
1

Towards High-speed ASIC Implementations of
Post-Quantum Cryptography

Malik Imran, Graduate Student Member, IEEE, Aikata Aikata, Sujoy Sinha Roy,
and Samuel Pagliarini, Member, IEEE

Abstract—In this brief, we realize different architectural tech-
niques towards improving the performance of post-quantum
cryptography (PQC) algorithms when implemented as hardware
accelerators on an application-specific integrated circuit (ASIC)
platform. Having SABER as a case study, we designed a 256-bit
wide architecture geared for high-speed cryptographic applica-
tions that incorporates smaller and distributed SRAM memory
blocks. Moreover, we have adapted the building blocks of SABER
to process 256-bit words. We have also used a buffer technique
for efficient polynomial coefficient multiplications to reduce the
clock cycle count. Finally, double-sponge functions are combined
serially (one after another) in a high-speed KECCAK core to im-
prove the hash operations of SHA/SHAKE. For key-generation,
encapsulation, and decapsulation operations of SABER, our 256-
bit wide accelerator with a single sponge function is 1.71x, 1.45x,
and 1.78x faster compared to the raw clock cycle count of a
serialized SABER design. Similarly, our 256-bit implementation
with double-sponge functions takes 1.08x, 1.07x & 1.06x fewer
clock cycles compared to its single-sponge counterpart. The
studied optimization techniques are not specific to SABER – they
can be utilized for improving the performance of other lattice-
based PQC accelerators.

Index Terms—PQC, ASIC design, hardware accelerator, cryp-
tocore, SABER.

I. INTRODUCTION

High-performance hardware-based cryptographic accelera-
tors are essential for wireless, telecom, cloud, data centers,
and enterprise systems. For these applications, 8920 and
8955 families of Intel chipsets can process 5k and 40k RSA
decryption operations in one second [1]. Moreover, IBM 4769
hardware security module offers different security services
such as key exchange and signature generation/verification
using Elliptic Curve Cryptography (ECC) and RSA standards
[2]. Even if these remarkable chips deliver thousands of
operations per second, they might become compromised since
the security strength of ECC and RSA can be broken using
Shor’s algorithm [3] on a quantum computer. Hence, high-
speed quantum-resistant cryptographic hardware accelerators
are mandated to supersede ECC- and RSA-based devices.

This work was partially supported by the EC through the European
Social Fund in the context of the project “ICT programme”. It was also
partially supported by European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 952252 (SAFEST). It is also
partially supported by the State Government of Styria, Austria – Department
Zukunftsfonds Steiermark.

M. Imran and S. Pagliarini are with the Centre for Hardware Security,
Department of Computer Systems, Tallinn University of Technology, Tallinn,
Estonia. (e-mail: {malik.imran,samuel.pagliarini}@taltech.ee.)

A. Aikata and S. S. Roy are affiliated to Institute of Applied Informa-
tion Processing and Communications, Graz University of Technology, Graz,
Austria. (e-mail: {aikata, sujoy.sinharoy}@iaik.tugraz.at.)

Existing architectures for post-quantum cryptography (PQC)
algorithms on field-programmable gate array (FPGA) and
on application-specific integrated circuit (ASIC) platforms
are demonstrated in [4]–[14]. These accelerators reveal that
the PQC algorithms need secure hash functions for different
purposes, e.g., binomial sampling. For instance, the recently
standardized CRYSTALS-Kyber algorithm requires variants of
SHA3 and an extended output function (EoF), i.e., SHAKE.
The execution of variants of SHA3 and an EoF depends on a
KECCAK sponge function to compute state permutations. The
building blocks of the KECCAK sponge function, i.e., theta,
pi, rho, chi, and iota, can operate (only) on 64-bit words.
This encourages designers to select 64 bits for memory width
and for datapaths in their PQC accelerators. This is the case
for different PQC accelerators in [4]–[14]. Moreover, PQC
algorithms require relatively large storage elements to keep
initial, intermediate, and final results. For example, a memory
size of 1024×64 is needed to implement different variants
of SABER [15], i.e., LightSABER, SABER, and FireSABER.
There are several possibilities on how to organize this memory;
one choice is to use one single 1024×64 memory as in [9].
This choice does not allow for parallel read/write operations,
resulting in a higher cycle count for the overall PQC algorithm.
Another solution is to use multiple smaller memories like those
employed in SABER designs of [10]–[14]. These implemen-
tations, however, are not taking full benefit of the smaller
memories because the read/write operations are performed in a
serial way instead of a parallel fashion – even if the memories
have different purposes.

