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Abstract

This work introduces Private Eyes, the first zero-leakage biometric database. The leakage of the system is
unavoidable: 1) the log of the dataset size and 2) the fact that a query occurred. Private Eyes is built from
symmetric searchable encryption. Approximate proximity queries are used: given a noisy reading of a biometric,
the goal is to retrieve all stored records that are close enough according to a distance metric.

Private Eyes combines locality sensitive-hashing or LSHs (Indyk and Motwani, STOC 1998) and oblivious
maps. One computes many LSHs of each record in the database, and uses these hashes as keys in an encrypted
map with the matching biometric readings concatenated as the value. At search time with a noisy reading, one
computes the LSHs, and retrieves the disjunction of the resulting values from the map. The underlying encrypted
map needs to efficiently answer disjunction queries.

We focus on the iris biometric. Iris biometric data requires a large number of LSHs, approximately 1000.
Boldyreva and Tang’s (PoPETS 2021) design yields a suitable map for a small number of LSHs (their application
was in zero-leakage k-nearest-neighbor search).

Our cryptographic design is a zero-leakage disjunctive map designed for the setting when most clauses do
not match any records. For the iris, on average at most 6% of LSHs match any stored value. Our scheme is
implemented and open-sourced.

We evaluate using the ND-0405 dataset; this dataset has 356 irises suitable for testing. To scale our evaluation,
we use a generative adversarial network to produce synthetic irises. Accurate statistics on sizes beyond available
datasets is crucial to optimizing the cryptographic primitives. This tool may be of independent interest. For the
largest tested parameters of a 5000 iris database, search requires 26 rounds of communication and 26 minutes of
single-threaded computation.

Searchable Encryption, Biometrics, Proximity Search

1 Introduction

Biometrics are collected into large databases for search [BBOH96, Dau14, Fou]. Learning stored biometric values
enables an attacker to break authentication and privacy for a user’s lifetime [GRGB+12, MCYJ18, AF20, VS11,
HWKL18, SDDN19]. To reduce this risk, this article develops new searchable encryption techniques for biometric
databases [SWP00,CGKO11]. See previous reviews of searchable encryption [BHJP14,FVY+17,KKM+22].

A client outsources a database DB to an honest but curious server that may learn information called leakage. Prior
work exploits such leakage to reveal sensitive information about the database or queries [IKK12,CGPR15,KKNO16,
WLD+17, GSB+17, GLMP18, KPT19a, MT19, KE19, KPT20, FMC+20, FP22, GPP23, KKM+22]. Since biometrics
cannot be replaced or revoked, we insist on the importance of a zero-leakage system. A zero-leakage system
leaks only unavoidable information: 1) that a query occurs and 2) |DB| (which we pad to a power of
2). Our focus is on an efficient combination of zero-leakage primitives for this task. Our components can be replaced
with higher-leakage components for efficiency gains.
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1.1 Our Contribution

We present PrivateEyes, the first zero-leakage iris proximity search system. PrivateEyes relies on the
following contributions:

1. A parameter analysis that reveals critical inefficiencies of previous designs. Most biometric search systems
phrase proximity queries as a large disjunction. For actual biometrics, 1) this disjunction has hundreds or
thousands of terms and 2) most clauses will not match any stored record.

2. A two-stage design that uses lighter-weight cryptography to find non-null clauses. That is, clauses that match
something in the database. We can then only obliviously search these non-null clauses. Our first phase can be
built with private set intersection (PSI). We benchmark with VolePSI [RS21]. Our second phase is built using
oblivious tree traversal [WNL+14].

3. A prototype implementation with evaluation on random and iris data up to 5000 records [CHF24]. Search
time is at most 26 minutes of single threaded execution and 26 round trips. Our approach is embarrassingly
parallel. We focus on the iris (we briefly discuss the face in Section 3.1). A critical building block of our system
is oblivious RAM (ORAM) where we use a PathORAM [SDS+18a] implementation that averages 1s per access
on a moderate size dataset. Maas et al. [MLS+13] hardware implementation is 2000 times faster. We expect
26 round trips to be the dominant cost in most settings.

To scale beyond the dataset sizes available for irises we also introduce a synthetic iris generation tool that may be
of independent interest.

Organization The rest of this paper is organized as follows: Section 2 reviews our design including relevant prior
work, Section 3 introduces preliminaries, Section 4 presents the details of our system, Section 5 presents the datasets,
Section 6 describes our implementation, Section 7 our evaluation methodology, and Section 8 concludes. Appendix A
describes the architecture that generates synthetic irises.

2 Design Overview

Like prior work [KIK12,FWG+16,WYLH14,LPW+20], our design combines locality-sensitive hashes (LSHs) [IM98]
with a variant of encrypted maps.1 A database is a list of biometrics DB = w1, ..., w` where each wi ∈ {0, 1}n. The
goal of a biometric database is given some w∗ to find all values wi ∈ DB that are similar enough to w∗. For the
Hamming metric D and distance threshold t, the goal is to find all wi such that D(wi, w

∗) ≤ t.2 An LSH maps near
items to the same value more frequently than it maps far items to the same value. Let H be a family of LSHs then

Pr
LSH←H

[LSH(wi) = LSH(w∗)|wi, w∗ are near] ≥ 1− p1,

Pr
LSH←H

[LSH(wj) = LSH(w∗)|wj , w∗ are far] ≤ 1− p2.

where p1 < p2. Maps associate keys to a value and are used to build inverted indices. For a database of size `,
parameter β ∈ Z+, maps M1, ...,Mβ , and LSH family H, one can achieve proximity search as follows:

1. Sample β LSHs, LSH1, ..., LSHβ ← H.

2. For j = 1, ..., β, set Mj [v] = {wi|LSHj(wi) = v}.3

3. To search for value w∗:

(a) Compute LSH1(w∗), · · · , LSHβ(w∗).

1We don’t discuss works that use encrypted maps but require work proportional to the total number of close points, making them
impractical for biometrics [LWW+10,WMT+13,BC14].

2This functionality differs from k-nearest neighbors where the goal is to retrieve the k closest records [BT21]. There have been
leakage abuse attacks against k-nearest neighbor systems that reveal access pattern [KPT19a, KPT19b, LMWY20] and resulting sys-
tems [CCD+20]. These attacks do not apply to our leakage profile.

3If multiple records share the same LSH value our implementation concatenates the matching values. This allows us to handle a
constant number of values associated to each key. This condition is satisfied for the accuracy regimes discussed in this work.
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(b) Retrieve ∪βj=1Mj [LSHj(w
∗)].

Note that the query is a disjunction. Boldyreva and Tang [BT21] constructed a zero-leakage encrypted map scheme
called an oblivious map with encryption or OMapE. Each clause is submitted to the relevant OMapE, the results are
concatenated as in Step 3b above.

Due to their large noise, biometrics require sampling hundreds or thousands of LSHs to achieve reasonable
accuracy (see analysis in Section 3.1 and Section 7). At the same time, very few of these LSHs will match
anything in the corresponding map. Constructions frequently perform heavy oblivious operations to hide the null
value.

Our design separates the tasks of identifying which values are null and finding the associated values. That is, we
first find a small number, called δ, of LSHs values that exist in some map, and then query exactly δ maps in a way
that hides which δ maps are being queried. For the above design to be successful, one needs to demonstrate:

1. Obliviousness One can hide the queried δ maps,

2. Accuracy High accuracy with δ < β, and

3. Speed The approach is faster.

We now provide a more formal description of the approach.

Oblivious Membership Check An object to check which of the LSHs have matches. For an encrypted stored
set X the oblivious membership check or OMC takes in a set W and returns W ′ ⊆ W ∩X where |W ′| ≤ δ. The set
X is the set of all LSH values X = {(j, LSHj(wi))}i,j . For a searched value w∗ the set W = {(j, v)|LSHj(w∗) = v}j .
Our analysis finds a parameter δ that has a small impact on accuracy. We build OMC using private set intersection
and pseudorandom permutations. We benchmark this design using VolePSI [RS21]; the resulting implementation is
orders of magnitude faster than our oblivious map implementation.

