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Abstract. This paper introduces a new family of CVE schemes built
from generic errors (GE-CVE) and identifies a vulnerability therein. To
introduce the problem, we generalize the concept of error sets beyond
those defined by a metric, and use the set-theoretic difference opera-
tor to characterize when these error sets are detectable or correctable
by codes. We prove the existence of a general, metric-less form of the
Gilbert-Varshamov bound, and show that - like in the Hamming setting
- a random code corrects a generic error set with overwhelming proba-
bility. We define the generic error SDP (GE-SDP), which is contained
in the complexity class of NP-hard problems, and use its hardness to
demonstrate the security of GE-CVE. We prove that these schemes are
complete, sound, and zero-knowledge. Finally, we identify a vulnerability
of the GE-SDP for codes defined over large extension fields and without
a very high rate. We show that certain GE-CVE parameters suffer from
this vulnerability, notably the restricted CVE scheme.

Keywords: Code-based cryptography · Syndrome Decoding Problem ·
generic error set · zero-knowledge scheme · CVE.

1 Introduction

Recently, the lack of acceptably secure post-quantum cryptography led to NIST
creating a competition of sorts, comparing the pros and cons of proposed algo-
rithms. Code-based cryptography has become an attractive post-quantum candi-
date over the years, as it is believed to present a computationally difficult prob-
lem even against quantum computers [14]. Classic McEliece [3], a code-based
KEM has recently passed into Round 4 of the NIST Post-Quantum Standard-
ization Competition and remains the candidate based on the oldest problem in
the competition [1].

The CVE protocol is a zero-knowledge identification scheme based on the
Syndrome Decoding Problem (SDP) for linear codes, with competitive compu-
tation speed and key sizes in practical instances. We focus on two variations:
the restricted form of CVE, which takes a different error set than the standard
protocol, and rank-CVE, which takes a different metric. This paper focuses on
generic error sets and the theory of error correctability and detectability based
on the set difference operator contained in [26, 27]. Using this framework, we
⋆ Partially supported by the National Science Foundation under grant DMS-1547399.



generalize the SDP and CVE to general error sets independent of metric, intro-
ducing a new, NP-complete SDP based on these arbitrary errors. From this, we
can construct a generic error CVE. We characterize the parameters of error sets
for which this generic SDP has a polynomial-time decoding algorithm, leading
to a vulnerability of generic error CVE for certain error sets. To be clear, we
show that CVE based on the restricted SDP is vulnerable when it is defined for
certain parameters of codes without a high rate.

The paper is organized as follows. In Section 2, we recall standard coding the-
ory results and present the notation we will use throughout this paper. Section
3 introduces the set difference, an operator from set theory. When this operator
repeatedly acts on a set of generic errors, we show that it will stabilize at a sub-
space. We introduce the notion of detectability and correctability using the set
difference, resulting in a more general concept than the standard definition based
on balls. These concepts also result in a generalization of the Gilbert-Varshamov
Bound that guarantees the existence of a code correcting an arbitrary error set.
Finally, we use the results of this section to prove that a random code will cor-
rect a general error set with a probability that tends towards one as the code
length increases. Section 4 is devoted to complexity. From the Syndrome De-
coding Problem (SDP), we define the Generic Error SDP (GE-SDP) and its
decisional variant and provide evidence that they are NP-complete problems.
For Section 5, we generalize the zero-knowledge Cayrel-Véron-El Yousfi Alaoui
(CVE) scheme from [15] to generic errors and prove that it is complete, sound,
and zero-knowledge. Paired with the complexity arguments of the previous sec-
tion, we obtain strict bounds about the probability that an adversary can forge
their veracity to a verifier in this generic error setting. Finally, we devote Sec-
tion 6 to highlighting a vulnerability that results from this generic definition
of detectability and correctability. We show that the GE-SDP can be solved in
polynomial times under certain conditions. We apply this result to the Restricted
Syndrome Decoding Problem (R-SDP) defined in [7] and show that for certain
parameter choices, an adversary can correct the errors introduced to obfuscate
the plaintext in a polynomial-time decoding algorithm.

2 Preliminaries

We introduce the notation used throughout this paper and recall some standard
linear algebra and coding theory results.

Let Fq denote the finite field with q elements, with q = pN a prime power
and Fn

q be the set of n-length vectors over Fq. For E ⊆ Fn
q , let E∗ be E \ {0}.

For a set E ⊆ Fn
q with k elements, let ⟨E⟩Fp

be the span of E over Fp:

⟨E⟩Fp
= λ1e1 + λ2e2 + ...+ λkek for λi ∈ Fp, ei ∈ E.

