
1

A Fast RLWE-Based IPFE Library and its
Application to Privacy-Preserving Biometric

Authentication
Supriya Adhikary, Angshuman Karmakar

(Author’s version)

Abstract

With the increased use of data and communication through the internet and the abundant misuse of personal data by
many organizations, people are more sensitive about their privacy. Privacy-preserving computation is becoming increasingly
important in this era. Functional encryption allows a user to evaluate a function on encrypted data without revealing sensitive
information. Most implementations of functional encryption schemes are too time-consuming for practical use. Mera et al. first
proposed an inner product functional encryption scheme based on ring learning with errors to improve efficiency. In this work,
we optimize the implementation of their work and propose a fast inner product functional encryption library. Specifically, we
identify the main performance bottleneck, which is the number theoretic transformation based polynomial multiplication used
in the scheme. We also identify the micro and macro level parallel components of the scheme and propose novel techniques
to improve the efficiency using open multi-processing and advanced vector extensions 2 vector processor. Compared to
the original implementation, our optimization methods translate to 89.72%, 83.06%, 59.30%, and 53.80% improvements in
the Setup, Encrypt, KeyGen, and Decrypt operations respectively, in the scheme for standard security level. Designing
privacy-preserving applications using functional encryption is ongoing research. Therefore, as an additional contribution
to this work, we design a privacy-preserving biometric authentication scheme using inner product functional encryption
primitives.

Index Terms

Number theoretic transformation, Inner product functional encryption, OpenMP, AVX2, Privacy-preserving, Biometric
authentication

✦

1 INTRODUCTION

In the past few decades, privacy in the digital world has become a very important and sensitive matter. Many countries
have come up with laws such as the General Data Protection Regulation act of the European Union, the Data Security
Regulations of Israel, the Act on the Protection of Personal Information of Japan, etc. to protect their citizens’ privacy.
However, they are often rendered ineffective due to their limitation of jurisdiction. This is why we need cryptographic
methods, such as computation on encrypted data (COED) techniques. As the name implies, these methods facilitate
performing computations, thus allowing data manipulation routines to run on encrypted data, which ensures the privacy
and confidentiality of the data. Due to their construction from cryptographic methods, these techniques provide a universal
and provable solution to the problems described above.

Homomorphic encryption (HE), multi-party computation (MPC), and functional encryption (FE) are the three main
COED techniques. Among them, HE and MPC have been studied extensively. There exist different applications and
efficient implementations of these techniques on a wide variety of platforms. In comparison, FE techniques have received
much less attention than the other two techniques. Briefly, a FE scheme provides a secret key skf to an authorized user. This
user can use this key to calculate a function f(m) from the encryption of m. Although there exist FE schemes that support
arbitrary functions, they require weaker security notions, such as security against only bounded numbers of collusions [1]
or stronger primitives [2]. Further, they are very inefficient. Therefore, an alternate research area has become popular to
design FE schemes with limited functionalities. Among them, FE schemes that provide inner product functionality have
become particularly very popular [3], [4], [5]. In this work, we are mostly concerned with the inner product functional
encryption (IPFE) scheme based on the ring learning with errors (RLWE) problem proposed in [5]. As the name suggests,
this scheme is based on the RLWE problem, in contrast to the learning with errors (LWE) problem used in earlier versions

• Supriya Adhikary and Angshuman Karmakar are with Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India,
E-mail: {adhikarys, angshuman}@cse.iitk.ac.in

2

of IPFE schemes [3], [4]. The immediate advantage of the former over the latter is that in the RLWE-based schemes, we can
use fast polynomial multiplication routines instead of slower matrix-vector multiplications used in LWE-based schemes.
This translates into efficient IPFE schemes. We provide more details of this scheme in Section. 3.4.

Our primary motivation behind this work is to find efficient alternatives to widely studied privacy-preserving COED
techniques such as HE and MPC. Being based on RLWE the IPFE scheme proposed by Mera et al. [5] is highly parallelizable.
We exploit the different levels of parallelism in the scheme for efficient implementation on platforms like multi-core
architectures and vector instructions. FE works in a very heterogeneous environment. There are lots of actors in FE, like
Keyserver, Client, Server, etc. We would further like to note that even with lots of advancements in computing technologies,
largely parallel processing elements like field-programmable gate arrays (FPGA) and graphics processing units (GPU) are
relatively less ubiquitous compared to multi-core and vector processors. Hence, exploring parallel and fast implementations
on these architectures is also very important without being limited to GPU and FPGA implementations only.

Mera et al. presented the first RLWE-based IPFE scheme in [5], which we will call RLWE-IPFE in this work. This work
is focused on efficient implementation and use cases of the RLWE-IPFE scheme. We briefly summarize our contributions
in this work below:

1. We have analysed the bottlenecks of the RLWE-IPFE scheme and have improved the performance by parallelizing
various components of the scheme. We have used Open Multi-Processing (OpenMP) and Advanced Vector Extensions
2 (AVX2) for parallelization. We have shown how to rigorously analyse multiple parallelization techniques using
OpenMP, and choose the most suitable technique for RLWE-IPFE.

2. Number theoretic transformation (NTT) is one of the most computationally expensive components in most lattice-
based cryptography schemes. There are some methods to speed-up the NTT multiplication when the size of the
polynomials is small (256-1024). However, for large polynomials, those methods do not scale very well due to
limitations of memory and registers. We have optimized the NTT using AVX2 instructions for large polynomials
of size 4096 or 8192.

3. To show the usability and practicality of IPFE schemes, we deduce novel techniques to map biometric authentication
mechanism to inner product operation, which we then implement using RLWE-IPFE scheme for a privacy-preserving
biometric authentication scheme. We also prove the formal security and propose parameters for 125-bits and 305-bits
of security.

Our implementation is available in the public domain at https://github.com/s-adhikary/IPFE

2 NOTATIONS

In this paper, we shall denote R to be a polynomial ring Z[x]/⟨xn+1⟩. Also, we shall use a standard notation Rq to denote
R/qR = Zq[x]/⟨xn + 1⟩. The modulus q is an integer of the form q = q1q2 · · · qt such that all qi’s are primes. Here, n is of
the form 2k.

For a ∈ R (or a ∈ Rq), a polynomial of degree less than n, we shall denote a ∈ Zn (or a ∈ Zn
q) as the vector of

coefficients of the polynomial a. When the coefficients are sampled from a distribution χ, we write a ← χ. We write
x

R← X to denote that the element x is sampled uniformly at random from the set X . We have used the notations Dσ

and DσIn to denote the discrete Gaussian distributions over the sets Z and Zn respectively, with standard deviation σ
and mean 0. The notation [ℓ] denotes the set {1, 2, · · · , ℓ} and for any vector v, the notations ||v||∞ and ||v|| denotes the
infinity norm and Euclidean norm, respectively. We will denote 1R to be the polynomial in R with all coefficients being
the element 1 ∈ Z. We shall use the notation ⟨u,v⟩ to denote the inner product between two vectors u and v, defined as
⟨u,v⟩ =

∑n
i=1 ui · vi.

Furthermore, we shall be using number theoretic transformation (NTT) in this work. We shall denote the forward
transformation as NTT and the inverse of the transformation as NTT−1. We will denote ζ as the 2n-th primitive root of unity.
Since all polynomials are reduced modulo xn + 1, we use the negacyclic transformation.

We shall also be dealing with binary strings. For two binary strings A and B, we use A · B, A ⊕ B to denote bit-wise
”and” operation and bit-wise ”xor” operation, respectively. Also, for any two vectors A,B ∈ Zℓ, we shall use the notation
A⊙B to denote the pointwise multiplication of A and B.

The operator | · | is used very often. For a set, S the notation |S| denotes the cardinality of S, for a binary bit-string A,
|A| denotes the Hamming weight of A.

3 PRELIMINARIES

The security of public-key cryptography depends upon the hardness of some underlying computationally hard problem.
There are several problems that are still presumed to be difficult to solve even with the help of quantum computers,
such as finding the shortest vectors or finding a vector closest to a given vector in random lattices, finding pre-image
of cryptographically secure hash functions, etc. Public-key cryptography, based on these hard problems, constitutes the
current post-quantum cryptography. Lattice-based cryptography is one such post-quantum cryptography that is widely used
today. Since this work focuses on the scheme based on RLWE problem, we discuss this problem only.

https://github.com/s-adhikary/IPFE

3

Fig. 1. Functional encryption and its different actors and operations.

3.1 Ring learning with errors
Learning with errors (LWE) was first introduced by Oded Regev [6], in the year 2004. RLWE is one variant of the LWE
problem [7]. In this problem, the polynomial ai ∈ Rq is sampled uniformly, secret s ∈ Rq is a small polynomial sampled
uniformly or from a distribution χ and the error polynomials ei ∈ Rq are sampled from a distribution χ. The RLWE
distribution is defined as (ai, bi = ai · s+ ei) ∈ Rq ×Rq. We have two variants of RLWE problems.

Definition 3.1.1. (Search RLWE [7]) Given polynomially many samples from the RLWE distribution, the problem is to find the
secret s ∈ Rq with non-negligible probability.

Definition 3.1.2. (Decisional RLWE [7]) Given polynomially many samples (ai, bi) from RLWE distribution and equal number of
samples (ai, b′i) sampled uniformly from Rq × Rq, the problem is to distinguish between these two distributions with non-negligible
probability.

3.2 Functional encryption
This section describes the functional encryption scheme as shown in Fig. 1 and one of its variants, inner product functional
encryption.

Definition 3.2.1. (Functional encryption [3]) A functional encryption is parameterized by ρ = (X,Y, Z, f) for functionality
f : X × Y → Z , is defined by the following four algorithms

- Setup(1κ) : Setup receives a security parameter κ and outputs a pair of master public key and master secret key, which is
(mpk, msk).

- Encrypt(mpk, x) : Encrypt receives a message x ∈ X and the master public key mpk and returns a ciphertext ctx.
- KeyGen(msk, y) : KeyGen receives a y ∈ Y and the master secret key msk and returns a functional key sky .
- Decrypt(ctx, sky) : Decrypt receives a ciphertext ctx and a functional key sky and outputs the value f(x, y) or ⊥ if the

input is invalid.

For inner product functional encryption, the functionality f is defined by f(x, y) = ⟨x, y⟩ where x, y ∈ Mℓ, which is the
message space.

3.3 Number theoretic transformation (NTT)
Number theoretic transformation is one of the most time-consuming component of most of the lattice-based cryptography
schemes. This is defined over the ring of polynomials Rp = Zp[x]/⟨Φ(x)⟩. Here, Φ(x) is an irreducible polynomial in Z[x].
This Φ(x) is the polynomial xn + 1, n is an integer such that the primitive 2n-th root of unity is in Zp. Let ζ ∈ Zp be the
primitive 2n-th root of unity. Then,

xn + 1 =
n−1∏
i=0

(x− ζ2i+1)

If we recall the Chinese remainder theorem (CRT) for rings, we can write

Rp
∼=

n−1∏
i=0

Zp[x]/⟨x− ζ2i+1⟩

This above isomorphism is defined by NTT, and the inverse of it is NTT−1. Therefore, for any f ∈ Rp

NTT(f) = (f(ζ), f(ζ3), · · · , f(ζ2n−1))

So the i-th component of NTT(f) is

f̂i =
n−1∑
k=0

fkζ
(2i+1)·k

4

Similarly, i-th component of NTT−1(f̂) is calculated as

fi =
1

n
·
n−1∑
k=0

f̂kζ
−(2i+1)·k

For two polynomials f, g ∈ Rp, we can compute the multiplication h ∈ Rp in the following manner

h = NTT−1(NTT(f)⊙NTT(g))

For NTT and NTT−1, we have used the Cooley-Tukey [8] and Gentleman-Sande butterfly [9] respectively. These are very
well known algorithms, so we are not explaining these algorithms here. Note that NTT takes input in standard order and
outputs in bit-reversed order, and NTT−1 takes input in bit-reversed order and outputs in standard order. Therefore, after
forward NTT we can leave the polynomials in the bit-reversed order and pointwise multiply them together, and later we
can apply NTT−1 to get back the multiplication in standard order.

3.4 RLWE-IPFE scheme
As we have stated before, one of our goals in this work is to develop an efficient IPFE library based on RLWE-IPFE [5]. The
RLWE-IPFE scheme by Mera et al. is the first IPFE scheme based on the RLWE assumption. Here we will only discuss the
construction of the scheme, for more details on security proof and parameter selection of the scheme we kindly refer the
reader to the original publication [5].

There are two notions of the security of functional encryption, namely selectively secure and adaptively secure. Here, we
will only discuss the selectively secure IPFE as it is most relevant to our work, but one can easily extend the techniques
described here to the adaptively secure scheme described in the original work.

3.4.1 Selectively secure RLWE-IPFE
Let x be a vector to be encrypted, of dimension ℓ, where ||x||∞ ≤ Bx. The decryption should return ⟨x, y⟩, where
||y||∞ ≤ By . Let K be greater than the maximum value of the resulting inner product i.e., K > ℓBxBy . We describe the
construction of the scheme below.

Construction
Setup :

(i) First sample a
R← Rq.

(ii) Sample si, ei ∈ R for i ∈ [ℓ], whose coefficients are sampled from the distribution Dσ1

(iii) Compute pki = a · si + ei ∈ Rq for i ∈ [ℓ]
(iv) Set, msk = {si | i ∈ [ℓ]} and mpk =

(
a, {pki | i ∈ [ℓ]}

)
Encrypt : Given a vector x = (x1, x2, · · · , xℓ) ∈ Zℓ with ||x||∞ ≤ Bx, below is the encryption algorithm.

(i) First sample r, f0 ∈ Rq with coefficients from the distribution Dσ2
.

(ii) Sample fi ∈ Rq independently with coefficients from the distribution Dσ3
, for all i ∈ [ℓ].

(iii) Calculate ct0 = a · r + f0, cti = pki · r + fi + ⌊q/K⌋xi1R for all i ∈ [ℓ].
(iv) Output

(
ct0, {cti | i ∈ [ℓ]}

)
as encryption of x.

KeyGen : Given a vector y = (y1, y2, · · · , yℓ) ∈ Zℓ such that ||y||∞ ≤ By , We need to generate a functional key
corresponding to y. We simply calculate

sky =
ℓ∑

i=1

yisi ∈ R

Decrypt : To decrypt the ciphertext
(
ct0, {cti | i ∈ [ℓ]}

)
using the functional key, sky and y we calculate

d =

(ℓ∑
i=1

yicti

)
− ct0 · sky

This d should be close to ⌊q/K⌋ ⟨x, y⟩ 1R, and we can extract ⟨x, y⟩ easily.

Correctness
We can write the decryption d as

d =

(ℓ∑
i=1

yicti

)
− ct0 · sky

=
ℓ∑

i=1

(yieir + yifi − yisif0) + ⌊q/K⌋ ⟨x, y⟩ 1R (1)

5

The term
∑ℓ

i=1(yieir + yifi − yisif0) is the ”noise”. For correctness, we need the condition ||noise||∞ < ⌊q/2K⌋. For
the security parameter κ, with non-negligible probability we have, ||ei||∞, ||si||∞ ≤

√
κσ1, also ||r||∞, ||f0||∞ ≤

√
κσ2 and

||fi||∞ ≤
√
κσ3. Thus, we have ∣∣∣∣∣∣∣∣ ℓ∑

i=1

(yieir + yifi − yisif0)

∣∣∣∣∣∣∣∣
∞
≤ ℓ(2nκσ1σ2 +

√
κσ3)By

So for correctly extracting the result we choose suitable parameters such that ℓ(2nκσ1σ2 +
√
κσ3)By < ⌊q/2K⌋.

Since ||noise||∞ is bounded by ⌊q/2K⌋, one can easily eliminate the noise and get back ⟨x, y⟩ 1R. From Eqn. (1) we
have

d = ⌊q/K⌋⟨x, y⟩1R + noise

To extract ⟨x, y⟩1R we calculate, ⌈Kq · d⌋. Now,

K

q
· d =

K

q
·
(⌊ q

K

⌋
⟨x, y⟩1R + noise

)
= ⟨x, y⟩1R + ε

Note that ||noise||∞ < ⌊ q
2K ⌋ implies that ||ε||∞ < 1/2, which means ⌈Kq · d⌋ gives us the ⟨x, y⟩1R. The symbol, ⌈·⌋,

represents the rounding function.
Unlike HE, where the noise or error grows with the depth of multiplication, in FE, we encounter with the noise at the

time of decryption, and we can bound this noise by choosing the parameters carefully.

Parameters
The parameters for the original work are given in the Table. 1. Based on the security levels, there are three different sets of
parameters of RLWE-IPFE. At the end of this work, we will be presenting an application of IPFE which requires message
size ℓ = 2048. This will change the parameters, and we give parameters for Standard and High security levels. Therefore,
we will only discuss the performance improvements of Standard and High level of security. However, the improvement
methods discussed in this work can also be applied to the Low security level for a significant performance improvement.

TABLE 1
The parameters of the RLWE-IPFE scheme.

Security
Level

(PQ security)

FE
Bounds

Gaussian
Parameters

Ring
Parameters

CRT
moduli (qi)

Low
(76.3)

Bx : 2
By : 2
ℓ : 64

σ1 : 33
σ2 : 59473921
σ3 : 118947840

n : 2048
⌈logq⌉ : 66

214 − 212 + 1
223 − 217 + 1
229 − 218 + 1

Standard
(119.2)

Bx : 4
By : 16
ℓ : 785

σ1 : 225.14
σ2 : 258376412.19
σ3 : 516752822.39

n : 4096
⌈logq⌉ : 86

224 − 214 + 1
231 − 217 + 1
231 − 224 + 1

High
(246.2)

Bx : 32
By : 32
ℓ : 1024

σ1 : 2049
σ2 : 5371330561
σ3 : 10742661120

n : 8196
⌈logq⌉ : 101

217 − 214 + 1
220 − 214 + 1
232 − 220 + 1
232 − 230 + 1

4 PERFORMANCE BOTTLENECKS AND PARALLELIZATION IN RLWE-IPFE
The authors in [5] provided a reference implementation of RLWE-IPFE. However, the implementation is not optimized,
as most of the improvements are unexplored. Table. 2 shows the benchmark results of different operations of the RLWE-
IPFE implementation provided by the authors of [5]. We observe that the Setup and Encrypt operations are the most
computationally expensive operations of all. Therefore, we concentrate most of our optimization efforts on these two
operations.
We illustrate the Setup and Encrypt operations in the figures Fig. 2 and Fig. 3 respectively. In each iteration of a for-loop,
there are some tasks that are to be executed. For each iteration, we denote the collection of these tasks corresponding to the
iteration as ”block”. The ”blocks” inside each for-loop in the figures Fig. 2 and Fig. 3, does not have any conflicts among
themselves. Even the ”blocks” in the first and the second for-loop have no conflicts between them. These ”blocks” could
be distributed among multiple threads, and we parallelly compute parts of the desired result. In the end, these results are
merged to get the final result. Similarly, we identify the ”blocks” in KeyGen and Decrypt operations and distribute them
among multiple threads.

6

TABLE 2
Performance table for different operation

cpucycles (×106)

Standard

Setup 7821
Encrypt 4835
KeyGen 246
Decrypt 227

High

Setup 34916
Encrypt 25326
KeyGen 977
Decrypt 929

We have benchmarked the major components of each operation in Table. 3 for Standard security level. Similar results
can be obtained for High security level. Discrete Gaussian and polynomial multiplication are the two main computationally
intensive operations in both Setup and Encrypt. The authors of the RLWE-IPFE scheme already provided a highly
optimized discrete Gaussian sampling routine using AVX2. Therefore, we target to optimize the polynomial multiplication.

TABLE 3
Workload distribution of major components within each operation

Setup Encrypt KeyGen Decrypt
Discrete Gaussian

Sampling 15.97% 21.53% - -

Polynomial
Multiplication 82.91% 72.66% - 5.54%

Scalar
Multiplication - - 99.97% 92.91%

CRT
- - 0.03% 1.49%

Others1
1.12% 5.81% - 0.06%

As we can see, the third for-loop in Fig. 2, the first and the second for-loop in Fig. 3 mostly involves NTT or NTT−1

operations. Hence, even a small improvement in the NTT operation will have a big impact on the overall efficiency
of the whole scheme. The RLWE-IPFE scheme uses large moduli q that can range from 66-bits to 101-bits, as shown
in Table. 1. For efficiency and to avoid multi-word arithmetic, the authors proposed a residue number system-based
implementation. In this implementation, the modulus q is composed of many smaller prime numbers as q = q1 · q2 · · · qt.
All the computations are done under these primes independently, and the final result is obtained by combining these

1. Polynomial addition, subtraction

Fig. 2. The Setup operation and its parallel for-loops.

7

Fig. 3. The Encrypt operation and its parallel for-loops.

results using the Chinese remainder theorem. Hence, the polynomial multiplication in Rq is equivalent to t many NTT-
based polynomial multiplication in Rqi for each i ∈ [t].

We took a two-step optimization strategy. First, on a macro level, we parallelly compute all the ”blocks” inside the for-
loops with OpenMP [10]. In the second step, on a micro level, we optimize each of the NTT-based polynomial multiplication
using AVX2 vector processors. The reason for such a design choice is explained in the next section.

5 IMPROVING EFFICIENCY OF RLWE-IPFE
In this section, we will analyse the bottlenecks of RLWE-IPFE and provide a detailed description of our optimization
technique.

5.1 OpenMP Optimization
OpenMP is an API that supports multi-threading programming in C, C++ and Fortran over many platforms. It includes
compiler directives, library routines and environment variables that influence run-time behaviour. It uses a portable,
scalable model that gives programmers a simple interface to build parallel codes for many platforms. With OpenMP, our
target is to distribute the expensive components among multiple threads of the system, which gives a faster computation
than the original implementation of RLWE-IPFE.

5.1.1 Parallelizable section of code
There are multiple ways to parallelize the RLWE-IPFE. one way is to distribute the ”blocks” of each for-loop among
multiple threads, as shown in figures Fig. 2 and Fig. 3. Also, we can parallelize the NTT-based polynomial multiplication.
We list down our options below

(i) Parallelize the operations by distributing all the ”blocks” of each for-loop among multiple threads as shown in Fig. 2
and Fig. 3 respectively.

(ii) Parallelize the NTT and NTT−1 using OpenMP.
(iii) We can use a hybrid approach. We can distribute ”blocks” of each for-loop among m many threads, and each of these

threads will spawn k many threads to parallelize the NTT transformation.
Now the question is, which approach is suitable for us? To answer this question, we look at Table. 4.

It is clear from the Table. 4, that the approach (iii) is not ideal. In this approach, each of the m many threads further spawns
k many threads for NTT transformation. But spawning new threads incurs overhead which eclipses our performance gain.

To overcome this problem, it is better if we spawn all the threads required at the beginning of an operation and complete
the whole operation inside the parallel region. This is what we can do with both approach (i) and approach (ii). But as we can
see in Table. 4, parallelizing the ”blocks” within the for-loops instead of parallelizing the polynomial multiplication gives
us a better performance. Therefore, we use the approach (i) to optimize the implementation of RLWE-IPFE.

8

Number of Threads

C
PU

 c
yc

le
s

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

(a) Setup

Number of Threads

C
PU

 c
yc

le
s

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10

(b) Encrypt

Number of Threads

C
PU

 c
yc

le
s

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

(c) KeyGen

Number of Threads

C
PU

 c
yc

le
s

0

50

100

150

1 2 3 4 5 6 7 8 9 10

(d) Decrypt

Fig. 4. Change in performance with different number of threads

TABLE 4
performance with different parallelization approach

Operations
cpucycles (×106)

Parallel component Hybrid approach
For-loops NTT

Setup 1960 2400 4974
Encrypt 1616 1731 3654

5.1.2 Number of threads
The number of cores in a system is limited, so spawning too many threads would increase the amount of context switching,
which affects performance. Therefore, we need to find the number of threads that is optimal for our system. As we can
see in Fig. 4, the performance of all the operations increases as the number of used threads increases. But after a certain
point, the performance starts decreasing (Fig. 4) as the number of context switching increases. The experiments were run
on quad-core Intel(R) Core(TM) i5-8265U CPU running at 1.60GHz and multi-core support as standard practice on Ubuntu
22.04. We have run these experiments on a few other machines with similar configurations and the result remains the same.
However, the result may be different on a system with different configuration. Therefore, one may need to experimentally
find the optimal number of threads.

5.1.3 Scheduling
In OpenMP, we are allowed to specify schedule(type, chunk size) clause with a specific type and chunk size for
different types of scheduling. When we split a for-loop to distribute among threads, we split it into small chunks and
these contain a specific number of ”blocks” within the loop, which is called the chunk size. There are mainly three types of
scheduling that we can use in OpenMP which are static, dynamic, and guided. See [11] for more details.

We have used different scheduling methods and different chunk sizes to see which is the most optimal setup for RLWE-
IPFE. As we can observe from Fig. 5a, the Setup operation works better with smaller chunk sizes. As the chunk size gets
larger, the operation starts slowing down. The type of schedule doesn’t seem to make a difference in terms of performance.
So we can use ”static” scheduling with a small chunk size. We have used chunk size 8 for this operation. The Encrypt
(Fig. 5b) operation has similar performance with chunk size 32 to 64 with any scheduling method, but it starts slowing
down with increasing chunk size. On the other hand, the KeyGen and Decrypt operations (Fig. 5c, Fig. 5d) have optimal
performance with larger chunk size.

9

chunk size

C
PU

 c
yc

le
s

0

200

400

600

1 2 4 8 16 32 64 128 256 512 1024

STATIC DYNAMIC GUIDED

(a) Setup

chunk size

C
PU

 c
yc

le
s

0

200

400

600

800

1 2 4 8 16 32 64 128 256 512 1024

STATIC DYNAMIC GUIDED

(b) Encrypt

chunk size

C
PU

 c
yc

le
s

0

200

400

600

800

1 2 4 8 16 32 64 128 256 512 1024

STATIC DYNAMIC GUIDED

(c) KeyGen

chunk size

C
PU

 c
yc

le
s

0

200

400

600

800

1 2 4 8 16 32 64 128 256 512 1024

STATIC DYNAMIC GUIDED

(d) Decrypt

Fig. 5. Change in performance with different scheduling method and chunk size

To utilize all the threads most optimally, we need to distribute all the works uniformly among threads. The ”static”
scheduling is the best option for the scheduling method, as all the ”blocks” within one for-loop, which are to be distributed
among threads, have similar workload. Therefore, we have used static scheduling with different chunk sizes for each
operation. We have derived the chunk size for each operation experimentally. This chunk size may be different for a
different system.

5.2 AVX2 Optimization
Advanced Vector Extensions (AVX) are extensions to the x86 instruction set architecture for microprocessors from Intel and
Advanced Micro Devices (AMD). They were proposed and first supported by Intel with the Sandy Bridge processor,
and later by AMD with the Bulldozer processor. It supports registers of size 128-bits. AVX2 is an expansion of the AVX
instruction set introduced in Intel’s Haswell microarchitecture. AVX2 can support up to 256-bits registers. We can load eight
32-bits integers or four 64-bits integers, and the instructions can be applied to all of these packed integers simultaneously.

a0

a1

a2

...

aN−2

aN−1

N -point polynomial

n = N
8

a0 a1 a2 a3 a4

an+1 an+2 an+3 an+4

a2n+1 a2n+2 a2n+3 a2n+4

· ·

a6n+1

a7n+1

a6n+2

a7n+2

a6n+3

a7n+3

a6n+4

a7n+4

an

a2n

a6n

a7n

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

an−2 an−1

a2n−2

a3n−2

a7n−2

a8n−2

a2n−1

a3n−1

a7n−1

a8n−1

8× (n-Block of coefficients)

Fig. 6. Reshapeing an N length polynomial into an 8× N
8

matrix

10

5.2.1 NTT Transformation
In this section, we will discuss the details of our AVX2 optimization of the NTT over 32-bit primes. AVX2 instructions
support 16 vector registers (ymm0-ymm15) of size 256-bits each. Since all the integers are reduced in prime modulus of
32-bits, we can pack eight integers of 32-bits inside one register. We pack copies of q and q−1 (mod 232) in two different
registers. Eight of the registers are used to store the coefficients of the polynomial, meaning at once we can operate on 64
many coefficients of the polynomial. Five registers are used to store temporary data and computational results. The powers
of the primitive root of unity, also known as twiddle factors, are stored in a fixed table. One register is used to load the
values of the twiddle factors. That is in total 16 registers in use.

As we can observe in Fig. 6, an N length polynomial can be viewed as an 8× N
8 matrix. First, we apply 8-point NTT on

each of the columns of the matrix in Fig. 6, which is equivalent to three levels of radix-2 forward NTT (Cooley-Tukey [8])
on the polynomial of length N . Instead of calling it three levels of radix-2 NTT, we will specify this step as one level of
radix-8 NTT transformation. After this step, we need to apply forward NTT on each of the rows of the matrix in Fig. 6. But
instead, we apply the mentioned method on each row of the matrix in Fig. 6, to compute another three levels of radix-2
NTT or one level of radix-8 NTT.

To implement the above in AVX2, first, we need to load each of the eight coefficients of one column into eight different
registers. Since one register can pack eight 32-bits integers at once, we can load the first eight columns into eight AVX2
registers such that coefficients from the same row are packed into the same register. We apply 8-point NTT on these loaded
coefficients. Next, we load the next eight columns of the matrix and apply 8-point NTT until we exhaust all the columns of
the matrix in Fig. 6. This completes one level of radix-8 NTT.

NTT starts with a polynomial of length N and there are total log2 N many levels in radix-2 NTT. After each level, the
length of the polynomial is decreased by a factor of 2. More specifically, at level-ℓ, there are 2ℓ many polynomials of length
N/2ℓ where ℓ ∈ {0, 1, · · · , log2 N}. Since one level of radix-8 NTT is equivalent to three levels of radix-2 NTT, after k levels
of radix-8 NTT, the length of the polynomials becomes N/8k. Observe that, eight registers assigned to load the coefficients,
can pack 64 many integers at once. So when the length of the polynomials becomes 64, we pack all 64 coefficients of each
polynomial into the eight assigned registers, at once, and complete the last 6 levels of radix-2 NTT transformation.

For example, given a polynomial of length 4096, we can first apply 2 levels of radix-8 NTT as explained above, which
decreases the length of the polynomials to 64. After this point, we can load each polynomial into the registers one at a time
and complete the rest of the transformation. On the other hand, given a polynomial of length 8192, the first two levels of
radix-8 NTT decrease the length of each polynomial to 128. So we apply one level of radix-2 NTT transformation to reduce
the size of polynomials to 64 and after that, the operations are the same.

Now, we deal with polynomials of length 64 for the last six levels. The 64 many coefficients of a polynomial can be
reshaped into a matrix of size 8 × 8 as shown in Fig. 6. This matrix can be packed into the 8 many AVX2 vector registers
easily. First, we apply one level of radix-8 NTT, as we explained before. Now, for the last three levels of radix-2 NTT,
exactly half of the coefficients packed in each register are to be multiplied with twiddle factors. We can deal with this
problem by grouping half of the coefficients that are to be multiplied together and loading them into four registers, and
the rest of the coefficients are grouped and loaded into the other four registers. We have used the trick explained in [12],
we use permutations to shuffle coefficients and group them and after the transformation, we again shuffle them back to
their original position.

To implement the NTT−1 in AVX2, we have used the same idea as above, but in the reverse order.

5.2.2 Modular reductions
Modular reductions are one of the essential parts of NTT transformation for fast vectorized implementation. Divisions are
not constant time, and it is inefficient in terms of performance. So divisions need to be avoided and replaced with fast,
constant time modular reduction.

In NTT and NTT−1, the coefficients of the polynomials are to be multiplied by the twiddle factors. We use the
Montgomery modular multiplication [13] for the multiplication inside NTT. But the problem with Montgomery modular
multiplication is that it returns ab · β−1 (mod q) when we reduce the multiplication of a and b, where β is a constant.
Since we can precompute the twiddle factors and store them, then we can multiply these twiddle factors with β before
storing. This way, we can ensure the correct result for the multiplication in NTT and NTT−1. We have selected β = 232 for
Montgomery modular multiplication.

5.3 Performance
All experiments in this section are performed on a quad-core Intel(R) Core(TM) i5-8265U processor running at 1.60GHz
and multi-core support as standard practice on Ubuntu 22.04. All codes have been compiled using gcc-11.2.0 with flags
-O3 -fomit-frame-pointer -march=native.

11

TABLE 5
Performance table with AVX2 optimization

cpucycles (×106)
Original AVX2 PI

Standard Setup 7821 1898 75.73%
Encrypt 4835 1766 63.47%

High Setup 34916 5241 84.99%
Encrypt 25326 8853 65.04%

TABLE 6
Performance table with AVX2 + OpenMP optimization

cpucycles (×106)
Original AVX2+OpenMP PI

Standard

Setup 7821 804 89.72%
Encrypt 4835 819 83.06%
KeyGen 246 100 59.30%
Decrypt 227 105 53.80%

High

Setup 34916 2148 93.85%
Encrypt 25326 3297 86.98%
KeyGen 977 312 68.07%
Decrypt 929 355 61.79%

After the AVX2 optimization, we can see a significant speed-up in Table. 5 for the operations Setup and Encrypt. As
the number of polynomial multiplication is not significantly high in KeyGen and Decrypt algorithm, we do not see any
significant speed-up here. In Table. 5, we have shown the performance gain of the operations in different security levels in
the column named PI.

We get further improvements in the performance after parallelizing the implementation with OpenMP. In Table. 6, the
performance gain for OpenMP optimization along with AVX2 is given.

6 RELATED WORKS

(a) HE based

(b) FE based

Fig. 7. Biometric authentication protocols

The use of cryptography or more specifically COED techniques in the context of privacy-preserving biometric au-
thentication is a continuously growing field of study. There are instances of privacy-preserving biometric authentication
protocols based on homomorphic encryption (HE) [14], [15], [16], [17]. A typical homomorphic encryption-based biometric
authentication protocol is given in Fig. 7a. Here, the client generates the public key and secret key pair. This implies, after
evaluation of some operation on the ciphertexts, the client has to perform the final decryption, based on which server
makes its decision. The server or any third party does not get any information about the plaintext. There are also instances
of biometric authentication protocol based on predicate encryption (PE) [18]. But in PE, the decryption returns the plaintext
if the predicate evaluates to true.

On the other hand, functional encryption (FE) is fundamentally different from HE and it is a more general form of PE. FE
allows one to get information about only a functional value, rather than the complete decrypted plaintext. In FE, the client
can encrypt its data and the server or any third party can get the result of some function computed on the client’s data. This
allows the server to decrypt and make a decision without disclosing the private biometric information of the client. This
property of FE has been used in the biometric authentication protocols in [19], [20]. In these works, the authors propose
biometric authentication protocols based on the matching algorithm, which is based on Hamming distance. However, we
propose a protocol based on the biometric matching algorithm in [21], which uses fractional Hamming distance also known
as normalized Hamming distance.

7 PRIVACY-PRESERVING BIOMETRIC AUTHENTICATION PROTOCOL

In this part, we propose a secure privacy-preserving biometric authentication protocol. Although there are many types of
biometrics, fingerprint and iris image are primarily used as biometrics. Here we are using iris as the biometric data. We
use the iris matching algorithm in [21]. In [22], the authors have also mentioned a similar matching algorithm.

7.1 Normalized Hamming Distance
In [21], the algorithm transforms an iris image into a 2048-bit binary string, this is called the feature vector. A mask of the
same length is also generated, which denotes the positions of valid bits in the feature vector. To match two different sets of
biometric data, we use Normalized Hamming Distance (NHD).

12

Definition 7.1.1 (Normalized Hamming distance/fractional Hamming distance [21]). Let X,M and X ′,M ′ be pairs of feature
vector and mask of two biometric data then the normalized Hamming distance between the two biometric data is defined by

NHD =
|(X ⊕X ′) ·M ·M ′|

|M ·M ′|
(2)

Since we are trying to implement the biometric authentication protocol using IPFE, so first we need to find a method to
map NHD into a form that is suitable with the IPFE protocol.

7.2 Transformation of the binary vector and some results
In [23], the authors have given a method to calculate the Hamming distance of two binary vectors using the inner product.
We use this method and extend it to calculate the NHD. First, we consider the vector X̃ = (x̃1x̃2 · · · x̃n), derived from the
binary vector X = (x1x2 · · ·xn) of length n, using the transformation x̃i = (−1)xi , ∀i ∈ [n].

Let us consider the operation ”⊙” to be the pointwise multiplication operation between two vectors of the same length.
Therefore, for any two binary vectors A and B, if C = A ⊙ B then ⟨A,B⟩ =

∑n
i=1 ci where, C = (c1c2 · · · cn). Before

calculating the NHD using the inner product, we first look at some results.

Result 1. If A = (a1a2 · · · an) and B = (b1b2 · · · bn) are two binary vectors of length n then, Ã⊙ B̃ = ˜(A⊕B)

Proof. First, consider two binary bits a, b. For a, b we can write ã ⊙ b̃ = (−1)a⊕b = ã⊕ b. Then, ãi ⊙ b̃i = ˜(ai ⊕ bi) for all
i ∈ [n]. Therefore, Ã⊙ B̃ = ˜(A⊕B)

Result 2. for two binary vectors A = (a1a2 · · · an) and B = (b1b2 · · · bn) of length n, we can write,

|A ·B| = 1

2

(
|B| − ⟨Ã, B⟩

)
Proof. First, we take a vector C = (c1c2 · · · cn) such that C = Ã ⊙ B then, ⟨Ã, B⟩ =

∑n
i=1 ci = R1 − R2. The values of

R1 and R2 are the numbers of 1’s and −1’s respectively, in the string C . Again we have, |B| = R1 + R2. Observe that,
R2 = |A ·B|. Therefore,

|B| − ⟨Ã, B⟩ = 2R2 = 2 |A ·B|

Therefore, |A ·B| = |B|−⟨Ã,B⟩
2

7.3 Calculating NHD using inner product
With the results in Section. 7.2, we are now going to calculate NHD with the inner product. Let X,X ′ be two binary feature
vectors and M,M ′ be the corresponding binary masks of the biometric data. We know the NHD is defined as it is shown
in Eqn. (2). Now, from Result. 2 we can write

|(X ⊕X ′) ·M ·M ′| = 1

2
·
(
|M ·M ′| − ⟨X̃ ⊕X ′,M ·M ′⟩

)
We know that, for any pair of binary vectors A and B, we have |A · B| = ⟨A,B⟩. Therefore, |M ·M ′| = ⟨M,M ′⟩. From
Eqn. (2), we get

NHD =
⟨M,M ′⟩ − ⟨X̃ ⊕X ′,M ·M ′⟩

2 · ⟨M,M ′⟩
(3)

We are only using inner product to calculate this NHD, so we can use the RLWE-IPFE scheme here to implement the
privacy-preserving biometric authentication protocol.

7.4 Proposed protocol
In this part, we will discuss the protocol. We consider three entities here, a) client, b) server and c) keyserver. There are two
parts of the protocol, first is the enrolment and then comes the matching.

Enrolment
First, the client has to send its biometric data (X,M) to the server in some hidden form, so that it can be used in the matching
stage. The client generates two one-time pad keys Kx, Km. These keys are used to initially encrypt the vectors. The client
computes (S, T) = (X ⊕Kx,M ⊕Km), and sends the pair (S, T) to the server’s database at the time of enrolment. Note
that the client has to send the template (S, T) to the server through a secure channel2 so that a third party cannot intersect
the data. At the time of matching, the client has to come up with the keys Kx,Km along with a fresh biometric template
(X ′,M ′) (not necessarily same as X and M).

2. This can be achieved by using any secure encryption scheme. This is important for the sake of security, which we will explain later.

13

Enrollment

Matching

Client Server

Keyserver

Fig. 8. Proposed privacy-preserving biometric authentication protocol

Matching
Before the matching protocol starts, the client already holds the keys Kx and Km and the server has (S, T) = (X⊕Kx,M ⊕
Km) in its database.
(a) The keyserver creates two pairs of master secret key and master public key, namely, (msk1,mpk1) and (msk2,mpk2).

(b) Server sends T = M ⊕Km to the client.

(c) Since the client has correct keys Km,Kx, it computes M = T ⊕Km, and it also computes R = X ′ ⊕Kx.

(d) The Client computes ct1 = Enc(R̃⊙ (M ·M ′),mpk1) and ct2 = Enc(M ·M ′,mpk2) and sends these to the server.

(e) The Server sets y1 = S̃ and y2 = 1n and sends to the keyserver through a secure channel.

(f) Keyserver generates functional keys
sky1 = KeyGen(y1,msk1),
sky2 = KeyGen(y2,msk2)
and sends these to the server.

(g) Server computes d1 = Dec(ct1, sky1) and
d2 = Dec(ct2, sky2).

(h) Server computes, NHD = d2−d1

2d2
.

(i) If NHD < τ and d2 > η then we accept the biometric and the client passes the protocol, Otherwise we reject the
biometric.

The values τ and η are thresholds for NHD and d2 respectively, which determines the acceptance rate and security of the

14

biometric protocol. The threshold τ < 1, as the value of NHD, cannot be greater than 1. The thresholds τ and η are fixed
in the protocol.

7.5 Soundness and Completeness
We now show our proposed protocol is sound and complete if the underlying iris matching algorithm is sound and complete.
To show this, we have to show that our protocol correctly computes the NHD between the biometric template saved in the
database of the server and the freshly provided template at the client side.

In the protocol showed in Fig. 8 we have ciphertexts

ct1 = Enc(R̃⊙ (M ·M ′),mpk), ct2 = Enc(M ·M ′,mpk)

Given y1 = S̃ and y2 = 1n we have the functional keys sky1
and sky2

using KeyGen algorithm. After decryption, we have,

d1 = ⟨R̃⊙ (M ·M ′), S̃⟩, d2 = ⟨M ·M ′, 1n⟩

Clearly, d2 = ⟨M,M ′⟩ and d1 =
∑n

i=1 Bi where

B = R̃⊙ (M ·M ′)⊙ S̃

= (R̃⊕ S)⊙ (M ·M ′)
[

from Result. 1
]

Therefore, d1 = ⟨R̃⊕ S,M ·M ′⟩. Substituting R and S with X ′ ⊕Kx and X ⊕Kx respectively, we get the value of d1 as
⟨X̃ ⊕X ′,M ·M ′⟩. Therefore, the server calculates

NHD =
d2 − d1
2 · d2

=
⟨M,M ′⟩ − ⟨X̃ ⊕X ′,M ·M ′⟩

2 · ⟨M,M ′⟩
This is exactly what we have derived in Eqn. (3). Therefore, in the end, the server can correctly calculate NHD between the
biometric saved in the database and the biometric provided by the client at the time of matching.

7.6 Security analysis
The security of the protocol depends on its design and also the underlying cryptographic schemes. In this section, we will
analyse the security of this protocol. Here we will assume that any one of server or client can act as an adversary, and the
keyserver is honest. Also, we will assume that no two of the server, client or keyserver will act as one entity.

7.6.1 Server security
If an adversary impersonates server, then the biometric templates sent to the server’s database are already encrypted with
keys generated by client, at the time of enrolment. Therefore, the adversary cannot extract client’s biometric information.

At the time of matching, the server can only receive encrypted data from the client. So the adversary does not get any
extra information from the client other than the normalized Hamming distance between the biometric template at the
server’s database and the biometric template provided by the client.

TABLE 7
Updated parameters suitable for biometric authentication scheme

Security
Level

(PQ Security)
FE Bounds

Gaussian
Parameters

Ring
Parameters CRT moduli (qi)

Standard
(125)

Bx 2 σ1 226 n : 4096 224 − 214 + 1
By 2 σ2 258376413 229 − 218 + 1
ℓ 2048 σ3 516752823 ⌈logq⌉ : 83 230 − 218 + 1

High
(305)

Bx 2 σ1 2049 n : 8192 217 − 214 + 1
By 2 σ2 5371330561 220 − 214 + 1
ℓ 2048 σ3 10742661120 ⌈logq⌉ : 85 223 − 220 + 1

225 − 214 + 1

7.6.2 Client security
An adversary impersonating the client cannot carry out the authentication without access to both the valid biometric
template and the key generated by the actual client, at the time of enrolment. Now, if the adversary tries to randomly guess
the biometric template to authenticate, then we show that the probability of the adversary being successfully accepted by
the server is at most 1

2(1−τ)η

Observe that, at the time of matching, the contents of the binary strings M,M ′ are in the hand of the client. Therefore, the
adversary impersonating the client can easily manipulate these strings. We consider that the binary strings M,M ′ satisfies

15

|M ·M ′| = k. Since the adversary is randomly guessing the biometric template, then we can say that R is a random binary
string. At the end of the protocol, server calculates

d1 =
〈
R̃⊕ S,M ·M ′〉, d2 = |M ·M ′|

Now, from Result. 2 we have,

|(R⊕ S) ·M ·M ′| = d2 − d1
2

So the calculated NHD is
d2 − d1
2d2

=
|(R⊕ S) ·M ·M ′|

|M ·M ′|
=
|(R⊕ S) ·M ·M ′|

k

Let us consider, ρ = |(R⊕S) ·M ·M ′|. Then the server accepts the biometric provided by the adversary if ρ
k < τ and k > η.

Since (R⊕ S) is a random binary string, then

Pr[ρ < τk] <
1

2(1−τ)k
<

1

2(1−τ)η

Therefore, we need to choose the parameters τ and η such that 2(τ−1)η is negligible.

7.6.3 Network security
An adversary eavesdropping over the network can only access the encrypted biometric data and the functional keys. This
will not reveal any useful information to the adversary about the client’s biometric. However, one may use the data gathered
by eavesdropping over the network, to successfully impersonate the client. Observe that, if the client sets, R = S then, that
will be accepted by the server as authentic biometric information without the knowledge of Kx. Therefore, we must not
allow the adversary to get access to the string S = X ⊕Kx. This is why the encrypted biometric template (S, T) has to be
sent to the server’s database through a secure channel, at the enrolment stage. Also, at the time of matching, y1 = S̃ has to
be sent to the keyserver through a secure channel for the same reason.

