. Our
tool does not seem to scale up for 8-bit SBoxes.

We found the interesting outcomes as listed6:
• 4-bit/3LBN/0LS (not affine): 4, 13, 1, 8, 7, 2, 10,

15, 11, 14, 6, 3, 9, 0, 12, 5
• 4-bit/3DBN/3LBN/0LS does not exist
• 5-bit/16LS does not exist
• 5-bit/4DBN: 3, 16, 26, 29, 4, 30, 23, 11, 28, 5, 17,

22, 9, 2, 14, 24, 21, 15, 12, 1, 10, 19, 25, 6, 18, 8,
7, 27, 31, 20, 0, 13

• 6-bit/4DBN: 10, 7, 25, 53, 56, 20, 33, 14, 41, 12,
60, 38, 0, 19, 26, 63, 55, 46, 30, 2, 45, 1, 16, 58,
34, 31, 4, 43, 62, 48, 29, 37, 21, 40, 15, 35, 54, 13,
28, 18, 36, 50, 22, 24, 47, 57, 51, 42, 6, 11, 61, 23,
59, 39, 3, 49, 8, 5, 27, 52, 17, 44, 32, 9

• 7-bit/5DBN/5LBN/0NL: 34, 45, 17, 75, 72, 113, 86,
58, 93, 82, 110, 52, 55, 14, 41, 69, 71, 126, 12, 96,
27, 20, 125, 39, 56, 1, 115, 31, 100, 107, 2, 88, 116,
24, 63, 6, 5, 95, 99, 108, 11, 103, 64, 121, 122, 32,
28, 19, 105, 51, 90, 85, 46, 66, 48, 9, 22, 76, 37,
42, 81, 61, 79, 118, 30, 68, 120, 119, 111, 3, 36, 29,
97, 59, 7, 8, 16, 124, 91, 98, 53, 89, 43, 18, 114,
40, 65, 78, 74, 38, 84, 109, 13, 87, 62, 49, 83, 106,
77, 33, 57, 54, 10, 80, 44, 21, 50, 94, 70, 73, 117,
47, 0, 15, 102, 60, 92, 101, 23, 123, 127, 112, 25,
67, 35, 26, 104, 4

• 7-bit/4DBN/6NL: 42, 39, 95, 59, 123, 41, 100, 106,
65, 88, 84, 15, 25, 30, 43, 1, 18, 11, 124, 34, 97, 4,
89, 82, 94, 60, 27, 8, 54, 19, 69, 57, 45, 93, 3, 114,
117, 10, 58, 13, 121, 0, 111, 74, 23, 67, 76, 120, 31,
80, 119, 105, 90, 56, 28, 17, 98, 55, 21, 48, 109,
86, 33, 38, 36, 14, 61, 92, 7, 24, 9, 115, 79, 66, 99,

6Some more 4-bit SBoxes with LS are available in the code
repository.

112, 113, 107, 50, 77, 70, 96, 12, 22, 108, 62, 118,
85, 20, 73, 122, 5, 103, 53, 78, 47, 49, 83, 101, 40,
63, 35, 52, 6, 68, 127, 87, 102, 91, 72, 46, 81, 126,
2, 16, 71, 32, 29, 125, 110, 37, 116, 75, 64, 51, 44,
104, 26

• 6-bit/3DBN/Inv/18NL: 17, 11, 48, 22, 43, 26, 10,
57, 13, 23, 6, 1, 36, 8, 55, 62, 31, 0, 41, 28, 61, 59,
3, 9, 46, 40, 5, 27, 19, 29, 30, 16, 42, 38, 54, 37,
12, 35, 33, 63, 25, 18, 32, 4, 53, 45, 24, 49, 2, 47,
60, 58, 56, 44, 34, 14, 52, 7, 51, 21, 50, 20, 15, 39

