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Abstract. In this paper, we prove the quantum security of the signa-
ture scheme HAWK, proposed by Ducas, Postlethwaite, Pulles and van
Woerden (ASIACRYPT 2022). More precisely, we reduce its strong un-
forgeability in the quantum random oracle model (QROM) to the hard-
ness of the one-more SVP problem, which is the computational problem
on which also the classical security analysis of HAWK relies. Our security
proof deals with the quantum aspects in a rather black-box way, making
it accessible also to non-quantum-experts.
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1 Introduction

Background. The discovery of Shor’s algorithm has rendered most of the
currently deployed public-key cryptosystems vulnerable to quantum attacks. As
of 2016, the US National Institute of Standards and Technology (NIST) initiated
the standardization process for post-quantum cryptography in the scope of key-
encapsulation mechanism (KEM) and signature schemes. In 2022, the 3rd round
winners were announced, but the process is still ongoing with the alternative
KEM candidates and with a new call for signature schemes (see below). The
selected signature schemes consist of Falcon [FHK+18] and Dilithium [DKL+18],
which are lattice-based, and of SPHINCS+ [BHH+15], which is hash-based. For
the sake of diversity, NIST has launched a new standardization process with a
call for additional post-quantum signatures.

In 2022, [DvW22] introduced a new cryptographic framework based on the
lattice-isomorphism problem (LIP). The framework can be used to build vari-
ous post-quantum cryptographic schemes, including KEMs and signatures. One
particularly interesting scheme is the signature scheme HAWK, proposed in
[DPPW22]. It uses the simple lattice Z2n, endowed with the (module) struc-
ture of cyclotomic ring Z[x]/(xn + 1) for competitiveness. Due to this choice,
the discrete Gaussian sampling (DGS), which is often the efficiency bottleneck,
becomes much simpler and efficient. Indeed, by [DPPW22, Table 1], HAWK

generally outperforms Falcon, which is considered to be one of the most effi-
cient post-quantum signature schemes. It is an “open secret” that HAWK will
be submitted to the new NIST standardization process mentioned above.



The classical security of HAWK has been analyzed and rigorously proven
(in the random oracle model), via a security reduction to the considered — and
believed-to-be (quantum) hard — one-more SVP problem [DPPW22]. Especially
in the light of being a candidate in the new NIST post-quantum competition,
the quantum security of HAWK is of particular interest.

As is common for security proofs in the random oracle model, the classical
security proof for HAWK from [DPPW22] does not carry over to the quantum set-
ting, where the attacker can make quantum superposition queries to the random
oracle. Also, HAWK does not follow a standard construction design, for which
one could apply an off-the-shelf quantum-security result (like [DFMS19,LZ19]).
As a matter of fact, HAWK follows some non-standard randomized variant of
the hash-and-sign paradigm, where first the hash h := H(m, r) of the to-be-
signed message m and some randomness r is computed, where r is then part
of the signature sig = (r, s), and the other part s is then sampled according to
some distribution, which depends on the public key and on h, and that can be
efficiently sampled if and (as far as we know) only if the secret key is given.
The verification works by checking if some specific deterministic function of s
and H(m, r) satisfies some property (namely, is a non-zero short vector). Pre-
vious quantum analyses of generic hash-and-sign signature schemes, including
the randomized variants considered in [BDF+11,Zha15], which rely on preimage
samplable functions, do not apply to HAWK (independent of whether one con-
siders classical or quantum attacks). Thus, an explicit quantum security proof
for HAWK is necessary to establish provable quantum security.

Contribution. In this work, we analyze the quantum security of HAWK in
the random oracle model. In particular, we prove strong unforgeability against
chosen-message attacks in the quantum random oracle model (QROM), where
the quantum attacker is given superposition access to the random oracle. Our
proof is in the form of a security reduction to the (same) one-more SVP problem,
with an explicit security loss. Our result positively confirms that the claimed
quantum security of HAWK lies on a firm theoretical foundation.

