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Abstract:
Side-Channel Attacks are powerful attacks which can recover secret information in a cryptographic
device by analysing physical quantities such as power consumption. Masking is a common counter-
measure to these attacks which can be applied in software and hardware, and consists in splitting
the secrets in several parts. Masking schemes and their implementations are often not trivial, and
require the use of automated tools to check for their correctness. In this work, we propose a new
practical tool named VerifMSI which extends an existing verification tool called LeakageVerif
targeting software schemes. Compared to LeakageVerif, VerifMSI includes hardware constructs,
namely gates and registers, what allows to take glitch propagation into account. Moreover, it
includes a new representation of the inputs, making it possible to verify three existing security
properties (Non-Interference, Strong Non-Interference, Probe Isolating Non-Interference) as well
as a newly defined one called Relaxed Non-Interference, compared to the unique Threshold Prob-
ing Security verified in LeakageVerif. Finally, optimisations have been integrated in VerifMSI
in order to speed up the verification. We evaluate VerifMSI on a set of 9 benchmarks from the
literature, focusing on the hardware descriptions, and show that it performs well both in terms of
accuracy and scalability.

1 INTRODUCTION

Side-Channel Attacks (SCA) exploit the relation-
ship between physical quantities such as power
consumption, electromagnetic emissions, or tim-
ing information and secret data manipulated by
cryptographic implementations, in order to re-
trieve the secret data. Since the first published
differential power attack (Kocher et al., 1999),
many other such attacks have proven to be very
effective when the device contains no specific
countermeasure (Mangard et al., 2008; Batina
et al., 2011; Chari et al., 2003). With the ad-
vent of the Internet-of-Things, many embedded
devices now use cryptographic implementations
and are potential targets for these attacks (smart
cards, mobile phones, or RFID tags). Protect-
ing these devices against SCA has thus become a
significant concern.
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Masking is a protection technique against
SCA, with a goal to remove the statistical depen-
dency between intermediate computations and se-
cret data manipulated by the program (Trichina,
2003; Ishai et al., 2003). The rationale behind
masking is that intermediate computations’ val-
ues are correlated to the power consumption,
therefore a masked program should have no sta-
tistical dependency between the secret data and
the observable physical quantities. Masking can
be applied at any order, and masking at order
d consists in splitting each secret variable into
n = d + 1 parts, called shares. The higher the
order, the better the security, as any recombi-
nation of up to d shares should not allow to de-
duce any information on the secret, and the recov-
ery becomes exponentially hard with the number
of shares as each observation comes with noise.
The most practical and common way of achiev-
ing masking for a secret x is the linear mask-
ing: it consists in drawing d uniformly and in-



dependently distributed variables and computing
the nth share by recombining x with the first d
shares using the bitwise xor operation ⊕ in the
boolean case. Splitting the secrets is not the main
part however, as the original program must then
be transformed into a masked equivalent, using
shares only, and avoiding any recombination of
the secret variables. While this is quite straight-
forward for linear operations w.r.t. the xor, the
transformation is more complicated for the non-
linear parts of the program. When done man-
ually, several security flaws may appear. Con-
sequently, a critical need for automatic masking
verification has emerged to check the correctness
of masked implementations, both in hardware or
software.

Masking is popular as masked implementa-
tions can theoretically be proven secure, and sev-
eral methods have been proposed for proving the
security of such implementations. They are all
based on analyzing the intermediate expressions
manipulated by the circuit or program and try
to answer the question: does the distribution of
a specific subset of intermediate computation re-
sults depend on secret data? The implementa-
tion is considered insecure if two different secret
values lead to two different distributions. This
requires enumerating all possible subsets of in-
ternal variables of the program and testing their
independence from the secret. The sizes and the
number of sets depend on the considered prop-
erty. One way of testing the independence of a
given subset of internal variables is to compute
the actual distribution of the variables for each
possible realization of the secret inputs. In order
to avoid this non-scalable approach, recent works
on masking verification use symbolic computa-
tion. These methods can be categorized into two
families: methods by inference (El Ouahma et al.,
2017; El Ouahma et al., 2019; Zhang et al., 2018;
Gao et al., 2019a; Gao et al., 2019b), and meth-
ods by substitution (Barthe et al., 2015; Barthe
et al., 2019; Meunier et al., 2020; Meunier et al.,
2023). In the former, the analysis of a symbolic
expression relies on the results of analysing the
sub-parts of the expression using inference rules.
These results usually contain a distribution type
and additional information, such as variable oc-
currences. In the latter, the analysis of a sym-
bolic expression consists in iteratively replacing
masked sub-parts of the expressions until there is
no more secret occurrence. The verification can
fail to conclude on some given expressions with ei-
ther method. In this case, the set of expressions is

considered to be “possibly leaking”. Using an enu-
merative technique to determine the distribution
type may help to conclude in this case, but this
workaround is limited to small expressions and
variable sizes due to the inherent non-scalability
of distribution enumeration. Consequently, veri-
fication methods must be as accurate as possible
to conclude for as many leakage-free expressions
as possible and give as few false positives as pos-
sible.