Disjunctive Oblivious Map An object that directly searches for the disjunction of exactly δ items. 4These δ
values are the set of LSHs that exist in the map. Using an oblivious data structure with a constant number of queries,
δ, yields a zero-leakage solution. This object has the same functionality as an oblivious map that takes multiple
clauses but the fact that all clauses are presented together is crucial for security. We call this object a DOMapE for
disjunctive oblivious map with encryption. Our focus is on designing a DOMapE.

The input size to both OMC.Search and DOMapE.Search are of constant size which suffices for the two objects
and their composition to be zero-leakage. We show the composition in Figure 1.

To summarize, in the Encrypt stage of the protocol, the client stores the set of all LSH values using the OMC
(with their index j). They also create the map associating LSH values to the corresponding biometric value. In the
Search stage of the protocol, the client computes the LSH values for their input w∗, and uses OMC.Search to find
which values exist in the map M. The map is then used to retrieve the corresponding non-null values.

Boldyreva and Tang [BT21] build β separate maps and search each one for an LSH clause. This approach does
not work if one only queries δ clauses because it reveals which LSHs matched. We build a DOMapE based on oblivious
tree traversal, building on the design principles of Wang et al. [WNL+14]. In our approach, one always performs δ
tree traversals. We use oblivious RAMs to store tree nodes. The oblivious RAMs are organized to minimize nodes
that are stored together while ensuring that δ tree traversals result in no leakage. This work implements and analyzes
this construction on datasets of up to 5000 records. Because iris datasets are not this large, as part of this analysis,
we create larger synthetic iris datasets using generative adversarial networks or GANs [CWD+18,GPAM+20].

Comparison with prior work More work is needed to scale zero-leakage biometric database to national biometric
identity databases. Cachet et al. [ACD+22] proposed two non-interactive iris proximity search schemes based on
inner-product encryption. Both of their constructions have more leakage than our system. The first one leaks the
distance between all returned points and the query. The other leaks whether returned records are the same distance
from the query. For the solution with more leakage, their search took 4 minutes on a dataset of size 356. For the
solution with less leakage, search took 4 hours (reduced to an 1 hour in a journal version [CAD+23]).

4If |W ′| < δ we search for dummy values. If |W ′| > δ we select δ random values.
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Encrypt
C S

OMC.EncryptX = {(j, LSHj(wi))}i,j

DOMapE.EncryptMj [v] = {wi}

Search

C S

OMC.SearchW = {(j, LSHj(w∗))}j
W ′ ⊆W ∩X

Pad W ′ so |W ′| = δ

DOMapE.Search
W ′

≤ δ results

Figure 1: System Overview Composing OMC and DOMapE. In Search one checks which LSH values exist in the
database using the OMC, finding at most δ candidates. One then pads with null values to search for exactly δ
values in the DOMapE. We design a DOMapE that has no leakage if the size of the disjunction is constant (δ). See
Construction 2 for a formal description.

Barni et al. [BBC+10] and Blanton et al. [BG11] evaluated their fingerprints identification systems on small
datasets of 320 readings. They respectively achieved search times of 16 and 0.45 seconds. However, it is important
to note that fingerprints representations are usually shorter than irises.

Blanton et al. [BG11] also proposed an iris identification system that allows to compare two 2048 bits iris readings
in 0.15s. For a database of size 356 (our smaller setting) this would amount to 53s.

For face recognition, SciFi [OPJM10] online search runtime is linear in the size of the database: for 100 faces
representations search takes 31s. Erkin et al. [EFG+09]’s system takes roughly 40s to search over a dataset of size
320.

Looking ahead to Table 3, our search time for 356 records is 11s.
Recent work [UCK+21,GRS22,CFR23] has shown how to extend PSI to the setting where one considers items a

match if their distance is small. A naive use of fuzzy PSI would tell the client if the biometric exists in the database,
but not which item it matches. This issue can be solved using labelled PSI [CHLR18] which associates a label with
each set value x ∈ X. This is the approach used by Uzun et al. [UCK+21]. Uzun et al. [UCK+21] evaluate on the
face biometric. At a technical level, their fuzzy PSI is similar to our approach, they store LSH outputs in the set X
and encrypt each item before sending it to the server. However, they perform a threshold version of labeled PSI, only
returning a record if there are enough matches. One match is required in our approach. Their approach is bandwidth
efficient but requires fully homomorphic encryption [Gen09] to perform the more complex matching. Uzun et al’s
scheme does not allow the client to learn about non-matching records which is not a goal of our work. Their scheme
only requires β = 64 due to preprocessing biometric data to reduce noise, such techniques can be applied in our
setting but are not standard when evaluating schemes in the biometric literature.

3 Preliminaries

Let λ be the security parameter throughout the paper. We use poly(λ) and negl(λ) to denote unspecified functions
that are polynomial and negligible in λ, respectively. All definitions are indexed by λ but this indexing is omitted

for notational clarity. For some n ∈ N, [n] denotes the set {1, · · · , n}. Let x
$←− S denote sampling x uniformly

at random from the finite set S. Let ⊥1,⊥2, ... be a sequence of distinguished unique symbols. These symbols are
allowed inputs to algorithms but omitted for clarity.
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For interactive protocols Prot between a client C and a server S we use notation(
oC

oS

)
← Prot

(
iC

iS

)

with iC, oC, iS, oS denoting the client’s and the server’s inputs and outputs respectively. Protocols are written from
the perspective of the client with underlying interactive protocols indicating the server’s role.

Hamming distance is defined as the distance between the bit vectors x and y of length n, D(x, y) = |{i | xi 6= yi}|,
and the fractional Hamming distance is D(x, y)/n. For a map M, let M.Keywords output the set of all stored keywords.
Locality sensitive hashes (LSH) frequently map similar values to the same hash.

Definition 1 (Locality-sensitive Hashing). Let t ∈ N, c > 1 and p1, p2 ∈ [0, 1]. H defines a (t, ct, p1, p2)-sensitive
hash family if for any x, y ∈ {0, 1}n, we have:

1. If D(x, y) ≤ t, PrLSH∈H [LSH(x) = LSH(y)] ≥ 1− p1 and

2. If D(x, y) ≥ ct, PrLSH∈H [LSH(x) = LSH(y)] ≤ 1− p2.

For x, y if D(x, y) ≤ t they are said to be near, if D(x, y) ≥ ct they are said to be far.

We use selection of a single random bit as our LSH. For two values x, y the probability this bit
will be the same is 1 − D(x, y)/n. That is p1 ≥ t/n while p2 ≤ ct/n. The error rates p1, p2 of an LSH can be
increased by randomly sampling several LSHs and checking that they all match, an α-AND. For α-AND composition,
a (t, ct, p1, p2)-LSH yields a (t, ct, pα1 , p

α
2 )-LSH. For our LSH, this corresponds to randomly selecting α (with

replacement) bits of the input. Similarly, p1, p2 can be decreased by randomly sampling several LSHs and
checking that at least one of them matches, a β-OR. For β-OR composition, a (t, ct, p1, p2)-LSH yields a (t, ct, 1 −
(1− p1)β , 1− (1− p2)β)-LSH.

3.1 The need for many LSHs in biometric proximity search

We focus on the iris biometric using the ND-0405 dataset [PSO+09,BF16] which has an average distance t/n ≈ .21
using a state-of-the-art feature extractor [AF19]. There are 712 different irises in the ND0405 dataset which is a
superset of the NIST Iris Evaluation Challenge [PBF+08]. Half of these records are used for training the used feature
extractor [AF18,Ahm20,AF19,ACD+22] which produces features of length 1024. The remaining 356 right irises are
suitable for experimentation. Section 5 describes other datasets used in this work. Our discussion applies to other
biometrics with substantive noise such as the face. Deng et al. [DGXZ19, Figure 6] present analogous statistics for
the face.

If one only uses the AND of α-LSHs and considers a match if one matches a single LSH out of β, this LSH can
be seen as the β-OR of the α-AND of LSHs where

p′1 = 1− (1− pα1 )β , and p′2 = 1− (1− pα2 )β .

Let w′i be a noisy reading of wi. When using w′i as input to search, a true accept is when wi is returned and the true
accept rate (TAR) is the fraction of queries where this happens. The fraction of false accepts (FFA) is the fraction
of DB \ {wi} that is returned on average.

