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Abstract. In two-message authenticated key exchange (AKE), it is nec-
essary for the initiator to keep a round state after sending the first round-
message, because he/she has to derive his/her session key after receiving
the second round-message. Up to now almost all two-message AKEs con-
structed from public-key encryption (PKE) only achieve weak security
which does not allow the adversary obtaining the round state. How to
support state reveal to obtain a better security called IND-AA security
has been an open problem proposed by Hövelmann et al. (PKC 2020).

In this paper, we solve the open problem with a generic construc-
tion of two-message AKE from any CCA-secure Tagged Key Encapsula-
tion Mechanism (TKEM). Our AKE supports state reveal and achieves
IND-AA security. Given the fact that CCA-secure public-key encryption
(PKE) implies CCA-secure TKEM, our AKE can be constructed from
any CCA-secure PKE with proper message space. The abundant choices
for CCA-secure PKE schemes lead to many IND-AA secure AKE schemes
in the standard model. Moreover, following the online-extractability tech-
nique in recent work by Don et al. (Eurocrypt 2022), we can extend
the Fujisaki-Okamoto transformation to transform any CPA-secure PKE
into a CCA-secure Tagged KEM in the QROM model. Therefore, we ob-
tain the first generic construction of IND-AA secure two-message AKE
from CPA-secure PKE in the QROM model. This construction does not
need any signature scheme, and this result is especially helpful in the
post-quantum world, since the current quantum-secure PKE schemes
are much more efficient than their signature counterparts.
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1 Introduction

Authenticated Key Exchange (AKE) is an important technical tool of establish-
ing a secure channel for two communication parties, and is widely deployed in a
variety of information systems for security. Running with an AKE protocol, two
parties can compute a shared session key which is used for the later communi-
cations. The security of AKE requires pseudo-randomness of the session key in
case of passive attacks and (implicit or explicit) authentication in case of active
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Party Pi(pki, ski): Party Pj(pkj , skj):

(M1, st)← Init(ski, pkj)yst
Ki ← Derinit(ski, pkj ,M2, st)

M1−−−−−−−−→

M2←−−−−−−−− (M2,Kj)← Derresp(skj , pki,M1)

Fig. 1: Two-message AKE protocol.

attacks. AKE is a well-studied topic and many generic AKE constructions are
available up to now [20,11,10,13]. Generally, AKE relies on public-key primitives
for security and its building blocks include public-key encryption (PKE), digital
signature (SIG) and key encapsulation mechanism (KEM).

Security Models for AKE. Bellare and Rogaway [4] introduced the original
security model, which was later developed to several different models, like CK
model, eCK model, CK+ model, etc. Lately, Hövelmanns et al. [11] proposed
the so-called IND-AA/IND-StAA models for two-message AKEs. IND-AA model
captures not only the classical security requirement of pseudo-randomness for
session keys, but also security against key compromise (KCI) attack, reflection
attack, state reveal attack, and weak forward security. IND-StAA model is sim-
ilar to but weaker than IND-AA model, since it does not consider state reveal
attack. As pointed by [11,6], IND-AA model is strictly stronger than the CK
model, but incomparable to eCK model.

AKE from PKE. There are two essential factors affecting the efficiency of
AKE. One is the number of rounds and the other is the efficiency of its build-
ing blocks. Clearly the optimal round number is 2 for AKE, so two-message
AKE has optimal round efficiency. Among the public key primitives, SIG is
often used to achieve authentication for AKE. However, generally SIG is not
as efficient as PKE, and this is especially true for PKE/SIG schemes with se-
curity against quantum computers. For example, in the NIST post-quantum
competition, CRYSTALS-Dilithium (SIG) has key size two times larger than
CRYSTALS-Kyber (KEM), its signature size is three times larger than the ci-
phertext size of CRYSTALS-Kyber (KEM), and its signing time is 10 times
slower than the encapsulation algorithm of CRYSTALS-Kyber. This motivates
the research [11,12,18] on designing AKE solely from PKE. The AKE schemes
proposed in [12,18] are constructed from KEM, but have at least three rounds.

The question of designing two-message AKE from PKE was partially solved
by Hövelmanns et al.[11]. Recall that a two-message AKE protocol for parties
Pi and Pj is captured by three PPT algorithms as shown in Fig. 1. Let (pki, ski)
(resp.(pkj , skj)) be the public/secret key pairs for Pi (resp.Pj).

(1) Init(ski, pkj). Initiator Pi invokes Init(ski, pkj) to generate the first-round
message M1 and a round state st.

(2) Derresp(skj , pki,M1). After receiving M1, responder Pj invokes Derresp(skj , pki,
M1) to generate the second-round message M2 and the session key Kj .
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(3) Derinit(ski, pkj ,M2, st). Upon receiving M2, Pi invokes Derinit(ski, pkj ,M2, st)
to generate its session key Ki.