• 6-bit/4DBN/Inv: 63, 16, 56, 12, 28, 46, 18, 25, 38,
57, 10, 50, 3, 13, 32, 60, 1, 54, 6, 19, 23, 35, 41,
20, 43, 7, 29, 36, 4, 26, 51, 47, 14, 45, 39, 21, 27,
55, 8, 34, 58, 22, 49, 24, 61, 33, 5, 31, 53, 42, 11,
30, 62, 48, 17, 37, 2, 9, 40, 59, 15, 44, 52, 0

• 5-bit/4DBN/Inv: 24, 1, 13, 18, 31, 12, 6, 21, 11, 30,
23, 8, 5, 2, 16, 27, 14, 20, 3, 25, 17, 7, 28, 10, 0,
19, 26, 15, 22, 29, 9, 4

• 5-bit/2DU(APN)/4ALU: 16, 23, 28, 21, 30, 11, 19,
29, 24, 1, 0, 8, 14, 12, 31, 25, 5, 4, 2, 15, 27, 7, 17,
20, 10, 9, 22, 6, 26, 13, 3, 18

• 6-bit/4DU: 32, 1, 39, 25, 14, 13, 20, 45, 35, 61, 52,
19, 27, 11, 34, 8, 54, 33, 50, 3, 55, 46, 24, 12, 2,
15, 53, 9, 57, 18, 0, 63, 7, 41, 38, 28, 48, 5, 40, 62,
6, 43, 49, 16, 21, 10, 42, 29, 44, 23, 31, 26, 47, 58,
37, 17, 56, 60, 30, 4, 59, 36, 51, 22

• 5-bit/2DU(APN)/4ALU: 19, 12, 26, 9, 5, 1, 15, 7,
23, 6, 0, 29, 22, 28, 2, 4, 8, 3, 30, 25, 27, 11, 14,
18, 16, 21, 24, 17, 20, 10, 31, 13

• 5-bit/2DU(APN)/4ALU: 0, 29, 25, 2, 21, 31, 15, 19,
30, 14, 27, 9, 16, 28, 20, 10, 13, 11, 5, 22, 8, 6, 26,
17, 23, 1, 4, 3, 7, 18, 12, 24

• 6-bit/2DBN/8DU: 3, 13, 57, 43, 8, 33, 55, 19, 45,
60, 21, 31, 18, 37, 46, 38, 54, 50, 7, 56, 2, 30, 12,
61, 23, 1, 52, 34, 10, 40, 32, 28, 20, 63, 36, 16, 29,
24, 41, 0, 17, 14, 44, 49, 4, 27, 9, 22, 26, 48, 58,
25, 59, 53, 47, 39, 62, 51, 6, 5, 11, 15, 42, 35

• 5-bit/2DBN/8DU/Inv: 22, 26, 19, 29, 14, 12, 10, 13,
28, 24, 6, 25, 5, 7, 4, 30, 23, 21, 20, 2, 18, 17, 0,
16, 9, 11, 1, 31, 8, 3, 15, 27

• 5-bit/8LS: 3, 6, 21, 16, 20, 17, 7, 2, 15, 10, 28, 25,
24, 29, 14, 11, 22, 19, 5, 0, 1, 4, 23, 18, 26, 31, 12,
9, 13, 8, 30, 27

VII. ASIC BENCHMARKS

We report updated ASIC costs of SBoxes using
a different (coordinate function) representation of the
SBoxes. We use the same ASIC library, namely, Mentor
LeonardoSpectrum Level 3 (2018a.2) is used for synthesis
with the UMC 65 nm Low-Power RVT (Regular VT)
Standard Performance Generic Core Cell Library from
Faraday. Implementation of all the SBoxes in this article

7

are done in Verilog. Using the library, we have also
calculated the power and latency incurred for the hardware
implementation of the SBoxes. The results are shown in
Table II.