If one assumes that p1 = t/n = .21 and p2 = .5 and all items have these average distances, then TAR is 1 − p′1
and FFA is 1− p′2. Under this assumption, achieving a TAR of .95 (p′1 = .05) and an FFA of .01 (p′2 = .99) requires
a number of LSHs 65 ≤ β ≤ 80 for the minimum α = 13. For a dataset of size 106 if one seeks at most 100 false
accepts (that is, FFA of 10−4) this requires 680 ≤ β ≤ 835 at the minimum α = 23.

However, even though the mean distance between readings of the same biometric is t/n = .21 there is substantial
variance in this distance (see Figure 13(a)), requiring β to be larger as we show in Table 2. Boldyreva and Tang [BT21]
tested on datasets with β ≤ 10.

Furthermore, most of the LSHs will return ⊥. We call an LSH match good if it ensures the query results in a
true accept and bad otherwise. For the ND-0405 dataset,5 a histogram of the number of good and bad LSH matches
is in Figure 2. The average number of total LSH matches is 23.4.

5This uses the following experiment:
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Figure 2: The number of maps returning a value when searching similar values with α = 15, β = 225 trees and 356
records from the ND-0405 dataset.

3.2 Cryptographic Definitions

This work relies on oblivious RAM (ORAM) [GO96,Gol87] to achieve zero-leakage. In our constructions, we consider
static datasets, ignoring write queries. Our ORAM definition reflects this choice. As we discuss in Section 6, this
definition is satisfied by private information retrieval schemes (with appropriate encryption). We discuss other
considerations for dynamic data at the end of Section 6.

Definition 2 (Oblivious RAM). An Oblivious RAM (ORAM) scheme is two protocols, Setup and Access:

•

(
σ,

EM

)
← Setup

(
1λ,Mem

1λ

)
,

•

(
v, σ′

EM′

)
← Access

(
σ, i

EM

)
.

Correctness Consider the following correctness experiment:

1. An adversary A chooses memory Mem.

2. Consider

(
σ0

EM0

)
← Setup

(
1λ,Mem

⊥

)
.

3. Let ts0 be the server’s view of the computation.

4. For 1 ≤ i ≤ q:

(a) Run yi ← A(tsi−1).

(b) Run

(
vi, σi,

EMi

)
← Access

(
σi−1, yi

EMi−1

)
.

(c) Let tsi be the server’s view of the computation.

1. Storage of a single feature extracted reading for the right eye for each of the 356 persons in the ND-0405 dataset. Sample β = 225
LSHs of size α = 15.

2. Use the second stored template in the ND-0405 dataset to create a search corpus w′1, ..., w
′
356.

3. Search for each record w′i. Record the number of good and bad LSH matches.

6



RealA,q(1
λ):

1. Mem← A(1λ).

2. Run

(
σ0,

EM0

)
← Setup

(
1λ,Mem

⊥

)
.

Let ts0 denote the server’s view of the above computation.

3. For 1 ≤ i ≤ q:

(a) yi ← A(tsi−1).

(b)

(
vi, σi

EMi

)
← Access

(
σi−1, yi

EMi−1

)
.

Let tsi be the server’s view of the above computation.

4. Output (ts0, ..., tsq).

IdealA,Sim,q(1
λ):

1. Output (ts0, ..., tsq)← Sim(q, |Mem|, 1λ).

Figure 3: Definition of ORAM security.

The adversary wins if for some i, vi 6= Mem[yi]. The ORAM scheme is correct if the probability of A winning the
game is negl(λ).

Security An ORAM scheme is secure in the semi-honest model if for any PPT adversary A, there exists a PPT
simulator Sim such that for any PPT distinguisher D we have∣∣Pr[D(RealA,q(1

λ)) = 1]− Pr[D(IdealA,Sim,q(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q and IdealA,Sim,q as described in Figure 3.

The above is an adaptive simulation definition of ORAM [GMP16], all of our proofs work naturally for the standard
non-adaptive definition.

We define generic oblivious searchable encryption (OSE) and in the rest of the paper, will use specific variants of
it.

Definition 3 (Oblivious searchable encryption). Let M denote the records space, Q denote the query space and R
denote the result space. Let DB ⊆M be a database and y ∈ Q be a query. For string param, let the triple of protocols
OSE = (Setup, Encrypt, Search) have the following format:

•

(
sk

pp

)
← Setup

(
1λ, param

1λ, param

)
,

•

(
IC,

IS

)
← Encrypt

(
sk,DB

pp

)
,

•

(
J, I ′C

I ′S

)
← Search

(
sk, y, IC,

pp, IS

)
.

OSE is an oblivious searchable encryption if the following hold:

Correctness: The set J is the “same” as the result of the query. The formal definition varies per OSE variant we
consider and is defined later.
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RealA,q,param(1λ):

1. Compute

(
sk

pp

)
← Setup

(
1λ, param

1λ, param

)
.

Let ts0 be the server’s view.

2. DB ← A(ts0).

3. Compute

(
IC,1,

IS,1

)
← Encrypt

(
sk,DB

pp

)
.

Let ts1 be the server’s view.

4. For 1 ≤ j ≤ q:

(a) yj ← A(tsj).

(b) Run

(
Jj , IC,j+1

IS,j+1

)
← Search

(
sk, yj , IC,j

pp, IS,j

)
.

Let tsj+1 be the server’s transcript..

5. Output (ts0, ..., tsq+1).

IdealA,Sim,q,param(1λ):

1. Compute ts0 ← Sim(1λ, q, param).

2. DB ← A(ts0).

3. (ts1, ..., tsq+1)← Sim(LEncrypt(DB)).

4. Output (ts0, ...tsq+1).

Figure 4: Definition of ExpOSE
ADA-SIM.

Security: Let q = poly(λ), LOSE = {LEncrypt,LSearch =⊥} be the leakage profile of OSE’s algorithms. For any PPT
adversary A, there exists a simulator Sim such that for any PPT distinguisher D we have∣∣Pr[D(RealA,q(1

λ)) = 1]− Pr[D(IdealA,Sim,q(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q and IdealA,Sim,q as described in Figure 4.

Our goal is to build an OSE scheme for proximity queries, we define this particular variant of OSE as follows:

Definition 4 (Oblivious Proximity Search). Consider Definition 3 with the following specificities:

• Let M = Q = R = {0, 1}n and param = t.

• Consider DB = w1, · · · , w` where each wi ∈M.

(ε, t)-Approximate Correctness: For all DB, y ∈ Q define JDB,near,y := {wi|D(wi, y) ≤ t}. Let q = poly(λ) and
ε > 0. For all DB and all y1, ..., yq define:(

sk

pp

)
← Setup

(
1λ

1λ

)
,

(
I1C ,

I1S

)
← Encrypt

(
sk,DB

pp

)
,

(
Jj , IC,j+1

IS,j+1

)
← Search

(
sk, yj , IC,j

pp, IS,j

)
OSE is ε-approximately correct if ∀1 ≤ j ≤ q for all DB

Pr
[
Jj ⊇ JDB,near,y

]
≥ 1− ε.

Definition 4 doesn’t limit the number of false matches. Furthermore, in Section 4, we never show that our
construction satisfies approximate correctness. Proving formal bounds for an LSH based construction requires many
assumptions about the data. Instead, we evaluate approximate correctness using data in Section 7.

Our scheme first finds a list of candidate LSH matches, and then uses an appropriate oblivious map to find the
relevant records using the candidate LSH matches. The first stage is called oblivious membership checking or OMC.
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An OMC can be built from private set intersection (PSI), client storage, and full set retrieval (see Section 4.4). We are
not offering constructions of OMC as a technical contribution. We benchmark separately using PSI, see discussion
in Section 7. In our full implementation we use a local Bloom filter to simplify evaluation.

OMC only handles sets, that is, a collection of values without repeats. In our search system, these values will be
LSH outputs. It is possible for two distinct LSHs to have the same output. To avoid this, we prepend the LSH id to
each LSH output value. For LSH j, the corresponding values to use would then be {j || LSHj(x)}. We define OMC
as a variant of OSE:

Definition 5 (Oblivious Membership Check). Let OMC = (Encrypt,Search) be a pair with stored set size ρ, query size
γ, and result size δ, abbreviated ρ-ssize, γ-qsize, and δ-rsize. Consider Definition 3 with the following specificities:

• Let M = Q = R and param = (ρ, γ, β).

• Consider X ⊆M, such that |X| = γ, and Y ⊆ Q, such that |Y | = ρ. Set DB = X and query y = Y .