Compared with IND-StAA security, IND-AA security allows the adversary to
implement a so-called “state reveal attack”, which is an active attack with ini-
tiator Pi’s state sti. So IND-AA security is strictly stronger than IND-StAA
security. In [11], Hövelmanns et al. presented a generic construction of two-
message AKE from passively (i.e., CPA) secure PKE in the quantum random
oracle model (QROM). However, their AKE construction only achieves weak
IND-StAA security, so they left an open problem (section 1.1.5 in [11]):

How to design a generic and efficient two-message
AKE protocol with IND-AA security?

Our Contribution. We solve the open problem in this paper. Our contribution
has two folds.

1. We propose a generic construction of IND-AA secure two-message AKE from
CCA-secure Tagged-KEM [1], CPA-secure PKE, target collision resistant
(TCR) hash function, and pseudo-random function (PRF). The IND-AA
security of AKE is proven in the standard model.
• The existence of one-way function implies PRF and TCR-Hash function,

and CCA-secure Tagged-KEM can be constructed by CCA-secure PKE.
So our AKE can essentially be constructed from CCA-secure PKE.

• Given many choices for the standard-model instantiations of the building
blocks, we obtain the first generic two-message AKE schemes from PKE
with IND-AA security in the standard model.

2. Following the online-extractability technique in [7], we extend the Fujisaki-
Okamoto transformation to transform any passively (i.e., CPA) secure PKE
into a CCA-secure Tagged KEM in the QROM model. As a result, we obtain
the first generic construction of two-message AKE from passively secure PKE
with IND-AA security proven in the QROM model.

Comparison. We compare our two AKE constructions, AKE1 in standard model
and AKE2 in the QROM model, with other AKEs constructed from PKE. Com-
paring the FSXY scheme [8] in the standard model, our AKE1 has similar effi-
ciency as FSXY, but shorter secret key and better security of IND-AA. Compar-
ing the AKEFO scheme [11] in the QROM model, our AKE2 has similar efficiency
as AKEFO, but enjoys shorter secret key and better security of IND-AA.
Technique Overview. First we review some security requirements for AKE.
Plain security means pseudo-randomness of session key but the adversary A is
neither allowed to corrupt users’ secret key nor reveal the initiator’s round state.
Weak forward security (wFS) asks pseudo-randomness of session key in case of
passive attacks but A may corrupt secret keys of both initiator and responder
(in this case A cannot reveal the initiator’s round state to avoid trivial attack).
State-reveal security requires that A is not able to implement successful active
attack to learn party’s session key even if it obtains the initiator’s round state.
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Table 1: Comparison of our AKE1 (in the standard model) and AKE2 (in
QROM) with AKEs constructed from PKE/KEM. Comm denotes the com-
munication overhead of the protocols, where “ |C|” and “|pk|” denote the size of
ciphertext and public key of IND-CCA secure KEM. “ |c|” denotes the size of
ciphertext of IND-CPA secure PKE/KEM. "λ" denotes the security parameter.
(|c|+ |C|) (w.r.t. (|c|+ |c|)) in AKE1 (w.r.t. AKE2) denotes the size of ciphertext
of IND-CPA secure PKE, because the ciphertext is an (KEM + DEM) encryp-
tion of the ciphertext of IND-CCA (w.r.t. IND-CPA) secure KEM. CompI and
CompR denote the computational complexity of initiator and responder. “E”
and “D” denote one encapsulation and one decapsulation of an IND-CCA secure
KEM, and “e” and “d” denote one encapsulation and one decapsulation of IND-
CPA secure KEM. KeySize denotes the size of long-term secret key per user.
“|skcca|, |skcpa|, |skprf |, |skse|” denote the secret key sizes of IND-CCA secure KEM,
IND-CPA secure PKE/KEM, PRF and symmetric encryption, respectively.
AKE schemes Comm CompI CompR KeySize Security Model
FSXY[8] |pk|+ 2|C|+ |c| E+ D+ d E+ D+ e |skcca|+ |skprf | IND-stAA Standard
Our AKE1 |pk|+ |C|+ (|c|+ |C|) + λ E+ D+ d E+ D+ e |skcca| IND-AA Standard
JKRS[13] |pk|+ 2|C|+ |c| E+ D+ d E+ D+ e |skcca|+ |skse| IND-AA ROM
AKEFO[11] |pk|+ 3|c| 2e+ 2d 3e+ d |skcpa|+ |skprf | IND-stAA QROM
Our AKE2 |pk|+ |c|+ (|c|+ |c|) + λ 2e+ 2d 3e+ d |skcpa| IND-AA QROM

