
PriFHEte: Achieving Full-Privacy in Account-based
Cryptocurrencies is Possible

Varun Madathil and Alessandra Scafuro ⋆

North Carolina State University

Abstract. In cryptocurrencies, all transactions are public. For their adoption, it is important
that these transactions, while publicly verifiable, do not leak information about the identity and
the balances of the transactors.
For UTXO-based cryptocurrencies, there are well-established approaches (e.g., ZCash) that
guarantee full privacy to the transactors. Full privacy in UTXO means that each transaction is
anonymous within the set of all private transactions ever posted on the blockchain.
In contrast, for account-based cryptocurrencies (e.g., Ethereum) full privacy, that is, privacy
within the set of all accounts, seems to be impossible to achieve within the constraints of
blockchain transactions (e.g., they have to fit in a block). Indeed, every approach proposed
in the literature achieves only a much weaker privacy guarantee called k−anonymity where a
transactor is private within a set of k account holders. k−anonymity is achieved by adding k
accounts to the transaction, which concretely limits the anonymity guarantee to a very small
constant (e.g., 64 for QuisQuis and 256 for anonymous Zether), compared to the set of all
possible accounts.
In this paper, we propose a completely new approach that does not achieve anonymity by
including more accounts in the transaction, but instead makes the transaction itself “smarter”.
Our key contribution is to provide a mechanism whereby a compact transaction can be used
to correctly update all accounts. Intuitively, this guarantees that all accounts are equally likely
to be the recipients/sender of such a transaction. We, therefore, provide the first protocol that
guarantees full privacy in account-based cryptocurrencies PriFHEte 1.
The contribution of this paper is theoretical. Our main objective is to demonstrate that achieving
full privacy in account-based cryptocurrency is actually possible. We see our work as opening a
door to new possibilities for anonymous account-based cryptocurrencies.
Nonetheless, in this paper, we also discuss PriFHEte’s potential to be developed in practice by
leveraging the power of off-chain scalability solutions such as zk rollups.
.

1 Introduction

Account-based cryptocurrencies (e.g., Ethereum[1], Filecoin[2], Ripple[3] etc.) follow the traditional
bank model of keeping balances for accounts. In these cryptocurrencies, each public key (account) is
associated with a balance, and a payment from public PKA to PKB of x coins, results in simply
updating the balances of PKA and PKB by −x and +x respectively. In contrast, the Unspent Trans-
action Outputs (UTXO) Model, used in Bitcoin, is organized around transactions, and a payment is
created by referencing a public key from the output of an unspent transaction. Account-based cryp-
tocurrencies offer several advantages over UTXO for transactions. For example, the account model
has better memory usage. Users only need to store a single account balance as opposed to several
UTXOs that together make up the balance. Similarly regarding, miner storage, miners need to main-
tain an ever-increasing set of UTXOs to verify transactions. On the other hand, the size of the state
in account-based cryptocurrencies increases only when new accounts are added.

Privacy in Cryptocurrencies. Privacy in financial transactions has always been deemed important,
as people tend to prefer that the amount of money they have and how they use it, remains private.
⋆ Varun Madathil and Alessandra Scafuro are supported by Protocol Labs
1 Pronounced like “private” but with an f in place of the v. That is, prifate.

2 Varun Madathil and Alessandra Scafuro

Traditional banking systems inherently provide privacy by keeping account balances confidential,
known only to the bank and the account holder. However, in the case of cryptocurrencies, public
verifiability is necessary as transactions are only added to the blockchain if they can be verified by the
public. As a result, privacy must be added to cryptocurrencies carefully, without compromising public
verifiability. De-anonymization attacks on Bitcoin [36,43] have demonstrated that using randomly
generated public keys provides limited privacy, as payments can be traced and, in combination with
other metadata, can be used to associate real identities with public keys. This has led to a significant
amount of research aimed at adding privacy to cryptocurrencies [37,45,40,20,14,19], with various trade-
offs between privacy and efficiency (as discussed in Section 2).

For the UTXO model, it is possible to achieve full privacy while still maintaining efficiency and
public verifiability. For example, ZCash [28] is a fully private, publicly verifiable and practical UTXO
payment system. The main idea of such systems is to associate a transaction to a serial number and
commit to the serial number and the value of the transaction. This commitment is added to a pub-
lic pool (also referred to as state), succinctly represented by a Merkle Tree. To spend an unspent
transaction, the unique serial number is revealed and a succinct zero-knowledge proof is provided
to demonstrate that this serial number represents one of the transactions committed to the pool.
Then, a new serial number representing the new unspent transaction is committed to the pool. How-
ever, the main disadvantage of this approach is that the pool of private transactions grows infinitely.
Additionally, the miners must keep track of all the serial numbers that have been revealed over time.

Privacy in Account-based Cryptocurrencies. In account-based cryptocurrencies, the state is a list
of accounts with their respective balances (e.g., PKA, vA) and payment is an update of two account
balances in this state. The sender’s balance is decreased by x and the receiver’s balance is increased
by x (for simplicity, miner fees are ignored). As a result, the state of the blockchain can be viewed
as a large table with one row per account, and payments require updating two rows in the table. It
can be seen that the serial number-based approach used in Zcash would not work in this model, as
payments require updating account balances, rather than just burning an unspent transaction.

To add privacy to account-based cryptocurrencies, current solutions, such as QuisQuis [20], Zether[14]
and anonymous Zether [19] hide the balance of the users by encrypting or committing to balances
using a homomorphic scheme. This achieves confidentiality. To add anonymity they [19,20] rely on the
concept of adding multiple accounts to a payment transaction. This way, an external observer cannot
determine the pair of accounts executing the transaction. Instead of creating a transaction with only
the public keys of the sender and receiver, the sender will select a set of k−2 other public keys to form
a “ring”. A multi-account transaction is then created, containing k ciphertexts and a zero-knowledge
proof that two out of the k ciphertexts correctly encrypt a balance transfer between two account
holders, while the remaining ciphertexts are encryptions of 0. The miner processing this transaction,
updates the k rows in the state, by homomorphically adding each ciphertext to the correct row. This
approach provides k-anonymity to the sender and receiver.

QuisQuis and anonymous Zether suggest using an anonymity set of size 16, while Monero [40,33] 2

suggests a ring size of 11. These values of k are a very small fraction of the total number of account
holders, and provide very fragile guarantees, as shown by the attacks proposed in [38,32] on the
traceability of the sender of transactions in Monero. Furthermore, the limitation on the anonymity
set is inherent with this technique, since the choice of k must be upper-bounded by the maximum
size of the transactions that can fit in a block. If we consider the typical size of a blockchain block,
the maximum anonymity set that an account holder can obtain is around 64 for QuisQuis and 256
for anonymous Zether 3. Another significant drawback of this approach is that the choice of the
accounts that are included in the anonymity set must be done carefully, since a bad choice of accounts

2 Monero is a UTXO-based cryptocurrency that however uses the ring approach to achieve anonymity.
3 We extrapolated these values from the following data from [19]: for an anonymity set of 16, the size of

the transaction for QuisQuis is 26KB, and for anonymous Zether is 6KB, and we consider the maximum
blocksize to be 100KB (https://bitinfocharts.com/comparison/size-eth.html)

https://bitinfocharts.com/comparison/size-eth.html

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 3

(e.g., accounts that rarely appear in any transaction) can reduce even further the actual anonymity
guarantees.

There seems to be a major obstacle to achieving full anonymity in account-based cryptocurrencies.
Since anonymity depends on the number of accounts involved in the transaction, full anonymity would
require the transaction to be at least as large as the entire table of accounts, which is infeasible to
implement.

In this paper we ask the following feasibility question:

Is it possible to achieve full anonymity in account-based blockchains with transactions that are
independent of the anonymity set?

1.1 Our contribution

In this paper, we answer the above question positively. We provide a novel approach for creating
privacy-preserving transactions that are compact and provide privacy within the set of all account
holders 4. Our work provides the strongest anonymity degree with the shortest transaction size, and
is asymptotically most efficient for account holders. We prove security in the Universally Composable
(UC) [16] model, using the private-ledger functionality introduced by Kerber et al. [30]. To the best
of our knowledge, this is also the first account-based privacy-preserving payment protocol that is
UC-secure (regardless of the efficiency).

1.2 Our Techniques

Recall that our goal is to create payment transactions that have full anonymity w.r.t. all existing
account holders, and confidentiality of the amount transferred. To achieve confidentiality, we first
encrypt the balances of each account holder under their public key. The transfer transaction includes
ciphertexts that are added to the corresponding encrypted balance. However, for a transaction to
have full anonymity, it is essential that every account’s ciphertext is updated during the payment
transaction processing. If even a single account is not updated, the anonymity set is reduced by one.
To solve this challenge, we need to craft two ciphertexts, cS and cR, that can be homomorphically
evaluated with each ciphertext c1, c2, . . . , cN in such a way that all ciphertexts are correctly updated
with the re-encryption of their current balances, while only the ciphertexts of the sender and receiver’s
accounts are updated with the new balance.

The main challenge to achieving this is that each every ciphertext is computed under a different
key. How can two ciphertexts be used to homomorphically update N ciphertexts computed under N
different keys?

We solve this conundrum by taking inspiration from the recent elegant work by Liu and Tromer [34]
that faces a similar challenge for a very different problem (see Section 2). Their work leverages a special
property that exists in some LWE-based encryption schemes for plaintexts in {0, 1}, called wrong key
decryption (see Def 3). This property states that, even when a ciphertext is decrypted with the wrong
key, the decryption function always returns a bit (Regev’s encryption scheme [42] and the LWE scheme
from PVW [41] satisfy this property).

With this property in hand, our main idea is to use two encryption schemes, a fully homomorphic
encryption (FHE) scheme to encrypt the balance and an encryption scheme with the property of wrong-
key decryption (denoted WKEnc). The encryption scheme WKEnc is used to hide the identities of the
sender and receiver. With the wrong-key decryption property, we can (using FHE) homomorphically
decrypt 5 a ciphertext, using the encryption of different secret keys. This results in ciphertexts such

4 “All account holders” means all account holders that have a private account. If a blockchain does not have
privacy by design, then some people could choose to have a public account only. Such accounts, naturally,
would not count in the anonymity set.

5 This is reminiscent of Gentry’s [24] Recrypt operation associated with FHE schemes for bootstrapping.

4 Varun Madathil and Alessandra Scafuro

that only the encryption of the desired secret key (of the sender or the receiver) will decrypt the
desired result.

This property allows for oblivious selection! When we obliviously decrypt (via FHE evaluations)
using the correct keys, i.e., the keys of the sender and the receiver, the oblivious decryption will return
encryption of the correct bits; whereas when we attempt to obliviously decrypt using the other keys,
the ciphertext resulting from the computation will have at least one wrong bit. We use this observation
to compute a flag that can be used to selectively and obliviously update the balance only of the sender
and the receiver.

With this intuition in mind, we proceed with a more detailed description of our payment system
PriFHEte. We will describe how a user can (1) create a private account, (2) create a private payment,
and (3) how the blockchain nodes process a private payment. A visual of our protocol can be found
in Fig. 1

…….
…….
…….

…….
…….

𝑡𝑥

st

st

Broadcast
𝒕𝒙 = (𝑪𝟏, 𝑪𝟐, 𝝅)

𝑪𝜶 = 𝑬𝒏𝒄(+𝒗)
𝑪𝜷 = 𝑬𝒏𝒄(−𝒗)

𝑪𝜸 = 𝑬𝒏𝒄(𝟎)

𝑪𝜹 = 𝑬𝒏𝒄(𝟎)
…

st’

Broadcast1

2

4

𝑷𝑲𝑨 𝑪𝑨
𝑷𝑲𝑩 𝑪𝑩
𝑷𝑲𝑪 𝑪𝑪
𝑷𝑲𝑫 𝑪𝑫

… …

𝒕𝒙 = (𝑪𝟏, 𝑪𝟐, 𝝅)

3.1

3.2

𝑷𝑲𝑨 𝑪𝑨′
𝑷𝑲𝑩 𝑪𝑩′
𝑷𝑲𝑪 𝑪𝑪′
𝑷𝑲𝑫 𝑪𝑫′

… …

NETWORK

st st’

Fig. 1. Overview: 1 A user with address PKB retrieves the latest state commitment - denoted st. 2 She
computes a transaction C1, C2, π, where π is proof that proves that the transaction is valid with respect to
the current state. This transaction is broadcast to the network. 3.1 A miner processes this transaction and
computes N ciphertexts such that the balance of the sender is decremented by v, the balance of the receiver is
incremented by v and an encryption of 0 is added to all the other balances thus re-randomizing them. 3.2 The

miner then computes the updated state denoted st′ 4 The miner then broadcasts a block with the updated
commitment to the state and the transactions.

Creating a Private Account: To create a private account, a user Pi creates two types of keys, a key-
pair for an encryption scheme with the wrong-key decryption property (WKEnc): (WKEnc.pki,WKEnc.ski),
and a key-pair for a fully homomorphic encryption scheme (FHE.pki,FHE.ski). Furthermore, Pi com-
putes a bit-wise FHE encryption of its WKEnc secret key WKEnc.ski to obtain a vector of |WKEnc.sk|
FHE ciphertexts, that we denote by k-cti. Looking ahead, the FHE encryption of its secret key will be
used by the miners to obliviously decrypt WKEnc ciphertexts, inside the FHE, in order to decide if this
public key is the sender or receiver of the payment. Pi publishes PKi = (WKEnc.pki, FHE.pki,k-cti).

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 5

The private balance v associated to a public key PKi is represented as a bit-wise encryption
of v, using FHE public key FHE.pki. Namely, if v = (v1, . . . , vµ), the private version is Ci =
[FHE.Enc(FHE.pki, v1), . . ., FHE.Enc(FHE.pki, vµ)].

The list of accounts: The table of all accounts consists of N rows, one for each account holder,
where N can increase dynamically over time as more accounts are created. Each row consists in the
tuple: [PKi: Ci]

Private Payment. Now, suppose that account holder PKS (the sender) wants to send the amount
x to a receiver PKR. First, PKS will prepare a bit-wise WKEnc encryption of the public key of the
sender and the receiver of the payment. That is, PKS encrypts the keys WKEnc.pkS and WKEnc.pkR,
obtaining vectors of ciphertexts CS, CR. Next, the sender PKS creates an WKEnc encryption of
the bit-wise representation of the amount x it wishes to transfer to PKR’s account, and another
WKEnc encryption of the bit-wise representation of the value −x that should be deducted from PKS ’s
account. We denote by CC (credit) and CD (debit) the two vectors of ciphertexts. Finally, the sender
computes a succinct zero-knowledge proof of knowledge of the secret key associated with the public
key PKS used to encrypt the debit CD, that the balance for the account was greater than x before
this transaction, and that all ciphertexts were computed correctly. A private payment thus consists of
the tuple: (CS,CR,CD,CC, π).

It is important to note at this point that the proof of correctness π must hold with respect to the
latest version of the “table of private accounts” (e.g., the most updated version of the blockchain),
which is succinctly represented by the root of a Merkle tree. Using the latest version can raise subtle
concurrency issues like front-running transactions and double-spending6. We will discuss those issues,
and what needs to be added to fix them, after we present an overview of how a miner processes
transactions.

Processing a Private Payment. Upon receiving the payment (CS, CR, CD, CC, π) a miner will
obliviously update the ciphertext of all account holders as follows. First, recall that each account
holder publishes the FHE encryption of its WKEnc secret key k-cti. For each account holder PKi=
(FHE.pki,WKEnc.pki) the miner will perform the following five steps.

1. First, it tries to obliviously decrypt the public key hidden in CS, using the secret key encrypted in
k-cti. This is done via FHE, namely by evaluating the circuit of the WKEnc decryption function.
The result of this operation is FHE ciphertexts of a sequence of λ bits, which is either WKEnc.pkS
or is a sequence of λ random bits, let us call it pk′ that differs from WKEnc.pkS for at least one
bit 7. We call this ciphertext Cid

i , to denote that this ciphertext could potentially be the encryption
of the public key of the sender.

2. Next, we obliviously xor the bit-string encrypted in Cid
i with the negation of the public key

WKEnc.pki. To see why we do this, notice that if the string from Cid
i matches the WKEnc.pki,

then the xor with the negation WKEnc.pki will result in string of λ 1s. On the other hand, if the
strings don’t match (for all remaining public keys performing this xor) the result will be a string
that has both zeros and ones. This vector of ciphertexts is denoted Cpreflag

i .
3. To nullify the noise, and make sure that even one zero disqualifies this public key, we multiply all

the ciphertexts in Cpreflag
i together. This gives us a flag ciphertext, which we call Cflag

i , which is
an FHE encryption of the bit 1 if PKi is the sender of the payment, and of 0 otherwise.

4. Before the miner can use the flag ciphertext Cflag
i to update the balance of PKi, i.e., to update the

FHE ciphertext Ci, the miner must transform the WKEnc ciphertext of the amount −x, CD, into
an FHE ciphertext encrypted under the same key. This is easily done as above where the circuit of
WKEnc decryption function is evaluated on CD to get a new ciphertext Cx

i .
5. Now we can finally leverage our flag ciphertext Cflag

i and perform a bit-wise multiplication with Cx
i

to obtain an encryption of the value we need to add to the balance Ci or simply an encryption of
0.

6 These issues were already outlined Zether [14].
7 If it was not the case, this means that we are able to correctly decrypt using the wrong key, which would

break the CPA-security of the encryption scheme.

6 Varun Madathil and Alessandra Scafuro

6. The final step is to add Cx
i to the current balance ciphertext for Pi, and this will complete the

update for the debit ciphertext. The same process is then repeated for the credit ciphertext CC.

For the convenience of the reader, in Appendix A we additionally provide a pictorial representation
of all the operations involved in updating the state.

Dealing with Concurrency Issues. As explained above, a payment consists of the tuple (CS,CR,CD,CC,
π), where the proof π asserts that the payer is the owner of the sender’s account, and the encrypted
balance associated to their account has enough funds to perform the transfer and that the ciphertexts
were computed correctly. This proof is computed over the newest version of the table of accounts T
succinctly described by the Merkle Root rtT . Now, say that rtT is the most updated version of the
table at time t. All payments that are crafted from time t to t+ 1 will have rtT , as a reference of the
table of accounts, and as a theorem for the proof π. We will now describe the two concurrency-related
issues - double spending and front-running and the mechanisms we use to fix them.

Avoiding Double spending : A malicious account holder could craft multiple payments from its
account in the interval [t, t + 1] referring to the same root rtT . In other words, say that an account
holder holds a public key pki which has a balance of 5 Eth in rtT . In the interval [t, t + 1], pki can
create multiple payments for up to 5 Eth and correctly compute the ZK proof π since it is connected
to a state rtT where pki still owns 5 Eth. All these transactions will be considered valid, and since our
transactions are fully anonymous, a miner cannot determine if two transactions originated from the
same sender. To address this issue of double-spending, we enforce that each account holder can speak
at most once per epoch (η consecutive slots) We achieve this by employing a pseudorandom function
(PRF) (a similar approach is used in the anonymous version of Zether [14], where each transaction
includes gsk, where g is a public random nonce that is announced at the beginning of each epoch). In
our construction, the account holder commits to the PRF key during setup. The account holder then
must attach the deterministic output of the PRF evaluated on the epoch number to each transaction,
we denote this value by PRFOut. Since the output of the PRF is deterministic, this prevents the
account holder to generate two distinct payments for the same epoch. In the proof, we use the zk
property of the NIZK to prove that it knows the opening to a commitment of the PRF key and thus
maintains anonymity.

Defenses Against Front-running: Suppose Alice creates an honest transaction in the interval
[t, t + 1], but the transaction is picked up by a miner at time t + 2, by which time the state of
the blockchain, and thus Alice’s ciphertext and the root would have been updated. This would triv-
ially invalidate Alice’s proof without any malicious behavior from other parties. We mitigate this
front-running problem by allowing an account holder to create a transaction with respect to any of
the states in an epoch. This ensures that even if the state has changed, the transaction would be
considered valid with respect to one of the previous states in the epoch.

Compactness of our transactions. In our private transactions tx = [CS, CR,CD,CC, PRFOut, π)
The number of ciphertexts in CS,CR is λ each, and the number of ciphertexts in CD,CC is µ, where
µ is the number of bits in the maximum possible value that can be transferred. Thus a transaction
consists of 2λ+ 2µ ciphertexts, which is independent of the number of users, and a proof π. One can
instantiate π, with constant size SNARKs [26,22]. Since we use the Universal Composability framework
to prove security, we require that the SNARKs be UC-secure. Work by Kosba et. al. [31] describes how
to construct SNARKs with proof size proportional to the size of the witness. This makes our proof
size O(logN) since the witness includes a Merkle path. More recently, succinct UC-secure NIZKs were
proposed in the Global Random Oracle Model[23], where the proof size is constant.

Security of Our Protocol. We prove the security of our protocol in the UC model. There exist multiple
definitions of a private ledger functionality [30,25]. We prove security by instantiating the Private
Ledger functionality introduced in [30]. Note that the Private Ledger functionality captures both the
ledger properties (i.e., the underlying consensus protocol) as well as the privacy properties required
of the transactions. Since, in this paper, we are providing an account-based payment system on top

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 7

of any existing ledger, our proof of security will cover only part of the functionality concerning the
submission and handling of private transactions.

Furthermore, since the UC specification is often more complex (as it has additional language that is
part of the model), for ease of reading, we have provided two descriptions of our protocol. In Section 4,
we provide a bare-bones description of the procedures of our protocol (e.g., key registration, mint,
transfer, etc), and their implementation. Then in Section 5 we show how the procedures described in
Section 4 can be used to instantiate the Private Ledger functionality.

1.3 The significance of this work

The goal of this work is to demonstrate feasibility of achieving full anonymity in account-based cryp-
tocurrency. Our key idea has been to enable a global state update (i.e., the entire state is updated per
transaction) with a constant number of ciphertexts, by leveraging the power of Fully Homomorphic
Encryption.

Our reliance on FHE, however, makes our protocol unlikely to be deployable in practice soon. This
naturally raises the question: is a heavy tool such as FHE necessary for the account-based setting and
if so, what is the significance of this work for account-based cryptocurrencies?

We do not have a definite answer to this question, but in this paragraph, we will discuss several
ideas to contribute to the answer from different angles.

We start with observing that the problem of achieving full privacy in account-based cryptocur-
rencies in a blockchain environment where a miner works independently, can be abstracted as the
problem of anonymously updating an encrypted database containing data from multiple clients (ac-
counts) that is stored on an untrusted server. The miner is the untrusted server, the account-balance
table is the database, and the transaction is the message that a party must send to the server in order
to anonymously update their entry. Under the assumption that clients do not talk to each other, and
there is a single, untrusted server, this problem resembles the problem of server-aided MPC with a
single server. For such a problem, the only known solutions are based on Multi-key FHE[35,5] (such
works actually require that clients (account holders) interact with each other even if FHE is used).

Hence, if we stick with the standard blockchain setting where miners work independently and are
mutually distrustful it seems that using a powerful tool such as FHE is necessary.

On the other hand, if we allow interactions between miners, or participating of external servers
or clients, we could hope for more efficient solutions based on garbled circuits [11]. This direction
however does not seem too promising in the blockchain world, where public verifiability is a necessary
requirement.

However, we would like to conclude on a positive note, suggesting a completely different approach
that could solve the problem at the root – by reducing the state. Indeed, in our previous argument,
we were making the assumption that the miners keep the entire state and each party only holds their
own secret.

However, in recent years, a different approach has been developed that shifts the work from the
miner to the clients, called stateless cryptocurrencies (Agrawal et al. [4] and Tomescu et al. [47].)
Instead of having the miner update the state upon each transaction, it has the clients update their
secrets upon each transaction that is uploaded on the blockchain (that is, even transactions that do not
involve the client’s balances). The key advantage of such a shift is that it allows a miner to correctly
verify the soundness of a state update without having to know the entire state, making the miners’
computation very fast and the storage minimal, at the price of having clients making continuous
updates to their local state. This is an interesting approach that can potentially allow anonymous
updates without heavy machinery. We leave exploring this direction to future work.

8 Varun Madathil and Alessandra Scafuro

1.4 Potential for Deployment

While we acknowledge that PriFHEte requires miners to perform heavy computation and is unlikely
to be practical soon, we also would like to discuss avenues for practical deployment that stem from
leveraging the power of smart contracts.

Generality of our PriFHEte. An important feature of our protocol is that it is not tied to any
blockchain. Our functions can be executed as a smart contract on top of any account-based blockchain
that supports smart contracts and does not require any change to the underlying rules of the blockchain.
Users create and submit transactions as described above and miners simply execute the smart contract
which runs the function to process transactions and update an internally maintained state. We discuss
this in more detail in Appendix G. (This is in contrast with solutions for UTXO-based cryptocurrencies
that require a significant change in design and resulted in the creation of separate cryptocurrencies,
such as Zcash [45], Monero).

Delegating Miner’s Computation. Since PriFHEte can be described as smart contracts that run
on the blockchain, the The heavy computations that miners must do when dealing with a PriFHEte’s
smart contract could be delegated to external servers, by leveraging an emerging technology called
zk-rollups [21] (currently available in the Ethereum ecosystem). A zk-rollup is an external server,
called rollup operator that maintains the state and executes smart contracts on behalf of the miners.
Miners only maintain a succinct representation of this state, typically a Merkle tree root. This aids
the storage costs borne by the miner. Users submit their transactions to the rollup operator instead of
the blockchain miners. The operator updates the state and broadcasts an updated succinct state, the
transactions, and a validity proof proving that the state was updated correctly. A miner now only has
to verify this proof and accepts the new succinct state. This aids the heavy computation that needs
to be undertaken by the miner. We discuss deployment with rollups in more detail in Appendix G.

Finally, we conclude with a discussion about user’s efficiency. Recall that, to craft a payment
transaction, the account holder must hold the newest version of her own ciphertext, as well as the
most updated version of the Merkle Tree of the entire table of accounts. Since all payments are
made public, any user can perform the same computation of the miners for staying updated with the
latest state. All previous work [20,14] implicitly make the assumption that users will stay updated.
In practice, however, it is important to reduce the burden of the computation on the client. Light
clients [17] can be used to have the account holder to reliably obtain the information it needs from a
blockchain node instead. The question on how/when to ask for this information is as important for
guaranteeing anonymity w.r.t. the miners, since asking for the root only when preparing a payment
can reveal the network identity of the asker. This question is orthogonal to our work and several
existing approaches can be used to address it [50,49] hence we do not discuss it further.

1.5 Roadmap

The rest of the paper is organized as follows. Section 2 presents other works that achieve privacy-
preserving payments on public ledgers. We present our main cryptographic building blocks in Section 3.
We then present our main algorithms that are run by the parties in Section 4. Section 5 presents a
UC specification of the protocol ΠPriFHEte that makes use of the algorithms presented in Section 4.
We sketch a proof overview in Section 6 that realize the GPL functionality (presented in Appendix B)
and the full proofs are presented in Appendix D.

2 Related Work

Privacy-preserving payments in the account-based model. Fauzi et al. [20] present QuisQuis
where the account is represented as a tuple of public key and a commitment to the balance. To create
a transaction, the sender selects a list of valid accounts (that contribute to the anonymity set) and

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 9

updates these decoy accounts (by re-randomizing them) and the accounts involved in the transac-
tion (by transferring value). Since an adversary cannot learn which accounts were updated with some
value, their protocol achieves k-anonymity. Note that the size of the transaction increases with the
anonymity guarantee provided. Also, each transaction updates the accounts of the users, and these
users are expected to post DestroyAcct to keep the size of the state constant. As observed in [19], since
the parties are not incentivized to destroy their old accounts it is unclear if the state of the system
is constant. Bünz et al. [14] present Zether that builds on the same idea as above, except that the
balances are stored using ElGamal encryptions. They only achieve confidentiality and not anonymity,
therefore each transaction only includes two ciphertexts. In their appendix, they sketch an approach
to achieve k-anonymity and this idea was formally analyzed and made more efficient by Diamond [19].
But this protocol also only achieves k-anonymity. In contrast, in our work, we are able to achieve full
privacy in the same setting with only O(logN) sized transactions.

Privacy-preserving payments in UTXO-model. Techniques for privacy-enhancing payments
in the UTXO require miners to maintain commitments of values as well as the serial numbers of
spent coins. Since every transaction in the UTXO model leads to creation of new coins, the state of
the system (consisting of the commitments and the serial numbers) is always increasing. There are
mainly two approaches: 1) ones that achieve full privacy - Zerocoin[37], Zerocash[45], [39] which use
zk-snarks[22] and 2) ones that achieve a weaker form of anonymity (k-anonymity) - Monero [40] which
use ring signatures.

Our solution does not increase the state of the system with every transaction. The state increases
only when a new account joins the system.

Privacy-preserving payments in the account-based model that use UTXOs. Another
popular approach to achieve anonymity in the account-based setting is by having users convert funds
in their account to private coins and spend these coins in a privacy-preserving way similar to the
UTXO setting. This may be deployed as a smart contract as is the case in Zeth [44], AZTEC [48] or
standalone - Veksel [15], BlockMaze [27]. These protocols provide varying guarantees of anonymity.
Zeth [44] achieves only receiver anonymity. The sender is not anonymous, since they need to pay
gas fees from a public account to execute the smart contract. In Section 4.3 we show how we get
around this issue by converting private funds to public gas fees. BlockMaze [27] and Veksel [15], do
not achieve any anonymity. They only guarantee that a sender of a transaction cannot be linked to
the recipient of the transaction. In these works, the sender submits a transaction publicly linking the
transaction to the sender. At a later point in time, the receiver rerandomizes the transaction and
transfers the funds in the transaction to its own account. The re-randomization unlinks the sender
from the receiver, but they do not hide the sender and the receiver identities. In Aztec [48], only
the recipient of a transaction is anonymous. The coins encrypting transaction values are denoted as
notes. A public note registry keeps track of the unspent notes, which are updated upon processing
a new transaction. That is, the input notes are removed from the registry and the output notes are
added to the registry. Since this leaks information on the sender and receiver of a transaction, AZTEC
proposes to use one-time addresses (stealth addresses) for the receiver. This successfully unlinks the
identity of the sender from the identity of the receiver. But we note that stealth addresses allow the
sender to track when the receiver spends the funds. Finally, Espresso systems [46] achieve anonymity
for the sender (except to a trusted relayer) and the receiver. They present a smart contract that
enables Zerocash-like transactions on the Ethereum blockchain. This ensures privacy to the sender
and the receiver. Moreover, they sidestep the issue of de-anonymization of the sender via gas fees by
making use of a special party, denoted the Relayer that submits the transaction to the blockchain.
This presents an additional weak layer of privacy, since the sender of the transaction is now hidden
(except to the relayer). Our work on the other hand achieves full anonymity for the recipient and
sender.

Besides these weaker anonymity guarantees, as noted in Zether [14], this hybrid approach has
several disadvantages based on committed coins. First, storage costs are very expensive in account-
based blockchains such as Ethereum, and since the state is always increasing the coin-based solution

10 Varun Madathil and Alessandra Scafuro

will be very expensive. Second, using coins creates friction when trying to operate with smart contracts.
Finally, in this hybrid approach users now need to keep track of all their unspent coins, instead of
maintaining just the secret key of their account. Our work achieves full anonymity and retains many
of the benefits of the account-based approach (e.g., the state does not grow, the user does not need
to remember all the private coins she possesses, but only needs to remember her secret key).

3 Preliminaries

3.1 Fully Homomorphic Encryption

We follow the definition of FHE presented in [13]. We use λ as the security parameter and all schemes in
this paper encrypt bit-by-bit. A fully homomorphic encryption scheme FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval)
is a quadruple of PPT algorithms as follows.

– Key Generation. The algorithm (pk, sk)← FHE.KeyGen(1λ) takes as input the security parameter
and outputs a public encryption key pk, and a secret decryption key sk. Unlike [13] we treat the
evaluation key evk as part of the public key pk.

– Encryption. The algorithm c← FHE.Enc(pk,m) takes the public key pk and a single bit message
m ∈ {0, 1} and a secret decryption key sk.

– Decryption. The algorithm m ← FHE.Dec(sk, c) takes the secret key sk and a ciphertext c and
outputs a message m ∈ {0, 1}

– Homomorphic evaluation. The algorithm cf ← FHE.Eval(pk, f, (c1, . . . , cℓ)) takes the public key
pk, a function f : {0, 1}ℓ → {0, 1} and a set of ℓ ciphertexts c1, . . . , cℓ and outputs a ciphertext cf .

The security notion we consider is IND-CPA security defined as follows.

Definition 1. (CPA security). A scheme FHE is IND-CPA secure if for any polynomial time adver-
sary A it holds that

AdvCPA[A] = |Pr[A(pk,FHE.Enc(pk, 0)) = 1]− Pr[A(pk,FHE.Enc(pk, 1)) = 1]| = negl(λ)

3.2 Key-Private Public Key encryption with wrong-key decryption

Our constructions use a CPA secure encryption scheme with certain special properties namely that
of key-privacy (Def 2) and wrong-key decryption (Def 3). We denote this encryption scheme in the
description of our protocols as (WKEnc.KeyGen,WKEnc.Enc,WKEnc.Dec). Wrong-key decryption in-
formally states that a ciphertext decrypted with the wrong secret key will always return a valid
plaintext and return the correct plaintext only with some negligible advantage (12 + negl). As noted
in [34] all the above properties are satisfied by LWE encryption scheme of Regeve [42] and Peikert et
al[41]. We present Regev’s scheme and a sketch of why Regev’s scheme gives a wrong-key decryption
property in Appendix E.
We present the notion of key-privacy under chosen plaintext attacks as defined in [10] and the wrong
key decryption defined in [34]:

Definition 2. (Key privacy) A scheme WKEnc is IK-CPA secure if for any polynomial time adversary
A it holds that

AdvIK-CPA[A] = |Pr[A(pk0, pk1, x,WKEnc.Enc(pk0, x)) = 1]

−Pr[A(pk0, pk1,WKEnc.Enc(pk1, x)) = 1]| = negl(λ)

Definition 3. (Wrong-key Decryption) For an encryption scheme with plaintext space Z2 letting
(sk, pk) ← WKEnc.KeyGen(1λ) and (sk′, pk′) ← WKEnc.KeyGen(1λ), ct ← WKEnc.Enc(pk, 1), and
m′ ←WKEnc.Dec(sk′, ct), it holds that

Pr[m′ = 1] ≤ 1/2 + negl(λ)

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 11

3.3 Pseudorandom functions with unpredictability under malicious key generation

In our construction, we use a psuedorandom function PRF with an additional property of unpre-
dictability under malicious key generation. The definition for a PRF is that for all PPT distinguishers
D, there exist a negligible function negl such that Pr[DPRF(k,·)(1λ) = 1]−Pr[Df(·)(1λ) = 1] ≤ negl(λ),
where f is a truly random function.

Informally, unpredictability under malicious key generation (introduced in [18]) requires that the
function PRF does not have any “bad" keys that an adversary can use to manipulate the output of
the PRF.

In the random oracle model, the property can be expressed as follows: For any PPT adversary A
and x ∈ X,T ∈ N, the probability of the event Pr[PRF(k, x) = T |x /∈ QH] = 1

2λ
, where the adversary

outputs k and QH is the set of queries of A to the hash function H. The construction presented in
Crypsinous[30] is H(m)k. By the DDH assumption, this is a secure PRF. Regarding unpredictability,
observe that Pr[H(x)k = T] = Pr[H(x) = T 1/k = 1/2λ] in the conditional space that x /∈ QH .

3.4 Non-interactive zero knowledge

We use the Fnizk functionality to compute and verify zero-knowledge proofs. We present the ideal
functionality in Appendix C (Fig 25). The functionality provides an interface for parties to create
proofs π that a statement x is in a given NP language L with a witness w. Moreover, as proven in
[30] the Fnizk functionality can be realized by the SNARK proving system described in [31].

3.5 Blockchain

A blockchain is an ever-growing hashchain of blocks. Each block consists of transactions and this
hashchain is agreed upon by a dynamic set of nodes, often referred to as miners. Each user in the
network may have a different version of the blockchain (denoted Ciloc for user Pi), constrained by the
fact that each Ciloc has a common prefix.

Blockchains generally consist of two kinds of parties miners and users. The users compute and
submit transactions to the network. The miners collect these transactions, validate them and create a
block including the valid transactions. A miner then broadcasts the newly created block, thus extending
the blockchain. The algorithms used to create and submit transactions are referred to as transaction
layer algorithms and the ones used to create and broadcast blocks are referred to as consensus layer
algorithms. To set some notation, each block is associated with a slot number slj , where a slot is unit
of time. A set of adjacent η slots is called an epoch ep.

In account-based cryptocurrencies (the setting we consider in this work), a transaction consists
of three values: the sender’s identity, the receiver’s identity and the value to be spent. The miners
maintain a list of accounts where each element in the list is a (public key, balance) pair. This list is
referred to as the state of the blockchain. To validate the transaction, the miner checks that the sender
of the transaction is not trying to spend more than their balance. If the transaction is valid, the miner
then updates the state by deducting the value of the transaction from the sender’s balance and adds
the same value to the receiver’s balance. We denote the state of the cryptocurrency as T . The miners
compute a Merkle tree with the elements of T as the leaf. The root of this Merkle tree(denoted as rtT)
is also added to every block along with the valid transactions that caused the update to the state.

In a privacy-preserving cryptocurrency, we aim to hide the following information included in a pay-
ment: the sender’s and receiver’s identities and the value to be transferred. The universal composable
(UC) framework [16] is a model used to define security properties of complex protocols in a modular
way. A definition for an ideal ledger functionality was presented by Badertscher et. al. [8] denoted
GLEDGER. Kerber et. al. [30] presented a private version of the ledger functionality denoted GPL (PL
stands for private ledger). The properties of hiding the information in a payment transaction as well
as other security properties required of a blockchain is captured by the GPL functionality. We give an
overview of this functionality in Section 5 and present the complete functionality in Figure 16.

12 Varun Madathil and Alessandra Scafuro

To ease the presentation, we will denote the state of the blockchain T as TprivAccounts∥TpubAccounts
and rtT = H(rtTprivAccounts

∥rtTpubAccounts
). Row i in TpubAccounts is of the form (PKpub

i , vi), where PKpub
i is the

account-holder’s public key that is associated with their non-anonymous balance. The account-holder
uses the corresponding secret key SKpub

i to spend their public balance. Moreover TprivAccounts includes
elements of the form (PKi, Ci) where Ci is the encrypted balance and PKi is the public key associated
with the account. As above, the account-holder uses the corresponding SKi to spend an their private
balance.

4 The PriFHEte payment system

In this section we present algorithms for the PriFHEte payment system. We first present the interface
in Section 4.1 and then instantiate the algorithms in Section 4.2. In Section 5 we will describe how
these algorithms will be used to construct an anonymous account-based cryptocurrency protocol.

4.1 Interface for the PriFHEte payment system

Notation: We denote by Pi an account holder. We denote the total number of accounts in the system
by NumAccounts. Miners (denoted Qj) are account holders that additionally update the state. The
state maintained by Qj will be denoted as T j = (T j

privAccounts∥T
j
pubAccounts). We assume that the parties

already have public accounts in the system. Our privacy-preserving payment scheme ΠPriFHEte is a
tuple of polynomial-time algorithms: (KeyGeneration, Registration, Mint, Transfer, Pro-
cessTransaction).
Key Generation. The algorithm KeyGeneration creates public key and secret key pairs for an
account holder.

KeyGeneration(λ)→ (PK,SK): A user Pi runs KeyGeneration and publishes the public key PKi,
while the SKi is used to spend the funds that are sent to the account represented by PKi.

Account registration. The algorithm Registration is run by the miner to register the public key
for an account. This algorithm updates the state of the blockchain after initializing the account.

Registration(PK, TprivAccounts)→ T ′
privAccounts: A miner Q runs Registration by adding an entry for

user with public key PK to the state TprivAccounts.

Minting private funds. The algorithm Mint lets an account-holder transfer funds from a public
account to a private account.

Mint(PKi,PK
pub
i ,SKpub

i , x, rtTpubAccounts
) → (txMINT, σ): A user Pi executes the Mint algorithm to pro-

duce a transaction that transfers a value x from the public state to the private state. This algorithm
takes as inputs the public key associated to the private account PKi, the public and secret keys asso-
ciated to the public account PKpub

i ,SKpub
i , the public value x to be transferred to the private account

and the root of the public state of the blockchain rtTpubAccounts
. The algorithm outputs a transaction

txMINT and a signature σ on this transaction.

Transferring private funds. The algorithm Transfer allows an account-holder PKS to transfer
private funds to an account associated with PKR.

Transfer(PKS ,SKS ,PKR, x, ep,R, CSloc, pathi,Ci) → txTRANSFER: The Transfer algorithm takes as
input the sender’s account PKS , the secret key SKS , the receiver’s account PKR and the value to be
transferred x. The algorithm also takes as input the sender’s local version of the blockchain CSloc, the
current epoch number ep, the epoch size η and the entry associated with PKS in TprivAccounts, denoted
Ci and the Merkle path from Ci to rtTprivAccounts

- denoted pathi. The algorithm outputs a transfer trans-
action txTRANSFER

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 13

Verifying transactions and updating state. The algorithm ProcessTransaction run by a
miner Qj first verifies transactions and then updates the state of the blockchain with valid transactions.

ProcessTransaction(tx, T j) → (T j): A miner Qj updates the state T j = T j
pubAccounts∥T

j
privAccounts

of the blockchain, by taking as input the current state T j and a transaction tx.

4.2 Instantiating PriFHEte

We use the following cryptographic building blocks to implement the above described algorithms:

1. A fully homomorphic encryption scheme - (FHE.Enc,FHE.Dec,FHE.Eval). This may be implemented
by existing FHE schemes such as the BGV scheme [12].

2. A key-private encryption scheme for bits with the the additional property of wrong key decryption
(see Def. 3) which means that even when the ciphertext is decrypted with a wrong key the resultant
plaintext is a random valid bit. Such an encryption scheme can be instantiated with PVW LWE-
based encryption scheme [41].

3. A pseudorandom function PRF that is unpredictable under malicious key generation [30] with key
k

4. A commitment scheme (Com,Verify).
5. An ideal functionality Fnizk that allows users to prove statements for a relation R (described in

Figure 6).
6. A digital signature scheme (KeyGen,Sign,Verify).
7. A collision resistant hash function H.

KeyGeneration(λ): User Pi does:

1. Generating keys:
– (FHE.pki,FHE.ski)← FHE.KeyGen(1λ)
– (WKEnc.pki,WKEnc.ski)←WKEnc.KeyGen(1λ)
– (ski, vki)← Sign.KeyGen(1λ)
– k ← PRF.KeyGen(1λ)

2. Encrypting WKEnc keys:
– k-cti ← {FHE.Enc(FHE.pki,WKEnc.ski[j])}|WKEnc.ski|

j=1

3. Committing to the PRF key:
– CPRF ← Com(k; r) where r ← {0, 1}λ

4. Compute a zero knowledge proof that the keys were generated correctly:
– Let x := FHE.pki,WKEnc.pki, k-cti
– Let w := FHE.ski,WKEnc.ski
– Send (Prove, sid, x, w) to Fnizk to prove that (x,w) satisfies relation RTRANSFER (Fig 3) and receive
πKEYGEN.

5. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF), SKi = (FHE.ski,WKEnc.ski, ski, k) and πKEYGEN

Registration(PKi, T j
privAccounts) The miner Qj upon receiving PKi:

1. Parse PKi as (k-cti,FHE.pki, vki,WKEnc.pki,CPRF)
2. For j ∈ [λ] compute Ci,j ← FHE.Enc(FHE.pki, 0).
3. Set Ci := (Ci,1, . . . , Ci,λ)
4. Update T j

privAccounts := T
j
privAccounts ∪ {(PKi,Ci)}

5. Output T j
privAccounts.

Fig. 2. Joining the system

14 Varun Madathil and Alessandra Scafuro

Public Parameters. A list of public parameters is available to all users in the system. These are
generated at the “start of time”. The parameters are: η which denotes the size of each epoch ep, a
trusted set up (such as CRS) for the non-interactive zero knowledge proofs. Each block corresponds to
a slot number denoted sl. After every η number of slots, the epoch number is incremented. We now
give an overview of the algorithms that we described earlier.

Joining the system (Fig 2) To join the system a party Pi first runs the KeyGeneration
algorithm which generates keys for the fully homomorphic scheme FHE, the encryption scheme WKEnc,
a signature scheme and a pseudorandom function. Pi then encrypts each bit of the WKEnc.ski using
the FHE public key FHE.pki to obtain a vector of ciphertexts k-cti and computes a commitment to
this key denoted as CPRF. Pi then announces its public keys : (FHE.pki,WKEnc.pki, k-cti,CPRF) and a
zero-knowledge proof that the keys were generated correctly: πKEYGEN. A miner Qj registers the party
by running the Registration algorithm where they create an entry for Pi in table T j

privAccounts. The
entry is indexed by the public key PKi and is initialized with a vector of ciphertexts - that encrypt to
0 under FHE.pki. These ciphertexts represent the binary decomposition of the private balance of Pi.

Statement: x := FHE.pki,WKEnc.pki, k-cti, Witness: w := FHE.ski,WKEnc.ski, Relation RKEYGEN:

1. k-cti is the encryption of the bit-representation of the secret key WKEnc.ski under the FHE public
key.

k-cti = {FHE.Enc(FHE.pki, bj)} such that
λ∑

j=0

bj × 2j = WKEnc.ski

2. WKEnc.ski is the secret key that corresponds to WKEnc.pki

(WKEnc.ski,WKEnc, pki) ∈ SUPP(KeyGen(1λ))

Fig. 3. The relation RKEYGEN

Mint(x,PKi,PK
pub
i ,SKpub

i , rtTpubAccounts) User Pi does:

1. Set txMint = (x,PKpub
i , rtTpubAccounts)

2. Compute σ = Sign(ski, txMint) and broadcast (txMint, σ)

Fig. 4. Transferring funds from public to private account

Public transfers (Fig 4) To add funds (say an amount x) to their private balance, a party Pi

runs the Mint algorithm, which transfers funds from the public account to the private account. A
miner Qj upon receiving this transaction verifies that the transaction is valid (by running ValidTx)
and that the public account PKpub

i indeed has public funds greater than the minted value x by running
the ProcessTransaction algorithm. (See Fig 8). If the transaction is valid, Qj computes encryp-
tions of a binary decomposition of x using FHE.pki and homomorphically adds these ciphertexts to
TprivAccounts[PKi].

Private Transfers (Fig 5) User PS executes the Transfer algorithm to privately transfer funds
to PR. PS first receives the latest blockchain C and TprivAccounts[PKS] = CS and a pathS (from the root
rtTprivAccounts

to the leaf CS) from a full node. We note that there exist works[50,49] that use PIR/ORAM-

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 15

like techniques to retrieve account state in a privacy-preserving way. PS transfers funds to PR as
follows: PS first encrypts the sender’s public key (WKEnc.pkS) under WKEnc.pkS and receiver’s public
key (WKEnc.pkR) (binary decomposed) under WKEnc.pkR. PS then encrypts the value to be credited
(denoted x) under the receiver’s public key and the value to be debited under the sender’s public
key. The value x is upper-bounded by MAX (the maximum possible value that can be transferred)
which is µ bits long. The user PS then proves that the transaction is computed correctly using a
zero-knowledge proof, which we describe in more detail below.

Transfer(PKS ,SKS ,PKR, x, ep,R, Cloc, pathi,Ci) User Pi does:
1. Let rt = rtTpubAccounts∥rtTprivAccounts be the root at current slot sl in Cloc
2. Let locally stored Ci = TprivAccounts[PKS] at slot number sl
3. Encrypt sender’s identity

For i ∈ [λ], compute CS,i = WKEnc.Enc(WKEnc.pkS , bi), where bi = WKEnc.pkS [i]. Let CS :=
(CS,1, . . . , CS,λ).

4. Encrypt receiver’s identity
For i ∈ [λ], compute CR,i = WKEnc.Enc(WKEnc.pkR, bi), where bi = WKEnc.pkR[i]. Let CR :=
(CR,1, . . . , CR,λ)

5. Encrypt debited value
For i ∈ [µ], compute CD,i = WKEnc.Enc(WKEnc.pkS , bi), where bi = x[i]. Let CD :=
(CD,1, . . . , CD,µ)

6. Encrypt credited value
For i ∈ [µ], compute CC,i = WKEnc.Enc(WKEnc.pkR, bi), where bi = x[i]. Let CC :=
(CC,1, . . . , CC,µ)

7. Compute PRF output: Compute PRFOut = PRF(k, ep)
8. Compute a zero-knowledge proof for transaction validity:

Let x = {CS,CR,CD,CC,PRFOut, rt, ep}. Let w = {PKS ,SKS ,PKR, x, k,CPRF, vS ,Ci, path} . Send
(Prove, sid, x, w) to Fnizk to prove that (x,w) satisfies relation RTRANSFER (Fig 6) and receive π.

9. Return tx = (CS,CR,CD,CC,PRFOut, π)

Fig. 5. Transfer algorithm

As discussed in the introduction (c.f. Concurrency Issues), we must ensure that a malicious sender
cannot double-spend from their account. We resolve this issue by ensuring that a party can submit
only up to one transaction per epoch. We achieve this by including the output of a pseudorandom
function PRF with every transaction.

The PRF takes as input the current epoch ep and therefore if a user attempts to speak twice within
the same epoch, a miner would see the same PRF output (since PRFs are deterministic) and rejects
the second transaction. We prevent denial-of-service attacks where an adversary front-runs a user’s
transaction by submitting an adversarial transaction with the same PRFOut as the target by using
PRFs that are secure under malicious key generation.

Zero Knowledge Proofs for Transfer Transactions Our construction invokes the Fnizk functionality
for a specific relation (see Fig. 6). A transfer transaction is of the form: (CS,CR,CC,CD,PRFOut, π).
In this transaction, the proof π needs to prove that certain conditions are satisfied by the transfer
transaction. The conditions are: (a) The sender has a balance greater than the value to be transferred
at epoch ep (b) the value debited is equal to the value credited (c) the sender speaks only once in the
current epoch (d) the credited value is positive.

The relation

– Statement: x = (CS,CR,CC,CD,PRFOut, rtTprivAccounts
, ep). The statement specifies the encryptions

of the sender and receiver identities CS,CR, encryptions of the values to be credited and debited

16 Varun Madathil and Alessandra Scafuro

CD,CC, the output of the PRF (PRFOut), the root of a Merkle tree over private state (TprivAccounts)
in the epoch ep denoted rtTprivAccounts

.
– Witness: w = (PKS ,SKS ,PKR, x, vS ,C, path, rPRF) where PKS = (k-ctS ,FHE.pkS ,WKEnc.pkS , vkS ,CPRF).

The witness specifies the public keys of the sender and the receiver, the value to be transferred, the
balance and the entry in the private state corresponding to PKS and an authentication path from
the sender’s entry in TprivAccounts to the root of the Merkle tree on TprivAccounts.

Given an instance x, a witness w is valid for x if the relation specified in Figure 6 holds.

Relation RTRANSFER:
CS is the encryption of the bit-representation of the public key of the sender (WKEnc.pkS) encrypted
under the public key WKEnc.pkS .

CS = {WKEnc.Enc(WKEnc.pkS , bj)} such that
λ∑

j=0

bj × 2j = WKEnc.pkS

CR is the encryption of the bit-representation of the public key of the receiver (WKEnc.pkR) encrypted
under the public key WKEnc.pkR.

CR = {WKEnc.Enc(WKEnc.pkR, bj)} such that
λ∑

j=0

bj × 2j = WKEnc.pkR

CC is the encryption of the bit-representation of the value x to be credited to the receiver’s account,
encrypted under the public key of the receiver WKEnc.pkR.

CC = {WKEnc.Enc(WKEnc.pkR, bj)} such that
µ∑

j=0

bj × 2j = x

CD is the encryption of the bit-representation of the value x to be debited from the sender’s account,
encrypted under the public key of the sender WKEnc.pkS .

CD = {WKEnc.Enc(WKEnc.pkS , bj)} such that
µ∑

j=0

bj × 2j = x

The value x is not negative and is less than the max possible value MAX. x ∈ [0,MAX]
The sender knows the secret key associated with the account from which the funds are to be debited.

(ValidPath((PKS ,C), path, rtTprivAccounts) = 1)∧

(PKS = (FHE.pkS ,WKEnc.pkS , k-ctS ,CPRF))

The balance associated with the sender’s account is greater than the value x

FHE.Dec(FHE.skS , C) = v ∧ v − x ∈ [0,MAX]

The PRF output was computed correctly

PRFOut = PRF(k, ep) ∧ CS
PRF = Com(k; rPRF)

Fig. 6. The relation RTRANSFER

Updating the state. A miner Qj upon receiving a transaction (txMint or txTransfer) updates
the state by running the ProcessTransaction algorithm. As the identities and the values are

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 17

encrypted using a key-private encryption scheme, Qj does not know which entries to update in table
TprivAccounts. Therefore the Qj must update all the entries in TprivAccounts. To this end, the miner updates
the ciphertexts in each entry of TprivAccounts as in Figure 7. We present the proof of correctness of this
update in Appendix A and also present a simple example in Fig 14 and Fig 15 that may aid the reader
in understanding the UpdateCiphertext function.

4.3 Practical Considerations

Paying gas fees. In the presentation of our protocol, we don’t specify how parties can pay gas fees
to the miner as part of the transaction. We can add a public component to the transaction as follows:
The sender adds the gas value in the clear, and encrypts gas + x as the debited value. The zk proof
now proves that sum of the x and the public gas fee is equal to the debited value.

18 Varun Madathil and Alessandra Scafuro

UpdateCiphertext(Ci, tx,PKi)
1. Parse tx as (CS,CR,CD,CC ,PRFOut, π)
2. Parse PKi as (k-cti,FHE.pki,WKEnc.pki, vki,CPRF)
3. Obliviously decrypt identity (CS) ciphertext with k-cti (encryption of WKEnc.ski) to get an encryp-

tion of some pk∗ under FHE.pki
– For j ∈ [λ], compute Cid

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti,CS [j]))
– Compute Cid

i = (Cid
i,1, . . . , C

id
i,λ)

// if i corresponds to PS, then Cid
i is an encryption of the receiver’s public key,

i.e pk∗ = WKEnc.pkS

4. Obliviously compute pk∗ ⊕WKEnc.pkS bitwise (where WKEnc.pkS is the negated bitwise decompo-
sition of WKEnc.pkS) as follows:
– For j ∈ [λ], compute Cpreflag

i,j = FHE.Eval(FHE.pki,⊕, (WKEnc.pki[j],C
id
i,j))

– Compute Cpreflag
i = (Cpreflag

i,1 , . . . , Cpreflag
i,λ)

// if i corresponds to PS, Cpreflag
i is an encryption of all ones

5. Obliviously multiply the bits of preflag to get a flag bit
– Compute Cflag

i = FHE.Eval(FHE.pki,×, (C
preflag
i,1 , . . . , Cpreflag

i,λ))

// if i corresponds to PS, Cflag
i is an encryption of 1, else encryption of 0

6. Obliviously decrypt value to be debited (CD) with k-cti to get an encryption of some x∗ under
FHE.pki
– For j ∈ [µ], compute Cx

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti,CD[j]))
– Set Cx

i = (Cx
i,1, . . . , C

x
i,µ)

// if i corresponds to PS, Cx
i is an encryption of the value x, i.e. x∗ = x, else x∗

is random

7. Obliviously multiply the flag bit with x∗

– For j ∈ [µ], compute Cupd
i,j = FHE.Eval(FHE.pki,×, (Cx

i,j , Cflag))

– Set Cupd
i = (Cupd

i,1 , . . . , Cupd
i,µ)

// if i corresponds to PS, Cupd
i is an encryption of the value x, else 0

8. Obliviously subtract x∗ from the balance of Pi

– For j ∈ [µ], compute FHE.Eval(FHE.pki,FullSubtracter
a, (Ci,j , C

upd
i,j))

– Set Ci = (Ci,1, . . . , Ci,µ)
// if i corresponds to PS, the balance of Pi is subtracted by x, else the balance of
Pi stays the same (0 is subtracted from the balance)

Do the same computations as above with (CR,CC) instead of (CS,CD), except that in Step 8, obliv-
iously add (x∗ × flag) to the balance of Pi, i.e. compute FHE.Eval(FHE.pki,FullAdder, (Ci,j , C

upd
i,j))

a for completeness, we present the logic for full adder and full subtracter in Appendix F

Fig. 7. Updating the private state entry TprivAccounts[PKi] with a transaction tx

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 19

ProcessTransaction(tx, T j) Upon receipt of a tx, a miner Qj does the following:
1. Parse T j as T j

pubAccounts∥T
j
privAccounts

2. If tx is of type MINT:
(a) Parse txMint as ((x,PKi, rtTpubAccounts), σ)
(b) Check that Verify(vki, (x,PKi, rtTpubAccounts), σ) = 1

(c) Check that rtTpubAccounts = MerkleCRH(T j
pubAccounts)

(d) Check that T j
pubAccounts[PKi] > x

(e) Let x1, . . . , xµ be the bit-decomposition of x. Let T j
privAccounts[PKi] = Ci.

(f) For j ∈ [µ]:
i. Compute C′

i,j = FHE.Enc(FHE.pki, xj)
ii. Update Ci[j] = Ci[j] + C′

i,j

(g) Output T j = T j
pubAccounts∥T

j
privAccounts

(h) Update T j
pubAccounts[PKi] = T j

pubAccounts[PKi]− x
3. If tx is of type TRANSFER:

(a) Run ValidTx(txi, T j)
(b) For i ∈ [NumAccounts]: compute T j

privAccounts[i] = UpdateCiphertext(T j
privAccounts[i], tx,PKi)

(c) Output T j = T j
pubAccounts∥T

j
privAccounts

Fig. 8. Verification of transactions and updating the state

Transaction size and processing time. We present an estimate on the size of our transactions and
the time taken to process a transaction. A transfer transaction is of the form tx = (CS,CR,CD,CC,PRFOut, π).
The ciphertexts CS and CR encrypt vectors of size λ = 128 and CD, CC encrypt vectors of size
µ = 20. PVW [41] ciphertexts (∈ (Zλ

q ,Zℓ
q)) present an encryption scheme where we can efficiently

pack these ciphertexts into one ciphertext. Therefore CS + CD : (λ + µ) × λ + (λ × λ) bits =
(128 + 20) × 128 + 128 × 128 = 8832 bytes and CS + CD = 8832 bytes. Assuming Groth16[26]
proofs and SHA for the PRF, the transaction size is approximately 18KB.

5 UC-secure privacy-preserving payments

In the previous section we presented algorithms for PriFHEte payment system. To show that our
algorithms can be used to instantiate a privacy-preserving account-based cryptocurrency, we present
a UC protocol that makes use of the algorithms to realize the GPL ideal functionality. In this section
we first describe the GPL ideal functionality, and then describe how the PriFHEte algorithms will be
used to construct a protocol that will realize the GPL functionality.

5.1 The GPL functionality [30]

The GPL functionality (Figure 16 and 17) captures an ideal private ledger functionality. We describe
the different interfaces of the functionality by separately considering the transaction layer and the
consensus layer. Before we explain the interface, we describe the variables associated with the func-
tionality: the state is the state of the ledger that includes blocks of transactions and the buffer is a list
of unconfirmed transactions that have not yet been added to the state.

In the transaction layer, a party should be able to submit a transaction. The GPL functionality
therefore includes a SUBMIT command in its interface that allows parties to submit their transactions.
The GPL functionality on receiving the SUBMIT command, creates a transaction ID, checks if the
transaction is valid using the ValidTx predicate. We note that ValidTx is specific to the protocol that
realizes the functionality. In our setting this predicate is instantiated as in Figure 18. The predicate

20 Varun Madathil and Alessandra Scafuro

returns true only if the value of the transaction is less than the balance of the sending account and
that there is no other transaction from this sender in the current epoch. The adversary is informed
that a transaction was received and a blinded version of the transaction is sent to the adversary.
Parties should also be able to join the system at any point in time. Parties join the system by simply
registering with the GPL functionality.

In the consensus layer, the functionality guarantees that the parties agree on a common state. But
this is not possible in the real-world due to network delays or an adversarial influence. Therefore, the
functionality guarantees that there is a prefix of the state that is common to all parties. Since different
parties may have different local chains, a pointer pti denotes length of the local chain of Pi. To read
the state of the ledger, the party issues a READ command and is returned a blinded version of the
state upto either block number pti or |state| (whichever is smaller). The adversary is given the power
to determine the view of all parties as long as they have a common prefix. The adversary uses the
SET-SLACK and DESYNC-STATE interfaces to achieve this.

In this description, we have not yet discussed how the ideal functionality extends the state with
new blocks of transactions. In the real-world a party may be selected to propose the next block on
the chain depending on some lottery protocol that is defined with respect to the consensus protocol.
Similarly, in the ideal world a party sends the MAINTAIN-LEDGER command to the GPL functionality.
The functionality records this command, and informs the ideal-world adversary of this command. A
new block is then proposed by the ideal-world adversary using the NEXT-BLOCK command. This new
block is a list of transactions along with a flag called hFlag that indicates if the block is proposed on
behalf of an honest party or malicious party. The ideal functionality records this block. When the ideal
functionality is queried with any command, the functionality updates the state with these blocks. Note
that an adversary can of course propose bad blocks that have illegal transactions or transactions that
are inconsistent with the state. The GPL functionality therefore evaluates an ExtendPolicy function on
the block. This function checks if the block is valid and if not, proposes a default block that is used
to extend the state of the system.

5.2 Protocol ΠPriFHEte

Now that we have explained the GPL functionality, we are ready to present our main protocol. More
specifically, we will present how we integrate the PriFHEte algorithms from Section 4 in the main
protocol. We will then prove that this protocol realizes the GPL ideal functionality.

Recall, from Section 4 that the Mint and Transfer invoked the Fnizk ideal functionality. Apart
from the Fnizk functionality, our main protocol will make calls to other functionalities. We give an
overview of these functionalities below:

1. Gclock: In both the real world and the ideal world, our protocols require a notion of time. This is
achieved using the Gclock functionality (see Figure 24). The clock maintains a variable τ that denotes
the current time. When all registered honest parties (at a given time τ) signal the functionality
that they are done with the current round, the functionality advances the time counter τ . Parties
can also query the functionality to read the current time.

2. FN-MC: Parties in the real-world multicast transactions and blocks to their peers. FN-MC models a
network functionality (see App. A2 of [7]) that captures a multicast network. We stress that this
network functionality does not give any anonymity properties.

3. Fanon-selection: As described above, parties run a lottery to check if they are elected to propose
blocks and if elected they broadcast the block with an anonymous proof. The anonymous selection
functionality (Figure 26 and defined in [9]) allows parties to check if they are eligible to win a
lottery. The functionality also provides an interface for parties to receive a proof of winning the
lottery, and an interface to verify the proofs.

4. Fnizk: As discussed in Section 4 parties are required to attach a zero-knowledge proof that proves
that the submitted transactions are well-formed. The parties therefore query a non-interactive zero
knowledge functionality (Figure 25 and defined in [30]). This functionality allows generating proofs
that a statement x is in a given NP language L, with a witness w.

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 21

Registration/Deregistration: Upon receiving (REGISTER,R) where R ∈ {Gclock,GPL} from the en-
vironment Z, a party Pi does:

– if R = Gclock, register with the Gclock functionality.
– if R = GPL and Pi has not registered with Gclock ignore the command, else register with the
FN-MC,Fnizk,Fanon-selection functionalities

(The full specification is presented in Ouroboros Genesis [6])
Pi then calls Initialization-PrivProtocol returning (PKi,SKi, πKeyGen).
// Transaction layer
Submitting a transaction: Upon receiving I = (SUBMIT, sid, tx) from Z,

– Pi calls SubmitXfer(tx, Ciloc), where Ciloc is local chain maintained by Pi.

// Consensus layer
Maintaining the ledger: Upon receiving I = (MAINTAIN-LEDGER, sid) from Z,

– the party Pi invokes LedgerMaintenance(Ciloc, Pi)

Reading the state: Upon receiving I = (READ) from Z,

– the party Pi invoke the protocol ReadState(sid, Ciloc, Pi).

Handling external (protocol-unrelated calls) to the clock : as in Ouroboros Genesis [6].

Fig. 9. The protocol ΠPriFHEte

In Figure 9 we present the overall protocol that realizes the GPL ideal functionality. In our protocol,
a block is proposed in a slot. Every η slots constitute an epoch ep. We now present an overview of the
protocol.

Protocol Initialization-PrivProtocol(Pi, sid)→ (PKi, SKi, πKeyGen):
These steps are executed in a (MAINTAIN-LEDGER, sid)-interruptible manner:

1. Compute (PKi, SKi, πKeyGen)← KeyGeneration(λ)
2. Use the clock to update τ , ep← ⌈τ/R⌉ and sl← τ
3. If τ = 0 then execute the following steps in a (MAINTAIN-LEDGER, sid)-interruptible manner:

(a) Send (claim, sid, Pi,PKi) to Finit.
(b) Send (CLOCK-UPDATE, sidC) to Gclock
(c) Use clock to update τ, ep← ⌈τ/R⌉ and sl← τ ; give up the activation.

4. Else
(a) Send (gen-block, sid, Pi) to Finit. If Finit signals an error then halt. Otherwise, receive from Finit

the response (gen-block, sid,G = (C1, η1))
(b) Set Cloc ← (G)
(c) Send (NEW-PARTY, sid, Pi,PKi, πKeyGen) to FN-MC

5. Return (PKi,SKi, πKeyGen)

Fig. 10. Protocol Initialization-PrivProtocol

Joining the system Upon receiving a ledger-registration request from the environment, the
party registers with each of the functionalities. Once registered with the functionalities, the party

22 Varun Madathil and Alessandra Scafuro

is considered online. The party then becomes operational by invoking the Initialization-PrivProtocol
protocol. Upon execution of the Initialization-PrivProtocol protocol, the party Pi first generates keys by
running the KeyGeneration(λ) algorithm (as presented in Section 4). The Initialization-PrivProtocol
protocol works in two modes depending on the whether or not the current round is the genesis round.
In the genesis mode, which is executed when τ = 0, the party interacts with Finit to register its keys.
The Finit functionality calls the Registration function here to add the party’s entry to TprivAccounts.
In the non-genesis mode, as in [6], the protocol Initialization-PrivProtocol queries Finit to receive the
genesis block. If the underlying protocol is a Proof-of-Stake protocol, the parties need to claim stake in
the genesis mode, and in the non-genesis mode the Finit functionality determines the lottery difficulty
for the newly joined Pi. We refer to [6] for details. Finally, the party announces to the network that it
is a new party by broadcasting (NEW-PARTY, sid, Pi,PKi). This interaction is presented in more details
in Figure 10.

Protocol SubmitXfer(tx, Cloc)

1. Execute FetchInformation (as in Ouroboros Genesis (full version) [7]) to receive the newest
messages of the round; denote the output by (C1, . . . , CM), (tx1, . . . , txk).

2. Set N ← {C1, . . . CM}
3. Invoke protocol SelectChain(N , Cloc, . . .) (as defined in Ouroboros Genesis [6]) and receive an updated

chain Cloc.
4. If tx = (TRANSFER, tx′):

(a) Let (PKS ,PKR, x)← tx′

(b) Use the clock to update τ, ep← ⌈τ/R⌉ and sl← τ
(c) Let tx∗ := Transfer(PKS ,PKR, x, ep,R, Cloc,Ci)
(d) Submit (MULTICAST, tx∗) to FN-MC

5. Else if tx = (MINT, tx′)
(a) Let (PKS , x)← tx′

(b) Use the clock to update τ, ep← ⌈τ/R⌉ and sl← τ
(c) Let tx∗ := Mint(x,PKS , SKS , rtTpubAccounts)
(d) Submit (MULTICAST, tx∗) to FN-MC

Fig. 11. Protocol SubmitXfer

Submitting a transaction. A party PS receives a SUBMIT command from the environment. Recall
that the transaction could be either a TRANSFER transaction or a MINT transaction. If the transaction
is of type TRANSFER, then parse the command as TRANSFER∥(PKS ,PKR, v) where PKS is the public
key associated with the account of the sender and PKR is the public key associated with the account
of the receiver and x is the value to be transferred.

The transaction is computed using the Transfer algorithm defined in Figure 5. The transaction
is then broadcast to the network by submitting (MULTICAST, tx) to the network functionality (FN-MC).
Similarly, if the command is of type MINT, then parse the command as MINT∥(PKS , v). The real-world
transaction is computed using Mint algorithm defined in Figure 4 and is broadcast using the FN-MC

functionality.

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 23

Protocol LedgerMaintenance(Cloc, Qj)
The following steps are executed in a (MAINTAIN-LEDGER, sid)-interruptible manner:

1. Execute FetchInformation (as in Ouroboros Genesis [7]) to receive the newest messages of the
round; denote the output by (C1, . . . , CM), (tx1, . . . , txk).

2. Use the clock to update τ, ep← ⌈τ/R⌉ and sl← τ
3. Set buffer← buffer∥(tx1, . . . , txk), ton ← τ,N ← {C1, . . . CM}
4. Invoke protocol SelectChain(. . .) (as defined in Ouroboros Genesis [6]) and receive an updated Cjloc.

Let C∗loc be the original local chain.
5. Let U be the set of transactions that are in Cjloc but not in C∗loc.
6. Invoke protocol LotteryProcedure(Qj , ep, sl, buffer, Cjloc,U) (in a (MAINTAIN-LEDGER, sid)-interruptible

manner)
7. Send (CLOCK-UPDATE, sidC) to Gclock.

Fig. 12. Protocol LedgerMaintenance

Maintaining the ledger. Upon receiving a MAINTAIN-LEDGER command from the environment,
a miner Qj invokes the LedgerMaintenance algorithm. The algorithm invokes the FetchInformation
command as defined in [7]. This algorithm fetches the recent messages in the round - this includes
both the local chains broadcast by other parties C1, . . . , CM and the transactions broadcast by other
parties tx1, . . . , txk. The miner then updates the buffer with these transactions and then selects the
longest valid chain using the SelectChain algorithm defined in [6] to update its local chain C locj . Qj

then invokes the LotteryProcedure algorithm to check if it is selected as a leader to propose the next
block on the chain.

The LotteryProcedure (see Figure 13) first sends the ELIGIBILITY-CHECK command to the Fanon-selection
functionality to check if the miner Qj is eligible to propose the next block on the chain. If eligible,
the miner first computes a local state based on the recently updated local chain Cjloc. Now to create
the next block on the chain, the miner iterates through the buffer and checks if each transaction is
valid (using the ValidTx predicate, defined in Figure 22). If the transaction is valid, the miner updates
the state with this transaction by running ProcessTransaction(txi, T j). The miner then adds this
transaction to a block. The miner also adds the root of a Merkle tree computed over the updated state
T j and broadcasts the block using the FN-MC functionality.

To join the system, a new party must first register with the hybrid functionalities - Gclock, Finit, Fnizk,
FN-MC and Fanon-selection. The party then runs the Initialization-PrivProtocol protocol, which internally
runs the algorithm KeyGeneration to return (PKi,SKi, πKeyGen). The party then broadcasts to the
network the message (NEW-PARTY, sid, Pi,PKi, πKeyGen). A miner upon receiving this message and tasked
with maintaining the ledger updates the state by running the Registration algorithm.

24 Varun Madathil and Alessandra Scafuro

Protocol LotteryProcedure(k,Qj , ep, sl, buffer, Cjloc,U) The following steps are executed in a
(MAINTAIN-LEDGER, sid)-interruptible manner:

1. Let T j = (T j
pubAccounts∥T

j
privAccounts) be the state associated with Cjloc maintained by Qj

2. Send (ELIGIBILITY-CHECK, sid, (sl, ep)) to Fanon-selection and receive (ELIGIBILITY-CHECK, b). If b = 0,
exit the protocol.

3. Else update T j ← ProcessTransaction(tx, T j) for each tx ∈ U , initialize N = ∅ and for each
txi ∈ buffer do (or until N can not increase any more):
(a) if ValidTx(txi, T), Cjloc then N← N∥txi
(b) Remove txi from buffer
(c) If txi = (NEW-PARTY,PKi), then run Registration(PKi, T j)
(d) Set B′ ← blockify(N) and update T j ← ProcessTransaction(txi, T j)

4. Set ptr ← H(Cloc)
5. Compute rtprivAccounts = MerkleCRH(TprivAccounts) and rtpubAccounts = MerkleCRH(TpubAccounts) and set

rt = (rtTprivAccounts∥rtTpubAccounts).
6. Send (CREATE-PROOF, sid, (ep, sl), T) to Fanon-selection and receive π. Set txlead = ((ep, sl), ptr, rt, π)
7. Set B ← (txlead, B

′) and Cloc = Cloc∥B
8. Send (MULTICAST, (sid, txlead)) to F tx

N-MC and (MULTICAST, sid, Cloc) to Fbc
N-MC and proceed from here

upon next activation of this procedure.
9. While a (CLOCK-UPDATE, sidC) has not been received during the current round: give up activation,

and upon next activation of this procedure, proceed from here.

Fig. 13. Proposing a new block if miner wins the lottery

6 Security Analysis

In this section we informally argue security of our scheme. We present the full security proofs in
Appendix D.

Theorem 1. The protocol ΠPriFHEte UC realizes the GPL functionality in the (Gclock, Fanon-selection,Finit,Fnizk,FN-MC)-
hybrid world, assuming key-private CPA secure encryption, CPA secure fully homomorphic encryption,
secure pseudorandom functions, secure commitment schemes and unforgeable signature scheme.

Proof. (Sketch) To prove UC-security, we must show that there exists a PPT simulator interacting with
GPL that generates a transcript that is indistinguishable from the transcript generated by the real world
protocol. We first give a high-level overview of the simulator (described in Fig 27, Fig 28 and Fig 29).
Our simulator internally simulates the ideal functionalities Finit, Fanon-selection, Fnizk, FN-MC towards the
adversary and relays any communication between the adversary and the emulated functionality. Since
the general framework of the protocol and functionalities are the same as in Ouroboros Crypsinous [30]
and Genesis [6], we only focus on the simulation that concerns algorithms that we modify or add
to. Upon receiving claim command from a party, on behalf of the simulated Finit functionality, the
simulator first sends a REGISTER command on behalf of the party to the GPL functionality. Upon
receiving Prove requests on behalf of the simulated Fnizk functionality, the simulator records any
witnesses provided by the adversary. Finally, to simulate Fanon-selection the simulator executes the
commands as the ideal functionality would. The simulation of FN-MC is indeed more interesting than
the other functionalities since the simulator needs to create ideal-world transactions and blocks on
behalf of the adversary using these transactions. The main idea to retrieve the private information
associated with a transaction is to extract the witness that was recorded by the Fnizk functionality for
the corresponding transaction. Specifically, the simulator retrieves the witness w from the recorded
witnesses in Π and extracts PKS ,PKR, v and submits an ideal world transaction to GPL. Note that
if such a witness does not exist, then the simulator aborts with ZKSoundnessFailure. Since we use

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 25

the Fnizk functionality, this event occurs with negligible probability. Moreover, if the transaction is of
type MINT and the submitted transaction corresponds to that of an honest party, then the simulator
aborts with sigFailure. Since we use unforgeable signatures the probability of this event occurring
is negligible. The adversary may also send new blocks over the FN-MC functionality, the simulator
first simulates the transactions in these blocks as described above in the case that ideal transactions
for these transactions do not exist. Then the simulator runs EXTENDLEDGERSTATE function
as defined in Ouroboros Genesis[6], which essentially creates new blocks and submits them to the
GPL functionality. To simulate honest transactions, the simulator does the following: upon receiving a
registration command, the simulator generates FHE, WKEnc and PRF keys as an honest party would.
But instead of encrypting the WKEnc.sk the simulator encrypts all 0s. By the CPA security of the
underlying FHE scheme, this is indistinguishable from the real world to an adversary. Similarly, the
commitment to PRF key is replaced by a commitment to 0. Here we leverage the hiding property
of the commitment scheme to argue that the two worlds are indistinguishable. To simulate honest
transactions, the simulator generates a new PK,SK and computes a transfer transaction that sends
from PK to PK a value of 0. By the key-privacy and CPA security of the underlying WKEnc scheme,
the ideal and the real worlds are indistinguishable to a PPT adversary. The output of the PRF is
replaced with a random string, and we leverage the pseudorandomness property of the PRF to argue
indistinguishability. We argue in Appendix D through a sequence of hybrids that the real world and
the ideal world are indistinguishable.

References

1. Ethereum, https://ethereum.org/en/
2. Filecoin, https://filecoin.io
3. Ripple, https://ripple.com
4. Agrawal, S., Raghuraman, S.: Kvac: Key-value commitments for blockchains and beyond. In: International

Conference on the Theory and Application of Cryptology and Information Security. pp. 839–869. Springer
(2020)

5. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model.
In: Theory of Cryptography: 18th International Conference, TCC 2020, Durham, NC, USA, November
16–19, 2020, Proceedings, Part I 18. pp. 28–57. Springer (2020)

6. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: Composable proof-of-
stake blockchains with dynamic availability. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. pp. 913–930 (2018)

7. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability (2019)

8. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: A composable treat-
ment. In: Annual international cryptology conference. pp. 324–356. Springer (2017)

9. Baldimtsi, F., Madathil, V., Scafuro, A., Zhou, L.: Anonymous lottery in the proof-of-stake setting. In:
2020 IEEE 33rd Computer Security Foundations Symposium (CSF). pp. 318–333. IEEE (2020)

10. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information Security. pp. 566–582.
Springer (2001)

11. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proceedings of the 2012 ACM
conference on Computer and communications security. pp. 784–796 (2012)

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory (TOCT) 6(3), 1–36 (2014)

13. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. SIAM
Journal on computing 43(2), 831–871 (2014)

14. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart contract world. In:
International Conference on Financial Cryptography and Data Security. pp. 423–443. Springer (2020)

15. Campanelli, M., Hall-Andersen, M.: Veksel: simple, efficient, anonymous payments with large anonymity
sets from well-studied assumptions. In: Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security. pp. 652–666 (2022)

https://ethereum.org/en/
https://filecoin.io
https://ripple.com

26 Varun Madathil and Alessandra Scafuro

16. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proceedings
42nd IEEE Symposium on Foundations of Computer Science. pp. 136–145. IEEE (2001)

17. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Blockchain light clients. Cryptology ePrint Archive
(2021)

18. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure, semi-synchronous
proof-of-stake blockchain. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 66–98. Springer (2018)

19. Diamond, B.E.: Many-out-of-many proofs and applications to anonymous zether. In: 2021 IEEE Sympo-
sium on Security and Privacy (SP). pp. 1800–1817. IEEE (2021)

20. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for anonymous cryptocurrencies.
In: International conference on the theory and application of cryptology and information security. pp. 649–
678. Springer (2019)

21. Foundation, E.: Ethereum zk-rollups (2021), https://ethereum.org/en/developers/docs/scaling/
zk-rollups/, accessed on: 2023-02-12

22. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive (2019)

23. Ganesh, C., Kondi, Y., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Witness-succinct universally-
composable snarks. Cryptology ePrint Archive (2022)

24. Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
25. Graf, M., Rausch, D., Ronge, V., Egger, C., Küsters, R., Schröder, D.: A security framework for distributed

ledgers. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
pp. 1043–1064 (2021)

26. Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual international conference on
the theory and applications of cryptographic techniques. pp. 305–326. Springer (2016)

27. Guan, Z., Wan, Z., Yang, Y., Zhou, Y., Huang, B.: Blockmaze: An efficient privacy-preserving account-
model blockchain based on zk-snarks. IEEE Transactions on Dependable and Secure Computing (2020)

28. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification - zips.z.cash, https://zips.z.
cash/protocol/protocol.pdf

29. Katz, J., Lindell, Y.: Introduction to modern cryptography. CRC press (2020)
30. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-preserving proof-of-stake.

In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 157–174. IEEE (2019)
31. Kosba, A.E., Zhao, Z., Miller, A., Qian, Y., Chan, T.H.H.: How to use snarks in universally composable

protocols.
32. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s blockchain. In: European

Symposium on Research in Computer Security. pp. 153–173. Springer (2017)
33. Lai, R.W., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: Scaling private

payments without trusted setup. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. pp. 31–48 (2019)

34. Liu, Z., Tromer, E.: Oblivious message retrieval (2022)
35. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via

multikey fully homomorphic encryption. In: Proceedings of the forty-fourth annual ACM symposium on
Theory of computing. pp. 1219–1234 (2012)

36. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage, S.: A fistful
of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 conference
on Internet measurement conference. pp. 127–140 (2013)

37. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-cash from bitcoin. In:
2013 IEEE Symposium on Security and Privacy. pp. 397–411. IEEE (2013)

38. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K., Hennessey, J., Miller,
A., Narayanan, A., et al.: An empirical analysis of traceability in the monero blockchain. arXiv preprint
arXiv:1704.04299 (2017)

39. Network, A.: Taiga. https://github.com/anoma/taiga (January 21 2021)
40. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18 (2016)
41. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer.

In: Annual international cryptology conference. pp. 554–571. Springer (2008)
42. Regev, O.: The learning with errors problem. Invited survey in CCC 7(30), 11 (2010)
43. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security and privacy in social

networks, pp. 197–223. Springer (2013)

https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://github.com/anoma/taiga

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 27

44. Rondelet, A., Zajac, M.: Zeth: On integrating zerocash on ethereum. arXiv preprint arXiv:1904.00905
(2019)

45. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decentralized
anonymous payments from bitcoin. In: 2014 IEEE symposium on security and privacy. pp. 459–474. IEEE
(2014)

46. Technologies, C.: Espresso systems documentation. https://docs.cape.tech/espresso-systems/ (accessed
2023-03-09)

47. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.: Aggregatable subvector
commitments for stateless cryptocurrencies. In: Security and Cryptography for Networks: 12th Interna-
tional Conference, SCN 2020, Amalfi, Italy, September 14–16, 2020, Proceedings 12. pp. 45–64. Springer
(2020)

48. Williamson, Z.J.: The aztec protocol (2018)
49. Wüst, K., Matetic, S., Schneider, M., Miers, I., Kostiainen, K., Čapkun, S.: Zlite: Lightweight clients for

shielded zcash transactions using trusted execution. In: International Conference on Financial Cryptogra-
phy and Data Security. pp. 179–198. Springer (2019)

50. Xie, Y., Zhang, C., Wei, L., Niu, Y., Wang, F., Liu, J.: A privacy-preserving ethereum lightweight client
using pir. In: 2019 IEEE/CIC International Conference on Communications in China (ICCC). pp. 1006–
1011. IEEE (2019)

https://docs.cape.tech/espresso-systems/

28 Varun Madathil and Alessandra Scafuro

A Example to outline state update

!(1) !(0) !(1)&!: !(0) !(0) !(1)&":'!(0) '!(0) '!(1)&#:

1. Decrypt &! with k)*! '!(1) '!(0) '!(1)&#$:

2. XOR with
complement of ,-!
(where ,-! = 101)

'!(1) '!(0) '!(1)

'!(0) '!(1) '!(0)
⊕

'!(1) '!(1) '!(1)&%&'()*+:

&()*+: '!(1) '!(1) '!(1)

'!(1)

4.Decrypt &" with
-)*!

'!(0) '!(0) '!(1)&,:

5. Multiply
&, with &()*+

'!(0) '!(0) '!(1)

'!(0) '!(0) '!(1)

'!(0) '!(0) '!(1)

'!(0) '!(1) '!(0)&# :

&#$:

'!(,-!)

3. Multiply the
&%&'()*+ ciphertexts

'!(0) '!(0) '!(1)&,:

'!(1) '!(1) '!(1)&()*+:

6. Add &#-%$ to &#

&#-%$:

Encrypted balance of /# Encrypted id of receiver in *0 Encrypted value in *0

Fig. 14. Case 1: When the receiver of the payyment corresponds to the entry updated in the state. Let the
receiver’s public key pkR = 101, the value of the transaction be x = 001 and the balance of the receiver be
v = 001. (1) The first step is to decrypt Enc(101) with k-cti, and since i = R, Cid = FHE.Enc(101). (2) Next,
Cid is homomorphically XORed with the complement of pki,which is 010,and this gives an encrption of 111.
(3) These ciphertexts are then multiplied together to give a single encryption of 1, this encryption is called
Cflag. (4) Next we homomorphically decrypt the value CC with k-cti to get an encryption of x under the FHE
key, denoted Cv. (5) Each of these ciphertexts are then multiplied with the Cflag ciphertext. Since the flag is
1, the value encrypted Cv does not change. (6) Finally these ciphertexts are added to the encryption of the
balance in the state

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 29

!(1) !(0) !(1)&!: !(0) !(0) !(1)&":'!(0) '!(0) '!(1)&#:

1. Decrypt &! with k)*! '!(1) '!(1) '!(1)&#$:

2. XOR with
complement of ,-!
(where ,-! = 001)

'!(1) '!(1) '!(1)

'!(1) '!(1) '!(2)
⊕

'!(2) '!(2) '!(1)&%&'()*+:

&()*+: '!(2) '!(2) '!(1)

'!(2)

4.Decrypt &" with
-)*!

'!(0) '!(1) '!(1)&,:

5. Multiply
&, with &()*+

'!(0) '!(0) '!(2)

'!(0) '!(0) '!(1)

'!(0) '!(0) '!(2)

'!(0) '!(2) '!(1)&# :

&#$:

'!(,-!)

3. Multiply the
&%&'()*+ ciphertexts

'!(0) '!(1) '!(1)&,:

'!(2) '!(2) '!(2)&()*+:

6. Add &#-%$ to &#

&#-%$:

Encrypted balance of /# Encrypted id of receiver in *0 Encrypted value in *0

Fig. 15. Case 2: When the receiver of the payment does not correspond to the entry (001) updated in the
state. Let the receiver’s public key pkR = 101, the value of the transaction be x = 001 and the balance of
the receiver be v = 001. (1) The first step is to decrypt Enc(101) with k-cti, and since i ̸= R, Cid encrypts a
random bit string FHE.Enc(111). (2) Next, Cid is homomorphically XORed with the complement of pki,which
is 001,and this gives an encrption of 001. (3) These ciphertexts are then multiplied together to give a single
encryption of 0 (4) Next we homomorphically decrypt the value CC with k-cti to get an encryption of x under
the FHE key, denoted Cv, which is FHE.Enc(011) in our example. (5) Each of these ciphertexts are then
multiplied with the Cflag ciphertext. Since the flag is 0, the value encrypted Cv now encrypts 0. (6) Finally
these ciphertexts are added to the encryption of the balance in the state which does not change the value
encrypted.

Proof of correctness To prove the correctness of ProcessTransaction we need to show that the
state of the blockchain is updated correctly, i.e. when the entry in TprivAccounts does not correspond to
that of PS (or PR w.l.o.g.) the balance remains the same and when the entry does correspond to that
of PS , the balance is updated with the value in the transaction.

Case 1: UpdateCiphertext(TprivAccounts[PKi], (CS,CR,CD,CC ,PRFOut, π),PKi) is executed when
CS does not correspond to an encryption of WKEnc.pki. Let CS = WKEnc.Enc(WKEnc.pkS , bj) where
bj = WKEnc.pkS [j] for j ∈ [λ].

UpdateCiphertext works as follows:

1. Compute Ci
id = (Cid

i,1, . . . , C
id
i,λ), where Cid

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti,CS [j])). Since
the k-cti encrypts WKEnc.ski ̸= WKEnc.skS , by the wrong-key decryption (Def 3), Cid

i,j encrypts a
random bit ∈ {0, 1} and therefore Ci

id is an encryption of a random bit vector.
2. Compute Cpreflag

i = (Cpreflag
i,1 , . . . , Cpreflag

i,λ) where Cpreflag
i,j = FHE.Eval(FHE.pki,⊕, (WKEnc.pki[j],C

id
i,j))

for j ∈ [λ]. Since Cid
i,j encrypts a random bit b, with high probability the bit encrypted in

Cid
i,j ̸= WKEnc.pki[j] for all j ∈ [λ]. Therefore Cpreflag

i is an encryption of a random bit vector,
except with negligible probability.

3. Compute Cflag
i = FHE.Eval(FHE.pki,×, (C

preflag
i,1 , . . . , Cpreflag

i,λ)). Since Cpreflag
i is a random vector,

with high probability there is atleast j s.t. Cpreflag
i,j encrypts 0. Therefore, Cflag

i is an encryption of
0 except with negligible probability.

30 Varun Madathil and Alessandra Scafuro

4. Compute Cx
i = (Cx

i,1, . . . , C
x
i,µ) where Cx

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti,CD[j])). Since
the k-cti encrypts WKEnc.ski ̸= WKEnc.skS , by the wrong-key decryption (Def 3), Cx

i,j encrypts a
random bit ∈ {0, 1} and therefore Cx

i is an encryption of a random bit vector.

5. Compute Cupd
i = (Cupd

i,1 , . . . , Cupd
i,µ), where Cupd

i,j = FHE.Eval(FHE.pki,×, (Cx
i,j , Cflag)). Since Cflag

is an encryption of 0, Cupd
i,j is an encryption of 0.

6. Update Ci = (Ci,1, . . . , Ci,µ as FHE.Eval(FHE.pki,−, (Ci,j , C
upd
i,j)) for j ∈ [µ]. Since Cupd

i,j is an
encryption of 0, the value encrypted in Ci,j does not change.

Case 2: UpdateCiphertext(TprivAccounts[PKi], (CS,CR,CD,CC ,PRFOut, π),PKi) is executed when
CS corresponds to an encryption of WKEnc.pki. Let CS = WKEnc.Enc(WKEnc.pkS , bj) where bj =
WKEnc.pkS [j] for j ∈ [λ].

UpdateCiphertext works as follows:

1. Compute Cid
i = (Cid

i,1, . . . , C
id
i,λ), where Cid

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti,CS [j])). Since
the k-cti encrypts WKEnc.ski = WKEnc.skS , Cid

i,j encrypts a bit bj ∈ {0, 1} such that
∑λ

j=1 bj×2j =
WKEnc.pki.

2. Compute Cpreflag
i = (Cpreflag

i,1 , . . . , Cpreflag
i,λ) where Cpreflag

i,j = FHE.Eval(FHE.pki,⊕, (WKEnc.pki[j],C
id
i,j))

for j ∈ [λ]. Since Cid
i,j encrypts a bit b = WKEnc.pki[j], C

preflag
i is an encryption of a vector with

all 1s.

3. Compute Cflag
i = FHE.Eval(FHE.pki,×, (C

preflag
i,1 , . . . , Cpreflag

i,λ)). Since Cpreflag
i is a vector of all

1s, Cflag
i is an encryption of 1

4. Compute Cx
i = (Cx

i,1, . . . , C
x
i,µ) where Cx

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti,CD[j])). Since
the k-cti encrypts WKEnc.ski = WKEnc.skS , Cx

i,j encrypts a bit bj ∈ {0, 1} such that
∑µ

j=1 bj×2j =
x.

5. Compute Cupd
i = (Cupd

i,1 , . . . , Cupd
i,µ), where Cupd

i,j = FHE.Eval(FHE.pki,×, (Cx
i,j , Cflag)). Since Cflag

is an encryption of 1, Cupd
i,j is an encryption of a bit bj ∈ {0, 1} such that

∑µ
j=1 bj × 2j = x.

6. Update Ci = (Ci,1, . . . , Ci,µ as FHE.Eval(FHE.pki,−, (Ci,j , C
upd
i,j)) for j ∈ [µ]. Since Cupd

i,j is an
encryption of bj ∈ {0, 1} such that

∑µ
j=1 bj × 2j = x, the Ci,1 is updated with x added to the

balance.

Since the state is updated correctly in the both cases, we conclude our proof of correctness.

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 31

B The private ledger functionality - GPL

B.1 The ideal funtionality

GPL is parameterized by seven algorithms, Validate, ExtendPolicy, blockify, Lkg, BlindTx, Blind and
predict-time, along with three parameters: windowSize, Delay ∈ N and T1 = {(P1, v1), . . . , (Pn, vn)}.
These parameters are publicly known. The functionality manages variables state, NxtBC, buffer, τL
and τstate. The variables are initialized as follows: state := τstate := NxtBC := ids := ε, buffer := ∅,
τL = 0.
The functionality maintains the set of registered parties P, the (sub-)set of honest parties H ⊆ P, and
the subset of de-synchronized honest parties PDS ⊂ H. The sets P,H,PDS are all initially set to ∅.
When a new honest party is registered at the ledger, if it is registered with the clock and the global
RO already, then it is added to the party sets H and P and the current time of the registration is also
recorded; if the current time is τL > 0 it is also added to PDS . Similarly, when a party is de-registered,
it is removed from P. The ledger maintains the invariant that it is registered (as a functionality) to the
clock whenever H ≠ ∅. Finally, during registration, the adversary is informed that a registration has
occurred. The adversary responds with an ID and Pi is replaced with the resulting ID in T1. Further,
the registration procedure returns ID.
For each party Pi ∈ P the functionality maintains a pointer ptp (initially set to 1) and a current-state
view statep := ε (initially set to empty). We refer to the vector pt1, . . . , ptn as pt.

Handling initial parties: If during the round τ = 0, the ledger did not receive a registration from
each initial party, (Pi, vi) ∈ T1, the functionality halts.

Upon receiving any input I from any party or from the adversary, send (CLOCK-READ, sidC) to Gclock;
upon receiving response (CLOCK-READ, sidC , τ) set τL := τ and do the following if τ > 0 (otherwise,
ignore input):

1. Let P̂ ⊆ PDS denote the set of de-synchronized honest parties that have been registered (continu-
ously) since time τ ′ < τL − Delay. Set PDS := PDS \ P̂.

2. If I was received from an honest party Pi ∈ P:
(a) If I = (SUBMIT, sid, tx), set ITH := ITH∥((SUBMIT, sid,BlindTxA(state,P \H, ids, tx)), Pi, τL); else

set ITH := ITH∥(I, Pi, τL)
3. Compute N = (N1, . . . ,Nℓ) := ExtendPolicy(ITH , state,NxtBC, buffer, τstate) and if N ̸= ε set state :=

state∥blockify(N1)∥ . . . blockify(Nℓ) and τstate := τstate∥τ ℓL where τ ℓL := τL∥ . . . ∥τL.
4. For each BTX ∈ buffer: if Validate(BTX, state, buffer, pt,H, ids) = 0 then delete tx from buffer. Also

reset NxtBC := ε.
5. If there exists Pi ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set

ptk := |state| for all Pk ∈ H \ PDS .

Fig. 16. The GPL functionality - Part 1

32 Varun Madathil and Alessandra Scafuro

3. If the calling party Pi is stalled (according to the definition above), then no further actions are taken.
Otherwise, depending on the above input I and its sender’s ID, GPL executes the corresponding
code from the following list:
– Submitting a transaction:

If I = (SUBMIT, sid, tx) and is received from a party Pi ∈ P or from A (on behalf of a corrupted
party Pi) do the following
(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Pi)
(b) If Validate(BTX, state, buffer, pt,H, ids) = 1, then buffer := buffer ∪ BTX
(c) Send (SUBMIT,BlindTxA(state,P \ H, ids,BTX)) to A

– Generating IDs
– Reading the state

If I = (READ, sid) is received from a party Pi ∈ P, then set statei := statei|min{pti,|state|} and return
(READ, sid,Blind({Pi}, ids, statei)) to the requestor. If the requestor is A then send (BlindA(P \
H, ids, state),map(BlindTxA(state,P \ H), ids, buffer), Lkg(state, buffer, τL), ITH) to A

– Maintiaining the ledger state:
If I = (MAINTAIN-LEDGER, sid) is received by an honest party Pi ∈ P and (after updating ITH as
above) predict-time(ITH) = τ̂ > τL then send CLOCK-UPDATE, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block:
If I = (NEXT-BLOCK, hFlag, (txid1, . . . , txidℓ)) is sent from the adversary update NxtBC as follows:
(a) Set listOfTxid← ε
(b) For i = 1, . . . , ℓ do: if there exists BTX := (x, txid, τL, Pi) ∈ buffer with ID txid = txidi then

set listOfTxid := listOfTxid∥txidi.
(c) Finally set NxtBC := NxtBC∥(hFlag, listOfTxid) and output (NEXT-BLOCK, ok) to A

– The adversary setting state-slackness:
If I = (SET-SLACK, (Pi, p̂ti), . . . , (Pℓ, p̂tℓ)) with {Pi, . . .Pℓ} ⊆ H\PDS is received from the adver-
sary A do the following:
(a) If for all j ∈ [ℓ] : |state| − p̂tj ≤ windowSize and p̂tj ≥ |statej |, set pti = p̂ti for every

j ∈ [i, ℓ] and return (SET-SLACK, ok) to A.
(b) Otherwise set ptj := |state| for all j ∈ [i, ℓ].

– The adversary setting the state for desynchronized parties:
If I = (DESYNC-STATE, (Pi, state

′
i), . . . , (Pℓ, state

′
ℓ)) with (Pi, . . . , Pℓ) ⊆ PDS is received from the

adversary A, set statej := state′j for each j ∈ [i, ℓ] and return (DESYNC-STATE, ok) to A.

Fig. 17. The GPL functionality - Part 2

Function Validate(BTX, state, buffer,H, ids):

1. Parse BTX as (tx, txid, τL, Pi)
2. Let ep∗ be the epoch corresponding to τL, and the current epoch be ep. Check that ep∗ = ep
3. Parse tx as (Pi, Pj , v) where Pi, Pj ∈ ids
4. Check that vi > v
5. Let τep be the time when the current epoch starts.
6. Check that there exists no BTX′ ∈ {state, buffer} after time τep from party Pi.
7. If any of the above checks return false, return 0, else return 1.

Fig. 18. Ideal Validation Predicate

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 33

Let tx = (stx1, . . . , stxℓ), where stx = (pkr, x)
Function BlindSTx(state,P, ids, (pk, stx))

1. Let b← 0
2. If stx = (pkr, x) and pkr ∈ P \ H, set b← 1
3. If pk ̸= Mint ∨ pk not owned by Pi ∈ P, set b← 0
4. If b, return (pk, stx), else return (⊥, |stx|)

Now,
BlindTx(state,P, ids, (tx, txid, ·, ·)) = (map(BlindSTx(state,P, ids), tx), txid)
BlindTxA(state,P, ids, (tx, txid, τL, Ps)) = (map(BlindSTx(state,P, ids), tx), txid, τL, Ps)

Fig. 19. Blinding function

This function is the same as the one defined in Ouroboros Genesis [6]. We present an overview below:

1. Create an honest client block as an alternative Ndf .
2. Parse the block proposed by the adversary:

– Check if upon adding a transaction from the block invalidates the rest of the transactions in the
block.

– If yes, return Ndf .
– If the proposed block is proposed on behalf of an honest party and there exist old enough valid

transactions in the buffer of any other honest party set a flag oldValidTxMissing ← true and
return Ndf

– If there are too many adversarially generated blocks return Ndf

– If a sequence of blocks takes too much time to be proposed, return Ndf

– Else update the state with the newly proposed block.

Fig. 20. Extend Policy function

34 Varun Madathil and Alessandra Scafuro

B.2 Additional UC protocols

Protocol ReadState(sid, Cloc, Pi)

1. Execute FetchInformation to receive the newest messages for this round; denote the output chains
by C1, . . . CM

2. Use the clock to update τ, ep← ⌈τ/R⌉ and sl← τ
3. Let N ← {C1, . . . , CM}
4. Invoke protocol SelectChain(N , . . .) (as defined in Ouroboros Genesis [6]) and receive an updated
Cloc

5. Extract the list of transactions st from the current local chain Cloc.
6. Set stideal = ∅
7. For each tx in st⌈k

– If tx = TRANSFER and Dec(WKEnc.ski,CR) = WKEnc.pki then decrypt CR = v and record
(TRANSFER, v) as stideal = stideal∥(TRANSFER, v)

– If tx = MINT and is equal to (PKi, v, rt, σ), record (MINT, v) as stideal = stideal∥(MINT, v)
8. Return stideal

Fig. 21. Read State

Function ValidTx(txi, {T }ep, Cloc)
If tx = TRANSFER

1. Let ep be the current epoch and {T }ep be the set of states in the current epoch.
2. Parse tx as (CS,CR,CD,CC,PRFOut, π)
3. Verify that rtT = MerkleCRH(T) for atleast one of T in {T }ep. Else abort.
4. Run Verify(zk.vk, x,Proof) where x = (rtT ,CS,CR,CD,CC) and Proof = π
5. Verify that PRFOut does not already appear in the buffer and Cloc after slot ep ∗R.
6. If any of the checks above fail return 0, else return 1.

If tx = MINT

1. Parse tx as (PKi, x, rtTpubAccounts , σ)
2. Check that TpubAccounts[PKi] > x
3. Check that Verify(vki, (PKi, x, rtTpubAccounts), σ) = 1
4. If any of these checks fail, output 0, else output 1.

Fig. 22. Real world validation

C Hybrid functionalities

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 35

The functionality Finit is parameterized by the number of initial account-holders n and their respective
balances b1, . . . , bn. Finit interacts with Pi, . . . , Pn as follows:

– In the first round, upon a request from some account-holder Pi of the form (claim, sid, Pi,PKi), the
functionality computes Registration(PKi).

– Once all parties have registered, it samples and stores a random value η1 ←$ {0, 1}λ. it then
constructs a genesis block (C, η1), where C = (C1,PKn), . . . , (Cn,PKn)

If this is not the first round then do the following:

– If any of the account-holders did not send a request of the above form in the genesis round, then
Finit outputs an error and halts.

– Otherwise, if the currently received input is a request of the form (gen-req, sid, Pi) from any account-
holder Pi, then Finit sends (gen-block, sid, (C, η1)) to Pi.

Fig. 23. Finit functionality

The functionality maintains the set P of registered identities that is parties Pi = (sid, pid). It also
manages the set F of functionalities. Initially P = ∅ and F = ∅.
For each session sid the clock maintains a variable τsid. For each identity Pi = (pid, sid) ∈ P it manages
variable dPi . For each pair (F , sid) ∈ F it manages a variable d(F,sid) all initialized to 0.

Synchronization :

– Upon receiving (CLOCK-UPDATE, sidC) from some party Pi ∈ P set dPi := 1; execute Round-Update
and forward (CLOCK-UPDATE, sid, Pi) to A

– Upon receiving (CLOCK-UPDATE, sidC) from some functionality F ∈ P set d(F,sid) := 1; execute
Round-Update and forward (CLOCK-UPDATE, sid,F) to this instance of F .

– Upon receiving (CLOCK-READ, sidC) from any participant return (CLOCK-READ, sidC , τ) to the requester.

Procedure Round-Update : For each session sid do: If d(F,sid) := 1 for all F ∈ F and dPi = 1 for all
honest parties Pi = (·, sid) ∈ P then set τsid := τsid+1 and reset d(F,sid) := 0 and dPi := 0 for all parties
Pi = (·, sid) ∈ P.

Fig. 24. Gclock functionality

The non-interactive zero-knowledge functionality FL
nizk allows proving of statements in an NP language

L. It maintains a set of statement/proof pairs Π, initialized to ∅.

Proving Upon receiving a message (Prove, sid, x, w):

1. If (x,w) /∈ L then return (proof, sid, x,⊥)
2. Else send (Prove, sid, x) to A and receive the reply (proof, sid, x, π). Do Π = Π∪{(x, π)} and return

(proof, sid, x, π)

Proof Verification When receiving a message (verify, sid, x, π) :

1. If (x, π) /∈ Π then send (verify, sid, x, π) to A and then receive the reply R.
2. If R = (witness, sid, x, π, w) ∧ (x,w) ∈ L then let Π = Π ∪ (x, π).
3. Return (verify, sid, x, π, (x, π) ∈ Π)

Fig. 25. Fnizk functionality

36 Varun Madathil and Alessandra Scafuro

The ideal functionality is parameterized by an Eligible predicate and maintains the following elements:
(1) a global set of participants P = (P1, b1), . . . (Pn, bn) (2) A table T which has one row per party and
column for each tag ∈ [N] given by parties when checking eligibility. The table stores the eligibility
information of each party in each tag. (3) A list L to store a proof π corresponding to a message msg
in some tag

Check Eligibility Upon receiving (ELIGIBILITY-CHECK, sid, tag) from a party Pi do the following:

1. If Pi ∈ P and T (Pi, tag) is undefined, sample r ∈ {0, 1}ℓ, run Eligible(Pi, r, tag) to get b ∈ {0, 1}.
Set T (Pi, tag) = b

2. Output (ELIGIBILITY-CHECK, sid, T (Pi, tag)) to Pi.

Proof of eligibility Upon receiving (CREATE-PROOF, sid, tag,msg) from some party Pi:

1. If T (Pi, tag) = 1, send (PROVE, tag,msg) to A. Else send (DECLINED, tag,msg) to Pi.
2. Upon receiving (DONE, ψ, tag,msg) from A, set π := ψ and record (π, tag,msg) in L. Send

(CREATE-PROOF, π, tag,msg) to Pi.

Verifying proofs Upon receiving (VERIFY, sid, π, tag,msg) from some party P ′:

1. If (π, tag,msg) ∈ L output (VERIFIED, sid, (π, tag,msg), 1) to P ′

2. If (π, tag,msg) /∈ L send (VERIFY, sid, (π, tag,msg)) toA and wait for a witness w from the adversary
A. Check if w is valid as follows:
– Parse w = (Pi, tag,msg) and check that T (Pi, tag) = 1
– If yes, store (π, tag,msg) in the list L and send (VERIFIED, sid, (π, tag,msg), 1) to P ′

If either of these checks are false, output (VERIFIED, sid, (π, tag,msg), 0) to P ′.

Fig. 26. Fanon-selection functionality of [9]

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 37

D Security Proof

D.1 Simulator

The simulator internally emulates the hybrid functionalities Finit,Fnizk,Fanon-selection and relays any com-
munication between A (on behalf of corrupted party) and the emulated functionality.

Simulation of Finit towards A

1. Upon receiving (claim, sid, Pi,PKi) from A, send (REGISTER, sid) on behalf of Pi to GPL.
2. The functionality updates the state of the blockchain by running Registration(T ∥PKi).

Simulation of Fnizk towards A

1. The simulator maintains a set of statement, witness and proof pairs for the relation RTRANSFER in
ΠTRANSFER and for the relation RKEYGEN in ΠKEYGEN.

2. Upon receiving a message (Prove, sid, x, w) from some corrupted Pi, check if (x,w) ∈ L. If not
respond with ⊥, else send (Prove, sid, x) to A and receive back (proof, sid, x, π). Record (π, x, w) ∈
ΠTRANSFER (or ΠKEYGEN) and return (proof, sid, x, π) to the corrupted party.

3. Upon receiving a message (verify, sid, x, π) from a corrupt party, check if (x, ∗, π) ∈ ΠTRANSFER (or
ΠKEYGEN). If yes, return (verify, sid, x, π, 1) to the corrupted party. If (x, ∗, π) /∈ ΠTRANSFER or ΠKEYGEN,
send (verify, sid, x, π) to A and receive back a reply R. If R = (witness, sid, x, π, w) and (x,w) ∈ L,
then update ΠTRANSFER = ΠTRANSFER∪(x,w, π) or ΠKEYGEN = ΠKEYGEN∪(x,w, π) depending on the relation
of the proof, and return (verify, sid, x, π, 1), else respond with (verify, sid, x, π, 0) to the corrupted
party.

Simulation of Fanon-selection towards A

1. Upon receiving (ELIGIBILITY-CHECK, (sl, ep)) from a corrupt party, sample a random r ∈ {0, 1}ℓ and
run Eligible(Pi, r, (sl, ep)) to get b ∈ {0, 1}. Return (ELIGIBILITY-CHECK, (sl, ep), b) to the corrupt
party. And store T (Pi, (sl, ep)) = 1

2. Upon receiving (CREATE-PROOF, sid, (sl, ep),msg), from a corrupt party Pi, check that
T (Pi, (sl, ep)) = 1 and if yes, forward the request to the adversary and receive Ψ . Record
(Ψ, (ep, sl),msg) and return (CREATE-PROOF, π, (ep, sl),msg) to the corrupt party.

3. Upon receiving (VERIFY, sid, π, (ep, sl),msg) from a corrupt party Pi, check if (π, (ep, sl),msg)
has been recorded, if yes return (VERIFIED, sid, (π, tag,msg), 1) to the party. Else send
(VERIFY, sid, π, (ep, sl),msg) to the adversary and receive back a witness w. Parse w =
(Pi, (sl, ep),msg) and check if T (Pi, (sl, ep)) = 1, If yes, record (π, (ep, sl),msg) and send
(VERIFIED, sid, (π, tag,msg), 1) to Pi, else send (VERIFIED, sid, (π, tag,msg), 0) to Pi.

Fig. 27. Simulation of hybrid functionalities towards the adversary

38 Varun Madathil and Alessandra Scafuro

Simulation of FN-MC The simulation is similar to that of Ouroboros Genesis [6]. We present below
the additional changes to the simulation.
1. Upon receiving (MULTICAST, (txi1 , Pi1), . . . , (txiℓ , Piℓ)) with list of transactions from A on behalf of

some corrupted Pi do the following:
SimulateAdvTransaction(tx)
If tx is a TRANSFER transaction:
(a) Parse tx as (CS,CR,CD,CC ,PRFOut, π)
(b) Check that (π, (CS,CR,CC,CD,PRFOut, rtTprivAccounts , ep), w) exists inΠTRANSFER as was recorded

by the simulation of Fnizk towards the adversary. If such an entry does not exist, abort with
ZKSoundnessFailure

(c) If there exists an honestly simulated transaction with PRFOut equal to the one parsed from
tx, abort with error PRFFailure

(d) Else parse w as (PKS ,SKS ,PKR, v, vS ,C, path). If (PKS ,C) /∈ TprivAccounts but
VerifyPath(rtTprivAccounts , path) = 1, abort with CRHFailure.

(e) Let SKS = (FHE.skS ,WKEnc.skS , skS , kS) and from ΠKEYGEN, find the record (π,PKS , w∗) and
let w = (FHE.skS ,WKEnc.skS , skS , k

∗
S). If k∗S ̸= kS , abort with error CommFailure.

(f) Set tx = (TRANSFER, (PKS ,PKR, x)) and send (SUBMIT, sid, tx) to GPL and receive back
(SUBMIT, (tx, txid, τL, PS)) from GPL. Record txid.

If tx is a MINT transaction:
(a) Parse tx as (tx′, σ) where tx′ = (v,PKi, rtTpubAccounts)
(b) If σ corresponds to that of an honest party abort with sigFailure.
(c) Else send (SUBMIT, sid, tx = (MINT, (PKi, x))) to GPL and receive back (SUBMIT, (tx, txid, τL, PS))

from GPL. Record txid.
2. Upon receiving (MULTICAST, sid, (Ci1 , Pi1), . . . , (Ciℓ , Piℓ))

(a) Let Cl be the longest chain out of Ci1 , . . . , Ciℓ
(b) Let tx1, . . . , txn be transactions /∈ C⌈l k.
(c) For each txi ∈ {tx1, . . . , txn}

i. Find recorded txid that corresponds to txi.
ii. If txid does not exist, run SimulateAdvTransaction(tx)

(d) Run EXTENDLEDGERSTATE(τ) as defined in [7]: which sends (NEXT-BLOCK, hFlagj , listj)
to GPL and receive (NEXT-BLOCK, ok) as an immediate response. Here listj is a list of txids that
are not in the state but in C⌈kl and hFlagj denotes if the corresponding blocks were proposed
by honest parties.

3. Upon receiving (NEW-PARTY, sid, Pi,PKi, πKEYGEN) from a corrupt party,
(a) Check if (π,PKi, w) exists in ΠKEYGEN as was recorded by the simulation of Fnizk towards the

adversary. If such an entry does not exist, abort with ZKSoundnessFailure.
(b) Else register with GPL on behalf of Pi and upon receiving a notification that a new party has

registered, send PKi.

Fig. 28. Simulation of network functionality towards A

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 39

Generating keys : Upon receiving registration request from the environment:
1. Generating keys:

– (FHE.pki,FHE.ski)← FHE.KeyGen(1λ)
– (WKEnc.pki,WKEnc.ski)← FHE.KeyGen(1λ)
– (ski, vki)← Sign.KeyGen(1λ)
– k ← PRF.KeyGen(1λ)

2. Encrypting WKEnc keys:
– k-cti ← {FHE.Enc(FHE.pki, 0)}λi=1

3. Committing to the PRF key:
– CPRF ← Com(0; r) where r ← {0, 1}λ

4. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF) and SKi = (FHE.ski,WKEnc.ski, ski, k)

Submitting honest transactions : Upon receiving (SUBMIT, tx) from the environment for honest trans-
actions:

1. If tx is of the form (TRANSFER∥tx′)
(a) Let (PK∗, SK∗)← KeyGeneration(λ)
(b) Set x = 0
(c) Use the clock to update τ, ep← ⌈τ/R⌉ and sl← τ
(d) Let Cloc be the chain upto the beginning of the epoch ep.
(e) Let (CS,CR,CD,CC, π,PRFOut) := Transfer(PK∗,PK∗, x, ep,R, Cloc)
(f) Sample y ← {0, 1}λ and replace PRFOut with y.
(g) Submit (MULTICAST, tx) to FN-MC

2. Else if tx is of the form (MINT, tx′)
(a) Parse tx′ as (pkS , x)
(b) Compute tx = Mint(v,PKi, SKi, rtTpubAccounts)
(c) Submit (MULTICAST, tx) to simulated FN-MC.

Simulating leader election : Upon receiving (MAINTAIN-LEDGER, sid), extract from ITH , the party Pi

that issued this query. If Pi has already completed the round task then ignore the request. Otherwise:

1. Let (ep, sl, ptr, h,B′) be as defined in LotteryProcedure executed by Pi.
2. Send (CREATE-PROOF, (ep, sl), B) to A and receive back π.
3. Set txlead = ((ep, sl), pt, h, π) and broadcast (txlead, B

′) to Fbc
N-MC.

Fig. 29. Simulating honest parties

Theorem 1.(restated)The protocol ΠPriFHEte UC realizes the GPL functionality in the (Gclock,
Fanon-selection,Finit,Fnizk,FN-MC)-hybrid world, assuming key-private CPA secure encryption, CPA se-
cure fully homomorphic encryption, secure pseudorandom functions, secure commitment schemes and
unforgeable signature scheme.

Proof. Proof by hybrids We prove security via a sequence of hybrids where we start from real world and
move to the ideal world. The properties of the blockchain such as consistency, chain quality, liveness
are handled by the ExtendPolicy algorithm. Since we do not modify this algorithm from the one defined
in Ouroboros Genesis [6], these properties are achieved by our protocols as well. We therefore only
consider the hybrids that correspond to the protocols on the transactional layer below:

– Hybrid0: The real world protocol.
– Hybrid1: This hybrid is the same as Hybrid0, except upon receiving a SUBMIT command, the zero

knowledge proofs π by simulated zero knowledge proofs in the Transfer algorithm. By the zero
knowledge property of the underlying NIZK scheme we have that the two hybrids are indistinguish-
able.

40 Varun Madathil and Alessandra Scafuro

Transfer(PKS ,SKS ,PKR, x, ep,R, Cloc) User Pi does:
1. . . .
9. Let x = {CS,CR,CD,CC,PRFOut, rtT }. Send (Prove, sid, x) to the A and receive π (just as in
Fnizk functionality).

10. Return tx = (CS,CR,CD,CC,PRFOut, π)

– Hybrid2: This hybrid is the same as Hybrid1, except that upon receiving a SUBMIT command
and PKR is honest, all ciphertexts CS,CR,CD,CC are replaced by encryptions to 0. By the CPA
security of the underlying encryption scheme the two hybrids are indistinguishable.

Transfer(PKS ,PKR, x, ep,R, Cloc) User Pi does:
1. . . .
4. Encrypt sender’s identity
• For i ∈ [λ], compute CS,i = WKEnc.Enc(WKEnc.pkS , bi), where bi = 0
• CS := (CS,1, . . . , CS,λ)

5. Encrypt receiver’s identity
• For i ∈ [λ], compute CR,i = WKEnc.Enc(WKEnc.pkR, bi), where bi = 0
• CR := (CR,1, . . . , CR,λ)

6. Encrypt credited value
• For i ∈ [λ], compute CD,i = WKEnc.Enc(WKEnc.pkR, bi), where bi = 0
• CD := (CD,1, . . . , CD,λ)

7. Encrypt debited value
• For i ∈ [λ], compute CC,i = WKEnc.Enc(WKEnc.pkS , bi), where bi = 0
• CC := (CC,1, . . . , CC,λ)

8. Compute PRF output:
• Compute (PRFOut)← PRF(k, ep)

9. Let x = {CS,CR,CD,CC,PRFOut, rtT }. Send (Prove, sid, x) to the A and receive π (just as in
Fnizk functionality).

10. Return tx = (CS,CR,CD,CC,PRFOut,π)

We prove in Lemma 1 that the two hybrids are indistinguishable.
– Hybrid3: This hybrid is the same as Hybrid2, except that upon receiving a SUBMIT command,

run (WKEnc.pk∗,WKEnc.sk∗)←WKEnc.KeyGen(1λ) and replace ciphertexts CS,CR,CD,CC with
encryptions under pk∗. By the key-privacy property of the underlying encryption scheme the two
hybrids are indistinguishable.

Transfer(PKS ,PKR, x, ep,R, Cloc) User Pi does:
1. Run (PK∗,SK∗)← KeyGeneration(λ)
2. Let PK∗ = (k-ct∗,FHE.pk∗,WKEnc.pk∗, vk∗,C∗

PRF)
3. Set WKEnc.pkS = WKEnc.pk∗ and WKEnc.pkR = WKEnc.pk∗

4. . . .
10. Return tx = (CS,CR,CD,CC,PRFOut,π)

We prove in Lemma 2 that the two hybrids are indistinguishable.
– Hybrid4: This hybrid is the same as Hybrid3, except that commitment to the PRF key k is replaced

by a commitment to 0. By the commitment property of the underlying commitment scheme, the
two hybrids are indistinguishable.
KeyGeneration(λ): User Pi does:
1. Key Generation: . . .
• (FHE.pki,FHE.ski)← FHE.KeyGen(1λ)
• (WKEnc.pki,WKEnc.ski)← FHE.KeyGen(1λ)
• (ski, vki)← Sign.KeyGen(1λ)
• k ← PRF.KeyGen(1λ)

2. Encrypting WKEnc keys:

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 41

• k-cti ← FHE.Enc(FHE.pki,WKEnc, ski[1]), . . . ,FHE.Enc(FHE.pki,WKEnc, ski[λ])
3. Commiting to the PRF key:
• CPRF ← Com(0; r) where r ← {0, 1}λ.

4. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF) and SKi = (FHE.ski,WKEnc.ski, ski, k)

We prove in Lemma 3 that the two hybrids are indistinguishable.
– Hybrid5: This hybrid is the same as Hybrid4, except that the upon receiving a SUBMIT command,

the PRFOut is replaced by a random value. By the psuedorandomness property of the underlying
PRF scheme, the two hybrids are indistinguishable.
Protocol SubmitXfer(tx, Cloc)
1. If tx = (TRANSFER, tx′)

(a) Let (PK∗,SK∗)← KeyGeneration(λ)
(b) Set x = 0
(c) Use the clock to update τ, ep← ⌈τ/R⌉ and sl← τ
(d) Let Cloc be the chain upto the beginning of the epoch ep.
(e) Let (CS,CR,CD,CC,PRFOut, π) := Transfer(PK∗,PK∗, x, ep,R, Cloc)
(f) Sample y ← {0, 1}λ and replace PRFOut with y.
(g) Submit (MULTICAST, tx) to FN-MC

2. Else if tx = (MINT, tx′) . . .

We prove in Lemma 4 that the two hybrids are indistinguishable.
– Hybrid6: This hybrid is the same as Hybrid5 except that the upon receiving a registration request,

replace k-cti with FHE.Enc(FHE.pki, 0) instead of encrypting WKEnc.ski. By the CPA security of
the underlying FHE scheme, the two hybrids are indistinguishable.
KeyGeneration(λ): User Pi does:
1. Key Generation: . . .
2. Encrypting WKEnc keys:
• k-cti ← FHE.Enc(FHE.pki, 0), . . . ,FHE.Enc(FHE.pki, 0)

3. Committing to PRF key: . . .
4. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF) and SKi = (FHE.ski,WKEnc.ski, ski, k)

We prove in Lemma 5 that the two hybrids are indistinguishable.
– Hybrid7: This hybrid is the same as Hybrid6 except that the simulator may now abort with

sigFailure. Since we use unforgeable signatures the simulator aborts with negligible probability and
therefore the two hybrids are indistinguishable.
If tx is a MINT transaction:
1. Parse tx as (tx′, σ) where tx′ = (v,PKi, rtTpubAccounts

)
2. If σ corresponds to that of an honest party abort with sigFailure.
3. . . .
We prove in Lemma 6 that the two hybrids are indistinguishable.

– Hybrid8: This hybrid is the same as Hybrid7 except that the simulator may now abort with
ZKSoundnessFailure. By the soundness property of the underlying zero knowledge scheme, this
occurs with negligible probability.
If tx is a TRANSFER transaction:
1. Parse tx as CS,CR,CD,CC ,PRFOut, π
2. Check that (π, (CS,CR,CC,CD,CPRF, rtTprivAccounts

, ep), w) exists in Π as was recorded by the sim-
ulation of Fnizk towards the adversary. If such an entry does not exist, abort with ZKSoundnessFailure

3. . . .
This event occurs with negligible probability since we use the Fnizk ideal functionality to compute
zero knowledge proofs.

– Hybrid9: This hybrid is the same as Hybrid8 except that the simulator may now abort with
CRHFailure. Since we use collision-resistant hash functions, this event occurs with negligible prob-
ability.
If tx is a TRANSFER transaction:

42 Varun Madathil and Alessandra Scafuro

1. Parse tx as CS,CR,CD,CC ,PRFOut, π
2. . . .
3. Else parse w as (PKS ,SKS ,PKR, v, vS ,C, path). If (PKS ,C) /∈ TprivAccounts but VerifyPath(rtTprivAccounts

, path) =
1, abort with CRHFailure.

We prove in Lemma 7 that the two hybrids are indistinguishable.
– Hybrid10: This hybrid is the same as Hybrid9, except that the simulator may now abort with

CommFailure. Since we use statistically-binding commitments, this event occurs with negligible
probability.
If tx is a TRANSFER transaction:
1. Parse tx as CS,CR,CD,CC ,PRFOut, π
2. . . .
3. Let SKS = (FHE.skS ,WKEnc.skS , skS , kS) and from ΠKEYGEN, find the record (π,PKS , w∗) and let

w = (FHE.skS ,WKEnc.skS , skS , k
∗
S). If k∗S ̸= kS , abort with error CommFailure.

We prove in Lemma 8 that the two hybrids are indistinguishable.
– Hybrid11: This hybrid is the same as Hybrid10 except that the simulator may now abort with

PRFFailure. Since we use PRF with the property of unpredictability malicious key generation, this
occurs with negligible probability.

Finally this hybrid is the same as the ideal world, and therefore the real world and the ideal world
are indistinguishable.

Lemma 1. By the CPA security over multiple encryptions[29] of the underlying encryption scheme
WKEnc, Hybrid1 and Hybrid2 are indistinguishable to a PPT adversary.

Proof. The difference between Hybrid1 and Hybrid2 is that the simulator replaces the encryptions
CS,CR,CD,CC with encryptions of 0.

Assume a distinguisher D can distinguish between Hybrid1 and Hybrid2, i,e. Pr[D(Hybrid1) =
1]− Pr[D(Hybrid2) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.
Reduction B:

1. Activate the distinguisher D
2. The reduction simulates the protocol ΠPriFHEte as in Hybrid1.
3. Send m0 = (PK1,PK2, x, x) and m1 = (0, 0, 0, 0) to the challenger and receive C1,C2,C3,C4

4. Instruct the environment to submit a transaction (PK1,PK2, x), and replace the ciphertexts in the
transfer transaction with C1,C2,C3,C4.

5. Submit tx to FN-MC.
6. Output whatever D outputs.

Note that in the case CS,CR,CD,CC was the encryption of m0 the distinguisher sees the hybrid
world - Hybrid1 and on the other hand when encryption of m1 is returned the distinguisher sees the
hybrid world Hybrid2.

Now since Pr[D(Hybrid1) = 1] − Pr[D(Hybrid2) = 1] > negl, we have that AdvCPA > negl
which is a contradiction since we assume CPA secure encryption over multiple encryptions. This
implies Pr[D(Hybrid1) = 1]− Pr[D(Hybrid2) = 1] = negl.

Lemma 2. By the key-privacy property (Def 2) of the underlying encryption scheme, the hybrids
Hybrid2 and Hybrid3 are indistinguishable.

Proof. The difference between Hybrid2 and Hybrid3 is that the simulator replaces the encryptions
CS,CR,CD,CC with encryptions under a freshly generated key WKEnc.pk∗ where (WKEnc.pk∗,WKEnc.sk∗) =
WKEnc.KeyGen(λ).

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 43

Assume a distinguisher D can distinguish between Hybrid2 and Hybrid3, i,e. Pr[D(Hybrid2) =
1]− Pr[D(Hybrid3) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the IK-CPA security of
encryption scheme.
Reduction B:

1. Activate the distinguisher D
2. Receive two public keys pk0, pk1 from the challenger.
3. The reduction simulates the protocol ΠPriFHEte as in Hybrid2, such that WKEnc.pki of a party Pi

is replaced with pk0
4. Send WKEnc.pkR,WKEnc.pkS , v, v to the challenger and receive C1,C2,C3,C4.
5. Instruct the environment to submit a transaction (PK1,PK2, x), and replace the ciphertexts in the

transfer transaction with C1,C2,C3,C4.
6. Submit tx to FN-MC.
7. Output whatever D outputs.

Note that in the case CS,CR,CD,CC was encrypted under pk0 the distinguisher sees the hybrid
world - Hybrid2 and on the other hand when encryptions are under pk0 the distinguisher sees the
hybrid world Hybrid3.

Now since Pr[D(Hybrid2) = 1] − Pr[D(Hybrid3) = 1] > negl, we have that AdvIK-CPA > negl
which is a contradiction since we assume IK-CPA secure encryption over multiple encryptions. This
implies Pr[D(Hybrid2) = 1]− Pr[D(Hybrid3) = 1] = negl.

Lemma 3. By the hiding property of the underlying commitment scheme, Hybrid3 and Hybrid4

are indistinguishable to a PPT adversary.

Proof. The difference between Hybrid3 and Hybrid4 is that the simulator replaces the commitment
to the PRF key with a commitment to 0.