Correctness: We use ⊥1, · · · ,⊥β to denote a sequence of unique symbols that cannot appear in X or Y . For all
X, |X| = γ and Y, |Y | = β, let(

EC,

ES

)
← Encrypt

(
1λ, X

1λ

)
,

(
I,

⊥

)
← Search

(
EC, Y

ES

)
.

Then |I| = δ and for all i ∈ I such that ∀j, i 6=⊥j it holds that Pr[i ∈ X ∩ Y ] ≥ 1− negl(λ).

Finally, we define the second stage of our system:

Definition 6 (Disjunctive Oblivious Map with Encryption). Let param = (β, δ), such that β, δ ∈ N and δ ≤ β
and let µ ∈ N. Let DOMapE = (Setup,Encrypt,Search) be a triple with β maps, µ map size, and δ query size,
abbreviated β − nmaps, µ− msize, and δ − qsize. Then DOMapE is a disjunctive oblivious map with encryption if
it satisfies Definition 3 with the following correctness guarantee.

Correctness: Let M = {Mi | Mi : Q ← R}, where Mi denotes a map such that for 1 ≤ i ≤ β, |M.Keywords| ≤ 2µ.

Set DB = M1, · · · ,Mβ. Let ε > 0, q, β, δ = poly(λ) and δ ≤ β. Let param = (β, µ, δ). Fix some ({Mi}βi=1, {yj ∈
(X × [1, `])δ}qj=1) and define for 1 ≤ j ≤ q:

•

(
sk

pp

)
← Setup

(
1λ, β, δ

1λ

)
,

•

(
σ1,

EM1

)
← Encrypt

(
sk,M1, ...,Mβ

pp

)
,

•

(
rj , σj+1,

EMj+1

)
← Search

(
sk, σj , yj

pp,EMj

)
.

DOMapE is correct if there exists a set I ⊆ [2µ] where |I| ≤ δ such that :

Pr
[
(∪irji ) \ ∅ ⊆ ∪i∈IMki

[
xji

]]
≥ 1− ngl(λ).

4 Oblivious Proximity Search for Biometrics

This section presents our technical designs, focusing on the design of DOMapE. We describe constructions of OMC
in Section 4.4. The most relevant related work is by Boldyreva and Tang [BT21], whose construction is for the
approximate k-nearest neighbors search problem. While Boldyreva and Tang discuss two ways of implementing
OMapE, one using a tree and the other using a skip list [Pug90], we only present a tree based construction. Similar
modifications can be made to the skip list construction. In this work, we consider static data. For static data, B-trees
and skip lists are equivalent data structures [LN+96]. However, updates and the resulting performance differ.
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Parameter Meaning
` Database size
β nmaps, Total number of trees, maps, LSHs, query size to OMC
δ qsize, Result size from OMC, Number of trees to traverse/result size in DOMapE
µ msize, log2 maximum number of keywords in each map
γ Server set size in OMC, in composed protocol γ = 2µ · β

Table 1: Parameters and their usage across the different schemes.

• BIndex(M, µ):

1. Sort map M using the comparator ≤.
Let Leaves = (xi,M[xi]) be the sorted result.

2. Pad Leaves to length 2µ with pairs (⊥,⊥).

3. Build balanced binary search tree Tr over the values of xi and for each internal node, attach pointers to its
left and right child, LC and RC.

4. Associate M[xi] as data for leaf xi.

• ApplyORAM(Tr1, ...,Trβ):

1. For j ∈ [0, µ]:

(a) Levelj =⊥.

(b) For all Tri∈[β], Levelj = Levelj || Level(Tri, j).

(c)

(
σj ,

EMj

)
← ORAM.Setup

(
1λ, Levelj

,⊥

)
2. Denote Σ := {σj}µj=0 and EM = {EMj}µj=0.

• Level(Tr, j): Return all nodes at level j in Tr.

Figure 5: Build tree index and apply ORAM algorithms.

4.1 Overview of DOMapE design

Recall the unprotected solution for proximity search from the Introduction:

1. Sample β LSHs, LSH1, ..., LSHβ ← H.

2. For j = 1, ..., β, set Mj [v] = {wi|LSHj(wi) = v}.

3. To search w∗, compute LSH1(w∗), ...., LSHβ(w∗), and retrieve ∪βj=1Mj [LSHj(w
∗)].

The maps consists of yi, {wi} pairs. The values placed into the map are sorted (lexographically) and used as nodes
in a binary tree. Internal nodes are given the value of the minimum value in the right subtree and the location of the
two children LC,RC. We show this design in Figure 5. Let Tr1, ...,Trβ be the output of BIndex on maps M1, ...,Mβ

respectively. Each tree is placed in a distinct ORAM. The construction fully traverses every tree Tri meaning that
there is a constant number of accesses to each ORAM with every search. Let µi be the number of elements in Mi,
define µ = dlog maxi µie, by padding each ORAM to length 2µ each ORAM receives exactly µ+ 1 accesses with each
query ((µ + 1)β across the β trees). This is shown in Figure 6 . However, since each level of each map receives a
single access per query, one can store each level of the tree in a separate ORAM, the design is shown visually in with
each shaded region representing a separate ORAM in Figure 7. In this design with each query, each shaded region
sees exactly one query.

Our approach Recall that our goal is a two part construction: First one queries the OMC to find out which δ ≤ β
LSHs have matches. Then one queries the relevant δ maps Mi to find records. In this new design, one does not
query every M1, ...,Mβ . As such, the set of queried maps would be leakage. We merge the ORAMs across maps to
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Figure 6: Basic access strategy of Boldyreva and Tang [BT21]. Each shaded region represents data stored together
in a single oblivious RAM.
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Figure 7: The first optimization to Boldyreva and Tang’s construction, where each ORAM is applied per level.
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Figure 8: Our design of DOMapE each level across binary trees is stored in a single ORAM.

prevent this. However, we retain a separate ORAM for each level of the maps. This is shown visually in Figure 8
and also described by the ApplyORAM algorithm in Figure 5. This means that each query now makes δ accesses at
each ORAM level. There are µ+ 1 levels in total resulting in δ(µ+ 1) ORAM accesses.

4.2 Detailed design of DOMapE

Construction 1. Let X andM be the domain and range of a map, such that elements in X are comparable with the
≤ operator. Define β maps M1, ...,Mβ. Let ORAM = (ORAM.Setup,ORAM.Access) be an oblivious RAM as defined
in Definition 2, and let ORAMi denote its instantiation for level 0 ≤ i ≤ µ. Consider the DOMapE construction
shown in Figure 9.

Theorem 1. For any δ, β ∈ N where δ ≤ β. Construction 1 describes an DOMapE for LBIndex(M1, ...,Mβ) = µ =
maxidlog |Mi|e for β − nmaps, µ− msize, and δ − qsize.

Proof. We need to show that for every adversary ADOMapE there exists simulator SimDOMapE for DOMapE such that
RealADOMapE

(λ) ≈ IdealA,SimDOMapE
(λ) where RealADOMapE

and IdealA,SimDOMapE
are defined as in Definition 3.

The SimDOMapE gets as input µ which it uses to initialize that many levels of ORAM simulators. Let SimORAMj

denote the simulator for the jth level ORAM, 0 ≤ j ≤ µ. We build SimDOMapE, the simulator for DOMapE, as follows:

1. Receive inputs (q, 1λ) and param = (β = nmaps, µ = msize, δ − qsize).
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•

(
β, ν, δ

β, ν, δ

)
← Setup

(
1λ, β, ν, δ

1λ

)

• Encrypt

(
M1, · · · ,Mβ

1λ

)
:

1. Let ηi be the number of elements in Mi and define µ = dlog maxi ηie.
2. For i ∈ [β], client sets Tri ← BIndex(Mi, µ).

3. Client runs (Σ,EM)← ApplyORAM(Tr1, ....,Trβ).

4. Server receives EM and client keeps Σ.

• Search

(
sk,Σ, y ∈ (X × [1, `])ν

EM

)
:

C does:

1. Parse y = (x1, k1, ..., xν , kν) and Σ = σ1, · · · , σµ.

2. Set Nodes1 = ((k1, 1), ..., (kν , 1)), Res =⊥.

3. For j = [0, µ− 1] and for i in 1 to ν:(
σ′j , x

′, LC,RC

EM′j

)
← ORAM.Access

(
σj ,Nodesj [i],

EMj

)
.