LeakageVerif (Meunier et al., 2023) is a sub-
stitution verification method implemented in an
open-source tool, and provided as a python li-
brary. Compared to other tools, it has a
good scalability and accuracy, while being easily
adapted for different use cases (verification of al-
gorithms, assembly code, hardware modules). In
this work, we propose to extend LeakageVerif to
overcome some of the limitations of this tool. We
thus introduce VerifMSI for Verification of Mask-
ing Schemes Implementations. We claim VerifMSI
to be a single tool including state-of-the-art tech-
niques gathering all common masking verification
types. If VerifMSI does not make a major break-
through in masking verification techniques, it en-
compasses a wide range of use cases with opti-
mized and scalable algorithm implementations,
making it a very practical open tool for hardware
and software masking verification. Compared to
LeakageVerif, VerifMSI makes the following con-
tributions:
• Addition of hardware circuits constructs (gates,

registers) allowing for circuits description, tak-
ing into account glitches.

• Possibility to use shares for the masking scheme
description, allowing to choose between the
classical description using secrets and masks,
and the share description. In the former, the
program explicitly uses secrets and masks, e.g.
a secret a is replaced with expressions ma and
ma ⊕ a. In the latter, the shares are atomic
inputs of the program (e.g., a0, a1), what
allows to verify specific security properties
based on shares: Non-Interference (NI), Strong
Non-interference (SNI), Probe-Isolating Non-
Interference (PINI) and a newly proposed Re-
laxed Non-Interference (RNI) property which
we introduce in this work.

• Higher order verifications of security proper-
ties, including optimizations to reduce the
number of tuples of expressions to check.

VerifMSI is available as an open-source tool at the
following address:



https://github.com/quentin-meunier/VerifMSI.
The rest of the article is organised as follows:

section 2 presents some background on masking
verification and existing security properties; sec-
tion 3 presents our verification tool VerifMSI and
the different optimizations we designed; section 4
presents an experimental evaluation of VerifMSI
on 9 benchmarks from the literature; section 5
compares VerifMSI to other existing approaches;
finally, section 6 concludes.

2 SECURITY PROPERTIES
FOR MASKING
VERIFICATION

2.1 Existing Properties

Since the seminal work of (Ishai et al., 2003)
which introduced the first definition of a security
property, many other properties were proposed
and used. We recall in the following the most
important security notions for hardware circuits.
Threshold Probing Security (TPS). The most
common security property targeted with mask-
ing is known as Threshold Probing Security, for a
given order t (Barthe et al., 2015). An implemen-
tation achieves t-order threshold probing security
if any tuple of intermediate values of size t has a
distribution of values which is independent from
all secret variables. This security property can
reason either on secrets and masks, or on share-
based expressions. In the latter case, an expres-
sion using shares can be verified by replacing arbi-
trarily the shares with the corresponding expres-
sions using the secret and masks. The general
substitution algorithm is given in algorithm 1.
For example, considering two secrets a and b split
in two shares (a0, a1) and (b0, b1), the expres-
sion a0 ⊕ a1 ⊕ b0 is 1-threshold probing secure
since b0 can be replaced with mb or b ⊕ mb. A re-
placement in this context is the fact to replace a
sub-expression bijective in a mask with the mask
itself, which requires the mask to not appear in
the sub-expression (step 2 of algorithm 1). In ei-
ther case, the whole expression of this example
is masked with the mask mb, guaranteeing secret
independence.
Non-Interference (NI). Another common secu-
rity property is known as t-order Non Interfer-
ence, or t-NI (Barthe et al., 2019). It is defined
informally as the following: an implementation is
t-NI if all tuples of t observations (corresponding

to internal or output values) have a distribution
of values which depends at most on t input shares,
for each input. Since we consider the distribution,
this allows to make an observation independent
from an input share by masking it. Algorithm 1
can also be used for verifying NI with a modified
stopping condition, but requires a share descrip-
tion in the implementation. The previous exam-
ple expression, a0 ⊕ a1 ⊕ b0 is not 1-NI, as it
contains two shares of the secret a.
Strong Non-Interference (SNI). Non-
Interference can be strengthened to achieve
composition, by limiting the number of autho-
rized input shares in each tuple to the number of
probes in the tuple which correspond to internal
values (as opposed to output values) (Barthe
et al., 2019).
Probing Isolating Non-Interference (PINI)
is a composable security notion introduced in
(Cassiers and Standaert, 2020), which is less re-
strictive than SNI: a tuple must depend on at
most k arbitrary input shares, k being equal to
the number of internal probes in the tuple (like
SNI), but can also depend on the input shares
with the same index as the output shares con-
tained in the tuple.