7.7 Practical Implementation
The size of the biometric information is 2048-bits. The original IPFE scheme in [5] has set its parameters for message size
less than 2048-bis. So the parameters of the scheme are changed to support the protocol. In Table. 7, we have given two sets
of parameters for Standard and High level of security, respectively. We have calculated the parameters and the security
using the LWE estimator in [24], which has also been used for the original work. Table. 8 gives the execution time for each
of the operations executed by keyserver, client, and server. We have used the same system that is mentioned in Section. 5.3
to get the experimental results in Table. 8

TABLE 8
Execution time of different operations involved in biometric authentication protocol

Execution time (ms)

Security Level Keyserver Client Server

Setup KeyGen Encrypt Decrypt
Standard 2600.56 183.26 2721.66 154.66

High 5268.51 537.53 9074.00 576.86

8 CONCLUSION

We have presented an efficient implementation of the RLWE-IPFE library using multi-core architecture and vector instruc-
tions. We demonstrated that through several implementation techniques using OpenMP and AVX2, RLWE-IPFE can be
accelerated. This makes RLWE-IPFE one of the candidates of the FE family for practical application. In this work, we have
presented one such real-world application of IPFE. Our proposed privacy-preserving biometric authentication protocol
shows the versatility and usefulness of FE. There are many existing privacy-preserving biometric authentication protocols
based on HE as well as FE. The protocols based on HE and FE are fundamentally different and work on two different
modes of operation. Therefore, a direct comparison between the HE-based protocols and FE-based protocols is not very
fair. However, It will be an interesting work to set a basis of comparison for measuring the practicality of these protocols,
which needs further deliberation. Finally, We hope that our work will attract more attention from the cryptographic
community toward the design, implementation, and application of FE schemes.

16

REFERENCES

[1] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Functional encryption with bounded collusions via multi-party computation,” in
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, ser.
Lecture Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer, 2012, pp. 162–179. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5 11

[2] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate indistinguishability obfuscation and functional encryption
for all circuits,” in 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE
Computer Society, 2013, pp. 40–49. [Online]. Available: https://doi.org/10.1109/FOCS.2013.13

[3] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, “Simple functional encryption schemes for inner products,” in Public-Key Cryptography
– PKC 2015, J. Katz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 733–751.

[4] S. Agrawal, B. Libert, and D. Stehlé, “Fully secure functional encryption for inner products, from standard assumptions,” in Advances in
Cryptology – CRYPTO 2016, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 333–362.

[5] J. M. B. Mera, A. Karmakar, T. Marc, and A. Soleimanian, “Efficient lattice-based inner-product functional encryption,” in Public-Key
Cryptography – PKC 2022, G. Hanaoka, J. Shikata, and Y. Watanabe, Eds. Cham: Springer International Publishing, 2022, pp. 163–193.

[6] O. Regev, “New lattice-based cryptographic constructions,” J. ACM, vol. 51, no. 6, p. 899–942, Nov. 2004. [Online]. Available:
https://doi.org/10.1145/1039488.1039490

[7] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” in Advances in Cryptology – EUROCRYPT
2010, H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–23.

[8] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Mathematics of Computation, vol. 19,
no. 90, pp. 297–301, 1965. [Online]. Available: http://www.jstor.org/stable/2003354

[9] W. M. Gentleman and G. Sande, “Fast fourier transforms: For fun and profit,” in Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, ser. AFIPS ’66 (Fall). New York, NY, USA: Association for Computing Machinery, 1966, p. 563–578. [Online]. Available:
https://doi.org/10.1145/1464291.1464352

[10] L. Dagum and R. Menon, “openmp: an industry standard api for shared-memory programming,” IEEE Computational Science and Engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[11] “OPENMP API Specification: Version 5.1.” [Online]. Available: https://www.openmp.org/spec-html/5.1/openmp.html
[12] G. Seiler, “Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography,” Cryptology ePrint Archive, Report 2018/039,

2018, https://eprint.iacr.org/2018/039.
[13] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of Computation, vol. 44, pp. 519–521, 1985.
[14] G. Pradel and C. Mitchell, “Privacy-preserving biometric matching using homomorphic encryption,” 2021. [Online]. Available:

https://arxiv.org/abs/2111.12372
[15] W. Yang, S. Wang, K. Yu, J. J. Kang, and M. N. Johnstone, “Secure fingerprint authentication with homomorphic encryption,” in 2020 Digital

Image Computing: Techniques and Applications (DICTA), 2020, pp. 1–6.
[16] R. Kulkarni and A. Namboodiri, “Secure hamming distance based biometric authentication,” in 2013 International Conference on Biometrics

(ICB), 2013, pp. 1–6.
[17] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba, “Packed homomorphic encryption based on ideal lattices and its

application to biometrics,” in Security Engineering and Intelligence Informatics, A. Cuzzocrea, C. Kittl, D. E. Simos, E. Weippl, and L. Xu, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 55–74.

[18] K. Zhou and J. Ren, “Passbio: Privacy-preserving user-centric biometric authentication,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 12, pp. 3050–3063, 2018.

[19] J. Lee, D. Kim, D. Kim, Y. Song, J. Shin, and J. H. Cheon, “Instant privacy-preserving biometric authentication for hamming distance,”
Cryptology ePrint Archive, Paper 2018/1214, 2018, https://eprint.iacr.org/2018/1214. [Online]. Available: https://eprint.iacr.org/2018/1214

[20] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu, “Function-hiding inner product encryption is practical,” in Security and
Cryptography for Networks, D. Catalano and R. De Prisco, Eds. Cham: Springer International Publishing, 2018, pp. 544–562.

[21] J. Daugman, “How iris recognition works,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 21–30, 2004.
[22] R. Wildes, “Iris recognition: an emerging biometric technology,” Proceedings of the IEEE, vol. 85, no. 9, pp. 1348–1363, 1997.
[23] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu, “Function-hiding inner product encryption is practical,” Cryptology

ePrint Archive, Report 2016/440, 2016, https://eprint.iacr.org/2016/440.
[24] M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite, F. Virdia, and T. Wunderer, “Estimate all the {lwe, ntru}

schemes!” in Security and Cryptography for Networks, D. Catalano and R. De Prisco, Eds. Cham: Springer International Publishing, 2018, pp.
351–367.

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1145/1039488.1039490
http://www.jstor.org/stable/2003354
https://doi.org/10.1145/1464291.1464352
https://www.openmp.org/spec-html/5.1/openmp.html
https://eprint.iacr.org/2018/039
https://arxiv.org/abs/2111.12372
https://eprint.iacr.org/2018/1214
https://eprint.iacr.org/2018/1214
https://eprint.iacr.org/2016/440

	Introduction
	Notations
	Preliminaries
	Ring learning with errors
	Functional encryption
	Number theoretic transformation (NTT)
	RLWE-IPFE scheme
	Selectively secure RLWE-IPFE

	Performance bottlenecks and parallelization in RLWE-IPFE
	Improving efficiency of RLWE-IPFE
	OpenMP Optimization
	Parallelizable section of code
	Number of threads
	Scheduling

	AVX2 Optimization
	NTT Transformation
	Modular reductions

	Performance

	Related works
	Privacy-preserving biometric authentication protocol
	Normalized Hamming Distance
	Transformation of the binary vector and some results
	Calculating NHD using inner product
	Proposed protocol
	Soundness and Completeness
	Security analysis
	Server security
	Client security
	Network security

	Practical Implementation

	Conclusion
	References