(a) If x′ ≤ xi, Nodesj+1 = Nodesj+1||(ki, LC).

(b) Else Nodesj+1 = Nodesj+1||(ki,RC).

4. For i in 1 to ν: (
σ′µ, x

′,M[x′]

EMi

)
← ORAM.Access

(
σµ,Nodesµ[i],

EMj

)
.

(a) If x′ = xi, Res = Res ∪M[x′].

5. Return Res and Σ′ = σ′1, · · · , σ′µ.

Figure 9: DOMAPE Construction. The BIndex algorithm is shown in Figure 5.

2. For 1 ≤ i ≤ q · δ:

(a) For 0 ≤ j ≤ µ, run ORAMj simulator

(tsiORAM,j,0, · · · , tsiORAM,j,β)← SimORAMj (β, |Levelj |, 1λ).

(b) Set tsi+1 = (tsiORAM,0,1, · · · , tsiORAM,µ,β).

3. Set ts0 =⊥ and ts1 = (ts1ORAM,0,0, · · · , ts1ORAM,µ,0).

4. Return (ts0, · · · , tsq·δ+1).

We then use a hybrid argument where at each step, we replace an ORAM by its corresponding simulator. We obtain
the following games

• Game 0: ORAM0, · · · ,ORAMµ,

• Game j: SimORAM0 , · · · ,SimORAMj ,ORAMj+1, · · · ,ORAMµ,

• Game µ+ 1: SimORAM0
, · · · ,SimORAMµ ,

12



with 0 ≤ j ≤ µ.
Note that Game 0 contains µ + 1 ORAM instantiations, which corresponds to the real world RealADOMapE

. Also
note that Game µ + 1, contains µ + 1 ORAM simulators, which is equivalent to SimDOMapE and to the ideal world
IdealA,SimDOMapE

. Then for each Game, we show indistinguishability with the previous one by relying on the security
of the underlying ORAMi.

Lemma 1. For 1 ≤ i ≤ µ+ 1, Game i is indistinguishable from Game i− 1.

Proof. By security of ORAMi, we have ORAMi ≈ SimORAMi . Since Game i− 1 and Game i only differ at index i, we
conclude that these two games are indistinguishable.

By applying Lemma 1 to each game, we obtain that Games 0 and µ+ 1 are indistinguishable, which implies that
RealADOMapE

and IdealA,SimDOMapE
are also indistinguishable and concludes this proof.

4.3 OSE design

Construction 2. For a database DB = (w1, ..., w`) define µ = dlog `e. Fix parameters δ, ν, β ∈ N where δ ≤ ν ≤ β.

1. Let DOMapE be a disjunctive oblivious map with encryption with β−nmaps, µ−msize, δ−qsize, and δ−rsize,

2. Let OMC be an oblivious membership check with 2µ ∗ β − ssize, β − qsize, and δ − rsize, and

3. Let H be a family of locality sensitive hashes.

For a database DB = (w1, ..., w`), define OSE = (OSE.Setup,OSE.Encrypt, OSE.Search) as in Figure 10.

Theorem 2. Let DOMapE and OMC be as in Construction 2. Then Construction 2 is an oblivious searchable
encryption scheme with leakage LEncrypt(M1, ...Mβ) = µ.

Proof. Let SimOSE a the simulator for the OSE scheme. This simulator will run as follows:

1. Upon input (q, β, δ, µ, 1λ), run the simulator for the oblivious membership check with param = (β ∗ 2µ −
ssize, β − qsize, δ − rsize, (ts1OMC, · · · , ts

q+1
OMC)← SimOMC(q, γ = β2µ, β, δ).

2. Run (ts0DOMapE, · · · , ts
q+1
DOMapE)← SimDOMapE(q, param, 1λ) with param = (β − nmaps, µ− msize, δ − qsize).

3. Set ts∗0 = ts0DOMapE.

4. For 1 ≤ i ≤ q + 1, set ts∗i = (tsiOMC, ts
i
DOMapE).

5. Output transcripts ts∗0, · · · , ts∗q+1.

We use a hybrid argument to show security of OSE. Consider the following games:

1. RealOSE,

2. Sim∗OSE, which runs SimOMC and RealDOMapE,

3. SimOSE, which runs SimOMC and SimDOMapE as described above.

We want to show that game 1 is indistinguishable from game 3.

Lemma 2. Game 1 and Game 2 are indistinguishable.

Proof. The difference between games 1 and 2 is Sim∗OSE’s use of SimOMC instead of RealOMC. By security of the OMC
scheme, game 1 and 2 are indistinguishable.

Lemma 3. Game 2 and Game 3 are indistinguishable.

Proof. The difference between games 2 and 3 is SimOSE’s use of SimDOMapE instead of RealDOMapE. Then by security
of the DOMapE scheme, game 2 and 3 are indistinguishable.

Combining lemmas 2 and 3, we obtain that games 1 and 3 are indistinguishable, which conclude our proof.

Theorem 2 does not handle correctness. Since there is an overlap between the histograms for real data in Figure 13
one cannot make strong correctness claims. We evaluate correctness empirically in Section 7.
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• OSE.Setup

(
1λ

1λ

)
:

1. Client samples LSH1, ..., LSHβ ← H(1λ).

2. Client runs

(
skOMC

⊥

)
← OMC.Setup

(
1λ

⊥

)
and

(
skDOMapE

ppDOMapE

)
← DOMapE.Setup

(
1λ

1λ

)
.

3. Denote pp = ppDOMapE, sk = (skOMC, skDOMapE, LSH1, ..., LSHβ).

4. Client sends pp to server and keeps sk.

• OSE.Encrypt

(
sk,DB = (w1, ..., w`)

ppDOMapE

)
:

1. For 1 ≤ i ≤ β, client:

(a) Initializes map Mi.

(b) For 1 ≤ j ≤ ` sets Mi[keywordi,j ] = {wj |LSHi(wj) = keywordi,j}.
(c) Adds dummy values to Mi until it is of size `.

2. Run

(
⊥

ES

)
← OMC.Encrypt

(
skOMC,∪βi=1 ∪

`
j=1 i||keywordi,j

1λ

)
.

3. Run

(
σ,

EM

)
← DOMapE.Encrypt

(
sk,M1, ...,Mβ

ppDOMapE

)
.

4. Denote IC = σ and IS = (ES,EM). Client sends IS to server and keeps IC.

• OSE.Search

(
sk, y, IC

EM

)
:

1. Client creates OMC set EC = (1||LSH1(y), · · · , β||LSHβ(y)).

2. Run

(
ResOMC

⊥

)
← OMC.Search

(
skOMC, EC

ES

)
.

(
r, σ′

EM′

)
← DOMapE.Search

(
skDOMapE, σ, ResOMC

EM

)
.

3. Denote J = (∪δi=1ri)\ ⊥, I ′C = σ′ and I ′S = (ES,EM′). Client receives J, I ′C and server receives I ′S.

Figure 10: OSE construction from OMC, DOMapE and LSH.

4.4 Oblivious membership check constructions

We discuss options to implement OMC. We briefly cover approaches based on Bloom filter lookups. In Section 4.4.2,
we describe how to build OMC from private set intersection. This is the tool that we use for microbenchmarks. In
our implementation, we use a Bloom filter to emulate an OMC.

4.4.1 Oblivious Bloom Filter Lookups

The client’s set can be stored in a Bloom filter [Blo70] which is then stored on the server in an ORAM. The client
will request the relevant bits from the ORAM. This prevents the client from having to store the entire Bloom Filter
on their side, but requires them to request multiple ORAM accesses to query the relevant bits.

BlindSEER [PKV+14,FVK+15] built a tree of encrypted Bloom filters for general Boolean search. Search of each
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node uses Garbled circuits to decide whether to proceed to children. One can use a single level of their tree as an
OMC as long as only the client learns the response. This requires some modification as their system was optimized
for circuits that output a bit, we would need the set of matching locations. Their system was evaluated on datasets
with 108 records [FMC+15].