Hence, in this brief, we present an ASIC 256-bit accel-
erator for SABER to showcase the advantages of wider
datapaths and the memory decisions that accompany it. These
advantages also apply to other PQC algorithms. For reducing
the clock cycle count, we employed four high-speed SRAM
memories of sizes 256×64 each and described their control
logic to allow for parallel read/write operations. The building-
blocks of SABER are implemented to process 256-bit words.
We have also used a long buffer approach for multiplying
polynomial coefficients in parallel. Finally, double-sponge
functions are connected serially (one after another) in a high-
speed KECCAK core to further improve the performance of
the studied accelerator.

II. PROPOSED CRYPTO ACCELERATOR

Fig. 1 shows the block diagram of our proposed crypto
accelerator architecture. It consists of a data memory, an
address decoder unit, and a SABER crypto core. The data



2

Fig. 1. Block diagram of our proposed crypto accelerator architecture.

memory holds initial, intermediate, and final results. Each
memory can read/write one 64-bit word in one clock cycle.
So, four memory instances in parallel can read/write one
256-bit word in one clock cycle. The address decoder unit
selects an appropriate memory for reading/writing a 64-bit
word. Also, it communicates to the SABER controller to
pass/collect 64-bit (for SHA3 variants) or 256-bit (for other
SABER blocks) data as input/output to/from the SABER core.
The SABER crypto core includes the required building blocks
and is wrapped by a dedicated controller that handles 64-
bit or 256-bit data for write/read operations. The controller
generates the control signals for the corresponding SABER
building blocks. Additionally, it allows one SABER block to
operate at a time. Next, we have described the implementation
of the SABER blocks.
A. Optimization of SHA3-256/512 and SHAKE128

Since all of SHA3 variants utilize the KECCAK sponge
function [16], we operate the SHA3-256, SHA3-512, and
SHAKE-128 like a wrapper in our proposed architecture.
Moreover, details about the utilized KECCAK cores with
single- and double-sponge functions are described below.

1) KECCAK with single-sponge function: The high-speed
KECCAK core of [17] requires an instance of (i) buffers to
hold the initial vectors and to keep the intermediate and the
final results, (ii) KECCAK round constants block to generate
the round vectors and (iii) KECCAK sponge function to
operate the KECCAK building-blocks (theta, pi, rho, chi and
iota) based on the round constants. The high-speed KECCAK
core of [17] needs 28 clock cycles to operate 24 rounds in an
iterative fashion: 24 cycles are for 24 KECCAK rounds and
an additional 4 cycles specify the ‘wait’ until the registers
in the datapath are free. Previously, the KECCAK core of
[17] has been utilized in [9], [13], [14] for SABER hardware
accelerators.

2) KECCAK with double-sponge function: The number of
clock cycles of the KECCAK core of [17] can be reduced
by half using (i) an instance of a KECCAK buffer, (ii) two
instances of KECCAK round constants and (iii) two instances
of KECCAK sponge functions. The KECCAK buffer holds

the initial, intermediate, and final outputs. Each instance of
a round constant block takes a 5-bit counter value as input
and generates a 64-bit constant vector as an output. Moreover,
each instance of the sponge function takes two 64-bit inputs
and produces a single 64-bit output. The first 64-bit input to
the corresponding sponge function is from the round constants
block. The second 64-bit input to the first sponge function is
from the KECCAK buffer and its output goes as an input to the
second sponge function. This means the sponge functions are
connected serially one after another. The output of the second
sponge function is connected as an input to the KECCAK
buffer to accumulate the results. With this strategy, 14 clock
cycles are required to operate 24 rounds of KECCAK. Hence,
the clock cycle count is halved as compared to [9], [13], [14].