TABLE II: ASIC cost comparison

SBox Our cost (GE) Cost in [24] (GE)
S1 86.25 86.71
S2 142.00 158.59
S3 36.50 44.53

S1: 0, 58, 47, 28, 3, 29, 24, 15, 23, 53, 32, 11, 46, 40,
45, 34, 61, 35, 62, 41, 16, 42, 39, 20, 1, 7, 26, 21, 22,
52, 57, 18, 30, 54, 17, 48, 9, 5, 50, 55, 8, 56, 31, 38, 37,
49, 6, 27, 2, 14, 33, 36, 59, 19, 44, 13, 63, 43, 4, 25, 60,
12, 51, 10

S2: 0, 45, 48, 15, 58, 32, 14, 49, 13, 7, 41, 12, 3, 54,
55, 26, 42, 25, 22, 34, 60, 38, 53, 31, 21, 51, 4, 24, 27,
28, 43, 33, 39, 19, 30, 63, 16, 1, 59, 8, 57, 62, 29, 50,
6, 44, 36, 17, 23, 10, 56, 37, 9, 47, 5, 20, 40, 52, 35, 2,
18, 61, 46, 11

S3: 0, 27, 14, 17, 22, 15, 24, 5, 30, 7, 25, 4, 11, 16,
12, 19, 3, 8, 9, 6, 21, 28, 31, 18, 20, 29, 23, 26, 1, 10,
2, 13

VIII. CONCLUSION

The main objective in this work is to present an open-
source tool named SASQUATCH, and also show several
ASIC benchmarks for the SBoxes. Our tool offers an
easy-to-use interface to find an SBox given the desirable
properties of the SBox (if exists). We have included
support for properties like differential uniformity and/or
its frequency, the maximum entry in the absolute LAT
and/or its frequency, linearity, differential and linear
branch number, non-bijective SBox. Additional search
options like parallel processing, time limit, information
about some of the look-up values etc. are also included in
our tool. We find some new SBoxes/impossibility results
using SASQUATCH (such as, 5-bit bijective SBox with
differential uniformity 2).

We are confident that this tool will help the upcoming
cipher designers immensely by allowing them to quickly
find a large pool of SBoxes with the properties they
want. Although the problem has been studied before
(most notably in the DCC’22 paper [4]), our tool offers
the maximum set of options/alternative to the best of
our finding, it is easily extensible, and can be used
without delving into the intricacy of the source codes.
In future, one may be interested to cover other features
like those needed for side channel countermeasure to an
SBox, finding a linear permutation layer, or many-to-one
Boolean functions.

REFERENCES

[1] S. Sarkar, H. Syed, R. Sadhukhan, and D. Mukhopadhyay,
“Lightweight design choices for led-like block ciphers,”
Cryptology ePrint Archive, Paper 2017/1031, 2017, https:
//eprint.iacr.org/2017/1031. [Online]. Available: https://eprint.
iacr.org/2017/1031

[2] R. Avanzi, “The QARMA block cipher family. almost MDS
matrices over rings with zero divisors, nearly symmetric
even-mansour constructions with non-involutory central rounds,
and search heuristics for low-latency s-boxes,” IACR Trans.
Symmetric Cryptol., vol. 2017, no. 1, pp. 4–44, 2017. [Online].
Available: https://doi.org/10.13154/tosc.v2017.i1.4-44

[3] M. Brinkmann and G. Leander, “On the classification of
APN functions up to dimension five,” Des. Codes Cryptogr.,
vol. 49, no. 1-3, pp. 273–288, 2008. [Online]. Available:
https://doi.org/10.1007/s10623-008-9194-6

[4] Z. Lu, S. Mesnager, T. Cui, Y. Fan, and M. Wang,
“An stp-based model toward designing s-boxes with good
cryptographic properties,” Designs, Codes and Cryptography,
vol. 90, no. 5, pp. 1179–1202, 2022. [Online]. Available:
https://doi.org/10.1007/s10623-022-01034-2

[5] D. Gligoroski, H. Mihajloska, D. Otte, and M. El-Hadedy, “Gage
and ingage v1.03,” 2019, http://gageingage.org/.

[6] K. Nyberg, “Differentially uniform mappings for cryptography,”
in Advances in Cryptology — EUROCRYPT ’93, T. Helleseth,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp.
55–64.

[7] S. A. Cook, “The complexity of theorem-proving procedures,”
in Proceedings of the third annual ACM symposium on Theory
of computing, 1971, pp. 151–158.