4.4.2 Building OMC from PSI and pseudorandom permutations

Private set intersection (PSI) [FNP04] is a form of secure multi-party computation where a client and server hold
sets Y and X respectively. They run an interactive computation, at the end, the client learns X ∩ Y . No other
information is leaked. Current implementations of PSI depend on one of two tools: oblivious polynomial evaluations
(OPE) and oblivious pseudorandom functions (OPRF).6

We show how to build OMC from honest-but-curious PSI as follows:

1. At initialization the client applies a pseudorandom permutation (PRP) to each element in the set X.

2. The client sends the set of elements (passed through the PRP) to the server.

3. Later when the client has a set Y , they apply the pseudorandom permutation to each element of Y , and uses
the resulting values as their set for the PSI protocol.

In OMC, the simulator learns the size of both sets X,Y , using an ideal PSI, only the size of X is leaked to the
server. Both the sizes of X and Y are global parameter, β · 2µ and β respectively. We now formalize the above,
re-stating the PSI definition used for VOLE-PSI [RS21, Figure 5].

Definition 7 (Private Set Intersection (PSI)). Let X denote a set. Let the client hold a set X ⊂ X and the server

hold a set Y ⊆ X . Consider

(
Z,

⊥

)
← PSI

(
X,

Y

)
, the PSI protocol between the client and the server. At the end,

the client learns Z and the server learns nothing.

Correctness: Correctness is,

Pr

[
Z 6= X ∩ Y

∣∣∣∣∣
(
Z,

⊥

)
← PSI

(
X,

Y

)]
≤ negl(λ).

Security: PSI is secure if for any PPT adversary A, there exists a simulator Sim, such that the distributions RealA,q
and IdealA,Sim,q, described in Figure 11, are computationally indistinguishable. VOLE-PSI [RS21] uses a different
security definition for PSI, their definition implies ours.

Remark We consider PSI where both X and Y are constant size sets so we ignore the case when a party provides
too large a set.

Our construction requires pseudorandom permutations.

Definition 8 (Pseudorandom Permutation (PRP)). Let F : {0, 1}λ×X → X be an efficient keyed permutation and
Fn denote the set of all permutations on X . F is a pseudorandom permutation if for any PPT adversary A,∣∣∣∣∣Pr

[
AFk(·)(1λ)=1||k

$←−{0,1}λ
]
−

Pr

[
Af(·)(1λ)=1||f

$←−Fn
]
∣∣∣∣∣ ≤ negl(λ)

Construction 3 (OMC from PSI and PRP). Let PSI denote a PSI scheme and F : {0, 1}λ × X → X be a
pseudorandom permutation. Let X and Y be sets, such that X ⊆ X and Y ⊆ X . Then we build OMC as in
Figure 12.

6 Cristofaro et al. [CT09] construct efficient PSI procotols, under the restriction that the server can do some precomputation or the
client is weak. Dong et al. [DCW13] present an efficient PSI protocol based on a variant of Bloom Filters called garbled Bloom Filters.
Dachman-Soled et al. [DSMRY09] present an efficient PSI protocol utilizing secret sharing and Reed-Soloman codes. Malicious secure
implementations of PSI utilizing OPE also depend on zero-knowledge proofs to prevent parties from deviating from the protocol.
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RealA,nX ,nY (1λ):

1. (X,Y )← A(1λ) where X,Y ⊂ X .

2. If |X| > nX or |Y | > nY , return ⊥.

3. Output ts of

(
Z,

⊥

)
← PSI

(
X,

Y

)
.

IdealA,Sim,nX ,nY (1λ):

1. (X,Y )← A(1λ) where X,Y ⊂ X .

2. Output ts← Sim(1λ, param) where param = (|X| = csize, |Y | = ssize).

Figure 11: Definition of PSI security.

Theorem 3. Let PSI be a secure private set intersection scheme and F be a pseudorandom permutation, then
Construction 3 describes a secure OMC with γ − ssize, β − qsize, and δ − rsize.

Proof. Correctness is straightforward and follows from correctness of the PSI scheme and the fact that each element
in F is a permutation. If there are more than δ elements in the intersection then δ are chosen randomly. However,
the correctness guarantee only requires that non-⊥ elements returned be in the intersection. Security follows from
the security of the PRP (values seen by the server are indistinguishable from random) and the security of the PSI
scheme (server learns nothing about EC and EC ∩ ES). Formally, we build the simulator SimOMC as follows:

1. Receive inputs 1λ, number of queries q and server’s set size γ.

2. For 1 ≤ i ≤ γ, sample a random value xi
$←− X .

3. Define the server set as ES = {xi}γi=1.

4. For 1 ≤ k ≤ q: run the PSI simulator tsk ← SimPSI(1
λ, param) with param = (β = csize, γ = ssize).

5. Output ES and ts1, ..., tsq.

We then use a hybrid argument to show security of OMC. Consider the following games:

1. RealOMC,

2. Replace the PRP F by a random permutation f
$←− Fn,

3. SimOMC.

Games 1 and 2 are indistinguishable by the security of the PRP scheme, and games 2 and 3 are indistinguishable by
the security of the PSI scheme. We note that sampling a random output value is equivalent to sampling a random
input value as inputs are guaranteed to be a set.

5 Datasets

We test and evaluate our implementation on three datasets:

ND-0405 dataset This dataset [PSO+09, BF16] is a superset of the NIST Iris Evaluation Challenge [PBF+08].
It consists of the readings of left and right irises from 356 individuals, each iris having at least 4 distinct readings.
We use a state-of-the-art feature extractor called ThirdEye [AF19] to obtain 1024 bits feature vectors from the
original iris readings. Since the left irises were used to train the feature extractor, we use the right ones for testing
and evaluation. The first reading of each right iris is in the DB; queries come from the remaining readings. The
Hamming distance distributions are in Figure 13(a).
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• OMC.Setup

(
1λ

⊥

)
:

1. Client randomly samples a PRP key sk
$←− {0, 1}λ.

2. Client keeps sk.

• OMC.Encrypt

(
sk, X

⊥

)
:

1. Client initializes ES = ∅.
2. For each xi ∈ X, client sets ES = ES ∪ F (sk, xi), where F is a PRP.

3. Client sends ES to server.

• OMC.Search

(
sk, Y

ES

)
:

1. For each yj ∈ Y , client computes permutation F (sk, yj).

2. Client initializes a map M and inserts M[F (sk, yj)] = yj .

3. Client sets EC = {F (sk, yj)}.

4. Run

(
EC ∩ ES,

⊥

)
← PSI

(
EC,

ES

)
.

5. Client

(a) Initializes Res = ∅.
(b) For each c ∈ EC ∩ ES, set Res = Res ∪M[c].

(c) If |Res| > δ set Res to be δ random elements of Res.

(d) If |Res| < δ append elements from ⊥1, ... to make Res size δ.

(e) Outputs Res.

Figure 12: Construction of OMC from PSI and PRP.

Synthetic dataset Available irises datasets are of limited size, often no more than a few hundreds irises (356
individuals for ND-0405). Real world systems would store thousands to millions individuals, depending on the
application. Our solution is to generate synthetic irises templates, that mimic actual ones. As can be seen in Figure
13b, synthetic data same and different distributions are similar to the ND-0405 ones. The details on synthetic data
generation are in Appendix A. The high level approach is a generative adversarial network (GAN) [GPAM+20] as in
prior approaches on synthetic iris generation [AF20].

Random dataset This dataset is made from randomly generated 1024 bits vectors. The Hamming distance
between two vectors is close to 0.5 with a small variance. This is visible in the red histogram from Figure 13c.

Random and synthetic queries generation Contrary to the ND0405 dataset [BF16], the random and synthetic
datasets do not include queries.

We generate queries from a distribution that resembles the one for ND-0405. We use the common observation that
like irises comparisons have a distribution close to a binomial across different feature extractors [Dau09,Dau05,SSF19].
From Figure 13a, we extract the mean, µ = 0.21, and the standard deviation, σ = 0.056. This yields a distribution
B(n, µ)/n, the binomial distribution for n = 53. This is because for B(n, µ) it is true that σ2 = µ(1− µ)n. Thus, by
linearity of expectation for B(n, µ)/n it is true that σ2 = µ(1 − µ)/n, thus one can compute n = dµ(1 − µ)/σ2e =
d52.9e = 53.

We can then generate queries for the random and synthetic datasets as follows:

1. First we generate a binomial distribution using the mean and standard deviation of the same iris distribution
for the ND-0405.
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(a) Histogram of comparisons for ND0405
dataset.