Party Pi(pki, ski): Party Pj(pkj , skj):
m1 ←$ M, c1 ← Enc(pkj ,m1)

(p̃k, s̃k)← Genyst = (m1, s̃k )
m2 ← Dec(ski, c2)

m̃← Dec(s̃k, c̃)

Ki := H(m1|m2|M1|M2| m̃ )

M1 = ( p̃k , c1)
−−−−−−−−−−−−−−−−−−→

M2 = ( c̃ , c2)
←−−−−−−−−−−−−−−−−−

m1 ← Dec(skj , c1)
m2 ←$ M, c2 ← Enc(pki,m2)

m̃ ←$ M, c̃← Enc(p̃k, c̃)

Kj := H(m1|m2|M1|M2| m̃ )

Fig. 2: Plain AKE (without gray box) and AKEFO[11] (with gray box).

We start with a plain construction of AKE which has plain security but has
neither forward security nor state-reveal security. Then we show why the AKEFO

scheme in [11] achieves wFS security but suffers from state-reveal attack. Lastly,
we describe how to design our AKE to resist the state-reveal attack while keeping
the wFS security, so that IND-AA security is achieved.
Plain AKE. Let PKE = (Gen,Enc,Dec) be a public key encryption scheme.
There is a plain construction of AKE. Pi and Pj just use its peer’s public key
to encrypt a random message. Let c1 ← Enc(pkj ,m1) and c2 ← Enc(pki,m2).
Pi has state sti := m1. After exchanging the ciphertexts c1 and c2, they can
decrypt the ciphertexts to recover m1 and m2 respectively. The final session key
is computed by Ki = Kj = H(m1|m2|c1|c2). See Fig. 2.

– Without the knowledge of ski and skj , the session key H(m1|m2|c1|c2) is
pseudo-random (assuming by now H is a random oracle). Therefore, this
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Party Pi(pki, ski) Party Pj(pkj , skj)

m11,m12 ←$ M,σ := H(m12)
c1 ← Enc(pkj ,m11|m12|i)
(p̃k, s̃k)← Genyst = (m11, s̃k, σ)

c2 ← Dec(s̃k, c̃)
m21|m22 ← Dec(ski, c2)
If H(m22 ⊕ C) ̸= σ : abort
Ki := PRF(m11,M1|M2)

⊕PRF(m21,M1|M2)

M1 = (p̃k, c1)−−−−−−−−−−−−−−−−−→

M2 = (c̃, C)
←−−−−−−−−−−−−−−−

m11|m12|i← Dec(skj , c1)
m21,m22 ←$ M
c2 ← Enc(pki,m21|m22)

c̃← Enc(p̃k, c2)
C = m12 ⊕m22

Kj := PRF(m11,M1|M2)
⊕PRF(m21,M1|M2)

Fig. 3: Our generic construction of AKE.

plain AKE has plain security if the underlying PKE has CCA security. The
CCA security is required for PKE so that the security reduction algorithm
is able to compute session keys for other session instance of the same user.

– If Pi and Pj are corrupted, adversary A obtains ski and skj , then A is also
able to decrypt c1, c2 to obtain m1,m2. Obviously A also gets the session
key H(m1|m2|c1|c2). Therefore, this plain AKE has no wFS security.

– If state sti = m1 is exposed to A, then A can impersonate Pj to send
ĉ2 ← Enc(pki, m̂2) to Pi. Obviously A can compute Pi’s session key Ki :=
H(m1|m̂2|c1|ĉ2). Therefore, this plain AKE cannot resist state reveal attack.

AKEFO[11] with wFS security. To obtain wFS security, an ephemeral pub-
lic/secret key pair (p̃k, s̃k) is augmented to the plain AKE, resulting in AKEFO[11].
Pi also sends p̃k to Pj and Pj provides Pi a ciphertext c̃ encrypting another ran-
dom message m̃ under p̃k. The state of Pi is sti = (m1, s̃k). Then Pi and Pj can
share the ephemeral random m̃, and embed it in the input of the hash function
so that Ki = Kj = H(m1|m2|M1|M2|m̃), where M1 = (p̃k, c1) and M2 = (c̃, c2).
See also Fig. 2.

– Even if A obtains ski and skj by corruption, A cannot determine m̃ without
the knowledge of s̃k. Therefore, Ki = Kj = H(m1|m2|M1|M2|m̃) is still
random to A. So AKEFO achieves wFS security.

– If state sti = (m1, s̃k) is exposed to A, then A can impersonate Pj in the
protocol and share a session key with Pi, since it knows m1 and can choose m̃
and m̂2 so as to derive Pi’s session key Ki = H(m1|m̂2|M1|M2|m̃). Therefore,
AKEFO cannot resist state reveal attack.