2.2 Relaxed Non-Interference

The problem with the NI property is that it ig-
nores the masking order when looking at the ver-
ification order. Thus, an implementation com-
prising, among all its expressions, a single one
with 2 shares will not even be considered secure
at order 1, since for 1-NI, all single expressions
should contain at most 1 share occurrence (after
masks replacement). This is true even if all in-
puts are on 3, 4 or more shares, whereas in this
case, there cannot be a secret leakage by looking
at a single expression. We thus introduce Relaxed
Non-Interference (RNI) to solve this problem: in-
formally, it states that for achieving t-order secu-
rity, all tuples of size t should not contain at least
one of the shares for every input (after masks re-
placement). This definition also allows to remove
an implicit condition of Non-Interference which
is that all the inputs are split using the same
number of shares. As such, we see RNI as an
extension of the NI property when the security
order is different from the masking order. This
is for example the case in Threshold Implemen-
tations (Nikova et al., 2006) or the Generalized
Masking Scheme (Reparaz et al., 2015).

More formally, we consider an implementation



Algorithm 1 Substitution algorithm for verifying threshold probing security, from (Barthe et al., 2018).
procedure ThresholdProbingSecurity(e)

Inputs: tuple of expressions V = (v1, ..., vn), flag simplified = 0, set of masks M = ∅
Step 1: if a secret k is involved in the computation of at least one expression in V then go to Step 2.
Otherwise return True.
Step 2: while there exists a mask m /∈ M involved in the computation of an expression vi of V , then find
a sub-expression e in vi such that m → e + m is bijective and substitute m by e + m in all expressions.
Extend M with {m}.
If at least such a transformation occurred, go to Step 1. Otherwise go to Step 3.
Step 3: if simplified ̸= 0, then return False. Otherwise, mathematically simplify the expressions in V .
Then, set simplified to one and go back to Step 1.

comprising N inputs Ik, each input Ik being split
into dk+1 shares Ik0

, ..., Ikdk
. Such an implemen-

tation is RNI at order t if and only if any tuple
of t observations can be perfectly simulated us-
ing at most dk shares for each input Ik (following
the notion of perfect simulation in (Belaïd et al.,
2016)). For a hardware implementation, it is RNI
with glitches if each observation is replaced with
the set of input variables it contains in the same
combinatorial logic set.

3 VERIFMSI

3.1 Overview

VerifMSI is a verification method implementing
the substitution algorithm in a python library,
seeking to overcome some of the limitations of
LeakageVerif. It can thus be seen as an evolution
of this tool. Compared to the latter, VerifMSI
first adds hardware circuit constructs, allowing to
describe circuits with gate and registers, and to
take into account glitches in the verification. Sec-
ond, VerifMSI allows to simply switch between a
share-based and a secrets and masks based de-
scription, allowing to verify the NI, SNI, PINI
and the proposed RNI properties as well as TPS.
Third, VerifMSI implements optimizations in or-
der to reduce the number of probes in the circuit,
allowing it to efficiently perform higher order ver-
ifications.

Figure 1 shows a code fragment of a VerifMSI
program for implementing a first order Domain
Oriented Masking (DOM) AND circuit (Groß
et al., 2017), and the associated circuit in Fig-
ure 2. Secrets are declared on lines 1 and 2,
while their sharing is done on lines 6 and 7. The
getRealShares function returns a specified num-
ber of shares of a secret, which are not equiva-
lent to a secret and mask representation. Alter-
natively, one can use the getPseudoShares func-

tion, which does a sharing using secret and masks
(typically (m0, k ⊕ m0) at order 1). The latter
representation is useful for verifying TPS. Line 3
declares a 1-bit mask, while lines 10 to 14 create
input gates associated to the inputs. Lines 17-
20 make all the cross products between shares;
note the gates are n-ary and can take an arbitrary
number of parameters. Lines 23 to 30 implement
the remaining gates and registers: registers stop
the propagation of glitches. Indeed, without reg-
isters, a gate can leak all of its input wires (cf.
Figure 2). Finally, line 33 checks the NI property
on the outputs c0 and c1, at order order (here
order should be 1), with or without glitches ac-
cording to the withGlitches parameters.

3.2 Optimisations

In order to reduce the number of tuples veri-
fied, especially for higher orders, VerifMSI imple-
ments some optimisations for hardware descrip-
tions consisting in removing some of the observa-
tions, which for the most part are based on the op-
timisations made in (Belaïd et al., 2022). These
optimisations are based on the fact that we do
not just verify expressions, but a circuit, or gad-
get, allowing us to make additional assumptions.
For instance, it is always possible to observe sin-
gle input shares, what allows us to remove them
when enumerating the tuples, by considering par-
tial tuples (Belaïd et al., 2022). The optimisa-
tions implemented are the following:
• Removal of observations constituted of at most

one share per input and no random (optimisa-
tion v0). This optimisation includes the two
optimisations of IronMask consisting in remov-
ing observations made of input shares (optimi-
sation i0) and input share products (optimi-
sation i1), and also comprises other cases not
covered by IronMask.