(b) Histogram of comparisons for synthetic
dataset.

(c) Histogram of comparisons for random
data.

Figure 13: Histograms of Hamming distance between readings of the same iris (in blue) and different irises (in red).
Different irises are stored in the database and queries are drawn from a different reading of an iris in the database.
The gaps in the synthetic and random blue histograms are caused by the query generation technique used (see
paragraph on random and synthetic queries generation) in Section 5.

2. For each feature vector in the dataset, we create a corresponding query by sampling an error fraction from the
frac← B(53, 0.21)/53.

3. We flip the corresponding number of error bits in the original feature vector, that is, frac ∗ 1024.

Using this technique, we obtain the same iris distributions (in blue) for synthetic and random data shown in
Figures 13b and 13c. Since there are only 54 possible outcomes for a fraction of error bits, this leads to discontinuities
in the histograms presented in Figures 13b and 13c.

6 Implementation

We present an open-source implementation of our algorithms including the LSH parameter finding, tree building, and
oblivious search [CHF24]. This implementation is in Python 3.9 and uses the PathORAM [SDS+18b] module [Hac18].
Our experiments use a Bloom filter cache on the client as an OMC to focus on the performance of the developed
DOMapE. We evaluate an OMC candidate based on PSI in Section 7. Our implementation supports two main
conclusions.

One can set a δ < β size of the query to DOMapE that supports a high true accept rate. For a query, we define
bad matches to be the number of LSH matches that only result in incorrectly returned records; setting δ to be 1
more than the 95% of this value. See Table 2 for a comparison of true accept rate for the setting when δ = β and
when δ < β. In all analyzed parameters δ/β < .06. The value δ is higher for real and synthetic data than for random
data; this is due to the larger variance of distances between readings of different irises. This increases the number of
false matches.

The two stage DOMapE approach improves search performance. While setup takes several hours, search completes
in at most a couple of minutes on all tested parameters. For these parameters we execute at most 1000 ORAM
accesses. See further timing discussion in Section 7.2.

We see two mechanisms for achieving better performance as datasets grow:

1. Use ORAM that supports sending multiple queries in parallel (this is a weaker object than a parallel ORAM [WST12,
BCP16,CLT16]).

2. Group LSHs into groups that are placed into a single RAM and analyze the required δ for each group. As
δ/β ≈ .06 one can use standard concentration bounds to argue about δ for each group as long as the data and
queries are independent of the LSHs.

Dataset Modifications Our implementation does not allow for insertion after the initial building of the tree.
Using ORAM one can rebuild the trees using techniques of Wang et al. [WNL+14].
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TAR
Dataset Dataset β Matches without δ with

size type α nmaps # FA Avg bad Max bad Avg good OMC qsize OMC
356 random 15 630 7.5 7.2 16 32.1 0.98 13 0.94
356 ND 18 850 14.4 16.8 55 21.6 0.95 37 0.89
356 synthetic 18 850 15.5 12.2 37 22.6 0.96 26 0.92

1000 random 18 850 3.6 3.5 11 21.2 0.96 8 0.96
1000 synthetic 19 1000 3.7 22.7 82 20.2 0.95 47 0.96
2500 random 19 1000 5.7 5.6 13 25 0.94 11 0.89
2500 synthetic 21 1200 16 38.4 569 6.6 0.92 56 0.85
5000 random 20 1200 6.9 6.7 14 21.7 0.92 12 0.87
5000 synthetic 22 1300 21.4 44.7 578 6.9 0.91 72 0.83

Table 2: TAR/FAR and the number of matches for random, ND0405, and synthetic datasets of different sizes.

In the static setting, one can use private information retrieval (PIR) [CG97, CKGS98] with encryption. At
retrieval, single server computational PIR and PathORAM [SDS+18a] with “large” blocks of size Ω(log2N) both
achieve communication complexity of O(logN), with N the number of blocks. However, time efficiency would
probably suffer from this change. Traditional PIR schemes require work Θ(|DB|) on the server. Doubly efficient PIR
(DEPIR) [BIM00] preserves the communication efficiency of regular PIR but with o(|DB|) server work. To achieve
this DEPIR relies on a server pre-processing stage which is allowed in our model. While ORAM can be built from
symmetric encryption. DEPIR constructions are based on ring LWE [LMW23] or a non-standard secretly permuted
Reed-Muller codes assumption [BIPW17,CHR17].

7 Evaluation

Evaluation is split into two parts: 1) parameter analysis and accuracy, and 2) efficiency of the resulting cryptographic
construction. Our parameter analysis focuses on the TAR and number of matches. Our efficiency analysis focuses
on network roundtrips, storage, and single-threaded computation time.

7.1 Accuracy - Parameter analysis

Each experiment is conducted on each dataset. Recall the relevant parameters: α, the length of the extended LSH,
β − nmaps, and δ − qsize.

Finding α, β, δ The first part of the experiment was a manual search across α, β, measuring the TAR and number
of bad matches. Selected parameters had TAR of at least 90%. The average number of bad matches was at most 10
for random data and at most 50 for ND and synthetic data. Once α, β were selected we recorded the histogram of
bad matches and set δ to be one more than the 95% of this histogram (Fig. 14).

Measuring accuracy We then measured accuracy for a search that queries all β maps and one that only queries
δ maps. For these tests, we only measure the TAR to understand the impact of restricting the number of searched
values on accuracy.

Discussion In proximity search, high TAR, requires capturing the tail of comparisons between different readings
of the same iris (shown in Figure 13). For example, for distance t = .21n and a TAR of .01, Section 3.1 proposed
β = 65 and α = 13. Table 2 shows that even for random data, we require β = 630 and α = 15. These parameters
increase further on the ND and Synthetic datasets. Parameters vary between random and synthetic data due to
a larger variance in the Hamming distance histograms, shown in Figure 13. This is in contrast to the histogram
of good matches across datasets in Figure 15 which are consistent across datasets.This leads to an increase in the
selected δ. Across dataset sizes, δ for synthetic data is about 5 times δ for random data. The ND and synthetic
data statistics align well. This gives some indication that parameters for larger synthetic dataset sizes would yield
comparable performance on real irises. Across all parameter settings δ/β < .06 validating the overall design.
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(a) ND-0405 (b) Synthetic Data (c) Random Data

Figure 14: Number of bad matches across datasets of size 356.

(a) ND-0405 (b) Synthetic Data (c) Random Data

Figure 15: Number of good matches across datasets of size 356.

Restricting to only δ accesses in the DOMapE has an effect on the TAR of the system. Note that the real system
does not know which matches are good so even in the case when many matches are bad it is possible for a single
good match to be included in the arbitrarily selected δ traversals.The worst degradation of TAR is for synthetic data
with 5000 records where TAR drops from .91 to .83.

7.2 Speed - Cryptographic Efficiency

The implementation was tested on a RHEL 7.9 machine with an Intel(R) Xeon(R) CPU E5-2630 v3 with 32 cores at
2.40GHz, 64 GB (4x16GB) 2400MHz DDR4 RDIMM ECC RAM, and Two 2TB SATA 7.2K RPM HDD in Raid1.
Results are in Table 3. We did not model network delay in our experiments, because the underlying PathORAM
implementation does not batch ORAM requests into a roundtrip.

Storage efficiency Feature vectors are 1024 bit vectors, so 5K irises is 640 KB. The unprotected (same structure
as DOMapE but without ORAM) index takes approximately 122.3 MB.7 This represents a storage increase factor of
around 22 between raw data and unprotected index. As shown in Table 3, for our encrypted storage this amounted
to 35.6 GB in storage. ORAM increases storage again approximately 291 times. As we discuss in the Conclusion,
one can more efficiently pack ORAM blocks using trees with a branching factor > 2.

Time efficiency The time to build the encrypted index is largely dominated by the ORAM setup time so we only
report the later (column “O.Init”). For small datasets (356 records), ORAM setup takes between 1 and 4 hours,
respectively for random and real data. For larger datasets of size 5000, ORAM setup takes almost 2 days for random
data and approximately 11 days for synthetic data. While these timings are not prohibitive yet, they will be for very
large datasets. We believe that part of this problem is caching of the large data structures to virtual memory and

7Internal node consists of an LSH number, a 22 LSH values, and 2 child identifiers (either the node id or the position of the child in
the next ORAM). Leaf nodes consist of a single 32 node identifier.
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Dataset Dataset β δ # ORAM # Roundtrips Time (s) Size
size, ` type α nmaps qsize Queries Reads sequential parallel O.Init Search O.Read (GB)

356 random 15 630 13 356 117 334 18 3.8× 103 11 .051 1.1
356 ND 18 850 37 356 333 666 18 13.8× 103 39 .062 1.1
356 synthetic 18 850 26 356 234 468 18 12.3× 103 27 .061 1.1

1000 random 18 850 8 500 80 160 20 11× 103 17 .122 2.2
1000 synthetic 19 1000 47 500 470 940 20 13× 103 113 .135 2.2

2500 random 19 1000 11 500 132 262 24 59× 103 90 .353 8.9
2500 synthetic 21 1200 56 500 672 1344 24 202× 103 553 .420 17.8

5000 random 20 1200 12 500 156 312 26 166× 103 235 .757 35.6
5000 synthetic 22 1300 72 500 936 1872 26 902× 103 1530 .816 35.6

Table 3: Efficiency results. O.Init is time to initialize all ORAMs. O.Read is average read time (across ORAM
layers). Search is time per query and includes tree traversals. Size EDB denotes the size of the ORAM files that
are stored on the server (OMC storage is ignored since it is much smaller). Sequential number of roundtrips is
2 ∗#ORAM Reads and Parallel Rounds trips is dlog2 `e ∗ 2. All timing numbers are averaged across the number of
queries in # Queries.

the use of a spinning disk hard drive that perform poorly with ORAM workloads [WST12, Section 2.3]. To check
this hypothesis, we ran the synth dataset of size 356 on a M1 Mac mini desktop with 16GB of memory and a 2TB
SSD, and observed a 4 fold reduction in ORAM setup time.

Search time (per query) requires < 1 min for datasets of size 356, reaching a few minutes for larger datasets
(approximately 4 minutes for 5000 random and 26 minutes for 5000 synthetic). Although these timings for larger
datasets are not ideal, they are a vast improvement compared to previous works (see discussion in Introduction.).
Furthermore, if one had to search all β trees, search time would increase by a factor of at least 1/.06 ≈ 16.

Network Round Trips We report on two figures, the number of round trips using a purely sequential PathORAM
implementation and the number of roundtrips if one is able to fully batch all requests at the same level. For the
largest synthetic parameter sizes, if one assumes a fast network with 60ms responses and unbounded bandwidth then
network delays result in 1.56 seconds in parallel rounds trips, but slower 1s responses results in 26 seconds. If one
assumes sequential round trips and 60ms responses the network delay alone is 112s. For comparison, we note that
our local ORAM read operation took .849s on this dataset.

Impact of ORAM implementation Our underlying ORAM module is not parallel [SDS+18a]. Since ORAM
accesses dominate the timings, using a better optimized implementation would positively affect efficiency. Maas et
al. [MLS+13] proposed a secure processor relying on Path ORAM to obfuscate its memory access trace. They built an
hardware implementation of their approach on a commercially available FPGA-based server. Their evaluation shows
ORAM accesses take 30µs for an ORAM size of 4 GB and block size of 4 kB. As comparison, in our implementation
an ORAM access takes 62 ms for a total size of ORAM files of 1.1 GB. Recall that our scheme uses one ORAM per
tree level. This is 2000 times slower than in Maas et al.’s work.

Many existing ORAM schemes including PathORAM naturally supported batched read/write operations where
the client keeps a larger stash. In the case of PathORAM, the client repeatedly reads and writes a “random” path
on a tree. One can naturally perform all reads first and then perform all writes, simulating the intermediate storage
that would be held by the server. Parallel ORAM is a more complex solution when the reads come from different
clients [WST12].

Evaluation of OMC implementation using private set intersection On the same hardware as the rest of the
evaluation we deployed the VolePSI implementation [RS21]. We deployed this with a server set of size 6.5 million
items and a client set of 1300 items. This corresponds to the largest set of parameters in Table 3. VolePSI is based
on OT extension and requires a setup phase. We benchmarked 32 PSI iterations with the first taking 766ms and the
rest taking 2ms of computation. We note that VolePSI requires 7 messages of communication. These results justify
the focus on the design of DOMapE.
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8 Conclusion

This work presents Private Eyes the first zero-leakage biometric database. Our system is tested with response times
in minutes on databases of thousands of irises. Our construction combines LSHs and oblivious maps. The unique
aspect of our design is the recognition and mitigation of the cryptographic inefficiencies caused by the high noise in
biometric data. In particular, we use the statistics of biometric data to create our two-stage approach which filters
which LSHs to query using a lighter-weight membership checking primitive before the heavy-weight oblivious map.

We used binary trees, one can use trees with a higher branching factor (or skiplists as in [BC14]) to reduce the
number of ORAM lookups. Ideally, each node would correspond to a single ORAM block which is commonly a
multiple of 256 bytes. Our current estimate is that internal nodes account for ≤ 128 bits of storage out of the 256
byte block size. As such, one could make the tree into a 18-ary tree (32 bits for LSH number, 32 bits for left most
child, and 22 + 32 bits for each additional comparison node). This would reduce the depth of the trees and required
number of round trips by a factor of log2 18 ≈ 4.
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A Synthetic Data Generation

We now describe the neural network used to produce our synthetic templates. Our synthetic templates are built
using a generative adversarial network or GAN. A GAN trains two networks in competition, a generator which
should produce synthetic irises and a discriminator which classifies irises as real or synthetic. Yadav et al. [YCR19]
uses RaSGAN (relativistic average standard GAN) [JM19] to generate synthetic irises for the purpose of studying
their effects on presentation attack detection (PAD) algorithms. Irises from the RaSGAN perform well against PAD
and follow real iris statistics well. Kohli et al. [KYV+17] use the DCGAN architecture to generate synthetic irises.
Synthetic irises can be viewed as irises that must closely resemble bonafide irises as discussed in [YCR19,KYV+17].

Our synthetic data generator is also trained using the ND-0405 dataset [BF16]. We follow the approach of
RESIST [AF20] which takes inspiration from synthetic data generation to invert iris templates into realistic looking
images.

We denote the network as SYNTH. In a GAN formulation, noise is sampled from a multivariate normal distribu-
tion (Pz) with a mean of 0 and a variance of 1. The generator converts this noise vector into a synthetic template. Let
Py denote the distribution of real templates and Pŷ denote the distribution of synthetic templates. We use a recently
proposed relativistic average discriminator [JM19] as our discriminator. To build up to the relativistic discriminator
we first start with the original GAN loss functions:

L(D) =− Ey∼Py [log(D(y))]− Eŷ∼Pŷ [log(1−D(ŷ))]

L(G) =− Eŷ∼Pŷ [log(D(ŷ))].

L(D) is called the discriminator loss and L(G) is called the generator loss, y is an actual template and ŷ is a synthetic
template generated by the generator.

The L(D) and L(G) losses are minimized using gradient descent. The generator and discriminator play a zero
sum game. The generator weights are updated based on how good its synthetic irises are while the discriminator
weights are updated on how well it differentiates between real and synthetic templates.

The last layer of the generator is the hyberbolic tangent (tanh) with output ranging from -1 to 1, this is done to
generate binary synthetic templates by substituting 0,1 with -1,1. The real templates are also converted to -1,1 for
conformity.

Architecture SYNTH architecture is a small neural network having only dense (fully connected) layers as shown in
Table 4 where Gx are generator layers and Dx are discriminator layers. Each layer is followed by a LeakyReLU [MHN13]
activation and a batch normalization [IS15] layer. The last layers of both sub-networks are unique, the generator has
a tanh activation while the discriminator has a Sigmoid activation.
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Training SYNTH is trained in two stages. First, the generator produces a synthetic template and second, the
discriminator outputs how real this synthetic template is. This training is done till convergence of the weights of
both networks. Both training stages use the Adam optimizer [KB15]. We randomly flip 2% bits of a real template as
noise to aid in network convergence. The networks is trained over 100 epochs. Each epoch having 100 steps. Each
step updates weights once by either 1) discriminating a pair of vectors or 2) generating a single synthetic template.

Once trained the SYNTH network can produce an unbounded number of distinct templates. We described how to
produce different readings from the same template in Section 5.
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