[8] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli,
“Satisfiability modulo theories,” in Handbook of Satisfiability,
ser. Frontiers in Artificial Intelligence and Applications,
A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds.
IOS Press, 2009, vol. 185, pp. 825–885. [Online]. Available:
https://doi.org/10.3233/978-1-58603-929-5-825

[9] V. Ganesh and D. L. Dill, “A decision procedure for
bit-vectors and arrays,” in Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July
3-7, 2007, Proceedings, ser. Lecture Notes in Computer
Science, W. Damm and H. Hermanns, Eds., vol. 4590.
Springer, 2007, pp. 519–531. [Online]. Available: https:
//doi.org/10.1007/978-3-540-73368-3 52

[10] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers
to cryptographic problems,” in Theory and Applications of
Satisfiability Testing - SAT 2009, 12th International Conference,
SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings,
ser. Lecture Notes in Computer Science, O. Kullmann, Ed.,
vol. 5584. Springer, 2009, pp. 244–257. [Online]. Available:
https://doi.org/10.1007/978-3-642-02777-2 24

[11] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel,
B. Mennink, N. Mouha, Q. Wang, and K. Yasuda, “Primates
v1.02,” 2014, submission to CAESAR. [Online]. Available:
http://competitions.cr.yp.to/round2/primatesv102.pdf

[12] B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel, and
Q. Wang, “Fides: Lightweight authenticated cipher with side-
channel resistance for constrained hardware,” in Cryptographic
Hardware and Embedded Systems - CHES 2013 - 15th
International Workshop, Santa Barbara, CA, USA, August
20-23, 2013. Proceedings, ser. Lecture Notes in Computer
Science, G. Bertoni and J. Coron, Eds., vol. 8086. Springer,
2013, pp. 142–158. [Online]. Available: https://doi.org/10.1007/
978-3-642-40349-1 9

https://eprint.iacr.org/2017/1031
https://eprint.iacr.org/2017/1031
https://eprint.iacr.org/2017/1031
https://eprint.iacr.org/2017/1031
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1007/s10623-008-9194-6
https://doi.org/10.1007/s10623-022-01034-2
http://gageingage.org/
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-642-02777-2_24
http://competitions.cr.yp.to/round2/primatesv102.pdf
https://doi.org/10.1007/978-3-642-40349-1_9
https://doi.org/10.1007/978-3-642-40349-1_9

8

[13] A. Baksi, Classical and Physical Security of Symmetric Key
Cryptographic Algorithms. Springer, Singapore, 2022, https:
//doi.org/10.1007/978-981-16-6522-6.

[14] G. Ivanov, N. Nikolov, and S. Nikova, “Reversed genetic
algorithms for generation of bijective s-boxes with good
cryptographic properties,” Cryptogr. Commun., vol. 8, no. 2,
pp. 247–276, 2016. [Online]. Available: https://doi.org/10.1007/
s12095-015-0170-5

[15] S. Kumar, V. A. Dasu, A. Baksi, S. Sarkar, D. Jap, J. Breier,
and S. Bhasin, “Side channel attack on stream ciphers: A
three-step approach to state/key recovery,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol.
2022, no. 2, p. 166–191, Feb. 2022. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/9485

[16] A. Baksi, S. Kumar, and S. Sarkar, “A new approach for side
channel analysis on stream ciphers and related constructions,”
IEEE Trans. Computers, vol. 71, no. 10, pp. 2527–2537, 2022.
[Online]. Available: https://doi.org/10.1109/TC.2021.3135191

[17] Y. Liu, H. Liang, M. Li, L. Huang, K. Hu, C. Yang, and M. Wang,
“STP models of optimal differential and linear trail for s-box
based ciphers,” Cryptology ePrint Archive, Report 2019/025,
2019, https://eprint.iacr.org/2019/025.