Our Approach to IND-AA security. In plain AKE and AKEFO, m1 has two
roles. One is used to derive the session key, and the other is used as a token to
authenticate Pj since only Pj is able to decrypt c1 to obtain m1 (when skj is
not corrupted). However, with state reveal, A obtains token m1 from sti, so it
can always impersonate Pj in plain AKE and AKEFO. That is why they suffer
from the state-reveal attack and only achieve IND-StAA security.
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To achieve IND-AA security, we have to deal with the above impersonation
attack due to the leakage of m1 from state reveal. Intuitively, we have to find a
way of authenticating Pj even if sti is leaked to A.

Now we briefly show how to construct our AKE from the plain AKE step by
step. Steps (1)-(5) show how to support state reveal to avoid the impersonation
attack, and (6) shows how to achieve wFS security.

(1) Partition m1 by functionality. In algorithm Init, m1 is divided into two
parts m11|m12, where m11 is used to derive the session key and m12 is used
as Pj ’s authenticating token.

(2) Limit information leakage of token m12 in state sti. We do not put
token m12 in sti. Instead, only the hash value σ := H(m12) (rather than
m12) is stored in state sti (where m11 is stored as well). Now even if A
obtains σ from sti, A can hardly recover the token m12.

(3) Protect token m12 in the second round-message M2. For explicit au-
thentication, Pj has to transmit the token m12 via M2. Thus we have to
protect m12 in M2 to avoid leakage. To this end, in Derresp, m2 is further
divided into two parts m21|m22, where m21 is used to derive the session key
and m22 is used to encrypt m22 via one-time pad. Now M2 = c2 (in the plain
AKE) is changed to M2 = (c2, C := m12 ⊕m22).

(4) Authenticate Pj with σ = H(m12). Pi can decrypt c2 to obtain m22 and
recover m12 := C ⊕m22. By retrieving σ from sti, Pi can authenticte Pj by
checking whether m12 is the hash pre-image of σ.

(5) Avoid leakage m12 from man-in-the-middle (MITM) attack. Now that
both M1 = c1 = Enc(pkj ,m11|m12) and M2 = (c2,m12 ⊕m22) contain the
information of m12. But Pj is not able to authenticate Pi by M1. Then
it is possible for A to implement a MITM attack: copy c1 from M1 as its
own first round-message; Pj will output M2 = (ĉ2 = Enc(p̂k, m̂21|m̂22), C =

m12 ⊕ m̂22); A decrypts m̂21|m̂22 ← Dec(ŝk, ĉ2) with its own secret key ŝk.
Then A can recover the token m12 := C ⊕ m̂22 and then impersonate Pj

with the token. This MITM attack can be easily avoided by attaching Pi’s
identity i to m11|m12

1. So c1 ← Enc(pkj ,m11|m12|i). The CCA security of
PKE will guarantee that A’s MITM attack either results decryption failure
or a totally different decryption result.

(6) Encryption of c2 with ephemeral key for the wFS security. Pi puts
the ephemeral public key p̃k in M1 = (p̃k, c1) and the ephemeral secret key
s̃k in sti = (m11, s̃k, σ). Pj uses p̃k to encrypt c2 to obtain c̃← Enc(p̃k, c2).
So M2 = (c̃, C). Now we arrive at our final AKE construction.
With the protection of ephemeral key, even ski and skj are corrupted, c2
is still well-protected from A as long as A does not reveal state to obtain
s̃k. Consequently, A knows nothing about m21 and the final session key
Ki = Kj = H(m11|m21|M1|M2) is still random to A. In fact, as long as A
does not obtain both the initiator’s the long-term key and its round state

1 In our final generic construction of AKE, we use tagged KEM to generate c1 with
identity as the tag. Here PKE is only specific construction of tagged KEM.
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(to avoid trivial attack), the session key from a non-tampered session is
pseudo-random to the adversary. So our AKE achieves the wFS security.

In the session key generation, we can always change the hash function with PRF
function so that Ki = Kj = PRF(m11|M1|M2)⊕ PRF(m21|M1|M2). In this way,
the IND-AA security is proven in the standard model. Our AKE construction is
shown in Fig. 3.

Moreover, we can also change PKE to tagged TKEM and KEM for the gener-
ation of c1 and c2. Since PKE can be considered a specific instantiation of KEM
(or TKEM), this change only makes our AKE construction more general.
Related Works. The FSXY scheme in [8] is a two-message AKE constructed
from KEM in the standard model. As noted in [11], its security is essentially the
IND-StAA security. As far as we know, the AKEFO [11] is the only generic two-
message AKE construction from PKE in the QROM model, achieving IND-StAA
security. The performances of FSXY and AKEFO are shown in Table 1.