B. Fully Parallel Schoolbook Multiplier
We have utilized long public and secret polynomial buffers

to load coefficients of public and secret polynomials at once.
This one-time data loading from memory helps to reduce the
cycle count. For polynomial multiplications computation, the
long poly buffers need an m-bit shift towards left/right. We
shift left with 256-bit as our accelerator deals with 256-bit
data for reading/writing operations to/from data memory. Note
that SABER requires a matrix multiplication for multiplying
polynomial coefficients, as presented in Eq. 1. Matrix P , S and
R hold the public, secret and resultant polynomial coefficients.P(0,0) A(0,1) . . . P(0,255)

P(1,0) A(1,1) . . . P(1,255)

P(2,0) A(2,1) . . . P(2,255)

S0

S1

S2

 =

R0

R1

R2

 (1)

As shown in Fig. 2, our fully parallelized polynomial
multiplication architecture consists of two long polynomial
buffers (LPPB and LSPB) and three copies of a schoolbook
multiplier, i.e., SBM1, SBM2, and SBM3. The length of LPPB
and LSPB is proportional to the size of matrix P and matrix
S, respectively. Each row of matrix P contains 256 13-bit
polynomial coefficients. Each row of matrix S contains 256
4-bit polynomial coefficients. Therefore, 768 coefficients are
in three rows of a matrix A and a matrix S. Then, the length
of LPPB is 9984 bits (768×13) and the length of LSPB
is 3072 bits (768×4). Multiplication starts with loading 768
polynomial coefficients into LPPB and LSPB buffers.

After loading all the 768 polynomial coefficients into LPPB
and LSPB buffers, the corresponding 256 coefficients of public
and secret polynomials are forwarded to multipliers SBM1,
SBM2 and SBM3. As detailed in Fig. 2, the SBM1 multiplier
consists of three buffers (i.e., PB1, SP1, and AB1) and 256
MAC (multiply-and-accumulate) units. PB1 and SP1 contain
the 256 coefficients of the first row of matrix A and matrix
S for multiplication. Then, the multiplication using the MAC
units takes 256 cycles to complete. Each MAC unit takes 13-
and 4-bit public and secret polynomial coefficients as inputs
and results in a 13-bit polynomial as output, as presented in
Fig. 2. A 13-bit output polynomial from each MAC depends
on the 4-bit secret polynomial. Two bits from the LSB side
of a secret polynomial decide between shifted 13-bit public
polynomial coefficients (a, 2a, 3a, 4a) using a multiplexer
M1. A third bit from the LSB side is a sign bit. Finally,



3

Fig. 2. Fully parallelized schoolbook multiplier for SABER.

the last bit of a secret polynomial coefficient determines
the modular addition or subtraction operation to execute for
a 13-bit multiplication result. Moreover, AB1 accumulates
the multiplication results. The same multiplication strategy
is applied in SBM2 and SBM3 multipliers of Fig. 2. In the
SBM2 multiplier, PB2 and SP2 keep the public and secret
polynomial coefficients of the second row of matrix P and
matrix S. Similarly, PB3 and SP3 hold the public and secret
polynomial coefficients for the third row of matrices P and S.
As presented in Fig. 2, an additional RAB buffer accumulates
the multiplication results from SBM1, SBM2, and SBM3
multipliers before writing back on the data memory. Since
all three multipliers (SBM1, SBM2 and SBM3) operate in
parallel, 256 clock cycles are required to multiply SABER
polynomial coefficients.

The architectures described in [9], [13], [14] need 768 clock
cycles for multiplication. Our fully-parallelized multiplier
takes 256 cycles. Also, our buffer approach is beneficial to
avoid frequent memory access for reading/write operations as
we have 256-bit data bus instead the typical 64-bit size found
in the literature. More precisely, the total clock cycle cost of
loading public and secret polynomials from data memory is
156 and 48 for schoolbook designs of [9], [13], [14]. The
fully-parallelized architecture of this work reduces these costs
to 39 and 12 cycles. As implied by the block diagram of Fig. 2,
the area of our multiplier is approximately 3 times that of a
serialized schoolbook multiplier.
C. Other implemented SABER building blocks

A sampler is needed to compute the sample from a pseudo-
random input string. The binomial sampler in our proposed
architecture is a combinational block. It maps 256-bit pseudo-
random bits to a 256-bit sample value in one clock cycle. The
transformation from a byte into a bit string is the task of the
Unpack unit. A copy block is only needed during the KEM