[18] X. Hu, Y. Li, L. Jiao, S. Tian, and M. Wang, “Mind
the propagation of states - new automatic search tool for
impossible differentials and impossible polytopic transitions,”
in Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea,
December 7-11, 2020, Proceedings, Part I, ser. Lecture Notes
in Computer Science, S. Moriai and H. Wang, Eds., vol.
12491. Springer, 2020, pp. 415–445. [Online]. Available:
https://doi.org/10.1007/978-3-030-64837-4 14

[19] K. Hu, Q. Wang, and M. Wang, “Finding bit-based division
property for ciphers with complex linear layers,” IACR
Trans. Symmetric Cryptol., vol. 2020, no. 1, pp. 396–424,
2020. [Online]. Available: https://doi.org/10.13154/tosc.v2020.
i1.396-424

[20] K. Hu and M. Wang, “Automatic search for a variant of division
property using three subsets,” in Topics in Cryptology - CT-RSA
2019 - The Cryptographers’ Track at the RSA Conference
2019, San Francisco, CA, USA, March 4-8, 2019, Proceedings,
ser. Lecture Notes in Computer Science, M. Matsui, Ed., vol.
11405. Springer, 2019, pp. 412–432. [Online]. Available:
https://doi.org/10.1007/978-3-030-12612-4 21

[21] A. Baksi, S. Maitra, and S. Sarkar, “An improved slide attack
on Trivium,” Journal IPSI Transaction on Internet Research,
2015. [Online]. Available: http://vipsi.org/ipsi/journals/journals/
papers/tar/2015jan/p1.pdf

[22] S. Maitra, S. Sarkar, A. Baksi, and P. Dey, “Key recovery from
state information of sprout: Application to cryptanalysis and
fault attack,” IACR Cryptology ePrint Archive, vol. 2015, p.
236, 2015. [Online]. Available: http://eprint.iacr.org/2015/236

[23] A. Baksi, “New insights on differential and linear bounds using
mixed integer linear programming (full version),” Cryptology
ePrint Archive, Report 2020/1414, 2020, https://eprint.iacr.org/
2020/1414.

[24] S. Sarkar, K. Mandal, and D. Saha, “On the relationship between
resilient boolean functions and linear branch number of s-boxes,”
Cryptology ePrint Archive, Report 2019/1427, 2019, https://
eprint.iacr.org/2019/1427.

[25] B. Bilgin, A. Bogdanov, M. Knežević, F. Mendel, and Q. Wang,
“Fides: Lightweight authenticated cipher with side-channel
resistance for constrained hardware,” 08 2013, pp. 142–158.

https://doi.org/10.1007/978-981-16-6522-6
https://doi.org/10.1007/978-981-16-6522-6
https://doi.org/10.1007/s12095-015-0170-5
https://doi.org/10.1007/s12095-015-0170-5
https://tches.iacr.org/index.php/TCHES/article/view/9485
https://doi.org/10.1109/TC.2021.3135191
https://eprint.iacr.org/2019/025
https://doi.org/10.1007/978-3-030-64837-4_14
https://doi.org/10.13154/tosc.v2020.i1.396-424
https://doi.org/10.13154/tosc.v2020.i1.396-424
https://doi.org/10.1007/978-3-030-12612-4_21
http://vipsi.org/ipsi/journals/journals/papers/tar/2015jan/p1.pdf
http://vipsi.org/ipsi/journals/journals/papers/tar/2015jan/p1.pdf
http://eprint.iacr.org/2015/236
https://eprint.iacr.org/2020/1414
https://eprint.iacr.org/2020/1414
https://eprint.iacr.org/2019/1427
https://eprint.iacr.org/2019/1427

	Introduction
	Background/Prerequisites
	SBox and Its Cryptographic Properties
	SMT Problem
	SBox Search Strategy in Other Works

	SMT Model for SBox Search
	SASQUATCH Description
	Global Parameters
	SBox Specific Parameters

	CVC Codes
	Results (New SBoxes and Impossibility)
	Impact of Redundant Constraints
	DDT contains no odd value
	Reducing variables

	Outcome

	ASIC Benchmarks
	Conclusion
	References