There are also other AKE schemes [13,9,10] supporting state reveal (i.e.,
resisting state reveal attack). In [13,9], a symmetric encryption (SE) is employed
to encrypt the round state to support state reveal. With this method, the secret
key of SE has to be included into the long-term secret key. Besides, the AKE
scheme in [13] is based on the random oracle (RO) model and those in [9,10] rely
on SIG to provide authentication.

The HMQV protocol [14] also supports state reveal, but it is Diffie-Hellman
type AKE scheme in the RO model, rather than a generic construction. Its
solution to state reveal is specific to the Diffie-Hellman algebraic structure.

2 Preliminary

Let ∅ denote the empty set. If x is defined by y or the value of y is assigned to
x, we write x := y. For µ ∈ N, define [µ] := {1, 2, . . . , µ}. Denote by x ←$ X
the procedure of sampling x from set X uniformly at random. Let |X | denote
the number of elements in X . All our algorithms are probabilistic unless states
otherwise. PPT abbreviates probabilistic polynomial time. We use y ← A(x)
to define the random variable y obtained by executing algorithm A on input
x. We use y ∈ A(x) to indicate that y lies in the support of A(x). We also
use y ← A(x; r) to make explicit the random coins r used in the probabilistic
computation. Let λ denote the security parameter. We assume all algorithms
take 1λ as an implicit input.

2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms PKE = (Gen,Enc,Dec),
where (pk, sk)← Gen generates public/secret key pair, c← Enc(pk,m) encrypts
plaintext m to ciphertext c and m/⊥ ← Dec(sk, c) decrypts ciphertext c to re-
cover the plaintext m. The (1−δ) correctness of PKE requires decryption error is
bounded by δ, where the probability is over (pk, sk)← Gen and c← Enc(pk,m).
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Definition 1 (γ-Spreadness of PKE). We say that PKE is γ-spread if for all
key pairs (pk, sk) ∈ Gen(ppPKE) and all messages m ∈M, it holds that

max
c∈C

Pr [r ←$ R : Enc(pk,m; r) = c] ≤ 2−γ .

Definition 2 (γ-Key Diversity of PKE). We say that PKE is γ-key diverse
if

Pr

 r1, r2 ←$ R
(pk1, sk1)← Gen(ppPKE; r1)
(pk2, sk2)← Gen(ppPKE; r2)

: pk1 = pk2

 ≤ 2−γ .

Definition 3 (IND-CPA Security for PKE). For PKE, an adversary A’s
advantage function is defined by AdvCPAPKE(A) :=

∣∣Pr [ExpCPA-0PKE,A ⇒ 1
]
− Pr

[
ExpCPA-1PKE,A ⇒ 1

]∣∣,
where

Pr
[
ExpCPA-b

PKE,A ⇒ 1
]
:= Pr

[
(pk, sk)← Gen(ppPKE); (m0,m1, st)← A(pk)

cb ← Enc(sk,mb); b
′ ← A(st, pk, cb)

: b′ = 1

]
.

The IND-CPA security of PKE requires AdvCPAPKE(A) = negl(λ) for all PPT A.

2.2 Tagged Key Encapsulation Mechanism

Definition 4 (TKEM). A tagged key encapsulation mechanism (TKEM) scheme
TKEM = (TKEM.Setup,TKEM.Gen,TKEM.Encap,TKEM.Decap) consists of four
algorithms.

– TKEM.Setup. The setup algorithm outputs public parameters ppTKEM, which
determine an encapsulation key space K, public key space PK, secret key
space SK, tag space T and a ciphertext space CT .

– TKEM.Gen(ppTKEM). Taking ppTKEM as input, the key generation algorithm
outputs a pair of public key and secret key (pk, sk) ∈ PK × SK.

– TKEM.Encap(pk, τ). Taking pk and a tag τ as input, the encapsulation al-
gorithm outputs a pair of ciphertext c ∈ CT and encapsulated key K ∈ K.

– TKEM.Decap(sk, c, τ). Taking as input sk and c and a tag τ , the determin-
istic decapsulation algorithm outputs K ∈ K ∪ {⊥}.

The (1− δ)-correctness of TKEM requires that for all tag τ ∈ T ,

Pr

[
(pk, sk)← TKEM.Gen(ppKEM)
(c,K)← TKEM.Encap(pk, τ)

: TKEM.Decap(sk, c, τ) ̸= K

]
≤ δ.

We recall the IND-CCA security of TKEM.