Key Generation

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104
Encapsulation

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104
Decapsulation

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Multi
plie

r
Copy
Has

h

AddRound
Sam

pler
Oth

er
AddPac

k
UnPac

k

BS2P
OLVEC
Ver

ify

100

102

104

Multi
plie

r
Has

h

AddRound

BS2P
OLVEC

Sam
pler

Oth
er

AddPac
k

UnPac
k

Copy
Ver

ify

100

102

104

Multi
plie

r
Has

h

BS2P
OLVEC
Ver

ify
Oth

er

AddRound
UnPac

k
Sam

pler
AddPac

k
Copy

100

102

104

Total clock cycle counts

Key Generation Encapsulation Decapsulation
0

5000

10000

Serial + single-sponge Parallel + single-sponge Parallel + double-sponge

Fig. 3. Clock cycle distribution of SABER for serial and parallel architectures.

key-generation process. It transforms the rows and columns to
determine a transpose of a matrix generated using SHAKE128.
The verify block is only required during the decapsulation
operation. It provides a word-by-word comparison between
the received ciphertext and re-encrypted ciphertext. The result
of verify block is stored in a register that is used by CMOV
to either copy the decrypted session key or a pseudo-random
string at a specified memory address. The AddPack performs
coefficient-wise addition with a constant followed by the
generated message, and it packs the resultant bits into a
byte string. Like the AddPack block, AddRound computes
coefficient-wise addition of a constant followed by coefficient-
wise rounding. The BS2POLVECp block converts the byte
string into a polynomial vector.

III. RESULTS AND COMPARISONS

In Fig. 3, we show the clock cycle count for serial and
parallel SABER architectures. The first row with three panels
in Fig. 3, from left to right, specifies the key generation, en-
capsulation and decapsulation operations for a serial SABER
architecture. Similarly, the second row includes three panels
for the same three operations on a parallel SABER architecture
with a single sponge in its KECCAK block. In the third row of
Fig. 3, the considered SABER architecture has double-sponge
functions. The bottom panel of Fig. 3 provides the total cycle
counts for key generation, encapsulation, and decapsulation
operations of all three considered designs. Moreover, in Fig.
3, hash determines the SHA3-256/512 and SHAKE128 func-
tions. It is noteworthy that the multiplier and hash operations
dominate the computation time, so they are prime targets for
optimizations.

As expected, Fig. 3 shows a decrease in clock cycles for
key generation, encapsulation, and decapsulation operations
when moving from a serial to a parallel design with a single-
sponge function (see blue and red bars). Similarly, we have a
decrease in clock cycles for hash operation when comparing
two parallel SABER designs with single- and double-sponge
functions in the KECCAK (see red and green bars). The
last panel in Fig. 3 highlights the total cycle count for each
operation on all architectures. On average, the number of



4

TABLE I
RESULTS OF PROPOSED CRYPTO ACCELERATOR ON 28NM TECHNOLOGY.

Implementation details single-sponge double-sponge
Maximum Frequency (MHz) 2500 2500
Latency (KG/ENC/DEC) (µs) 1.66/1.96/2.09 1.53/1.82/1.96
Utilized Area (mm2) 0.251 0.255
Power (Lkg/Dyn) (mW) 10.96/556.25 11.49/597.05

TABLE II
COMPARISON TO EXISTING ASIC IMPLEMENTATIONS OF SABER.

Ref. Cycles (K) Latency (µs) Freq Area Pow
KG/ENC/DEC KG/ENC/DEC MHz mm2 mW

65nm technology
[13] 7.1/7.1/9.3 7.1/7.1/9.3 1002 0.314 142.5
[11] 14.3/18.7/23.3 89.6/116.9/146.1 160 0.158 –
[14] 7.1/7.1/9.3 10.0/9.9/13.0 715 1 153.6
TW† 4.1/4.9/5.2 4.1/4.9/5.2 ✔ 1002 0.944 647.2
TW‡ 3.8/4.5/4.9 4.0/4.8/5.2 ✔ 936 1.026 860.9
40nm technology
[10] 1.0/1.4/1.6 2.6/3.6/4.2 400 0.380 –
TW† 4.1/4.9/5.2 2.45/2.90/3.09 ✔ 1694 0.846 163.2
TW‡ 3.8/4.5/4.9 3.47/4.10/4.47 1095 0.767 137.0