• Removal of observations which are redundant
with some others (optimisation v1). An ex-



1 a = symbol ( ’ a ’ , ’ S ’ , 1) # 1− b i t s e c r e t
2 b = symbol ( ’b ’ , ’ S ’ , 1) # 1− b i t s e c r e t
3 z10 = symbol ( ’ z10 ’ , ’M’ , 1) # 1− b i t

mask
4

5 # Do the shar ing f o r ’ a ’ and ’ b ’
6 a0 , a1 = getRea lShares ( a , 2)
7 b0 , b1 = getRea lShares (b , 2)
8

9 # Create input ga t e s
10 a0 = inputGate ( a0 )
11 a1 = inputGate ( a1 )
12 b0 = inputGate ( b0 )
13 b1 = inputGate ( b1 )
14 z10 = inputGate ( z10 )
15

16 # Cross product s
17 a0b0 = andGate ( a0 , b0 )
18 a0b1 = andGate ( a0 , b1 )
19 a1b0 = andGate ( a1 , b0 )
20 a1b1 = andGate ( a1 , b1 )
21

22 # Remaining ga t e s and r e g i s t e r s
23 a1b0 = xorGate ( a1b0 , z10 )
24 a1b0 = Reg i s t e r ( a1b0 )
25 a0b1 = xorGate ( a0b1 , z10 )
26 a0b1 = Reg i s t e r ( a0b1 )
27 c0 = a0b0
28 c0 = xorGate ( c0 , a0b1 )
29 c1 = a1b1
30 c1 = xorGate ( c1 , a1b0 )
31

32 # Check the NI s e c u r i t y proper ty
33 checkSecur i ty ( order , wi thGl i tches , ’ n i

’ , c0 , c1 )

Figure 1: Example of VerifMSI program implement-
ing a first order DOM AND circuit

a0

b0

b1

a1

z10

c0

c1

{b1}

{a1}

{b0}

{a0}

{a1,b1}

{a0,b0}

{a0,b1}

{a1,b0}

{a1,b0,z10}

{a0,b1,z10}
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{a0.b1⊕z10,a1,b1}

{a1.b0⊕z10,a0,b0}

Figure 2: Order 1 DOM AND circuit from (Groß
et al., 2017), with the leakage associated to each wire
when glitches are considered

pression e0 is considered redundant and is
omitted when there exists an expression e1
such that:

• all the mask occurrences in e0 (resp. e1) are
bijective occurrences w.r.t. e0 (resp. e1);

• e0 and e1 have the same mask occurrences;
• All the input shares appearing in e0 also ap-

pear in e1.
This optimization is also implemented in
IronMask with minor differences (optimisation
i3).
An optimisation implemented in IronMask

which is not implemented in VerifMSI is the re-
moval of observations comprising a single random
(optimisation i2). This is because IronMask im-
poses a constraint on how masks are used, which
is not the case in VerifMSI. However, in practice,
such observations will often be removed with the
removal of redundant expressions.

Table 1 compares the optimisations imple-
mented in VerifMSI and IronMask, taking as ex-
ample the ISW AND.

We can notice that all the expressions in the
table can be removed in both approaches, and
that both end up with the same number of obser-
vations before starting enumeration. This step
is crucial, as for example with 7-share inputs, it
allows to go from 168 intermediate values to 56.

Besides, we can notice that when glitches are
considered, the number of probes to keep for enu-
meration is largely reduced, as the probes corre-
sponding to wires which are not preceding a reg-
ister can be ignored: the leakage associated with
them will be part of the leakage associated with
the output of the next gate.

3.3 Reducing the number of tuples

In order to reduce the number of tuples to verify,
we implemented the pairwise splitting algorithm
from (Barthe et al., 2015). It tries to build larger
tuples until the verification fails, what allows to
skip the verification of all sub-tuples. Taking
the algorithm from the article, preliminary results
showed a speedup factor of 2. However, we no-
ticed a probable error in the algorithm, and when
we corrected it, the overall time was the same
as without this optimisation – basically, the gain
in the reduction of the number of tuples to ver-
ify was compensated by the overhead of the ap-
proach. The description of the error and our pro-
posed correction is described in appendix A. In
the end, even if VerifMSI still implements this op-
timisation, we did not use it in our experiments.



Table 1: Comparison of simplifications based on observations removal in IronMask and VerifMSI for the ISW
AND implementation, for N-share inputs. The first column gives the expression forms which can be removed
for one of the presented simplifications, the second column gives the number of occurences, and the following
columns which simplification rules allow to remove the corresponding expressions.