Our quantum security proof for HAWK recycles some elements of the clas-
sical proof from [DPPW22], but requires some new elements to deal with the
quantum aspect. For example, we invoke the adaptive reprogramming technique
from [GHHM21] as well as the optimality of Grover for preimage search. Our
proof is rather modular, and from our quantum security proof one can easily
extract a variant of the classical security proof as well (with a slightly improved
bound compared to the original classical proof in [GHHM21]), simply by replac-
ing the adaptive reprogramming and the preimage search parts by their classical
counterparts. In particular, our quantum security proof is meant to be accessible
to a large extent also to non-quantum-experts.
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2 Preliminary

2.1 Setting Up the Stage

Let R be the cyclotomic ring R = Z[x]/(xn + 1), which is isomorphic to Zn as a
Z-module; later on, n will be restricted to be an integer power of 2. Furthermore,
we fix the obvious inclusion map R/2R ↪→ R, and thus consider the reduction
mod 2 as a map R → R/2R ⊂ R.

In order to abstract away the technical details of the property sym-break from
[DPPW22], we consider the function 〈 · 〉 : R2 → R2 defined by

v =

(
v1
v2

)
7→ 〈v〉 :=

{
−v if sym-break(v1) = 1,

v otherwise,

where, as defined in [DPPW22], sym-break(v1) = 1 if and only if v1 6= 0 with
the first nonzero coefficient being positive. It is convenient to think of 〈v〉 as
a representation of the equivalence class {v,−v}, with the representation being
unique if v1 6= 0. Indeed, what will be relevant is that

〈v〉 = 〈−v〉 ∈ {v,−v} ∀ v 6∈ {0} ×R , (1)

while 〈v〉 = v for v ∈ {0} ×R.
Let B ∈ GL2(R) be an invertible 2 × 2 matrix over R, and let Q = B∗B.

Looking ahead, B will form the secret key and Q the public key in HAWK. Such
a Hermitian matrix Q induces the norm ‖v‖Q := tr (v∗Qv) /n. As the name
suggests, this is a norm in the Z-module R2, meaning ‖u+ v‖Q ≤ ‖u‖Q +‖v‖Q,
‖av‖Q = |a| ‖v‖Q and ‖v‖Q = 0⇒ v = 0 for all u, v ∈ R and a ∈ Z.

For every σ > 0 and h ∈ R2/2R2 ⊂ R2, consider the following Q-dependent

distributions D
B

σ , D̃
B

σ [h ] and D̃
B

σ . They can be efficiently sampled if the matrix
B is known, which motivates the superscript-B notation.

Definition 1. For every σ > 0 and Q = B∗B as specified above, define

– D
B

σ : the discrete (σ-deviated) Gaussian distribution under Q-norm centered
at 0 and supported at R2.

– D̃
B

σ [h ]: the discrete (σ-deviated) Gaussian distribution under Q-norm cen-
tered at 0 and supported at h+ 2R2 ⊂ R2.

– D̃
B

σ : with a random choice of h← R2/2R2, sampling D′σ [h ].

Note that for every h ∈ R2/2R2 ⊂ R2 we have

v mod 2 = h ∀ v ∈ supp
(
D̃

B

σ [h ]
)

= h+ 2R2 . (2)

Furthermore, by Lemma 9 in the full version of [DPPW22], for every ε > 0 and
σ ≥ ηε(Zn), the statistical distance

δ
(
D

B

σ , D̃
B

σ

)
≤ ε/(1− ε) , (3)
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where ηε( · ) is as defined in [DPPW22, Definition 3]. This also implies that
the distribution of h := v mod 2 for v ← D

B

σ is close to uniformly random in
R2/2R2, with statistical distance at most ε/(1 − ε). Furthermore, as a direct
consequence of [DPPW22, Lemma 3], the guessing probability of v mod 2 for
v ← D

B

σ is bounded by

guess(v mod 2) := max
h◦∈R2/2

Pr[v mod 2 = h◦] ≤ 2−2n · 1 + ε

1− ε
. (4)

2.2 Geometric Units

Define the set of geometric units as µK := {x1, . . . , x2n} ⊆ R. The following
Lemma 1 is recycled from the proof of Lemma 10 in the full version of [DPPW22],
and will be useful in later analysis.

Lemma 1. Let n be a power of 2, ε > 0, σ ≥ ηε(Zn), and h◦ ∈ R2/2R2.
Consider v ← Dσ and set h := v mod 2. Then

Pr
[
∃ α ∈ µK \ {±1} : 1

2 (h+ αv) ∈ R2
]
≤ 2−n · 1 + ε

1− ε
, and (5)

Pr
[
∃ α ∈ µK : 1

2 (h◦ + αv) ∈ R2
]
≤ n · 2−2n · 1 + ε

1− ε
. (6)

Proof. For (5), note that 1
2 (h + αv) ∈ R2 implies that h + αv ∈ 2R2, and thus

αv ≡ h ≡ v (mod 2). Furthermore, any α ∈ µK \ {±1} satisfies α ≡ xi (mod 2)
for some 1 ≤ i < n, and so we have xiv ≡ v (mod 2) and thus by repeated
application

xkiv = x(k−1)ixiv ≡ x(k−1)iv = · · · ≡ v (mod 2) (7)

for any positive integer k. Furthermore, exploiting that, by the choice of n as
a power of 2, n/2 must be a multiple of gcd(i, n) and thus can be written as
n/2 = ki + `n (where one may choose k to be positive), and using that xn ≡ 1
(mod 2), we obtain that

xn/2v ≡ v (mod 2) .

Thus, we conclude (5) by

Pr
[
∃ α ∈ µK \ {±1} : 1

2 (h+ αv) ∈ R2
]

≤ Pr
[
xn/2v ≡ v (mod 2)

]
≤ guess(v mod 2) ·#

{
v◦ ∈ R2/2R2

∣∣∣ xn/2v◦ ≡ v◦ (mod 2)
}

≤ 2−2n · 1 + ε

1− ε
· 2n

≤ 2−n · 1 + ε

1− ε
,

where we exploited (4).
Similarly, for (6), note that 1

2 (h◦+αv) ∈ R2 implies that v ≡ α−1h◦ (mod 2),
and furthermore #{α−1h◦ mod 2 | α ∈ µK} ≤ n. Together with (4), we conclude
the claimed bound (6).
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2.3 Adaptive Reprogramming Lemma

The following reprogramming lemma adapts from [GHHM21, Theorem 1], with
the overall loss slightly improved. Intuitively, it states that, if the location x of
a reprogramming is hard to guess prior to when it is taking place, then such a
reprogramming is hard to notice.

Lemma 2 (Slight modification of [GHHM21, Theorem 1]). Let H : X →
Y be a random oracle, ε > 0 and Ω be a family of distributions on X where
every D ∈ Ω is with guessing probability guess(D) := maxx◦ Prx←D [x = x◦] ≤ ε.
Define the reprogramming oracle Reprob for b ∈ {0, 1} that, on input (a suitable
representation of) D ∈ Ω, works as below:

Repro0(D)

1: x← D
2: y := H(x)
3: return (x, y)

Repro1(D)

1: x← D
2: H(x) := y ← Y
3: return (x, y)

Suppose AReprob,H for b ∈ {0, 1} makes at most qR queries to the reprogramming
oracle Reprob, and at most qH quantum queries to H before the last reprogram-
ming query. Then,∣∣Pr

[
1← ARepro0,H

]
− Pr

[
1← ARepro1,H

]∣∣ ≤ 2qR
√

(qH + qR) · ε .

The intuition is quite simple: A can notice whether H(x) gets reprogrammed
or not only if it has queried x beforehand, which is unlikely the case since it is
chosen with high entropy. The compressed oracle technique allows to make this
line of reasoning rigorous, even when the queries to H are quantum: Before every
Repro query we measure the compressed oracle to check whether x has been
queried, we argue that the measurement outcome is “no” with overwhelming
probability due to the high entropy in x, we conclude that the measurement
caused little disturbance due to the gentle measurement lemma, and we observe
that in case of a “no” outcome there is no difference between Repro0 and Repro1.

The full proof is based on the compressed oracle technique, but is rather
standard. We refer readers to Appendix A for a detailed proof.