28nm technology
[12] –/–/– –/–/– 500 3.6 39–368
TW† 4.1/4.9/5.2 1.6/1.9/2.0 2500 0.251 567.1
TW‡ 3.8/4.5/4.9 1.5/1.8/1.9 ✔ 2500 0.255 608.4
TW† and TW‡ are our designs with single- & double-sponge functions.
Fabricated: [11], [12], [14], Technology mapped: [10], [13], TW† & TW‡

Area is in chip size for [12], [14].

clock cycles required to execute key generation, encapsula-
tion, and decapsulation operations using a parallel accelerator
with one sponge function is 1.65× lower compared to the
serial SABER architectures of [13], [14]. The use of double-
sponge functions in our parallel accelerator further reduces
the clock cycle requirement by 1.07× when compared to a
parallel implementation with one sponge function. Therefore,
a significant decrease in the clock cycle count when moving
from a serialized design to parallel architectures, reveals that
the realized approaches in this work can be utilized in other
PQC algorithms for performance improvements.

On a commercial 28nm ASIC technology, the frequency,
latency, area, and power results of our proposed parallel
SABER architectures are given in Table I. KG, ENC and
DEC in Table I define the SABER key-generation, encap-
sulation, and decapsulation operations. Similarly, Lkg and
Dyn are the leakage and dynamic power consumption. Both
implementations operate at 2500MHz. The use of a double-
sponge function allows us to minimize the computation time
(i.e., latency, calculated as clock cycles over frequency) at a
modest increase in power (+4.63% and +6.84% for leakage
and dynamic power, respectively) and area (+1.57%).

Known ASIC implementations of SABER are compared in
Table II. The clock cycles (CC) and latency (Lat) values are
reported for KG, ENC, and DEC operations. Moreover, the
architectures marked with the blue checkmark in Table II give
the best-in-class results.

1) Comparison on 65nm: Due to the parallel use of smaller
SRAM memories, our architecture with a single-sponge func-
tion requires 1.73, 1.44 and 1.78 times lower clock cycles
for SABER key-generation, encapsulation and decapsulation
operations when compared to [13]. Our SABER design with
double-sponge functions results in 1.86, 1.57 and 1.89 times

lower clock cycle count. Our single-sponge SABER design
requires 1.73, 1.44 and 1.78 times lower computation time
(i.e., latency). Similarly, when using a double-sponge function,
the latency values are 1.77, 1.47 and 1.89 times lower. As
seen in the last two columns of Table II, the area and power
values of our designs are higher as compared to [13] as we
are utilizing a parallelized 256-bit architecture.

A 64-bit SABER chip fabricated in [11] requires 3.48,
3.81 and 4.48 times higher clock cycles compared to our
parallel SABER design having a single-sponge function. With
double-sponge functions, the clock cycle requirement of our
design is 3.76, 4.15, and 4.48 times lower than [11]. Our
256-bit implemented SABER design with single-sponge and
double-sponge functions show 6.26 and 5.85 times speedup in
clock frequency. Moreover, our single-sponge SABER design
displays 21.85, 23.85, and 28.09 times lower latency. For
double-sponge functions, the required computation time is
22.4, 24.35, and 28.09 times lower. We are utilizing 5.97
and 6.49 times more hardware resources with single and
double-sponge functions. Two different operating frequencies,
160MHz, and 10MHz, are reported in [11]. For 160MHz,
the consumed power is not reported in the reference design.
However, for 10MHz, the consumed power is 0.3339mW .
Our parallel SABER architectures with single- and double-
sponge functions consume 647.2 and 860.9mW power at 1002
and 936MHz clock frequency. This increase is expected given
that our frequency of operation is 1-2 orders of magnitude
higher.

If we compare our results to [14], our proposed design with
single-sponge function takes 1.73, 1.44, and 1.78 times lower
clock cycles. SABER design with double-sponge functions
requires 1.86, 1.57, and 1.89 times fewer clock cycles. The
reasons are the parallel use of smaller memories and a fully
parallelized multiplier in our SABER design. On the other
hand, smaller memories are accessed serially in [14]. More-
over, an iterative schoolbook multiplier is utilized in [14].
Our single-sponge and double-sponge implemented SABER
designs are 1.40 and 1.30 times faster (in frequency). As
shown in column three of Table II, the computational cost
of our SABER design is much lower than [14]. Column five
shows that our SABER core utilizes an area (almost) equiv-
alent to the chip size of [14]. Due to parallel computations
in this work, our single-sponge and double-sponge functions
consume 4.21 and 5.60 times higher power than [14]. There is
always a trade-off between processing speed and area/power
parameters, naturally.

2) Comparison on 40nm: We have achieved very interest-
ing results on 40nm process technology. SABER designs with
single-sponge and double-sponge functions utilize 0.079µm2

and 0.115µm2 area for SHA3-256/512 and SHAKE128. For
identical SABER designs, the hardware utilization of our
fully parallelized multiplier is 0.637µm2 and 0.523µm2. In
Table II, if we see the total utilized area and consumed
power of our design with single-sponge and double-sponge
functions, the SABER design with double-sponge functions
takes lower resources and consumes less power as compared
to the SABER design with single-sponge function. This is
counterintuitive at first, but becomes clear once we notice the



5

significant frequency decrease, from 1694MHz to 1095MHz,
in column four of Table II. This happens due to the different
critical paths shifting from one design to another (the double-
sponge becomes the critical path). Additionally, the choice
between single- and double-sponge is a function of the tech-
nology: the relative speed of logic versus that of the memory
dictates where the critical path lies and whether the design can
accommodate a double-sponge KECCAK. This consideration
applies not only to SABER but also to other PQC accelerators.

Compared to [10], our parallel designs take more clock
cycles for KG, ENC, and DEC operations of SABER. The
reason is the parallel use of smaller memories in our design
while dedicated memories for specific SABER computations
are utilized in [10]. Our SABER design with single-sponge
and double-sponge functions is 4.23 and 2.73 times faster in
clock frequency. Moreover, our implementation with a single-
sponge function requires lower computation time (see column
three in Table II). We are utilizing more area compared to
[10] because our focus was to reduce the computation time
and improve the circuit frequency. The comparison with power
results is not possible as they are not available in the reference
design.

3) Comparison on 28nm: A flexible design [12] for
SABER, NTRU, Dilithium, Rainbow, Kyber and McEliece
PQC algorithms is five times slower in clock frequency as
compared to our dedicated SABER design. The utilized area is
in chip size (3.6mm2), as seen in Table II, so a fair one-to-one
comparison is not possible. Similarly, a reasonable comparison
with consumed power is not possible as the power values are
given in a range from 39mW to 368mW . The information
about the clock cycle and latency parameters is not reported
in the reference design of [12]. Therefore, this comparison is
(also) not possible.

IV. LESSONS LEARNED & CONCLUSIONS

In a nutshell, comparison and the discussions reveal that the
parallel use of several smaller memories is more beneficial
to reduce frequent read/write access from the data memory.
One-time data loading from data memory helps to decrease
clock cycles. This aids the design of parallel multipliers
for efficient polynomial coefficient multiplications. Also, the
one-time loading benefits the design of a compact and a
parallel NTT (number-theoretic-transform) multiplier for the
present Crystals-Kyber and Crystals-Dilithium PQC standards.
In addition, it assists designers to minimize the critical path of
their circuits. Almost all the PQC algorithms involve secure
hash computations for different purposes. Hence, efficient hash
computations allow optimization of the circuit frequency and
also help to minimize the clock cycles.

This article shows that our SABER design with a single-
sponge function performs better in achieving higher clock
frequency on 65nm and 40nm process technologies. On a
28nm technology, however, our SABER designs with single-
sponge and double-sponge functions outperform the state of
the art in both frequency and latency. The realized approaches
in this work are practical to other lattice-based PQC algorithms
to improve circuit frequency, reducing computation time and
cycle count for high-speed cryptographic applications.

REFERENCES

[1] Intel, “Integrated cryptographic and compression acceler-
ators on intel architecture platforms,” last accessed on
September 29, 2022, available at: https://www.intel.com/
content/dam/www/public/us/en/documents/solution-briefs/
integrated-cryptographic-compression-accelerators-brief.pdf.

[2] IBM, “Ibm cex7s / 4769 pcie cryptographic coprocessor (hsm),” last
accessed on October 20, 2022, available at: https://public.dhe.ibm.com/
security/cryptocards/pciecc4/docs/4769 Data Sheet.pdf.

[3] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, p. 1484–1509, 1997.

[4] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hardware
implementation of crystals-dilithium,” Cryptology ePrint Archive, Paper
2021/1451, 2021, https://eprint.iacr.org/2021/1451. [Online]. Available:
https://eprint.iacr.org/2021/1451

[5] G. Land, P. Sasdrich, and T. Güneysu, “A hard crystal - implementing
dilithium on reconfigurable hardware,” in Smart Card Research and
Advanced Applications: 20th International Conference, CARDIS 2021,
Lübeck, Germany, November 11–12, 2021, Revised Selected Papers.
Berlin, Heidelberg: Springer-Verlag, 2021, p. 210–230. [Online].
Available: https://doi.org/10.1007/978-3-030-97348-3 12

[6] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo, “A
software/hardware co-design of crystals-dilithium signature scheme,”
ACM Trans. Reconfigurable Technol. Syst., vol. 14, no. 2, jun 2021.
[Online]. Available: https://doi.org/10.1145/3447812

[7] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “A
configurable crystals-kyber hardware implementation with side-channel
protection,” Cryptology ePrint Archive, Paper 2021/1189, 2021,
https://eprint.iacr.org/2021/1189. [Online]. Available: https://eprint.iacr.
org/2021/1189

[8] A. Aikata, A. C. Mert, M. Imran, S. Pagliarini, and S. S. Roy, “Kali: A
crystal for post-quantum security using kyber and dilithium,” Cryptology
ePrint Archive, Paper 2022/1086, 2022, https://eprint.iacr.org/2022/1086.
[Online]. Available: https://eprint.iacr.org/2022/1086

[9] S. Sinha Roy and A. Basso, “High-speed instruction-set coprocessor for
lattice-based key encapsulation mechanism: Saber in hardware,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2020, p. 443–466, 2020.

[10] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and L. Liu,
“Lwrpro: An energy-efficient configurable crypto-processor for module-
lwr,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 3, pp. 1146–1159, 2021.

[11] A. Ghosh, J. Mera, A. Karmakar, D. Das, S. Ghosh, I. Verbauwhede, and
S. Sen, “A 334µw 0.158mm2 saber learning with rounding based post-
quantum crypto accelerator,” in 2022 IEEE Custom Integrated Circuits
Conference (CICC), 2022, pp. 1–2.

[12] Y. Zhu, W. Zhu, M. Zhu, C. Li, C. Deng, C. Chen, S. Yin, S. Yin,
S. Wei, and L. Liu, “A 28nm 48kops 3.4µj/op agile crypto-processor for
post-quantum cryptography on multi-mathematical problems,” pp. 514–
516, 2022, iEEE International Solid State Circuits Conference (ISSCC),
San Francisco, CA, USA, p. 514–516, February 20-26, 2022.

[13] M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and
S. Pagliarini, “Design space exploration of saber in 65nm asic,”
in Proceedings of the 5th Workshop on Attacks and Solutions
in Hardware Security, ser. ASHES ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 85–90. [Online].
Available: https://doi.org/10.1145/3474376.3487278

[14] M. Imran, F. Almeida, A. Basso, S. S. Roy, and S. Pagliarini, “High-
speed saber key encapsulation mechanism in 65nm cmos,” Cryptology
ePrint Archive, Paper 2022/530, 2022, https://eprint.iacr.org/2022/530.
[Online]. Available: https://eprint.iacr.org/2022/530

[15] A. Basso, J. M. B. Mera, J.-P. D’Anvers, A. Karmakar, S. S. Roy, M. V.
Beirendonck, and F. Vercauteren, “Saber: Mod-lwr based kem (round
3 submission),” last accessed on March 23, 2022, available at https:
//www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf.

[16] NIST, “Sha-3 standard: Permutation-based hash and extendable-output
functions,” FIPS PUB 202, last accessed on March 9, 2022, available at
https://doi.org/10.6028/NIST.FIPS.202.

[17] K. Team, “Keccak in vhdl: High-speed core,” last accessed on September
16, 2022, available at: https://keccak.team/hardware.html.