Expression form # occurrences v0 v1 i0 i1 i2 i3
ai, bi 2N ✓ ✓

ai.bj N2 ✓ ✓

zi,j N(N - 1) / 2 ✓ ✓

ai.bj ⊕ zi,j N(N - 1) / 2 ✓ ✓

a0.bj ⊕ aj .b0 ⊕ z0,j N - 1 ✓ ✓

a0.b0 ⊕ z0,1 1 ✓ ✓

Removable Observations 2N(N + 1)
Total Observations 2N + N2 + 5N(N - 1)/2
Remaining Observations N(3N - 5)/2

3.4 Improving the Mask Choice
for Replacements

While running through the process of benchmark-
ing, we encountered a few false positives in the
verification of one benchmark (ISW AND), i.e. a
potential leakage was reported by VerifMSI while
there was actually none. After investigation, it
appeared that in these cases, the sequence of
mask selections for replacement led to the impos-
sibility to conclude, whereas another sequence of
choices would allow it.

Going into the details, we noticed two distinct
problems. First, the algorithm in Figure 1 allows
a mask to be taken only once, in order to guaran-
tee termination. Yet, we encountered some cases
in which taking an already taken mask is neces-
sary in order to conclude. This can happen when
the mask originally has several occurrences, and
after some replacements and simplifications, only
has a single occurrence (see appendix B, step 6
of first scenario for example). In order to take
this into account while still guaranteeing termi-
nation, we authorize a mask to be taken several
times only if it has a single occurrence. Since the
expression necessarily decreases in size during a
replacement using a mask having a single occur-
rence, this can happen only a finite number of
times.

The second false positive problem we noticed
happened when selecting for a replacement a
mask being itself an element of the tuple. Such
a scenario is described in the first scenario of ap-
pendix B. However, when removing entirely the
possibility to select such masks for replacements,

other failures were reported, as illustrated in the
second scenario of appendix B.

Finally, we modified the mask selection algo-
rithm to make it possible to select such masks
for replacement, but with the lowest priority. Us-
ing this heuristic, no false positives due to mask
selection arose in any benchmark.

4 EXPERIMENTAL
EVALUATION

We perform an evaluation of VerifMSI on several
benchmarks from the literature. We focus the
evaluation on hardware circuits as the software
implementations descriptions are similar to those
of LeakageVerif. The experiments comprise the
following programs:
• ISW AND: The logical AND masking

scheme (Ishai et al., 2003)
• ISW AND refresh: A combination of the ISW

AND with a circular refresh on one of the in-
put (De Cnudde et al., 2016)

• DOM AND: The Domain Oriented Masking
implementation of the AND gate (Groß et al.,
2017), resistant to glitches;

• Refresh N log N: The N log N refresh
scheme (Battistello et al., 2016);

• NI Mult and SNI Mult: The NI and SNI
multiplication schemes (Bordes and Karpman,
2021);

• PINI Mult: The PINI multiplication
scheme (Wang et al., 2023);



• GMS AND: Two implementations of the AND
gate using the Generalized Masking Scheme,
described in the article, using respectively 3
and 5 shares (Reparaz et al., 2015);

• TI AND: The balanced Threshold Implemen-
tation of the AND gate (Nikova et al., 2006).
All benchmarks were run on a single core

on a server with an Intel CPU Xeon E5-
2637v2@3.5GHz, under the CentOS 9 operating
system. For all benchmarks, we set a timeout to
6 hours, and a memory limit to 110 GB (which
was never reached).

Table 2 presents the verification results of the
different circuits we implemented. All of these
circuits implementations are provided along with
the code of VerifMSI. Only the configurations for
which the verified property was known to be true
were run, and only the configurations which did
not exceed the 6 hours timeout are presented in
the table. The verification order is set to the de-
signed security order: this is always the number
of shares minus one, except for GMS AND with 3
shares (order 1), GMS AND with 5 shares (order
2) and TI AND (order 1).

From the results in table 2, we can make the
following observations: VerifMSI can verify all the
preselected hardware masking schemes, up to a
certain order (between 5 and 7 shares). We notice
that the verification of the TPS property scales
significantly less than the other properties, due
to the fact that the optimisation targeting the
reduction in the number of probes do not apply
with a representation using secrets and masks.

We also notice that the GMS AND and TI
AND circuits can only be verified with TPS and
RNI, as the order of security is not equal to the
number of shares minus one – they typically con-
tain tuples of size 1 depending on several input
shares. This underlines the interest of the RNI
property, which is the only property based on
shares adapted to the verification of such masking
schemes.

Finally, we can see that there are a few false
positives on PINI mult with five shares or more.
Analysing them in more details reveals that the
tuple does not contain anymore mask, and that
the problem occurs because VerifMSI is not able
to factorize an expression and make some prod-
ucts disappear. We currently do not know how
to take this into account as the factorization in
the failing tuples requires to temporarily develop
the expression and make its size grow, which is
against the simplification rules design.