3 Brief Recap on HAWK and the One-More SVP

In the scope of HAWK, we take it as understood that the degree n of the cyclo-
tomic ring R is a power of 2. Let H : X → R2/2R2 ⊆ R2 be a hash function,
modelled as a random oracle, and let the parameters σpk, σsign, σver, saltlen be as
specified in Lemma 10 in the full version of [DPPW22]. In particular, it holds that
2σsign ≤ ηε(Zn) for some negligible ε > 0. We write Gen for the (σpk-dependent)
key generation procedure specified in [DPPW22], producing a public-secret key
pair (Q,B) with B ∈ GL2(R) and Q = B∗B

The signing SignB and verification VrfyQ of HAWK works as follows.
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SignB(m):

1: r ← {0, 1}saltlen
2: h := H(m, r)

3: v ← D̃
B

2σsign [h ]

4: s := 1
2
(h+ 〈v〉) ∈ R2

5: return sig := (r, s)

VrfyQ(m, sig ∈ {0, 1}saltlen ×R2):

1: (r, s) := sig
2: h := H(m, r)
3: v := 2s− h
4: check v = 〈v〉 and v 6∈ {0} ×R
5: check ‖v‖Q ≤ 2σver ·

√
2n

6: return 1 if all check pass

Fig. 1. SignB and VrfyQ of HAWK

Remark 1. We take it as understood that VrfyQ implicitly checks that the sig-

nature sig = (r, s) is well-formed, i.e. r ∈ {0, 1}saltlen and s ∈ R2.

Remark 2. The description in Fig. 1 matches the specification of HAWK (see
[DPPW22, Algorithm 2 and Algorithm 3]) up to some small changes in the
presentation (only). In particular, v as specified above coincides with 1

2B−1x in
the original specification of HAWK, and our definition of s := 1

2 (h+〈v〉) captures
that s := 1

2h ∓B−1x, where the choice of the sign depends on sym-break(h1 −
2s2). Finally, the check v = 〈v〉 and v 6∈ {0} × R is equivalent to checking
sym-break(h1 − 2s1) as in the specification of HAWK.

Remark 3. Here we only concerns the uncompressed version of HAWK, while in
practice an additional layer of compression is deployed for optimization. Nev-
ertheless, it suffices to analyze the security of uncompressed HAWK because,
according to [DPPW22, Section 3.2], the security of compressed HAWK follows
immediately after.

Below, we describe the one-more SVP problem, as considered in [DPPW22],
which considers an oracle algorithm A that makes at most qS queries to the dis-
tribution D

B

2σsign
. We stress that when considering A to be a quantum algorithm,

the queries to the oracle/distribution D
B

2σsign
are restricted to be classical.

Definition 2. Consider the one-more SVP game GomSVP
A , defined as follows:

1: (Q,B)← Gen

2: v∗ ← AD
B

2σsign (Q) // Write v1, . . . , vq′S for the responses given by D
B

2σsign
.

3: return 1 if and only if 0 < ‖v∗‖Q ≤ 2σver
√

2n and

v∗ 6∈ {α · vi | (i, α) ∈ [q′S ]× µK} . (8)

The advantage advomSVP
A of winning the one-more SVP game is then defined as

advomSVP
A := Pr

[
1← GomSVP

A
]
.

4 Quantum Security of HAWK

4.1 Warming Up: NMA Security

As a warm up, let A be an NMA attacker against HAWK, which on input the
public key Q outputs a message-forgery pair (m∗, sig∗) with sig∗ = (r∗, s∗) ∈
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{0, 1}saltlen × R2. Furthermore, consider the algorithm E that on input such a
message-forgery pair (m∗, sig∗) computes

h∗ := H(m∗, r∗) and v∗ := 2s∗ − h∗ (9)

and outputs v∗. Then VrfyQ(m∗, sig∗) = 1 only if 0 < ‖v∗‖Q ≤ 2σver ·
√

2n by the
definition of VrfyQ. Thus, if A succeeds in forging a signature then B := E ◦ A
succeeds in finding a non-zero short vector. Formally,

advNMA
A := Pr

[
VrfyQ(m∗, sig∗) = 1

∣∣∣∣ (Q,B)← Gen
(m∗, sig∗)← A(Q)

]
≤ advomSVP

B .

We note that the above reasoning holds in the plain model with H being an
arbitrary hash function, as well as in the random oracle model.

Remark 4. The reduction algorithm B here from NMA to one-more SVP does
not make any query to D

B

2σsign
.

4.2 Full CMA Quantum Security

Consider a CMA attacker ASignB,H(Q) against HAWK in the random oracle
model, which on input the public key Q makes at most qH queries to the random
oracle H and at most qS queries to the signing oracle SignB, and eventually
outputs a message-forgery pair (m∗, sig∗) with sig∗ = (r∗, s∗) ∈ {0, 1}saltlen×R2.
Without loss of generality, we assumeAmakes exactly qH , qS queries to H,SignB

respectively.3 The goal is to turn A into an algorithm B that solves the one-more-
SVP problem.

Theorem 1 (Quantum Security of HAWK). Let HAWK be as specified in
Section 3, and let ASignB,H(Q) be a chosen-message attack making at most
qS queries to SignB and at most qH quantum queries to H respectively. Then

there exists an algorithm BD
B

2σsign making qS queries to solve one-more SVP,
with running time TIME(B) ≈ TIME(A) + Overhead(qS , qH) consisting of an
additional overhead Overhead(qS , qH) of simulating qH , qS queries to H and

Sim
D

B

2σsign (specified in Fig. 2), such that

advsUF-CMA
A ≤ advomSVP

B +
qSε

1− ε
+ 2qS

√
qH + qS · 2−saltlen/2

+ qS
(
2−n + (qS − 1) · n · 2−2n

)
· 1 + ε

1− ε
+O

(
q2H · n · qS/22n

)
,

where the CMA advantage is defined as below:

advsUF-CMA
A := Pr

[
VrfyQ(m∗, sig∗) = 1

∀i ∈ [qS ] : (m∗, r∗) 6= (mi, sigi)

∣∣∣∣∣(Q,B)← Gen

(m∗, sig∗)← ASignB,H(Q)

]
,

with (mi, sigi) in the probability being the transcript produced at the ith signing
query.
3 Otherwise, we let A make dummy queries to H and SignB respectively, with the

dummy queries to SignB being on messages different from m∗, so that they do not
affect the freshness of a forgery.
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Simulating the signing queries. First, we show that we can replace the
signing oracle Sign by a particular simulator Sim that does not (explicitly) hold
the secret key B, but instead has access to the Q-dependent distribution D

B

2σsign
,

and that can reprogram the random oracle H; see Fig. 2 (right) below. Towards
this goal, we also consider the oracle TransB as specified in Fig. 2 (left), and we
show that

ASignB,H(Q) ≈ ATransQ,H(Q) ≈ ASim
D

B
2σsign ,H(Q) .

We have used subscript Q,B to indicate that the oracle’s execution depends on
the keys, but for later convenience, we may also omit those subscripts based on
the relevance of the context.

TransB(m):

1: r ← {0, 1}saltlen
2: H(m, r) := h← (R/2)2

3: v ← D̃
B

2σsign [h ]

4: s := 1
2
(h+ 〈v〉) ∈ R2

5: return sig := (r, s)

Sim
D

B

2σsign (m):

1: r ← {0, 1}saltlen

2: v ← D
B

2σsign

3: H(m, r) := h := v mod 2
4: s := 1

2
(h+ 〈v〉) ∈ R2

5: return sig := (r, s)

Fig. 2. Oracles TransB and Sim
D

B

2σsign

Note that, the only difference between Sign and Trans, is that the for-
mer computes h := H(m, r) while the latter replaces it with reprogramming
H(m, r) := h ← R2/2R2 for a freshly chosen h. It follows therefore directly
from Lemma 2, with ε = 2−saltlen and qR = qS , that

Pr
[
1← VrfyH ◦ ASign,H

]
−Pr

[
1← VrfyH ◦ ATrans,H

]
≤ 2qS

√
qH + qS/2

saltlen/2 ,

(10)
where it is understood that the verification VrfyH is performed using the possibly
reprogrammed H. Furthermore, by the closeness of the distributions D

B

2σsign
and

D̃
B

2σsign
(see Lemma 3 for the detailed reasoning), replacing the calls to Trans

one-by-one by calls to Sim, one obtains

Pr
[
1← VrfyH ◦ ATrans,H

]
− Pr

[
1← VrfyH ◦ ASim,H

]
≤ qS · ε

1− ε
.

We thus conclude that the validity of a forgery is preserved when replacing the
signing oracle Sign by Sim, up to the sum of the two above probabilities.

Furthermore, the freshness of a forgery is also preserved, in that we can
assume without loss of generality that A never outputs a forgery (m∗, sig∗) that
matches the response of a signing query.

Lemma 3. Let ε > 0 and σsign ≥ ηε(Zn). Then the respective distributions of
(r, h, s, v) in an execution of Sim and of Trans have statistical distance at most
ε/(1− ε).
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Proof. First, we note that in Trans, right after the choice of v ← D̃
B

2σsign
[h ] in

line 3, we can redefine H(m, r) := h := v mod 2 with no effect, since v mod 2 = h

for v ← D̃
B

2σsign
[h ] by (2). But now, the only difference between Trans and Sim

is that in the former v is sampled by D̃
B

2σsign
and in the latter by D

B

2σsign
. The

claim thus follows from (3).

Extracting a fresh short vector. Slightly abusing notation, we now consider

the algorithm BD
B

2σsign := EH ◦ASim
D

B
2σsign ,H where, as before, E computes h∗ and

v∗ as in (9) and outputs v∗, and where we take it as understood that the random
oracleH is simulated by B. As in the NMA case, it follows that ifASim,H succeeds
in producing a valid forgery then B’s output v∗ is a short non-zero vector, i.e.,
0 < ‖v∗‖Q ≤ 2σver ·

√
2n. It remains to show that v∗ is fresh as well.

To show that this holds (almost with certainty), we assume that (m∗, sig∗)
is a valid and fresh forgery (where the latter is without loss of generality), yet
v∗ = αvj for some (j, α) ∈ [qS ]×µK, and we show that this implies an event that
has negligible probability. For this purpose, let mi, ri, hi, si, vi be the transcripts
m, r, h, s, v produced at the ith query to Sim, and let sig∗ = (r∗, s∗) be the
signature output by B. We distinguish between the following two cases.

Case (m∗, r∗) = (mi, ri) for some i ∈ [qS ], where we consider i to be maximal
such that the equality holds.4 Then h∗ = hi, and so

R2 3 s∗ =
1

2
(h∗ + v∗) =

1

2
(hi + αvj) .

However, if i 6= j then for any fixed choice of hi, the probability over the choice
of vj of there being an α ∈ µK as above, is at most n · 2−2n · 1+ε1−ε by (6). On the
other hand, if i = j then we get that

R2 3 s∗ =
1

2
(h∗ + v∗) =

1

2
(hi + αvi) .

Furthermore, α 6= ±1 then; indeed, otherwise, 〈vi〉 = 〈v∗〉 = v∗, where the second
equality holds by the validity of sig∗ and the first follows from {0}×R 63 v∗ = ±vi
and (1), and so s∗ = 1

2 (hi + 〈vi〉) = si which contradicts the freshness of sig∗.
However, the probability over the choice of vi of there being an α ∈ µK \ {±1}
as above, is at most 2−n · 1+ε1−ε by (5).

In case (m∗, r∗) 6= (mi, ri) for every i ∈ [qS ], we must have that

R2 3 s∗ =
1

2
(h∗ + v∗) =

1

2
(h∗ + αvj) ,

and so H(m∗, r∗) = h∗ = αvj mod 2; furthermore, H has not been repro-
grammed throughout the execution at the location (m∗, r∗). Hence

Hinit(m
∗, r∗) = H(m∗, r∗) ∈ {αvj mod 2 | (j, α) ∈ [qS ]× µK} =: S , (11)

4 If i is not the largest, it can be (m∗, r∗) = (mi, ri) yet h∗ 6= hi because h∗ is
computed via the possibly reprogramed H.
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where Hinit is the initial H before being reprogrammed. Thus, parsing ASim,H

as CHinit , which runs the calls to Sim (for arbitrary but fixed samples v1, . . . , vqS
of D

B

2σsign
) and the reprogramming of H internally, we obtain a preimage-finding

algorithm that finds a preimage under Hinit of an element in S, making qH queries
to Hinit. Given that #S ≤ n · qS , such an algorithm can succeed with probability
at most O

(
q2H · n · qS/22n

)
via the standard preimage finding bound.

Collecting all the different error terms, we obtain that

advsUF-CMA
A ≤ advomSVP

B +
qSε

1− ε
+ 2qS

√
qH + qS · 2−saltlen/2

+ qS
(
2−n + (qS − 1) · n · 2−2n

)
· 1 + ε

1− ε
+O

(
q2H · n · qS/22n

)
,

which concludes Theorem 1.

4.3 Classical Security

As our proof is modular, one may substitute certain part of the proof of Theo-
rem 1 to obtain better bounds when considering the attacker A that only makes
classical queries to H.

In (10) where the closeness between Sign and Trans, one with and one without
reprogramming, is argued, we may substitute the advantage by

Pr
[
1← VrfyH ◦ ASign,H

]
− Pr

[
1← VrfyH ◦ ATrans,H

]
≤ 2qS(qH + qS)/2saltlen .

Moreover, to control the event (11) of finding a preimage of at most n · qS
elements, there is a better classical bound as well:

Pr [Hinit(m
∗, r∗) ∈ S] ≤ (qH + 1) · n · qS/22n .

Putting things together, we obtain the classical security of HAWK as follows.

Theorem 2 (Classical Security of HAWK). Let HAWK be as specified in
Section 3, and let ASignB,H(Q) be a chosen-message attack making at most qS
queries to SignB and at most qH classical queries to H respectively. Then there

exists an algorithm BD
B

2σsign making qS queries to solve one-more SVP, with run-
ning time TIME(B) ≈ TIME(A) + Overhead(qS , qH) consisting of an additional
overhead Overhead(qS , qH) of respectively simulating qH , qS queries to H and

Sim
D

B

2σsign (specified in Fig. 2), such that

advsUF-CMA
A ≤ advomSVP

B +
qSε

1− ε
+ 2qS(qH + qS)/2saltlen

+ qS
(
2−n + (qS − 1) · n · 2−2n

)
· 1 + ε

1− ε
+ (qH + 1) · n · qS/22n .
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DKL+18. Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
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A More Proofs

Proof of Lemma 2. Without loss of generality, assumeAmakes exactly qR queries
to the reprogramming oracle Reprob by doing additional dummy queries if oth-
erwise. Define a sequence of hybrid games Gi that replaces the first i reprogram-
ming query of ARepro1,H to querying Repro0, where by definition G0 and GqR run
as ARepro1,H and ARepro0,H respectively.

It suffices to show the closeness Gi ≈ Gi+1 for every 0 ≤ i < qR, where we refer
to the only query that differs as the crucial query. For the sake of analysis we
consider the random oracle H to be (perfectly) simulated via compressed oracle
in a designated database register D, which, within the crucial query before y :=
H(x) or H(x) := y ← Y, is decompressed and meausred in the computational
basis to obtain the oracle H to be used later.

Define G′,G′′ to respectively run as Gi,Gi+1 except additionally doing a binary
measurement {M0,M1} where M1 :=

∑
D(x)=⊥ |D〉 〈D|D after x ← D being

sampled but before y := H(x) or H(x) := y ← Y, and abort if the outcome does
not match M1. G′ and G′′ behaves identically because on non-abort, the database
register D collapses into |⊥〉D(x), for which the reprogramming H(x) := y ← Y
do not affect the decompressed-and-measured distribution of D(x). The closeness
of G′ ≈ Gi and G′′ ≈ Gi+1 follows from the gentle-measurement lemma, together
with the fact that there has been q̄i + qS queries of interaction with H prior to
the crucial query, so Pr[G′ aborts] = Pr[G′′ aborts] ≤ (qH+qR)·ε. This concludes
the proof, which can be summarized by the following chain of closeness

Gi
√

(qH+qR)ε

≈ G′
0
≈ G′′

√
(qH+qR)ε

≈ Gi+1 .
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