Let Mn be the set of monomial transformations. A monomial transformation
τ : Fn

q → Fn
q is a map that acts on vectors by permuting their entries and scaling

them by non-zero multiples. That is, there exists v ∈ Fn
q \ {0} and σ ∈ Sn, the
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symmetric group, such that

τ(x) = (vσ(1)xσ(1), vσ(2)xσ(2), ..., vσ(n)xσ(n)) for all x ∈ Fn
q .

Recall that GLn(Fq) is the set of n × n invertible matrices over the field
Fq, which forms a group under standard matrix multiplication. We define the
stabilizer of a set E ⊆ Fn

q , denoted SE , as the set of invertible matrices that
map E into E, meaning SE = {M ∈ GLn(Fq) | eM ∈ E for all e ∈ E}.

We continue with some basic definitions and results from coding theory, which
may be found in [30].

Definition 1. We say C is an [n, k]-linear code when C is a linear subspace of
Fn
q over Fq of dimension k.

We focus this work on linear codes, and we refer to them simply as codes.
We also assume that C is a code over Fq.

Definition 2. For an [n, k] code C, a generator matrix G ∈ Fk×n
q is a full-rank

matrix where the rows are comprised of a basis of C over Fq. The parity-check
matrix of a code C is a (full-rank) matrix H ∈ F(n−k)×n

q such that C = {x ∈ Fn
q |

xHt = 0}.

For x ∈ Fn
q , we define the Hamming weight ω(x) to be the number of non-zero

entries in the vector x. This gives rise to the Hamming distance between two
vectors, d(x, y), defined as the weight of their difference ω(x−y). The Hamming
ball with radius r and center x is denoted Br(x), and is defined as the set of
vectors that are distance less than or equal to r from x. While we will not focus
on the Hamming metric in this paper, it is used by tradition in certain definitions
that we will generalize in future sections.

3 Generic Error Sets

In this section, we generalize the concepts of decodability and correctability
with generic error sets beyond any metric. To do that, we need to introduce the
concept of set difference.

Definition 3. For some E ⊆ Fn
q , the set difference of E is ∆E = {e1 − e2 |

e1, e2 ∈ E}.

Since the set E will represent an error set for the purposes of our work, we
assume that 0 ∈ E ⊆ Fn

q .
The following examples demonstrate that the cardinality of the set difference

depends on if the elements themselves are in an arithmetic progression. This
is a result of the Cauchy-Davenport Theorem for restricted sumsets; see [24,
Theorem 25] and [25, Theorem 3]. We only use this example to show that the
set difference is not immediate from the set itself and that one must inspect
every element in the worst case to check for arithmetic progression.
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Example 1. Consider A = {1, 2, 3} ⊆ F7, where the elements of A are in an
arithmetic progression modulo 7. We can calculate ∆A = {0, 1, 2, 5, 6}, thus
|∆A| = 2|A| − 1.

Example 2. On the other hand, the elements of B = {1, 2, 4} are not in an
arithmetic progression. This time, despite having the same cardinality as A in
Example 1, we see that ∆B = {0, 1, 2, 3, 4, 5, 6}, with |∆B| > 2|B| − 1.

We introduce the concept of ∆-closure of a set E ⊆ Fn
q , meaning the smallest

set that contains E and all the difference sets originating by it.

Theorem 1. For a set E ⊆ Fn
q , the chain E ⊆ ∆E ⊆ ∆2E ⊆ ... stabilizes,

meaning that there exists some k ∈ N such that ∆kE = ∆k+1E. In this case,
∆kE = ⟨E⟩Fp .

Proof. The chain stabilizes because we work with a finite sets.
Let x ∈ ∆rE and y ∈ ∆sE for r, s ∈ N with r ≥ s. Then −y ∈ ∆r+1E, so

x + y = x − (−y) ∈ ∆r+2E. Now for x ∈ ∆rE and α ∈ Fp, then αx ∈ ∆r+αE.
From this, we can see that for x, y ∈ ∆kE = ∆k+1E, we have that x+ y ∈ ∆kE
and αx ∈ ∆kE. Thus ∆kE is an Fp-subspace, so ∆kE ⊆ ⟨E⟩Fp

.
On the other hand, for all x ∈ ∆rE, we can write x = xr−1 − yr−1 for

xr−1, yr−1 ∈ ∆r−1E, so each element is the difference of two elements one step
down on the difference chain. Continuing this, x =

∑|E|
n=1 αnxn for xi ∈ E and

αi ∈ Fp. Thus ⟨E⟩Fp
⊆ ∆kE, as every element in ∆kE can be decomposed into

a linear combination of elements from E.

Definition 4. For a set E ⊆ Fn
q , the ∆-closure of E is E

∆

= limk→∞ ∆kE. We
say that a set E ⊆ Fn

q is ∆-closed if E = E
∆

.

The cardinality of a ∆-closed set is as follows.

Corollary 1. For a set E ⊆ Fn
q , the |E∆| = pm for some m ∈ N.

This is a corollary of Theorem 1 where we show that the stabilizing set E
∆

is a subspace of Fn
q over Fp.

Example 3. Since we will work on ∆-closed sets throughout this manuscript, we
provide two examples that are going to be used.

– Br(0)
∆

= Fn
q for any r > 0.

– If E = {0, 1}n ⊆ Fn
q , then E

∆

= Fn
p .

3.1 Error Detectability and Correctability

When considering communication over a q-ary symmetric channel, errors are
additive. More precisely, if C ⊆ Fn

q is an [n, k] code of minimum distance d and
c ∈ C is sent through the channel c + e with e ∈ Fn

q is received. Considering
a minimum distance decoder, meaning a map that returns the unique closest
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codeword to a received vector if it exists, then we can say that an error is
detectable if e ∈ Bd−1(0), and (uniquely) correctable if e ∈ Bt(0) with t = ⌊d−1

2 ⌋.
These are well-known results from classical coding theory that can be reviewed
in any coding theory textbook such as [30].

With another application in mind, similar definitions have been developed
based on the rank distance, meaning the rank over Fp between two elements
of Fn

q . This metric is useful when communicating over a multicast network; for
more information, see [29] and [31].

In [26] and [27], the author generalizes the concepts of error detectability and
correctability to generic error sets. We recall some of the results in this section
for matters of completeness.

Definition 5. An error set E ⊆ Fn
q is detectable by some code C ⊆ Fn

q if E∩C =
{0}, or equivalently if E∗ ∩ C = ∅. Similarly, this set of errors E is correctable
by C if ∆E ∩ C = {0}.

This definition generalizes the classical concept of detectability and cor-
rectability based on Hamming balls and balls based on rank metric. In the case
of Hamming balls,

∆Bt(0) ⊆ Bd−1(0), (1)

meaning that any error that is detectable under the difference set definition is
also detectable under the minimum distance of a code. Note that the difference
set of a ball is a ball itself: if d is odd, then ∆Bt(0) = Bd−1(0), whereas if d is
even, then ∆Bt(0) = Bd−2(0).

The following proposition can be viewed as a motivation for the language
used in Definition 5.

Proposition 1. Let C ⊆ Fn
q be a code with parity-check matrix H ∈ Fn−k×n

q .
The set E ⊆ Fn

q is correctable by C if and only if its syndromes are unique,
meaning that for e, e′ ∈ E, eHt = e′Ht if and only if e = e′.

Proof. Let e, e′ ∈ E be errors with the same syndrome, meaning that eHt =
e′Ht. This is equivalent to saying that (e− e′)Ht = 0, meaning that e− e′ ∈ C.
Since by hypothesis ∆E ∩ C = {0}, then e = e′.

The following proposition is a direct consequence of Definition 5.

Proposition 2. Let C ⊆ Fn
q be a code. E ⊆ Fn

q is decodable by C if and only if
∆E is detectable by C.

It follows the next corollary showing that ∆-closed sets are maximal sets for
which detectability corresponds to correctability.

Corollary 2. Given a code C ⊆ Fn
q , a set E ⊆ Fn

q is detectable and correctable
if and only if E is ∆-closed, meaning that E

∆

= E.

We focus now on results regarding the existence of codes correcting a generic
error set E ⊆ Fn

q .
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3.2 Generic Gilbert-Varshamov Bound

The proof of the following results may be found in [26] or [27], and are based on
the concept of a balanced family of codes.

Definition 6. Let B be a collection of [n, k]-linear codes. We call B a balanced
family of codes if each vector in (Fn

q )
∗ belongs to the same number of codes of B.

Theorem 2 ([26]). Let B be a balanced family of codes and f : Fn
q → C be a

complex-valued function. Then

1

|B|
∑
C∈B

∑
c∈C∗

f(c) =
qk − 1

qn − 1

∑
v∈(Fn

q )
∗

f(v).

Proof. Construct a bipartite graph where the upper nodes are linear codes in B,
the lower nodes are the non-zero elements of Fn

q , and there is an edge if the code
above contains the element below. Figure 1 depicts such a bipartite graph.

v1 v2 v3 v4 v5 v6 v7 · · · vqn−1

C1 C2 C3 C4 · · · C|B|

Fig. 1. Bipartite graph of a balanced family.

There are |B| nodes above and qn − 1 nodes below. This graph is regular,
meaning each top node has the same degree of qk − 1, and each bottom node
has the same degree NB. Counting the edges from both levels, we find

(qn − 1)NB = (qk − 1)|B|. (2)

Label each edge with the value f(v), where v ∈ (Fn
q )

∗ is the lower node.
Summing over all the edges of the graph, we obtain∑

C∈B

∑
c∈C∗

f(c) = NB
∑

v∈(Fn
q )

∗

f(v) = |B| q
k − 1

qn − 1

∑
v∈(Fn

q )
∗

f(v),

where the last equality follows from Equation (2).

Theorem 3. Let B be a balanced family of codes, and E ⊆ Fn
q an error set such

that
(qk − 1)|E∗| < qn − 1.

Then there exists a code C ∈ B such that E ∩ C = {0}. That is, E is detectable
by C.

6



Proof. Let f : Fn
q → C be such that f(v) = χ{v∈E∗}, the indicator function for

the set E∗. Applying Theorem 2, we can see that

qk − 1

qn − 1
|E∗| = 1

qn − 1

∑
v∈(Fn

q )
∗

f(v) =
1

|B|
∑
C∈B

∑
c∈C∗

f(c) =
1

|B|
∑
C∈B

|C ∩ E∗|.

Note that for every C ∈ B, it’s true that |C∩E∗| ∈ N∪{0}. By the hypothesis
of our statement, we have qk−1

qn−1 |E
∗| < 1, thus

1

|B|
∑
C∈B

|C ∩ E∗| < 1.

Hence, by an averaging argument, it must hold that there exists some C ∈ B
such that C ∩ E∗ = ∅.

Theorem 3 tells us that any error set E ⊆ Fn
q can be detected via an [n, k]

code, so long as |E∗| < qn−1
qk−1

. If we wish to correct this error set, it suffices to
consider |∆E∗| < qn−1

qk−1
. Note that if |∆E| < qn−k, then it can be shown that

|∆E∗| < qn − 1

qk − 1
. (3)

Theorem 3 is a generalization of the Gilbert-Varshamov bound. Indeed, if
one applies Equations (1) and (3) to the set E ⊆ Bt(0), we obtain the following
Theorem.

Theorem 4 (Gilbert-Varshamov Bound, [27]). Let n, k, and d be such that

d−1∑
i=1

(
n

i

)
(q − 1)i < qn−k.

Then there exists C an [n, k] code C of minimum distance d.

It is outside the purpose of this paper to prove results on balanced families
of codes, nevertheless, it is easy to show that these families exist. (Desarguesian)
spreads are an example.

Definition 7. A (Desarguesian) spread S is a partition of Fn
q into k-dimensional

subspaces. That is, a spread S is a collection of k-dimensional subspaces such
that

⋃
C∈S

C = Fn
q , and for any C1, C2 ∈ S, we have C1 ∩ C2 = {0}.

It is well-known that Desarguesian spreads exist if and only if k | n. We refer
the reader interested in the construction of spreads to see [22] and [23].
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3.3 Density of Codes Correcting a Generic Error Set

The following theorem shows that, with high probability, a randomly chosen
code corrects a fixed error set.

Theorem 5. Let E ⊆ Fn
q , and k ≤ n

(
1− logp(|E|)

N − ε
)

for some 0 < ε <

1 − logp(|E|)
N . Then for any G ∈ Fk×n

q of rank k sampled uniformly at random,
the code C generated from G corrects E with probability no less than 1− q−nε.

Proof. Since G is sampled uniformly at random from Fk×n
q , each entry of G can

be viewed as taken uniformly at random from Fq. Then we can consider the
codewords in C - which are linear combinations of the rows of G - as vectors
with entries sampled uniformly from Fq.

From this, the probability that an arbitrary codeword is in E ∩ C is

|E∗|
|
(
Fn
q

)∗ | = |E| − 1

qn − 1
<

|E|
qn

= q−n(1−logq(|E|)).

Applying logarithm rules, we calculate

logq(|E|) = logq(|E|) =
logp(|E|)
logp(p

N )
=

logp(|E|)
N

.

Because G has rank k, there will be a total of qk codewords in C. Since

qkq−n(1− logp(|E|)
N ) ≤ qn(1−

logp(|E|)
N −ε)q−n(1− logp(|E|)

N ) = q−nε,

we obtain that the probability a non-zero codeword from C will also be in E ∩C
is at most q−nε.

Thus, the probability that E ∩ C = {0} is bounded from below by 1− q−nε.

4 Generic Error SDP

With the terminology introduced at the end of Section 2 in mind, we can intro-
duce the standard formulation of the Syndrome Decoding Problem.

Problem 1 (The Syndrome Decoding Problem). For an [n, k] code C with parity-
check matrix H, a syndrome vector s ∈ Fn−k

q , and some t ∈ N∪{0}, find a vector
e ∈ Fn

q with Hamming weight w(e) ≤ t such that eHt = s, if such e exists.

This Hamming weight case was shown to be NP-hard for binary codes in
1978 by Berlekamp, McEliece, and Tilborg [10], then over any finite field in 1997
by Barg [8]. We are now ready to move away from the Hamming weight and
define the syndrome decoding problem based on generic errors, with no specific
metric.
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Problem 2 (The Generic Error Syndrome Decoding Problem (GE-SDP)). For
an [n, k] code C with parity-check matrix H, a syndrome vector s ∈ Fn−k

q , and
E ⊆ Fn

q , find an e ∈ E such that eHt = s, if such an e exists.

Problem 3 (Decisional GE-SDP). For an [n, k] code C with parity-check matrix
H, a syndrome vector s ∈ Fn−k

q , and E ⊆ Fn
q , decide whether there exists an

e ∈ E such that eHt = s.

This decisional GE-SDP is sometimes called the Coset Weights Problem [6].
Due to complexity theory, we know there exists a search-to-decision reduction
that carries across the difficulty of the problem. Thus, the complexity of the
Decisional GE-SDP will be the same as GE-SDP. We will abuse terminology
and state that, for example, GE-SDP is NP-complete, despite the fact that this
term applies only to the Decisional GE-SDP.

In [8], the q-ary SDP is shown to be NP-complete. More generally, over any
finite ring with identity and any additive weight (ie: Hamming, Lee), the SDP
will still be NP-complete [33]. Moreover, it is widely believed that the q-ary SDP
is difficult on average, resulting in the difficulty of random instances [5].

Via a reduction argument, the authors of [7] demonstrate that the R-SDP
problem is NP-complete based on the difficulty of the q-ary SDP problem. The
GE-SDP presented here evidently contains all instances of SDP, as the metric
is not specified. Since R-SDP is NP-complete, it represents a difficult type of
problem in NP. As R-SDP is contained in our general form of SDP, we have that
the hardest instances of our presentation of SDP are NP-complete, hence the
GE-SDP is contained in the NP-complete complexity hierarchy. This sentiment
is contained in the following theorem:

Theorem 6. The Decisional GE-SDP is NP-complete.

Note that this does not imply that all other instances of the GE-SDP are
NP-complete. For example, the exact computational complexity of rank-SDP,
the rank metric form of the SDP, is not known [34] - but it is widely believed to
be a difficult problem [19]. In practice, this rank form seems to be more difficult
to solve than the Hamming weight SDP [11], and cryptographic schemes built
from the rank metric appear to be more secure against decoding attacks [32]. We
note that [20] demonstrates there exists a randomized polynomial time algorithm
that can reduce the rank-SDP to an NP-hard problem. This is a wonderful result
but not a deterministic reduction - thus, the exact complexity of the rank-SDP
remains open.

5 Generic Error CVE

We now generalize the format of the CVE scheme to accept generic errors that
do not depend on a specific metric. Traditionally, CVE takes an error set being
the sphere of some specific Hamming weight, and samples uniformly at random a
monomial transformation from Mn to permute and obfuscate an error from that
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set [15]. In the R-SDP case from [7], this error set is taken to be {0,±1}n, with
the set of monomial transformations M̃n restricted to permit scaling factors of
±1 only. Another variant of CVE is the one developed in [9] where the metric
considered is the rank metric. Here, the error set is the set of vectors of a cer-
tain rank weight and the transformations are the natural analogue of monomial
transformations in the rank-metric setting.

We note that for generic errors with no structure to speak of applying mono-
mial transforms with no restrictions may be inappropriate. Indeed, for the set
E = {(0, 2), (1, 0)} over F3, the monomial transformation

M =

(
0 2
1 0

)
.

would not be allowed in the generic error setting. To address this issue, we instead
use the language of the stabilizer SE , which may or not may not include Mn.

The CVE scheme based on a generic error set (GE-CVE) is shown in Figure
2.

Remark 1. The protocol described in Figure 2 is only one pass; in practice, many
passes will be required to push the probability of error below some acceptable
threshold.

We prove this system is a zero-knowledge identification scheme by showing
that the following conditions hold.

– Completeness: an honest prover can convince an honest verifier.
– Soundness: a cheating prover can convince an honest verifier with only a

small probability.
– Zero-Knowledge: the verifier learns nothing other than the statement’s ve-

racity.

The proofs mimic those in [7], [15], and [34].

Completeness:

The hash values should match the appropriate commitment if the prover is
honest.

If b = 0, then

(yf−1)Ht − zs = ((u+ ze)MM−1)Ht − zs = uHt + zeHt − zs = uHt,

hence Hash(f, (yf−1)Ht − zs) is the same as c0, the original commitment.
On the other hand, if b = 1, then

y − zf = (u+ ze)M − zeM = uM,

which matches commitment c1.
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GE-CVE

Public data: q, n, k ∈ N, E ⊂ Fn
q , H ∈ F(n−k)×n

q

Private Key: e ∈ E

Public Key: s = eHt ∈ Fn−k
q

PROVER VERIFIER

u←$ Fn
q , M ←$ SE

Set c0 = Hash(M,uHt)

Set c1 = Hash(uM, eM)

(c0, c1)

z ←$ F∗
q

z

Set y = (u+ ze)M

y

Choose b ∈ {0, 1}

b

If b = 0, set f := M

If b = 1, set f := eM

f

If b = 0, accept if

c0 = Hash(f, (yf−1)Ht − zs).

If b = 1, accept if
f ∈ E and c1 = Hash(y − zf, f).

Fig. 2. One pass of the generic error CVE algorithm.
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Soundness:

In the case of a dishonest prover, we show this adversary can convince the verifier
that they are truthful with a probability that is limited by q

2(q−1) . There are two
avenues to consider: the first in which the dishonest prover is expecting to receive
challenge b = 0, and the second where they expect b = 1.

Call the first strategy st0. Here, the adversary picks u and M uniformly at
random, and will attempt to find e′ such that e′Ht = s. The commitments are
then

c0 = Hash(M,uHt) and c1 is a random string.

Hence, independent of the verifier’s sent value of z, the dishonest prover can
respond to the challenge b = 0 and pass the verification test.

The second strategy st1 is where the adversary anticipates the challenge
b = 1. Again, u and M are chosen uniformly at random, but now they must pick
e′ ∈ E ⊆ Fn

q . The commitments are then

c0 is a random string and c1 = Hash(uM, e′M).

Since M ∈ SE has the property that e′M ∈ E by definition, this is sufficient for
the dishonest prover to pass the challenge for b = 1.

These strategies can both be improved somewhat from probability 1
2 to

q
2(q−1) . The dishonest prover attempts to guess the verifier’s choice of z; call
this guess z′. In st0, we saw above that the adversary can correctly answer the
challenge b = 0 independent of z, but if the guess of z′ is correct they can answer
the challenge b = 1 as well. Likewise, in st1, they can respond to b = 0 if z′ has
been guessed correctly, and to b = 1 regardless of the value of z.

For one round of CVE, an adversary following strategy stk can pick z′ and
thus respond correctly to the challenge b with probability

P[b = k] + P[b = 1− k] · P(z′ = z) =
1

2
+

1

2
· 1

q − 1
.

That is,

P[dishonest prover passes challenge b] =
q

2(q − 1)
.

Zero-Knowledge:

In the same vein as [21], we consider a resetable, probabilistic, polynomial-time
simulator. The aim of this simulation is to perform as naturally as possible, so
that a third party inspecting the simulator’s communication history would view
it as indistinguishable from a genuine interaction.

Given that in this 5-pass scheme the verifier only ever sends information
to the prover twice, they will have exactly two strategies. Indeed, let st0 be the
strategy involving taking into consideration (c0, c1), then producing z. Let st1 be
the other strategy of accepting (c0, c1) and y, then generating b as the challenge.

The simulation is executed in the following fashion:
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– If b = 0, uniformly at random select u and M , then solve s = e′Ht for e′,
ignoring the condition that e′ ∈ E. The commitments will then be c0 =
Hash(M,uHt) with c1 generated randomly. By simulating the verifier, the
simulator will apply st0 and return z. Computing y = (u+ze′)M and sending
it to the simulator, it will apply st1 and return b′.

– If b = 1, the simulator still chooses u and M uniformly, but now selects a
random vector e′, this time with e′ ∈ E. The commitments will then be c0
generated randomly and c1 = Hash(uM, e′M). Upon calling the simulator
and inputting (c0, c1), it will apply st0 and return z. Again, computing and
sending y = (u+ ze′)M , the simulator returns b′.

The simulator then goes through the following loop: if b′ = b, halt the simula-
tion and output the string of communication [(c0, c1), z, y, b, and f ]; else, restart
the protocol from the top.

After an average of 2r rounds, because these values are distributed uniformly,
the simulator’s string of communication will be indistinguishable from one that
was produced from an honest execution of the protocol after r rounds - thus
satisfying ZK.

We now demonstrate the (2, 2)-special soundness of the protocol, which
tightly implies knowledge soundness.

Proposition 3. The protocol in Figure 2 is (2, 2)-special sound and has sound-
ness error

q

2(q − 1)
.

Proof. Consider the situation of an honest verifier and a cheating prover. Sup-
pose there exist four transcripts T1, T2, T3, T4, all of which are valid and which
correspond to the same commitment pair (c0, c1). That is, there exist z ̸= z′ such
that the prover was able to reply convincingly to queries (z, 0), (z, 1), (z′, 0) and
(z′, 1). The commitments are then the following:

T1:
(
c0, c1, y,M);

T2:
(
c0, c1, y, eM);

T3:
(
c0, c1, y

′,M ′);
T4:

(
c0, c1, y

′, eM ′).

For the commitment c0 to be valid for both transcripts T1 and T3, it must
be that

Hash(M, (yM−1)Ht − zs) = c0 = Hash(M ′, (y′M ′−1)Ht − z′s).

Therefore either there exists an extractor algorithm that can efficiently compute
hash collisions, or M is indeed equal to M ′ and ((y − y′)M−1)Ht = (z − z′)s.

Likewise, from the validity of transcripts T2 and T4, we see that

Hash(y − z(eM), eM) = c1 = Hash(y′ − z′(eM ′), eM ′).

13



Recall however that M = M ′, so either a cheating prover can find hash collisions
or it holds that y − y′ = (z − z′)(eM).

Combining these results, we find that (e′M−1)Ht = s with e′M−1 ∈ E,
where e′ = eM . Thus either hash collisions have been found or this e′ forms a
valid key that can be used to impersonate an honest prover.

Finally, we calculate the soundness probability of Figure 2 from [4] as

1−
(
1− 1

q − 1

)(
1− 1

2

)
=

q

2(q − 1)
.

We end with a theorem that shows if an adversary is, in the long run, able to
guess correctly more often than expected, then one of our security assumptions
must have been violated.

Theorem 7. After r rounds of the protocol in Figure 2, if

P[honest verifier accepts dishonest prover] ≥
(

q

2(q − 1)

)r

+ ε

for ε > 0, then it is possible to either find a collision for Hash(·) or recover the
private key e.

This is a direct result of Proposition 3. The consequence of this theorem is
that either it is feasible to find collisions in the hash function, or that the GE-SDP
is not an NP-complete problem - both of these violate standard cryptographic
results.

6 On Polynomial Instances of GE-SDP

This section shows that if the generic error set E ⊆ Fn
q is included in a small

∆-closed set intersecting the code trivially, then Problem 2 can be solved by
means of Gaussian elimination, leading to an attack of GE-CVE on that error
set.

The attack here is a projection argument. Because the SDP was shown to be
NP-complete for binary codes in [10], then over any finite field in [8], we cannot
efficiently solve for an arbitrary syndrome in general.

However, solving this smaller instance over Fp is computationally feasible.
This would not normally be of use - the errors E ⊆ Fn

q will generally not have
any basis to speak of - but using the framework that E

∆

forms a subspace allows
us to find a basis. Once we recognize that we can solve this for vectors over Fp,
we can solve it for vectors over {0,±1}, solving the R-SDP problem.

Recall the field Fq, where q = pN is a prime power and that Fq is an N -
dimensional vector space over Fp. Thus we know that there exists an isomorphism
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φ mapping Fq into FN
p . If we consider the action of this isomorphism on the

entries of the parity-check matrix H, we obtain a new, reduced instance - call
it H ′ = φ(H) ∈ FN(n−k)×n

p . The same action on the entries of s will give
s′ = φ(s) ∈ FN(n−k)

p . With this in mind, we need only consider the projection
of the code from Fq down to Fp.

Let E ⊆ Fn
q , and consider E

∆

as defined in Section 3. By Theorem 1, we
know that E

∆

is an Fp-subspace; let

E
∆

= ⟨E⟩Fp = ⟨e1, e2, ..., em⟩Fp

where e1, . . . , em ∈ E form a Fp-basis.
Concerning the GE-SDP, given syndrome s ∈ Fn−k

q and parity check matrix
H ∈ F(n−k)×n

q , we can then apply Gaussian Elimination and efficiently solve the
system for E

∆

over Fq:

s = eHt = λ1e1H
t + λ2e2H

t + ...+ λmemHt. (4)

If E
∆ ∩ C = {0}, since E ⊆ E

∆

, then E is correctable and the error e ∈ E such
that s = eHt is unique and can be found solving Equation (4). We resume this
argument in the following theorem.

Theorem 8. Let C ⊆ Fn
q be a code and E ⊆ Fn

q an error set such that E
∆ ∩C =

{0}. Then Problem 2 can be solved in O(n3).

For a code C ⊆ Fn
pN and an error set E ⊆ Fn

pN , for E
∆∩C = {0} is it necessary

that
dimFp E

∆

+ dimFp C = kN + dimFp E
∆ ≤ nN = dimFp Fn

q .

This is equivalent to the condition that

R ≤ 1−
dimFp

E
∆

nN
. (5)

Remark 2. Theorem 8 does not apply when E
∆ ∩ C ≠ {0}. Indeed, in this case,

the system from Equation 4 does not have a unique solution, rather as many as
|E∆ ∩ C|. This is the case for the SDP based on the Hamming metric or on the
rank metric. Indeed given a ball E = Br(0), E

∆

= Fn
q for either metrics.

6.1 Vulnerability of R-SDP and R-CVE

The presented attack applies to R-CVE. As already mentioned, [7] shows that
the R-SDP problem is an NP-complete problem.

The attack presented in the previous section applies to all R-CVE schemes
defined over a code C with C ∩ Fn

q = {0}. Indeed, the error set considered for
R-CVE is E = {0,±1}n and E

∆

= Fn
p . Equation 5, in this case, reduces to

R ≤ N − 1

N
,
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meaning that it is sufficient to use codes with very high rates to nullify our
attack.

The cardinality of the set of codes that intersect trivially with a given error set
may be calculated as a function of the q-binomial coefficient. The exact formula
is outside the purpose of this paper, but it may be found as [28, Corollary 3.3].

Note that if the R-CVE is defined over a prime field, then the attack cannot
be performed since C ∩ Fn

p = C.

Example 4. Let pN = 55, with n = 10 and k = 9. For this example, we take E
∆

to be of dimension 5 over F5.
From the viewpoint of rate, the inequality looks like

R = 0.9 ≤ 1− 5

10 · 5
.

Hence, this code is vulnerable to being solved via basis in E
∆

. This example
highlights that the weakness only cares about the exponent in the prime power
of the code rather than the specific prime used. One can readily see that p does
not appear in the inequality. Taking p = 5 results in the same inequality as
p = 7, or indeed any prime.

Example 5. Consider the exact same parameters as before, except now let E
∆

be slightly larger, of dimension 6 over F5.
Now the inequality - which does not hold - looks like

R = 0.9 ≰ 0.88 = 1− 6

10 · 5
.

For these values, the initial conditions are not met, so the vulnerability de-
scribed above does not apply here. This highlights a more general fact: when
dimFp

E
∆

is small, the rate R will have more flexibility in the values it can take.

7 Conclusions

We have generalized the SDP and CVE to accept an error set without structure
and argued the complexity of these problems. Using the set difference oper-
ation, we have constructed a particularly generic notion of detectability and
correctability and applied them to this GE-SDP and GE-CVE. This also results
in a generalization of the Gilbert-Varshamov Bound. It was used to give con-
ditions that determine when there exists a code that can correct a given error
set and bounds on the probability that a random code will correct an arbitrary
error set. This framework demonstrates that certain GE-SDP parameters have
vulnerabilities, permitting an adversary to correct the errors that are crucial
to the security of the problem. We have shown that this vulnerability is only
applicable when the parameters satisfy a certain bound. To conclude, we have
demonstrated a vulnerability in the GE-SDP, and thus R-SDP, and presented a
method of working around this susceptibility.
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In regard to future work, we would welcome concrete results about the
average-case complexity of GE-SDP. Seeing as R-SDP is a special case of GE-
SDP with error set {0,±1}n, it is possible that other choices of small error sets
may result in a practical cryptosystem. These would in turn, result in special
cases of GE-CVE, which may improve the scheme.

Additionally, many of these results may be improved with the use of a trusted
helper or vector (see [16], [12], [13]) or by leveraging the “in the head” paradigm
(see [17], [2], [18]). We relegate this to future work.
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