Assume a distinguisher D can distinguish between Hybrid3 and Hybrid4, i,e. Pr[D(Hybrid3) =
1]− Pr[D(Hybrid4) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the hiding property of the
commitment scheme.
Reduction B:

1. Activate the distinguisher D
2. The reduction simulates the protocol ΠPriFHEte as in Hybrid3.
3. Let PKi be the public key of an honest party Pi

4. Send m0 = k and m1 = 0 to the challenger and receive C
5. Replace the CPRF in PKi with C for party Pi

6. Instruct the environment to submit a transaction (NEW-PARTY,PKi)
7. Submit tx to FN-MC.
8. Output whatever D outputs.

Note that in the case C was the encryption of m0 the distinguisher sees the hybrid world - Hybrid3

and on the other hand when encryption of m1 is returned the distinguisher sees the hybrid world
Hybrid4.

Now since Pr[D(Hybrid3) = 1] − Pr[D(Hybrid4) = 1] > negl, we have that AdvCommHiding >
negl which is a contradiction since we assume a secure commitment scheme. This implies Pr[D(Hybrid3) =
1]− Pr[D(Hybrid4) = 1] = negl.

Lemma 4. By the pseudorandomness property of the underying PRF scheme, the hybrids Hybrid4

and Hybrid5 are indistinguishable.

44 Varun Madathil and Alessandra Scafuro

Proof. The difference between Hybrid4 and Hybrid5 is that the simulator replaces the PRFOut with
a randomly sampled y ← {0, 1}ℓ

Assume a distinguisher D can distinguish between Hybrid4 and Hybrid5, i,e. Pr[D(Hybrid4) =
1]− Pr[D(Hybrid5) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the pseudorandomness
property of the underlying PRF scheme.
Reduction B:

1. Activate the distinguisher D
2. The reduction simulates the protocol ΠPriFHEte as in Hybrid4

3. Send ep the current epoch number to the challenger and receive y.
4. Instruct the environment to submit a transaction (PK1,PK2, x), and replace the PRFOut in the

transfer transaction with y.
5. Submit tx to FN-MC.
6. Output whatever D outputs.

Note that in the case PRFOut was computed using PRF(k, ·) the distinguisher sees the hybrid world
- Hybrid4 and on the other hand when PRF output is a random y ← {0, 1}ℓ the distinguisher sees
the hybrid world Hybrid5.

Now since Pr[D(Hybrid4) = 1] − Pr[D(Hybrid5) = 1] > negl, we have that advantage of the
adversary winning the PRF pseudorandomness game which is a contradiction since we assume secure
PRFs. This implies Pr[D(Hybrid4) = 1]− Pr[D(Hybrid5) = 1] = negl.

Lemma 5. By the CPA security over multiple encryptions[29] of the underlying encryption scheme
FHE, Hybrid5 and Hybrid6 are indistinguishable to a PPT adversary.

Proof. The difference between Hybrid5 and Hybrid6 is that the simulator replaces the encryptions
k-ct with encryptions of 0.

Assume a distinguisher D can distinguish between Hybrid5 and Hybrid6, i,e. Pr[D(Hybrid5) =
1]− Pr[D(Hybrid6) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.
Reduction B:

1. Activate the distinguisher D
2. The reduction simulates the protocol ΠPriFHEte as in Hybrid5.
3. Let PKi be the public key of an honest party Pi

4. Send m0 = WKEnc.ski and m1 = 0 to the challenger and receive c
5. Replace the k-cti with c for party Pi

6. Instruct the environment to submit a transaction (PKi,PKj , x) where Pj is another party.
7. Submit tx to FN-MC.
8. Output whatever D outputs.

Note that in the case k-cti was the encryption of m0 the distinguisher sees the hybrid world -
Hybrid5 and on the other hand when encryption of m1 is returned the distinguisher sees the hybrid
world Hybrid6.

Now since Pr[D(Hybrid5) = 1] − Pr[D(Hybrid6) = 1] > negl, we have that AdvCPA > negl
which is a contradiction since we assume CPA secure encryption over multiple encryptions. This
implies Pr[D(Hybrid5) = 1]− Pr[D(Hybrid6) = 1] = negl.

Lemma 6. Assuming existential unforgeable signatures that are secure against chosen message at-
tacks, Hybrid6 and Hybrid7 are indistinguishable.

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 45

Proof. Note that the difference between Hybrid6 and Hybrid7 is that in Hybrid6 the event sigFailure1
can occur. We prove in this section that the probability of this event occurring is negligible.

First we observe that sigFailure occurs when the simulator receives a MINT transaction from the
adversary that contains a signature that corresponds to that of an honest party.

Assume a distinguisher D can distinguish between Hybrid6 and Hybrid7, i,e. Pr[D(Hybrid6) =
1]− Pr[D(Hybrid7) = 1] > negl

This implies that Pr[sigFailure] > negl.
Using this adversary we present a reduction B that breaks the EUF-CMA property of signature

schemes.
Reduction B

1. Receive vk from the challenger. Update PKi of an honest party Pi with vk.
2. Simulate the world as in Hybrid6.
3. Upon receiving a MINT transaction via the FN-MC functionality, check if the signature σ′ corresponds

to that of vk. If not, ignore.
4. If yes, output m = (PKi, x, rtTpubAccounts

) and σ = σ′

Observe that

Adveuf−cma
Σ,A = Pr[Expeuf−cma

Σ,A (λ) = 1]

= Pr[Σ.Verify(vk,mσ) = 1] > negl

But this is a contradiction since we assume EUF-CMA signatures and therefore Adveuf−cma
Σ,A < negl

Hence Pr[sigFailure] < negl and therefore Pr[D(Hybrid6) = 1]− Pr[D(Hybrid7) = 1] < negl

Lemma 7. Assuming collision-resistant hash functions, Hybrid8 and Hybrid9 are indistinguishable
to a PPT adversary

Proof. Note that the difference between Hybrid8 and Hybrid9 is that in Hybrid8 the event CRHFailure1
can occur. We prove in this section that the probability of this event occurring is negligible.

First we observe that CRHFailure occurs when the simulator receives a TRANSFER transaction from
the adversary that contains a path that does not correspond to a path from an account and balance
in TprivAccounts owned by the sender to the root of the Merkle tree computed over TprivAccounts

Assume a distinguisher D can distinguish between Hybrid8 and Hybrid9, i,e. Pr[D(Hybrid8) =
1]− Pr[D(Hybrid9) = 1] > negl

This implies that Pr[CRHFailure] > negl.
Using this adversary we present a reduction B that breaks the collision resistance property of the

underlying hash scheme.
Reduction B

1. Simulate the world as in Hybrid8.
2. Upon receiving a TRANSFER transaction via the FN-MC functionality, get the witness w that corre-

sponds to the proof π in the transaction.
3. Let path∗ be the path in the Merkle tree (computed over TprivAccounts) from (PKA, vA) to the root

of the Merkle root rtprivAccounts.
4. Let w = PKS ,SKS ,PKR, v, vS ,C, path) and VerifyPath(rtTprivAccounts

, path) = 1
5. If (PKS , vS) does not correspond to the adversary’s entry in TprivAccounts, output (m0 = path,m1 =

path∗)

Observe that

AdvCRHFH,A = Pr[∃m0,m1 s.t. H(m0) = H(m)1))] > negl

But this is a contradiction since we assume collision-resistant hash functions and therefore AdvCRHFH,A <
negl

Hence Pr[CRHFailure] < negl and therefore Pr[D(Hybrid8) = 1]− Pr[D(Hybrid9) = 1] < negl

46 Varun Madathil and Alessandra Scafuro

Lemma 8. Assuming statistically binding commitments, the hybrids Hybrid9 and Hybrid10 are
indistinguishable.

Proof. Note that the difference between Hybrid9 and Hybrid10 is that in Hybrid9 the event
CommFailure can occur. We prove in this section that the probability of this event occurring is negli-
gible.

First we observe that CommFailure occurs when the simulator receives a TRANSFER transaction
from the adversary and the PRF key in the extracted witness from this transaction is not the same
as the PRF key that was committed to.

Assume a distinguisher D can distinguish between Hybrid9 and Hybrid10, i,e. Pr[D(Hybrid9) =
1]− Pr[D(Hybrid10) = 1] > negl

This implies that Pr[CommFailure] > negl.
Using this adversary we present a reduction B that breaks the binding property of the underlying

commitment scheme.
Reduction B

1. Simulate the world as in Hybrid9.
2. Upon receiving a TRANSFER transaction via the FN-MC functionality, get the witness w that corre-

sponds to the proof π in the transaction.
3. Retrieve kS from w.
4. From ΠKeyGen, retrieve the record for skS read kS∗
5. If kS ̸= k∗S output (m0 = path,m1 = path∗) and CPRF.

Observe that

AdvComA = Pr[∃m0,m1 s.t. Open(CPRF) = kS = k∗S] > negl

But this is a contradiction since we assume collision-resistant hash functions and therefore AdvComA <
negl

Hence Pr[CommFailure] < negl and therefore Pr[D(Hybrid9) = 1]−Pr[D(Hybrid10) = 1] < negl

E Regev Cryptosystem and Wrong-Key Decryption

The Regev cryptosystem is parameterized by integers n (the security parameter), m (number of
equations), and a real α > 0 (noise parameter). All operations are done modulo q (a prime)

– Setup: Choose a prime q ←$ [n2, 2n2], m = 1.1 · n log q and α = 1/(
√
n log2 n)

– Key Generation: Private key is a vector s ← Zn
q and the public key consists of m samples

(ai, bi)
m
i=1 from the LWE distribution with secret s, modulus q and error parameter α. That is,

ai ←$ Zn
q and bi = sTai + ei where ei is error sampled from error distribution χ for i ∈ [m]

– Encryption: For each bit of the message do the following. Choose a random set S uniformly among
all 2m subsets of [m]. The encryption is (

∑
i∈S ai,

∑
i∈S bi) if the bit is 0 and (

∑
i∈S ai, ⌊ q2⌋+

∑
i∈S bi)

if the bit is 1.
– Decryption: The decryption of a pair (a, b) is 0 if b− ⟨a, s⟩ is closer to 0 than to ⌊ q2⌋ mod q, and

1 otherwise.

Lemma 9. Regev’s encryption scheme described above satisfies the property of wrong-key decryption
(Def 3).

Proof. Let (sk, pk) be (s∗, (a∗i , b
∗
i)

m
i=1) and let (sk′, pk′) be (s†, (a†i , b

†
i)

m
i=1)

Now,
ct←WKEnc.Enc(pk, 1)

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 47

=⇒ ct = (
∑
i∈S

a∗i ,
⌊q
2

⌋
+
∑
i∈S

b∗i)

Furthermore let ct = (a, b) then,

m′ = WKEnc.Dec(sk′, ct)

=⇒ m′ = b− ⟨a, s†⟩ mod q

=⇒ m′ =
(⌊q

2

⌋
+
∑
i∈S

b∗i

)
−
(∑

i∈S

a∗i,1s
†
1 + . . .+

∑
i∈S

a∗i,ns
†
n

)
mod q

=⇒ m′ =
(⌊q

2

⌋
+
∑
i∈S

a∗i,1s
∗
1 + e1 . . .+

∑
i∈S

a∗i,ns
∗
n + en −

∑
i∈S

a∗i,1s
†
1 + . . .+

∑
i∈S

a∗i,ns
†
n

)
mod q

=⇒ m′ =
(⌊q

2

⌋
+ (s∗1 − s†1)

∑
i∈S

a∗i,1 . . .+ (s∗n − s†n)
∑
i∈S

a∗i,n + (e1 + . . .+ en)
)

mod q

Since a∗i , ei and s are all sampled randomly:

m′ = uniformly random element in Zq

Thus,

m′ >
q

2
with probability

1

2

Therefore

Pr[m′ = 1] ≤ 1/2 + negl(λ)

F Full adder and subtracter

Let a = {a1, . . . , aµ} and b = {b1, . . . , bµ} be two vectors where each ai, bi ∈ {0, 1}. We present a full
adder below that computes c = a+ b.

FullAdder(a,b)

1. Set cin = 0
2. For i ∈ [µ] :

(a) Compute ci = cin⊕ ai ⊕ bi
(b) Compute cin = aibi ⊕ bicin⊕ aicin

3. Return (cin, c1, . . . , cµ)

Fig. 30. Full Adder

Below we describe a full subtracter that computes c = a− b

48 Varun Madathil and Alessandra Scafuro

FullSubtracter(a,b)

1. Set cin = 0
2. For i ∈ [µ] :

(a) Compute ci = cin⊕ ai ⊕ bi
(b) Compute cin = (¬ai)bi ⊕ bicin⊕ (¬ai)cin

3. Return (cin, c1, . . . , cµ)

Fig. 31. Full Adder

G Potential for Deployment

As discussed in the introduction, the PriFHEte algorithms can be deployed as smart contracts. In
this section, we discuss how our algorithms can be deployed on Ethereum. Next we discuss how we
can alleviate the computation of miners by deploying PriFHEte as zk-rollups[21] which are a new
scalability solution for Ethereum.

G.1 Background on Ethereum and Smart Contracts

Accounts. Ethereum is an account-based cryptocurrency. There are two types of accounts in Ethereum
- Externally Owned Accounts (EOA) and Contract Accounts. An EOA is associated with signature
public key/private key pair and anyone who knows the private key can control the account. On the
other hand, a Contract Account is controlled by the code of the smart contract. Now what is a smart
contract? It’s a collection of code (its functions) and data (its state) that resides at a specific address
on the Ethereum blockchain. This address is simply the hash of the public key of the creator of the
smart contract.

State of the blockchain. In Ethereum the state is a data structure called a modified Merkle Patricia
tree, where the leaves of this tree are the accounts (both EOA and contract accounts). Each leaf is
an address, data pair. The data for EOA accounts includes the balance associated to the address, and
the data field of contract accounts include the code and the state of the contract.

Transactions. In Ethereum, there are three types of transactions.

1. A regular transaction, that transfers funds from one EOA to another EOA.
2. A contract deployment transaction, which deploys a smart contract on Ethereum. This transaction

includes the code of the smart contract, and the address of the smart contract.
3. A contract execution transaction, which is addressed to one of the deployed smart contracts. This

transaction may include inputs to the functions of the smart contract that are to be executed.
Upon receiving this transaction, a miner executes the smart contract and updates the state of the
smart contract and therefore the state of Ethereum.

G.2 PriFHEte as a smart contract

To describe the deployment of PriFHEte, we need to specify three different aspects: the setup, de-
scription of the smart contract, and the user algorithms. We will show how the algorithms described
in Section 4 can be cast as smart contract functions and user algorithms.
The setup In the setup phase, public parameters such as the CRS are generated. Some entity, will
also submit a Contract Deployment Transaction with the code for the PriFHEte smart contract. A
miner updates the state by adding a smart contract account. The state of this account includes an
empty table that will maintain account/encrypted balance pairs.

PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible 49

The smart contract. The smart contract has two functions: Registration(PK, T) → T ′ and
ProcessTransaction(tx, T)→ T ′

Observe that the two functions take as input the state T and output an updated state T ′. This
is the internal state of the smart contract which is simply a table of account-encrypted balance pairs.
The Registration function appends a new row with PK and an encryption to 0 under FHE.pk to
the T . Similarly ProcessTransaction processes a transaction as discussed in Figure 8 and updates
all rows of the state.
User Algorithms A user runs one of the following algorithms to interact with PriFHEte smart
contract.

The output of these algorithms are contract execution transactions, which are addressed to the
PriFHEte smart contract.

1. KeyGeneration(λ)→ (PK,SK). With this transaction the user registers with the smart contract
and joins the PriFHEte system. This transaction invokes the Registration function of the smart
contract.

2. Mint(PKi,PK
pub
i ,SKpub

i , x, rtTpubAccounts
)→ (txMINT, σ). With this transaction the user invokes a func-

tion that transfers funds from the main chain to the the PriFHEte smart contract. This transaction
invokes the ProcessTransaction function of the smart contract.

3. Transfer(PKS ,SKS ,PKR, x, ep,R, CSloc, pathi,Ci)→ txTRANSFER. With this transaction the user in-
vokes a function that transfers funds from one account to another maintained by the PriFHEte
smart contract. This transaction invokes the ProcessTransaction function of the smart con-
tract.

G.3 Alleviating storage and computation costs for the miners

As discussed in the introduction, we envision zk-rollups[21] to aid the storage and computation costs of
the miners. Below we first describe how rollups work and then briefly describe how the PriFHEte algo-
rithms could be deployed as a rollup. We observe that this is the same approach taken by AZTEC[48]
to achieve privacy. The main difference between their work and ours is that they do a UTXO-style
transactions on top of Ethereum, whereas we dont depart from the account-based paradigm. They use
stealth address to achieve anonymity. This doesnt give full anonymity, since the sender of a transaction
can always trace how the receiver is going to spend the coin.

Zero Knowledge (ZK) Rollups: There are three entities in a rollup protocol. The users, the
miners and rollup operators. Rollup operators execute transactions off-chain. This reduces the amount
of computation and the storage that miners need to do. These operators submit a summary of changes
as well as validity proofs to prove correctness of the summary of changes. A miner can verify this
validity proof to be convinced that the received state is a result of the execution of all the transactions
in a batch.

The rollup architecture is comprised of two components:

– On-chain contract: this contract includes code to keep track of the updated state (which is a succinct
representaion of the total state) and also code to verify validity proofs

– Off-chain computation: this is done by rollup operators that maintain the entire state, execute the
transactions, compute validity proofs and compute succinct representations of the updated state.

PriFHEte as a rollup Users submit their transactions to the rollup operators. The rollups
execute these transactions in batches and update the maintained state. The operators then submit
a succinct representation of the state, along with validity proofs and the transactions to the main
chain network. A miner verifies the validity proofs by executing the verifier function of the rollup
smart contract. They then update the smart contract state with the received succinct representation
of state.

We note that while we do not need to trust a rollup operator for privacy, we trust that they will
include transactions of users.

50 Varun Madathil and Alessandra Scafuro

Finally, we note using rollups help with gas fees because there is a fixed cost to writing to
Ethereum’s state. Without rollups each transaction would update O(N) data entries of the state
whereas with rollups one needs to update only a single data entry for multiple transactions. Therefore
a rollup reduces this fixed cost by spreading the it across many users.

	PriFHEte: Achieving Full-Privacy in Account-based Cryptocurrencies is Possible