Definition 5 (IND-CCA Security for TKEM[1]). To a tag key encapsula-
tion mechanism TKEM, the advantage functions of an adversary A is defined by
AdvCCATKEM(A) :=

∣∣∣Pr [ExpCCA-0
TKEM,A ⇒ 1

]
− Pr

[
ExpCCA-1

TKEM,A ⇒ 1
]∣∣∣, where the experi-

ments ExpCCA-b
TKEM,A for b ∈ {0, 1} are defined in Fig. 4. The IND-CCA security of

tag KEM requires AdvCCATKEM(A) = negl(λ) for all PPT algorithm A.
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ExpCCA-b
KEM,A :

(τ∗, st)← A; ppTKEM ← TKEM.Setup
(pk, sk)← TKEM.Gen(ppTKEM)
(c∗,K∗

0 )← TKEM.Encap(pk, τ∗)

K∗
1 ← K; b′ ← AODec(·, ·)(st, pk, c∗,K∗

b )
Return b′

ODec(c, τ):
If (c, τ) = (c∗, τ∗): Return ⊥
K ← TKEM.Decap(sk, c, τ)
Return K

Fig. 4: The IND-CCA security experiment ExpCCA-b
KEM,A of Tagged-KEM.

When τ is null, TKEM becomes canonical KEM, and IND-CCA security can
be similarly defined for KEM. Now we define the output pseudo-randomness of
KEM w.r.t. its input randomness. Roughly speaking, output pseudo-randomness
requires the encapsulation key K is indistinguishable from a random key even if
A gets both pk and sk but has no information about ciphertext c .

Definition 6 (Output Pseudo-Randomness of KEM). A key encapsula-
tion mechanism KEM = (KEM.Setup,KEM.Gen,KEM.Encap,KEM.Decap) has
output pseudo-randomness if for any PPT adversary A,
AdvpsKEM(A) :=

∣∣∣Pr [Expps-0KEM ⇒ 1
]
− Pr

[
Expps-1KEM ⇒ 1

]∣∣∣ = negl(λ), where

Pr
[
Expps-bKEM ⇒ 1

]
:= Pr


ppKEM ← KEM.Setup

(pk, sk)← KEM.Gen(ppKEM)
(c,K0)← KEM.Encap(pk);K1 ←$ K

b′ ← A(pk, sk,Kb)

: b′ = 1

.

2.3 PRG and PRF

Definition 7 (PRG). Pseudo-Random Generator (PRG) is a polynomially com-
putable deterministic function PRG : K → K′, where K is seed space and K′ is
output space with |K| < |K′|. The pseudo-randomness of PRG requires AdvpsPRG(A) =
negl(λ) for all PPT A, where

AdvpsPRG(A) := |Pr [s←$ K; y ← PRG(x) : A(y)⇒ 1]− Pr [y ←$ K′ : A(y)⇒ 1]|.

Definition 8 (PRF). Pseudo-Random Function (PRF) is a polynomially com-
putable deterministic function PRF : K × X → Y, where K is key space, X is
input space and Y is output space. the advantage function of an adversary A is
defined by

AdvpsPRF(A) :=
∣∣∣Pr [k ←$ K, x∗ ← AOPRF(·); y ← PRF(k, x∗) : AOPRF(·)(x∗, y)⇒ 1

]
− Pr

[
k ←$ K, x∗ ← AOPRF(·); y ←$ Y : AOPRF(·)(x∗, y)⇒ 1

]∣∣∣,
where OPRF(x) returns PRF(k, x) and x∗ is never queried to OPRF(·). The pseudo-
randomness of PRF requires AdvpsPRF(A) = negl(λ) for all PPT A.
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2.4 Hash Function: TCR and One-Wayness

Definition 9 (One-Wayness of Hash). A hash family H = {H : {0, 1}n →
{0, 1}ℓ(n)} has One-Wayness if the advantage functions of an adversary A de-
fined by AdvowfH (A) := Pr

[
ExpowfH ⇒ 1

]
is negligible for all PPT A, where the

experiments ExpowfH are defined in Fig. 5 (left).

Definition 10 (TCR of Hash). A hash family H = {H : {0, 1}n → {0, 1}ℓ(n)}
is Target Collision Resistant (TCR), if the advantage function of adversary A
defined by AdvtcrH (A) := Pr

[
ExptcrH ⇒ 1

]
is negligible for all PPT A, where the

experiments ExptcrH are defined in Fig. 5 (right).

When n− ℓ(n) ≥ λ, TCR property of H implies one-wayness.

ExpowfH :

H ←$ H; m← {0, 1}n
σ ← H(m); m′ ← A(H, σ)
If H(m′) = σ : Return 1
Else: Return 0

ExptcrH :
H ←$ H; m← {0, 1}n
m′ ← A(H,m)
If m ̸= m′ ∧ H(m) = H(m′) : Return 1
Else: Return 0

Fig. 5: ExpowfH (left) and ExptcrH (right) for H.

3 Two-Message AKE and Its IND-AA Security

A two-message AKE (see Fig. 1) is characterized by four algorithms. Each party,
say Pi, will invoke the key generation algorithm Gen(i) to generate its own pub-
lic/secret key pair (pki, ski). An initiator Pi then invokes the initialization al-
gorithm Init(ski, pkj) to generate the first round-message M1 and its state st.
Pi sends M1 to its responder Pj and stores the state st locally. Upon receiv-
ing M1, Pj invokes the responder-derivatation algorithm Derresp(skj , pki,M1)
to generate the second round-message M2 and its session key Kj . Pj sends
M2 to Pi. Upon receiving M2, Pi invokes the initiator-derivatation algorithm
Derinit(ski, pkj ,M2, st) to derive its session key Ki. The formal definition for
two-message AKE is given below.

Definition 11 (Two-Message AKE). A two-message AKE scheme AKE =
(Gen, Init,Derinit,Derresp) consists of the following four algorithms.

– Gen(i). Taking a party identity i as input, the key generation algorithm out-
puts a key pair (pki, ski).

– Init(ski, pkj). Taking as input a secret key ski and a public key pkj, the
initialisation algorithm outputs a message M1 and a state st.

– Derresp(skj , pki,M1). Taking as input a secret key skj, a public key pki and a
message M1, the responder derivation algorithm outputs a message M2 and
a session key Kj.
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– Derinit(ski, pkj ,M2, st). Taking as input a secret key ski, a public key pkj,
a message M2 and a state st, the initiator derivation algorithm outputs a
session key Ki.

(1 − δ)-Correctness of AKE. For any distinct and honest parties Pi and Pj

with (pki, ski) ← Gen(i) and (pkj , skj) ← Gen(j), after their protocol execu-
tion of (M1, st) ← Init(ski, pkj), (M2,Kj) ← Derresp(skj , pki,M1) and Ki ←
Derinit(ski, pkj ,M2, st), the probability that Ki = Kj ̸= ∅ is at least 1− δ.

Remark 1. Note that in a two-message AKE, the initiator Pi has to invoke two
algorithms. Therefore, Pi has to transmit a round state sti from Init to Derinit.
However, responder Pj does not have to store any (secret) state, since Pj only
invokes one algorithm for session key.

We will use the IND-AA security model proposed in [11]. This model for-
malizes the adversary’s passive attack, active attack, state reveals of session
instances. Suppose there are at most µ users P1, P2, . . . , Pµ, and each user will
involve at most ℓ sessions. The sessions run the protocol algorithms with access
to the party’s long-term key material, and also have their own local variables.
The local variables of each session, indexed by the integer sID, are shown below.

– holder[sID] : the party running the session sID.
– peer[sID] : the intended communication peer of holder[sID].
– sent[sID] : the message sent by the session sID.
– recv[sID] : the message received by the session sID.
– role[sID] ∈ {initiator, responder} : it indicates holder plays the role of initiator

or responder.
– st[sID] : round state in sID. If role[sID] = initiator, then st is output by Init,

otherwise, st = ⊥.
– sKey[sID] : the session key of sID.

Definition 12 (Matching Sessions). We say two sessions sID and sID′ are
matching if the following requirements hold:

1. (holder[sID], peer[sID]) = (peer[sID′], holder[sID′])
2. (sent[sID], recv[sID]) = (recv[sID′], sent[sID′])
3. role[sID] ̸= role[sID′]

Let M(sID) denote the set of session identities which match sID.

Definition 13 (Partner Sessions). We say two sessions sID and sID′ are part-
ner if the following requirements hold:

1. (holder[sID], peer[sID]) = (peer[sID′], holder[sID′])
2. role[sID] ̸= role[sID′]

Let P(sID) denote the set of session identities which are partnered to sID.

Next, we formalize the oracles that deal with A’s queries as follows.
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EST(i, j): The query means that A wants to establish a new session sID for
holder i and its peer j. Upon such a query, oracle EST assigns a new session
identity sID := cnt and sets holder[sID] := i and peer[sID] := j for A.

INIT(sID): The query means that A asks the oracle to initiate session sID. Then
the oracle generates the first round message M ← Init(ski, pkj) and replies
M to A. Here ski is the secret key of holder[sID] and pkj is the public key of
peer[sID].

DERresp(sID, M): This query means that A asks session sID to respond the
first-round message M (so role[sID] = responder). The oracle will invoke
M ′ ← Derresp(skj , pki,M) and return M ′ as the second round message to A.
Here skj is the secret key of holder[sID] and pki is the public key of peer[sID].

DERinit(sID, M’): This query means that A asks session sID to respond the
second-round message M ′ (so role[sID] = initiator). The oracle will invoke
Ki ← Derinit(ski, pkj ,M, st[sID]) to generate the session key sKey[sID] := Ki.
Here ski is the secret key of holder[sID] and pkj is the public key of peer[sID].

REVEAL(sID): It means that A reveals the session key of session sID. The oracle
will return sKey[sID] to A.

REV-STATE(sID): It means that A reveals the state of session sID. The oracle
will return st[sID] to A

CORRUPT(i): It means that A reveals the long-term key of party Pi. The oracle
will return ski to A.

TEST(sID): It means that A chooses sID as the target session and the session
key of sID for challenge (test). The oracle will set K0 := sKey[sID], sample
K1 ←$ K, and return Kb to A.

Trivial(sID∗): It identifies whether A’s behavior leads to a trivial attack for the
target (test) session sID∗. The oracle will first create a list of all matching
sessions for sID∗. The list is denoted by M(sID∗). Then the oracle outputs 1
in case of the following trivial attacks.
– session sID∗ is tested but sKey[sID∗] is revealed to A.
– session sID∗ is tested and both long-term key ski of holder[sID∗] and

secret state st[sID∗] are revealed to A.
– session sID∗ is tested, there is only one matching session ptr (i.e., M(sID∗) =
{ptr}), and the session key sKey[ptr] of matching session ptr is revealed.

– session sID∗ is tested, there is only one matching session ptr (i.e., M(sID∗) =
{ptr}), and both long-term key skj of peer[sID] = holder[ptr] and secret
state st[ptr] of session ptr are revealed to A.

– session sID∗ is tested, there is no matching session with sID∗ (i.e., M(sID∗) =
∅), and the long-term key skj of j := peer[sID∗] is revealed to A.

Recall that µ is the number of users and ℓ is the maximum number of sessions
per user. The security experiment ExpIND-AA-b

AKE,µ,ℓ,A with b ∈ {0, 1} is played between
challenger C and adversary A.

1. For each party Pi, C runs Gen(i) to get the long-term key pair (pki, ski).
Then C provides A with the list of public keys (pk1, . . . , pkµ).
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ExpIND-AA-b
AKE,µ,ℓ,A // b ∈ {0, 1}

cnt := 0 //session counter
sID∗ := 0 //test session’s id
for i ∈ [µ] :

(pki, ski)← Gen(i)
crp[i] := false corruption variables

b′ ← AOAKE(pk1, . . . , pkµ)
If Trivial(sID∗) :

Return 0
Return b′

EST((i, j) ∈ [µ]2) :

cnt := cnt+ 1
sID := cnt
holder[sID] := i
peer[sID] := j
stRev[sID] := false //state reveal variables
rev[sID] := false //session key reveal variables
Return sID

INIT(sID) :

If holder[sID] = ⊥ :
Return ⊥ //session not established

If sent[sID] ̸= ⊥ : Return ⊥ //no re-use
role[sID] := initiator
(i, j) := (holder[sID], peer[sID])
(M, st) := Init(ski, pkj)
(sent[sID], st[sID]) := (M, st)
Return M

DERresp(sID,M) :

If holder[sID] = ⊥ :
Return ⊥

If sent[sID] ̸= ⊥ :
Return ⊥ //no re-use

If role[sID] = initiator: Return ⊥
role[sID] := responder
(j, i) := (holder[sID], peer[sID])
(M ′,K′)← Derresp(skj , pki,M)
sKey[sID] := K′

(recv[sID], sent[sID]) := (M,M ′)
Return M ′

DERinit(sID,M) :

If holder[sID] = ⊥ ∨ st[sID] = ⊥ :
Return ⊥

If sKey[sID] ̸= ⊥ : Return ⊥ //no re-use

(i, j) := (holder[sID], peer[sID])
sKey[sID] := Derinit(ski, pkj ,M, st[sID])
recv[sID] := M
Return ∅

REVEAL(sID) :

If sKey[sID] = ⊥ : Return ⊥
rev[sID] := true
Return sKey[sID]

REV-STATE(sID) :
If st[sID] = ⊥ : Return ⊥
stRev[sID] := true
Return st[sID]

CORRUPT(i ∈ [µ]) :

crp[i] := true
Return ski

TEST(sID) : //only one query
sID∗ := sID
If sKey[sID∗] = ⊥:

Return ⊥
K∗

0 := sKey[sID∗]
K∗

1 ← K
Return K∗

b

Trivial(sID∗) :

(i, j) := (holder[sID∗], peer[sID∗])
If rev[sID∗] = true: Return true
If crp[i] = true ