
 

 

 

 

Abstract— Classical Multivariate Cryptography (MP) is 

searching for special families of functions of kind nF=T1FTT2 on 

the vector space V= (Fq)n where F is a quadratic or cubical 

polynomial map of the space to itself, T1 and T2 are affine 

transformations  and T is the piece of information such that the 

knowledge of the triple T1, T2, T allows the computation of 

reimage x of given nF(x) in polynomial time O(nᾳ). Traditionally 

F is given by the list of coefficients C(nF) of its monomial terms 

ordered lexicographically. We consider the Inverse Problem of 

MP of finding T1, T2, T for F given in its standard form. The 

solution of inverse problem is harder than finding the procedure 

to compute the reimage of nF in time O(nᾳ).  For general 

quadratic or cubic maps nF this is NP hard problem. In the case 

of special family some arguments on its  inclusion to class NP has 

to be given. 

 

Key words: secure pseudorandom sequences, Multivariate 
Cryptography, Stream Ciphers, public Keys. 

I. INTRODUCTION 

Assume that the triples nT1, nT2, nT will be constructed from 

some seed S of elements from Fq.   The question whether or 

not increasing tuples of kind C(nF) form a cryptographically 

strong sequences of pseudorandom field elements can be ad-

dressed. 

We used algebraic constructions of Extremal Graph Theory 

to present sequences C(nF) where the complexity of the in-

verse problem is justified by the complexity of finding the 

shortest path between two vertices of bipartite graph of order 

2qn. In all suggested constructions the field Fq can be replaced 

by arbitrary commutative ring with unity. 

 

1. ON THE INVERSE PROBLEM OF MULTIVARIATE 

CRYPTOGRAPHY.    

Task of generation of cryptographically strong pseudoran-

dom sequence of elements of finite field Fq  is a traditional 

problem of applied cryptography. We can replace F_q for 
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general commutative ring K with unity, infinite cases K=Z, 

K=R or K=F2[x] are especially important. 

Some practical applications are observed in [1] books 

(chapters 16, 17), [2] and [3], papers [4]-[9] selected for 

demonstration of different approaches for the constructions of 

pseudorandom sequences. Noteworthy that there are possibil-

ities of construction genuinely random sequences with usage 

of quantum computers or other natural randomness sources 

(see [10], [11], [12]). 

  The task is about generation  of potentially infinite se-

quence a(n)=(a1, a2,…, af(n))  of field characters  which de-

pends from the secret seed.  We assume that f(n) is increasing 

function on the set N of natural number in natural variable n.  

Requirements of pseudo randomness practically means that 

sequences a(n) satisfy several special tests which confirm that 

the behavior of sequence is ‘’similar’’ to behavior of genuine 

random sequence. Nowadays the term cryptographically 

strong means that the knowledge of a(n) for some value of n 

does not allow adversary to recover the seed and reconstruct 

the computation of a(x) for arbitrary x. It means that adversar-

ial task is at least as hard as one as known NP-hard problem 

intractable even with usage of Quantum Computer. 

  We assume that two correspondents Alice and Bob use 

some protocol for secure elaboration of the ‘’seed’’ which is 

the tuple S=(s(1), s(2), …, s(d)) of nonzero symbols from fi-

nite field Fq of characters 2. They would like to construct  a 

secure renovations  of  this seed in a form of potentially infi-

nite sequences mRY(S)=R(S)  and nHZ(S)=H(S) of nonzero 

field elements of  polynomial length f(Y, m) and g(Z, n) where 

n and m are potentially infinite natural numbers.  The param-

eters n and m as well as pieces of information Y and Z are 

known publicly. In the case of finite commutative rings cor-

respondents will use string H(S) as the password of one time 

pad to encrypt plaintext P from (Fq) g(Z,n). So, the ciphertext 

will be P+H(S). The tuple R(S) will be used as a new seed for 

the next round of the procedure. Correspondents agree on new 
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numbers n* and m* and information pieces Y* and Z* and 

compute m*RY*(R(S))=*R and  n*H Z*(R(S))=*H. They will 

keep *R safely as the seed for the next session and use *H for 

the encryption. 

 Assume that adversary got the password H(S). He/she 

knows Z and n and can try to restore the seed S and break the 

communication process. 

We use Multivariate Cryptography techniques for the im-

plementation of this scheme and making seed restoration an 

NP -hard problem. 

We generalize the above scheme via simple change of Fq 

for arbitrary commutative ring K with unity. 

We assume that multivariate map F is given in its standard 

form of kind 

x1→f1(x1, x2,…, xn), x2→f2(x1, x2,…, xn),…, xn→fn(x1, x2,…, 

xn) 

where fi are polynomials from K[x1, x2,…, xn] given in their 

standard forms which are lists of monomial terms ordered ac-

cording to the lexicographic order. Let c(F) be the list of non-

zero coefficients of lexicographically ordered monomial 

terms. Practically we will use quadratic or cubic multivariate 

maps. 

For the nonlinear map F of bounded degree  given in its 

standard form we define trapdoor accelerator F=1TGD
2T  as 

the triple 1T, 2T, GD of transformations of Kn where iT, i=1, 2 

are elements of AGLn(K),  G=GD is nonlinear map on Kn   
and D is the piece of information which allow us to 

compute the reimage for nonlinear G in time  

O(n2 )( see [20]). In this paper we assume that D is 

given as a tuple of characters (d(1), d(2), …, d(m)) 

in the alphabet K. 
 

We consider the INVERSE PROBLEM for the construc-

tion of trapdoor accelerator of multivariate rule, i. e.  with 

given standard form of F find a trapdoors 1TGD
2T for F. 

 

Obviously, this problem is harder than finding the reimage 

computation method for values of F. It is harder than finding 

reimage computation procedure with the complexity O(n2). 

 

We suggest the following general scheme. Let nFr be a fam-

ily of nonlinear maps in n-variables which has trapdoor accel-

erator of kind GD(n) where D(n)=(nd(1), nd(2),…, nd(r)),such 

that r=m(n). Affine maps are identities.  

Correspondents have initial seed (s(1), s(2),…, s(d)). One 

of them selects parameters n and r=m(n) and  forms multivar-

iate frame Y(n, r) which consists on  the tuple h= (i1, i2, …, ir) 

of elements from M={1, 2, …, d}, tuples b(k)=(kb1, kb2,…, kbn) 

from Mn and matrices M(k)=(kz(i,j)) , i, j ϵ{1, 2, …n}, k=1,2  

with entries kz(i,j) from M. 

and send his/her partner via open channel. They compute 

specialised matrices kM=(s(kz(i,j))) and tuples kb==(s(kb1), 

s(kb2),…, s(kbn)). 

They form affine maps 1T(x)=1Mx+1b and 2T=2Mx+2b, 

k=1,2. 

Each correspondent computes standard form of 1T nFr 
2T=G(Y(n,r))=G and write down the list C(G(Y(n, r)) of coef-

ficients of monomial terms. They can treat C(G) as password 

H(S) for one time pad and use other multivariate frame 

Y*(m*, r*) as new seed R(S). 

REMARK. It is possible to modify the definition of 1M and 
2M with the option of entries from MU{1,0}. 

II. ON GRAPH BASED TRAPDOOR ACCELERATORS OF 

MULTIVARIATE CRYPTOGRAPHY. 

 We suggest the algorithm where trapdoor accelerator nFr 

defined over commutative ring K is a cubical rule wF induced 

by the walk w=rw of length r on algebraic incidence structure 

(bipartite graph) with point and line sets isomorphic to variety 

Kn. 

The walk  depends on the sequence of symbols (s(1), s(2), 

…, s(r)) in the alphabet K of length r  on bipartite graph ℾn(K) 

with partition sets and  recovery of the walk between the 

plaintext tuple and the ciphertext  gives the information about 

the seed. Noteworthy that Dijkstra algorithm is able to find 

the path between given vertices in time O(vln(v)) where v is 

the order of graph. In our case the order is 2qn. It means that 

the complexity of this algorithm is subexponential. 

    In the case of K=Fq suggested algorithm graphs ℾn(q) 

form one of the known families of graphs with increasing 

girth D(n, q) and A(n, q) (see [13], [14] and further references, 

[15] and further references).  Recall that girth is the length of 

minimal cycle in a graph. If the distance r between vertexes 

is less than half of the girth, then the shortest path between 

them is unique. For the graphs from each family the projective 

limit is well defined and tends to q-regular forest. Connected 

components of these graphs are good tree approximations.  It 

means that if n is sufficiently large then expected complexity 

is q(q-1)r-1.  We select r, r≤n as unbounded linear function l(n) 

in variable n. In fact it can be proven that ai, i=1, 2,…, f(n) are 

polynomial expressions in variables s(1), s(2),…, s(r) of de-

gree r. Let us construct the function nF. The incidence struc-

ture A(n, K) is defined A(n, K) as bipartite graph with the point 

set P=Kn and line set L=Kn (two copies of a Cartesian power 

of K are used). We will use brackets and parenthesis to distin-

guish tuples from P and L. So (p)=(p1, p2, … , pn) ϵ Pn and 

[l]=[l1,  l2 , … , ln] ϵ Ln. The incidence relation I=A(n,K) (or 

corresponding bipartite graph I) is given by condition  p I l if 

and only if the equations of the following kind hold. p2 - 

l2=l1p1,  p3 -  l3= p1 l2,p4 - l4 = l1p3,  p5 - l5 = p1 l4 , … , pn - ln 

= p1 ln-1 for odd n and pn - ln = l1 pn-1 for even n. We can con-

sider an infinite bipartite graph A(K) with points (p1, p2 ,…, pn 

,…) and lines [l1 , l2 ,…,ln , …]. It is proven that each odd n 

girth indicator of A(n, K) is at least [n/2]. 

 Another incidence structure I= D(n, K) is defined below.  

Let us use the same notations for points and lines as in previ-

ous case of graphs A(n, K). 

 Points and lines of D(n, K) also are elements of two copies 

of the affine space  over K. Point (p)=(p1, p2, … , pn) is 

incident with the line [l]=[l1,  l2 , … , ln] if the following 

relations between their coordinates hold: p2 - l2=l1p1,  p3 -  l3= 



 

 

 

p1 l2, p4 - l4 = l1p3, …, li-pi=p1li-2 if i congruent to 2 or 3 modulo 

4, li-pi=l1pi-2 if i congruent to 1 or 0 modulo  4.  Incidence 

structures D(n, Fq), q>2 

form a family of large girth (see [13 LUW]), for each pair 

n , n≥2, q, q>2 the girth of the graph is at least n+5.  

     Let ℾ(n, K) be one of graphs D(n, K) or A(n, K). The 

graph ℾ(n, K)  has  so called defined  linguistic colouring ρ of 

the set of vertices. We assume that ρ(x1, x2, …, xn)=x1 for the 

vertex  x (point or line)  given by the tuple with coordinates 

x1, x2,…, xn. We refer to x1 from K as the colour of vertex x. 

It is easy to see that each vertex has unique neighbour of 

selected colour.  Let   Na be operators of taking the neighbour 

with colour a from K. Let  [y1, y2,  …, yn] be the line y of ℾ(n, 

K[y1, y2, …, yn]) and (ᾳ(1), ᾳ(2) , …, ᾳ(t)) and (β(1), β(2) , …, 

β(t)),  t   are the sequences of nonzero  elements  of the length 

at least 2. We  form sequence of colours of points 

a(1)=y1+ᾳ(1),  a(2)= y1 +ᾳ(1)+ ᾳ(2), …, a(t)= y1 +ᾳ(1)+ 

ᾳ(2)…+ᾳ(t) and  the sequence of colours of lines b(1)= y1 + 

β(1), b(2)= y1 + β(1)+β(2),…,  b(t)= y1 +β(1)+ β(2)  … β(t)   

and consider the sequence of vertices from  ℾ(n, K[y1, y2, …, 

yn]) :  v=y, , 1v=Na(1)(v), 2v=Nb(1)(1v), 3v=N a(2)( 2v), … ,  2t-

1v=Nᾳ(t)(2t-2v), 2tv=Nb(t)(2t-1v).  

    Assume that v=2tv=[v1, v2, … , vn] where vi are from   

K[y1, y2, …, yn]. We consider  bijective quadratic transfor-

mation  g(ᾳ(1), ᾳ(2),… , ᾳ(t)│β(1), β(2) , …, β(t)), t ≥2   of 

affine space Kn of kind  y1 → y1 + β(t), y2 → v2(y1, y2), y3 → 

v3(y1, y2, y3),    … ,  yn → vn(y1, y2,…, yn). 

It is easy to see that g(ᾳ(1), ᾳ(2),… , ᾳ(t)│ β(1), β(2) , …, 

β(t))•g(γ(1), γ(2),… , γ(s) │ σ(1), σ(2) , …, σ(t))= g(ᾳ(1), 

ᾳ(2),… , ᾳ(t),  γ(1) +β, γ(2) +β,… , γ(s) +β │ β(1), β(2) , …, 

β(s), σ(1)+β, σ(2)+β, …, σ(s)+ β) where  β= β(1)+ β(2) + … 

+β(t).    

THEOREM 1 [11]. Bijective transformations of kind 

g(ᾳ(1), ᾳ(2),… , ᾳ(t) │ β(1), β(2) , …, β(t)), t ≥2   generate  the  

subgroup  G(ℾ(n, K))  of transformations of  Kn with maximal 

degree 3. 

Let F be a standard form of 1T g(ᾳ(1), ᾳ(2),… , ᾳ(t)│β(1), 

β(2) , …, β(t))2T where 1T and 2T are elements of AGLn(K) and 

T=O(n). Then triple 1T, 2T, (ᾳ(1), ᾳ(2),… , ᾳ(t), β(1), β(2) , …, 

β(t)) be a trapdoor accelerator of F. 

We will use family of graphs A(n, K)  and D(n, K) together 

with A(n, K[y1, y2,…, yn])  and D(n, K[y1, y2, …, yn]).  Let ℾ(n, 

K) be one of those graphs defined over the commutative ring 

K with the unity. 

Assume that correspondents Alice and Bob already com-

pleted some seed agreement protocol and elaborate seed 

s=(s(1), s(2), …, s(k)). Without loss of generality we assume 

that s(i)≠0 for i=1,2,…, k . 

 

For the construction of multivariate frame they select pa-

rameters t and n together with sequences (i1, i2,…., it), (j1, j2, 

…,jt) of elements from M={1, 2,..,k} and    

 matrices rU=(ru(i.j)), r=1, 2 with ru(i,j) from M. 

Correspondents  take linear transformations 1T and 2T cor-

responding to matrices 1A and 2A with entries s(1u(i.j)) and 

s(2u(i.j)) and computes the standard form of F= 1Tg(s(i1), 

s(i2),…, s(it)│ s(j1), s(j2),…, s(jt)) 2T. 

 We need some ‘’general frame generation algorithm’’. 

The simple suggestion is the following. 

We concatenate word (s(1), s(2),…, s(d)) with itself  and 

get infinite sequence s1, s2,…, si,…. We identify (1u(1, 1), 
1u(1,2), …, 1u(1,n)) with (s1, s2, …, sn) and use the cyclic shift 

and set 

(1u(i, 1), 1u(i, 2), …, 1u(1,n))=(si, si+1, …, sn, sn+1, sn+2,…sn+i-

1) for i=2,3,…,n 

We use reverse tuples to form matrix 2U. So (2u(1, 1), 
2u(1,2), …, 2u(1,n))= 

 (sn, sn-1,…, s1) and (2u(i, 1), 2u(i,2), …, 2u(1,n))=(sn+i-1, sn+i-

2,…, sn+1, sn, sn-1, …, si) for i=2, 3, …, n. 

We set  (i1, i2,…., it) and (j1, j2, …,jt) as (s1, s2,…., st) and  

(s1+t, s2+t, …,s2t) respectively. 

 

So they can use the sequence of symbols C(F) as a pass-

word for the additive one time pad with plaintext Kd(F) where 

d(F) is the number of monomial terms for the multivariate 

map F. 

Other multivariate frame can be used for the seed renova-

tion. Noteworthy that alternatively correspondents can use a 

new session of the protocol for the seed elaboration. 

Other option is to use the stream cipher on Kn where  each 
rT  is changed for the  compositions of lower and upper  uni-

triangular matrices rL and rU with nonzero entries from  rA. 

One of the option is to use transformations T1: 

y→1U1Ly+(1a(1,1), 1a(2,2), …, 1a(n, n)) and T2: 

y→L2U2y+(2a(1,1), 2a(2,2), …, 2a(n, n)). 

So correspondents use bijective transformation F=T1 

g(ᾳ(1), ᾳ(2),… , ᾳ(t)│β(1), β(2) , …, β(t))T2 for the encryption. 

The knowledge of trapdoor accelerator allows correspondents 

to encrypt or decrypt in time O(n2). 

 

REMARK ON TRAPDOOR MODIFICATIONS. In the 

case of K=Fq , q=2r, r ≥16 we can use operator aJ of changing 

the colour p1  of the point (p1 , p2 , …, pn) from the graph ℾ(n, 

K))  for the ring element a. 

We can take the path in the graph ℾ(n, K[y1 , y2 ,…, yn ]))    

corresponding to  g(ᾳ(1), ᾳ(2),… , ᾳ(t)│β(1), β(2) , …, β(t)) 

with the starting point (y1 , y2, …, yn ) and ending point 2tv. 

We change 2tv for v =aJ(2tv )=((y1)^2, v2, ..,vn),  a=(y1) 2 and 

consider the rule  

y1 → (y1)
 2, y2 → v2(y1, y2), y3 → v3(y1, y2, y3),    … ,  yn → 

vn(y1, y2,…, yn). This rule induces bijective quadratic transfor-

mation h(ᾳ(1), ᾳ(2),… , ᾳ(t)│β(1), β(2) , …, β(t)) of vector 

space Kn. 

Then polynomial degree of inverse for G=T1 h(ᾳ(1), 

ᾳ(2),… , ᾳ(t)│β(1), β(2) , …, β(t))T2 is at least 2r-1 , descryp-

tion of this graph based accelerator can be found in [20]. 

Noteworthy that the map F and its inverse are cubic trans-

formations. Adversary has to intercept more than n3/2 pairs of 

kind plaintext/ciphertext to restore F or its inverse. Theoreti-

cally interception of O(n3) pairs will allow adversary to break 

the stream cipher in time O(n10) via linearisation attacks. It is 



 

 

 

easy to see that the transformation G is resistant to lineariza-

tion attacks. 

 

REMARK 1. In the case of ℾ(n, K) based encryption we can 

use sparce frame given by two numbers r and n and sequences 

(i1, i2,…., it), (j1, j2, …,jt) of elements from M={1, 2,..,k}  

together with two sequences (1i, 2i,…, n-1i ) and  (1j,  2j,…, 
n-1j )  from Mn-1. So Alice and Bob form linear transformations 
1τ and 2τ such that 1τ(y1)=y1+s(1i)y2+ s(2i)y3+… s(n-1i)yn, 
2τ(y1)=y1+s(1i)y2+ s(2i)y3+… s(n-1i)yn, jτ(yi)=yi for j=1,2 and 

i≥2. 

So correspondents compute the standard form of F= 
1τg(s(i1), s(i2),…, s(it)│ s(j1), s(j2),…, s(jt)) 2τ  and able to use 

string C(F). 

Let us assume that t=O(nᾳ) where 0≤ᾳ<1. Then inverse 

problem of restoration of sparce frame is harder than finding 

the algorithm of computing F-1in time O(nᾳ+1). Recall that 

solving nonlinear system of polynomial equations is known 

NP hard problem, if the inverse map F-1 is cubic it can be 

found in time O(n10).  

We implemented described above algorithm of generating 

C(F) in the case of finite fields Fq, q=2m 

of characteristic 2, arithmetical rings Zq and Boolean rings 

B(m, 2) of order 2m . 

 

 REMARK 2. We can treat element ᾳ1+ ᾳ2x+ ᾳ3x 2… ᾳm xm-

1 of Fq, q=2m as a sequence of elements (ᾳ1, ᾳ2,…, ᾳm)  of F2 

(element of Boolean ring) or number  ᾳ1+ ᾳ2 2+ ᾳ322… ᾳm2m-

1(element of Zq ).  

The results of computer simulations are presented in [19 

uk, archive 2019]. Some of these tables and graphs are repro-

duced below for readers convenience. 
 

Table 1. Number of monomial terms of the cubic map of induced by the 

walk on the  graph  , case of sparce frame. 

 length of the walk r 

 16 32 64 128 256 

16  3649   3649   3649   3649   3649 

32  41355   41356   41356   41356   41356 

64  440147   529052   529053   529053   529053 

128  3823600   6149213   7405944   7405945   7405945 

 

 

Table 2. Density  of the  cubic map of   induced by the walk on graph 

 , case of general frame. 

 length of the word 

 16 32 64 128 256 

16  6544   6544   6544   6544   6544 

32  50720   50720   50720   50720   50720 

64  399424   399424   399424   399424   399424 

128  3170432   3170432   3170432   3170432   3170432 

 

 

 

 

 

 

 

Table 3. Density of the cubic  map   of linear degree induced by the graph 

, case II 

 length of the walk 

 16 32 64 128 256 

16  5623   5623   5623   5623   5623 

32  53581   62252   62252   62252   62252 

64  454375   680750   781087   781087   781087 

128  

3607741  

 

6237144  

 

9519921  

 

10826616  

 

10826616 
 

Table 4. Density of the map of linear degree  induced by the graph 

 , case III 

 length of the walk 

 16 32 64 128 256 

16  6544   6544   6544   6544   6544 

32  50720   50720   50720   50720   50720 

64  399424   399424   399424   399424   399424 

128  

3170432  

 

3170432  

 

3170432  

 

3170432  

 

3170432 

 

 

Figure 1. Number of monomial terms of the cubic map induced by the walk 

on the graph (  ) (graph  , ), case 

of sparce frame. 



 

 

 

 
Figure 2. Number of monomial terms of the map induced by the walk on 

graph (  ) (graph  ,  ), case of 

general frame. 

 
Figure 3. Number of monomial terms of the cubic map induced by the 

graph ( ) (graph  ,  ), case of 

sparce frame. 

 
Figure 4. Number of monomial terms of the map  induced by the walk on 

graph ( ) (graph ,  ), case of 

general frame. 

III. EXAMPLE OF THE SEED ELABORATION PROTOCOL OF 

MULTIVARIATE NATURE. 

Presented above algorithms of generation of potentially infi-

nite sequences of ring elements use seeds in the form of tuples 

of nonzero elements. Such seeds can be elaborated via proto-

cols of Noncommutative Cryptography (see [21]-[25]) based 

on the various platform.   

We will use one of the simplest protocols of Noncommuta-

tive Cryptography which is straightforward generalization 

Diffie -Hellman algorithm.  The scheme is presented below. 

 

A. Twisted Diffie-Hellman protocol. 

Let S be an abstract semigroup which has some invertible 

elements. 

Alice and Bob share element gϵS and pair of invertible el-

ements h, h -1from this semigroup.  

Alice takes positive integer t= kA and  d= rA and forms h-

dgthd= gA. Bob takes s= kB and  p= rB. 

and forms h-pgshp= gB. They exchange gA and gB and com-

pute collision element X as Ag= h-dgB
thd and Bg= h-pgB

thp re-

spectively.  

The security of the scheme rest on the Conjugation Power 

Problem, adversary has to solve the problem h-xgyhx= b where 

b coincides with gB or gA. The complexity of the problem de-

pends heavily on the choice of highly noncommutative plat-

form S. 

We will use the semigroups of polynomial transformations 

of affine space Kn of kind x1→f1(x1, x2,…, xn), x2 →f2(x1, x2,…, 

xn),,…, xn →fn(x1, x2,…, xn) where fi, i=1,2,…n.  Noteworthy 

that in case of n=1 the composition of two nonlinear transfor-

mations of degree s and r will have degree rs. The same fact 

holds for the majority of nonlinear transformations in n vari-

ables. 



 

 

 

For the feasibility of the computations in the semigroup of 

transformation we require the property of computing n ele-

ments in a polynomial time O(n ᾳ), ᾳ>0. We refer to this prop-

erty as Multiple Composition Polynomiality Property (MCP). 

Below we present one of the MCP type families for which 

Conjugation Power Problem is postquantum untractable, i. e. 

usage of Quantum Computer for Cryptanalysis does not lead 

to the change of its NP hard status. 

Let K be a finite commutative ring with the multiplicative 

group K* of regular elements of the ring. We take Cartesian 

power nE(K) =(K*)n  and consider an Eulerian semigroup 
nES(K) of transformations of kind  

 

x1 → ϻ1x1 a(1,1) x2 a(1,2) … xm a(1,n) ,                          

x2 → ϻ2x1 a(2,1) x2 a(2,2) … xm a(2,n) ,                                        (1) 

              … 

xm →ϻnx1 a(n,1) x2 a(n,2) … xm a(n,n) , 

 

where a(i,j) are elements of arithmetic ring Zd, d=|K*|, 

ϻiϵK*. 

Let nEG(K) stand for Eulerian group of invertible transfor-

mations from nES(K). Simple example of element from 
nEG(K) is a written above transformation where a(i,j)=1 for i 

≠ j or  i=j=1, and a(j,j)=2 for j ≥2. It is easy to see that the 

group of monomial linear transformations Mn is a subgroup of 
nEG(K).  So semigroup nES(K) is a highly noncommutative 

algebraic system.  Each element from nES(K) can be consid-

ered as transformation of a free module Kn (see 15).  

We implemented described above protocol with the plat-

form nES(K) in the cases of fields K=Fq, q=2m and arithmeti-

cal rings K=Zq . The output of algorithm is the element as 

above with elements a(i,j) from multiplicative group F*q
  

(case of the field) or group Zt
 , t=2 m-1  in the case of elements  

of arithmetical ring. We form matrix B=(ϻi ϻj)a(i,j) of regular 

elements of K and treat  as the sequence of elements of  length 

n2.  In necessary we identify nonzero field element 

a0+a1x+a2x2+…+am-1xm-1 with the tuple  (a0, a1,…, am-1) from 

the Boolean ring B(m. 2) of order 2m.  

For the generation on invertible element h from the proto-

col we use transformation E which is obtained as composition 

of '' upper triangular element''  1E 

 

x1→q1x1
a(1,1)x2

a(1,2)… xn
a(1,n), 

x2→q2x2
a(2,2)x3

a(2,3)… xn
a(2,n),                         (2) 

…, 

Xn-1→qn-1xn-1
a(n-1,n-1)xn

a(n-1,n) 

xn→qnxn
 a(n,n),  

 

and lower triangular element 

 

x1→r1x1
 b(1,1) , 

x2→r2x1
 b(2,1) x2

 b(2,2),                                        (3) 

…, 

xn→rnx1
 b(n,1) x2

 b(n,2) …xn
 b(n,n) where qi and ri are regular  el-

ements of K, elements a(i,j), b(i,j) are from the group Zt , 

where  t is the order of multiplicative group of the ring, resi-

dues  a(i,i), b(i,i) are mutually prime with the modulo t.  

Noteworthy that computation of the inverse elements of 1E 

and 2E is straightforward. 

In fact we can use other platforms of affine transformation, 

and more general protocols in terms of  semigroup of trans-

formations of Kn and its homomorphic image (see [16]-[19]). 

Security of generalised protocols rests on the complexity of 

Word Decomposition  problem. It is about the decomposition 

of element w of semigroup S into combination of given gen-

erators of S. This problem is harder than its particular case of 

Conjugation Power Problem.  

 

IV. CONCLUSIONS AND TOPICS FOR FURTHER RESEARCH. 

We suggest the protocol based communication scheme for 

a Postquantum usage. It uses nonlinear transformation of af-

fine space Kn where K is a finite commutative ring with unity. 

Convenient for practical application choices for K are finite 

field of characteristics 2 of order 2s, arithmetic ring Zt, t=2s 

and Boolean ring B(s, 2). 

Correspondents Alicia and Bob can use the following com-

munication scheme or its modification. 

1. Firstly, they have to generate a ‘’seed of infor-

mation’’. Correspondents agree on the parameter s, 

basic commutative field K which is the Fq or arith-

metic rings Zt and the dimension n of the affine 

space. 

Alice selects elements 1E of kind (2) and 2E of kind (3). She 

computes h=1E2E and its inverse h -1. She selects transfor-

mation g of kind (1) and sends the triple (h, h -1, g) to her part-

ner Bob via an open channel. Alice and Bob conduct de-

scribed in section 3 algorithm. So they elaborate a collision 

element C of kind (1) with coefficients ϻi and a(i, j) in a secure 

way. 

 They form the matrix B =(b(i,j)) with entries (ϻi ϻj)a(i,j). 

Correspondents arrange these entries accordingly to the lexi-

cographical order and get the seed in a form a tuple (s(1), 

s(2),…, s(n2)). 

Noteworthy that the complexity of this protocol is O(n4). 

1. Correspondents has to agree via an open channel on 

the commutative ring R. They can treat characters s(i) 

as field elements, residuals or elements of Boolean 

ring B(s, 2). 

2. They will use elaborated seed for the creation of cryp-

tographically strong potentially infinite sequence 

(b(1), b(2),…, b(t)) from Rt for some parameter t. 

 Correspondents agree on  potentially infinite parameter m, 

the graph  ℾm(R) ( A(m, R) or D(m, R)) and type of the frame 

for multivariate accelerator (general frame of section 2 or 

sparce frame of Remark 1) and parameter r (length of the 

path). 

They construct multivariate accelerator which is the cubic 

transformation F acting on the affine space Rm. 

3. They can exchange the information with the usage of 

the following options. 



 

 

 

(a) Compute the standard form of F and tuple 

C(F)=(c1, c2,…, cl), where l=l(r, m, R) depends on 

the choice during step 2. Experiment demonstrate 

that parameter l does not depends on the coordi-

nates of the seed, n2<l<n3. Correspondents use 

one type pad. One of them creates the plaintext 

(p)=(p1, p2, …, pl) and sends to his/her partner ci-

phertext (p)+C(F). After this action correspond-

ents can go to the next step. 

(b) Correspondents use their knowledge on the frame-

for F and use bijective trapdoor accelerator for en-

cryption of plaintexts from Rn. They can exchange 

up to n3/2 messages and after that go to step 4. In 

the case of large fields of characteristic 2 corre-

spondents can change F for G described in the re-

mark on trapdoor modification presented above. 

They can use this G without time limitations. 

4. The change of seed. There are two following options. 

(a) Correspondents repeat the step 2 with the same 

seed s(1), s(2), …with different data which in-

clude new graph of kind ℾm’(R’) and different type 

of frame in comparison with previous frame us-

age. They create corresponding accelerator G and 

take C(G) as a new seed. 

(b) Alice and Bob change the seed via the new session 

of described twisted Diffie-Hellman protocol. Af-

ter the step 4 they doing sequence of actions (2) 

and (3) for the encryption with the new seed and 

go to step 4 again. We plan to test sequences of 

kind C(F) for the presented above graph based cu-

bic transformations via various approaches for the 

investigation of pseudorandom sequences (see 

[26]). 
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