5 RELATED WORKS

A certain number of tools target the verification
of security properties in masked software or hard-
ware implementations.
LeakageVerif. LeakageVerif (Meunier et al.,
2023) is a flexible and open-source verification
tool achieving good accuracy and scalability, pro-
vided as a python library. LeakageVerif can ver-
ify implementations at different abstraction lev-
els (algorithmic, code, assembly, circuit), but can
only verify threshold probing security on a de-
scription using secrets and masks. Moreover, it
cannot take glitches into account in hardware de-
scriptions. The fact that the tool is provided as a
python library allows to have simulable descrip-
tions, and to support all python’s control mecha-
nisms.
MaskVerif. maskVerif (Barthe et al., 2019) is
a tool written in OCaml designed for the verifi-
cation of circuits, which proposes a software sce-
nario for the verification of algorithms, in which
glitches can be considered, and in which the se-
quential aspect of the program is simulated using
a register-like behaviour: each expression com-
puted by the program is written into a register.
The strength of maskVerif is its ability to scale
well with higher orders. However, it is not very
well adapted for some masking schemes imple-
mentations. In particular, it lacks support for
arithmetic operations or array accesses. It also
does not support arbitrary size variables and ex-
pressions, since the only possible sizes for vari-
ables are 1, 8 and 32 bits, and there are no bit
concatenation and extraction operations. Finally,
maskVerif does not permit to express a non-linear
control flow, allowing only for function calls.
IronMask. IronMask (Belaïd et al., 2022) is an
open-source tool designed for the verification of
masked hardware implementations. The tool has
an excellent scalability due to its optimized writ-
ing in C, and can verify many security properties.
On the downside, it is not able to verify TPS, and
is limited to certain types of implementations in
which the masks must be linearly added to given
shares.
SILVER. SILVER (Knichel et al., 2020) is a
tool able to verify common security properties on
hardware descriptions. It takes as input either a
Verilog implementation or an instruction list and
checks the TPS, NI, SNI and PINI notions with
or without glitches, as well as the uniformity of
some output sharing. The tool suffers however
from a limited scalability.



Table 2: Verification times and number of tuples verified with VerifMSI, for higher order hardware masking
schemes from the literature. Column #Sh. indicates the number of shares. Values between parenthesis indicate
the number of tuples for which the verification failed (false positives).

Gadget #Sh. Property Verif. Time # Tuples

ISW
AND

4

TPS 12s 24804

NI <1s 469

SNI <1s 469

RNI <1s 469

PINI <1s 469

5

TPS 25m15s 2024785

NI 8s 15275

SNI 8s 15275

RNI 8s 15275

PINI 8s 15275

6

NI 8m31s 667927

SNI 9m4s 667927

RNI 8m41s 667927

PINI 8m36s 667927

ISW
AND
refresh

3

TPS <1s 741

NI <1s 325

SNI <1s 325

RNI <1s 325

PINI <1s 325

4

TPS 27s 45760

NI 5s 17343

SNI 6s 17343

RNI 5s 17343

PINI 5s 17343

5

TPS 1h1m 3921225

NI 10m54s 1356201

SNI 12m3s 1356201

RNI 10m49s 1356201

PINI 10m46s 1356201

DOM
AND

5

TPS 45m36s 4780230

NI 25s 59535

SNI 26s 59535

RNI 25s 59535

PINI 26s 59535

TPS w/ g. 15s 12650

NI w/ g. 8s 12650

RNI w/ g. 9s 12650

PINI w/ g. 9s 12650

6

NI 35m19s 3505050

SNI 36m18s 3505050

RNI 35m42s 3505050

PINI 38m1s 3505050

TPS w/ g. 11m35s 376992

NI w/ g. 6m11s 376992

RNI w/ g. 6m11s 376992

PINI w/ g. 6m23s 376992

7

NI w/ g. 5h13m 13983816

RNI w/ g. 5h11m 13983816

PINI w/ g. 5h15m 13983816

Gadget #Sh. Property Verif. Time # Tuples

Refresh
N log N

5

TPS 9s 23751

NI 2s 7546

SNI 2s 7546

RNI 2s 7546

PINI 2s 7546

6

TPS 7m23s 850668

NI 1m58s 284273

SNI 1m58s 284273

RNI 1m58s 284273

PINI 118s 284273

7

TPS 3h50m31 20358520

NI 47m16s 5358577

SNI 48m30s 5358577

RNI 47m17s 5358577

PINI 47m53s 5358577

PINI
Multi-
plica-
tion

4

TPS 13s 24804

NI <1s 469

RNI <1s 469

PINI <1s 469

5

TPS 26m36s 2024785 (98)

NI 7s 15275 (1)

RNI 7s 15275 (1)

PINI 7s 15275 (1)

6

NI 7m24s 667927 (77)

RNI 7m20s 667927 (79)

PINI 7m29s 667927 (79)

NI Mul-
tiplica-
tion

5

TPS 10m21s 916895

NI <1s 385

RNI <1s 385

PINI <1s 385

6

NI 36 55454

RNI 36s 55454

PINI 37s 55454

7

NI 28m19s 2007327

RNI 28m34s 2007327

PINI 28m52s 2007327

SNI
Multi-
plica-
tion

5

TPS 26m18s 2024785

NI 7s 15275

SNI 8s 15275

RNI 7s 15275

PINI 8s 15275

6

NI 1m59s 174436

SNI 2m7s 174436

RNI 2m1s 174436

PINI 2m2s 174436

GMS
AND

3
TPS <1s 30

RNI <1s 9

5
TPS 1s 3570

RNI <1s 630

TI AND 4
TPS <1s 34

RNI <1s 4



If VerifMSI is not the fastest of these tools
for most hardware implementations and configu-
rations at high orders, it is the only tool which
can verify all common security properties, using
both share-based and secrets and masks descrip-
tions, for both hardware and software masking
schemes, and having the benefits of using all of
the python constructs.

6 CONCLUSION AND FUTURE
WORK

We presented VerifMSI, a practical tool imple-
mented as a python library for verifying masking
schemes implementations. It extends the exist-
ing LeakageVerif tool with constructs targeting
hardware implementations, and enriches it with
the verification of four security properties (NI,
SNI, RNI, PINI). The experiments presented in
the article, focusing on 9 hardware schemes, show
that VerifMSI is able to successfully verify many
implementations from the literature, for masking
orders of up to 7 shares.

Future work includes enriching the software
side of VerifMSI with support for Galois Field
operations, as well as implementing less common
security properties, and in particular the ones de-
fined in the random probing model. We also plan
to write the core of VerifMSI in a compiled lan-
guage to reduce the cost of enumeration.
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A Error found in (Barthe et al.,
2015) and proposed correction

We recall in algorithm 2 the pairwise splitting
algorithm from (Barthe et al., 2015).

Algorithm 2 Pairwise splitting algorithm,
from (Barthe et al., 2018).
1: function check(x , d, e) ▷ every x , y with y ∈

Pd(e) is independent from the secrets
2: if d ≤ |e| then
3: y ← choose(Pd(e))
4: hx,y ← NI((x , y)) ▷ if NI((x , y)) fails,

return false
5: ŷ ← extend(y , e \ y , hx,y )
6: check(x , d, e \ ŷ)
7: for 0 < i < d do
8: for u ∈ Pi(ŷ) do
9: check((x , u), d− i, e \ ŷ)

10: else
11: return true

The algorithm contains the following invari-
ant: |x | + d = t, t being the verification order.
In the original article, it is written: After line 5,
we know that all t-tuples of variables in ŷ are in-
dependent, jointly with x, from the secrets. How-
ever, it is not necessarily the case as the extension
from y to ŷ does not consider x . The following
example shows how some tuples are missed. We
consider an order of verification t = 3. Let us
suppose that when entering the function, x = {
e0 }, d = 2, and e = { e1, e2, e3, e4 }. When
exiting this function call, all tuples of size 3 con-
taining e0 should have been checked. Suppose
that y ← (e1, e2) (line 3). We then verify that
(e0, e1, e2) is independent from the secrets (line
4). Suppose next that ŷ extends y to e , i.e. ŷ
= (e1, e2, e3, e4) (line 5). The call to check line
6 will not verify anything since e \ ŷ = ∅, and
x contains a single expression. Then the series of
calls to check line 9 will be made with i = 1, so u
will contain a single element, resulting in calls in
which the parameter x contains two expressions,
and e = ∅. As a consequence, tuples (e0, e1, e3),
(e0, e1, e4), (e0, e2, e3), (e0, e2, e4) and (e0, e3,
e4) have been missed.

We propose a modified version in algorithm 3
in order to take into account the missing tuples.

The main idea is to extend not only y but (x ,
y) to ŷ . Then, in the nested loops lines 9-11, the
x parameter of the call to check is made with the
current x and expressions from ŷ \ x .

Algorithm 3 Modified pairwise splitting algo-
rithm
1: function check(x , d, e) ▷ every x , y with y ∈

Pd(e) is independent from the secrets
2: if d ≤ |e| then
3: y ← choose(Pd(e))
4: hx,y ← NI((x , y))
5: ▷ if NI((x , y)) fails, return false
6: ŷ ← extend((x , y), e \ y , hx,y )
7: ▷ We have e \ y = e \ (x , y)
8: check(x , d, e \ ŷ)
9: for 0 < i < d do

10: for u ∈ Pi(ŷ \ x ) do
11: check((x , u), d− i, e \ ŷ)
12: else
13: return true

B Mask Selection Scenarios

This appendix contains two scenarios, taken from
the verification of ISW AND with 5 shares for
the TPS property. The first scenario illustrates
the fact that when selecting a mask for a replace-
ment, selecting a mask appearing as an element of
the tuple can prevent the verification to conclude.
This scenario is as follows:
Secret a = a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4
Secret b = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4
Masks: z0_4, z1_4, z2_4, z3_4, a0, a1, a2,
a3, b0, b1, b2, b3

Initial tuple:
a2,
z3_4,
((b ⊕ b3).a3) ⊕ z1_4 ⊕ z2_4 ⊕ z3_4 ⊕ z0_4
⊕ (a.b3),
z1_4 ⊕ ((a2 ⊕ a).b3) ⊕ z2_4 ⊕ z0_4 ⊕ ((b ⊕
b2 ⊕ b3).a3)

1. Selecting mask b2 (single occurrence)
a2,
z3_4,
((b ⊕ b3).a3) ⊕ z1_4 ⊕ z2_4 ⊕ z3_4 ⊕ z0_4
⊕ (a.b3),
z1_4 ⊕ ((a2 ⊕ a).b3) ⊕ z2_4 ⊕ z0_4 ⊕
(b2.a3))

2. Selecting mask a2 (appears as a tuple element)
a2 ⊕ a,
z3_4,
((b ⊕ b3).a3) ⊕ z1_4 ⊕ z2_4 ⊕ z3_4 ⊕ z0_4
⊕ (a.b3),
z1_4 ⊕ (a2.b3) ⊕ z2_4 ⊕ z0_4 ⊕ (b2.a3))

3. Selecting mask z1_4 (occurrence in third line)
(After simplification)



a2 ⊕ a,
z3_4,
z1_4,
((b ⊕ b3 ⊕ b2).a3) ⊕ z1_4 ⊕ (a2.b3) ⊕ z3_4

4. Selecting mask b2 (single occurrence)
a2 ⊕ a,
z3_4,
z1_4,
(b2.a3) ⊕ z1_4 ⊕ (a2.b3) ⊕ z3_4

5. Selecting mask z3_4
a2 ⊕ a,
(b2.a3) ⊕ z1_4 ⊕ (a2.b3) ⊕ z3_4,
z1_4,
z3_4

No mask can be selected and the secret a is
remaining: a possible leakage is detected. Al-
ternatively, if we forbid to select a mask which
appears as an element of the tuple, this scenario
becomes:

2’. Selecting mask z1_4 (occurrence in third line)
(After simplification)
a2,
z3_4,
z1_4,
((b ⊕ b3 ⊕ b2).a3) ⊕ z1_4 ⊕ (a2.b3) ⊕ z3_4

3’. Selecting mask b2 (single occurrence)
a2,
z3_4,
z1_4,
(b2.a3) ⊕ z1_4 ⊕ (a2.b3) ⊕ z3_4

No more secret in tuple: Threshold Probing
Secure!

The second scenario illustrates the fact that
selecting a mask appearing as an element of the
tuple is still necessary in some cases:
Secret a = a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4
Secret b = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4
Masks: z0_4, z1_4, z2_4, z3_4, a0, a1, a2,
a3, b0, b1, b2, b3

Initial tuple:
((b ⊕ b3).a3) ⊕ z1_4 ⊕ z2_4 ⊕ z3_4 ⊕ z0_4
⊕ (a.b3),
(a2.b3) ⊕ z3_4,
z1_4 ⊕ ((a2 ⊕ a).b3) ⊕ z2_4 ⊕ z0_4 ⊕ ((b ⊕
b2 ⊕ b3).a3),
z3_4

1. Selecting mask b2 (single occurrence)
((b ⊕ b3).a3) ⊕ z1_4 ⊕ z2_4 ⊕ z3_4 ⊕ z0_4
⊕ (a.b3),
(a2.b3) ⊕ z3_4,
z1_4 ⊕ ((a2 ⊕ a).b3) ⊕ z2_4 ⊕ z0_4 ⊕
(b2.a3),
z3_4

2. Selecting mask a2
((b ⊕ b3).a3) ⊕ z1_4 ⊕ z2_4 ⊕ z3_4 ⊕ z0_4
⊕ (a.b3),
((a2 ⊕ a).b3) ⊕ z3_4,
z1_4 ⊕ (a2.b3) ⊕ z2_4 ⊕ z0_4 ⊕ (b2.a3),
z3_4

3. Selecting mask z1_4 (third line) (After simpli-
fication)
((b ⊕ b3 ⊕ b2).a3) ⊕ z1_4 ⊕ z3_4 ⊕ ((a ⊕
a2).b3),
((a2 ⊕ a).b3) ⊕ z3_4,
z1_4,
z3_4

4. Selecting mask b2 (single occurrence)
(b2.a3) ⊕ z1_4 ⊕ z3_4 ⊕ ((a ⊕ a2).b3),
((a2 ⊕ a).b3) ⊕ z3_4,
z1_4,
z3_4

If z3_4 cannot be selected, the secret a is remain-
ing! Otherwise:
5. Selecting z3_4 (After simplification):
(b2.a3) ⊕ z1_4 ⊕ z3_4,
z3_4,
z1_4,
((a2 ⊕ a).b3) ⊕ z3_4

6. Selecting mask a2 (single occurrence)
(b2.a3) ⊕ z1_4 ⊕ z3_4,
z3_4,
z1_4,
(a2.b3) ⊕ z3_4

No more secret, Threshold Probing Secure!


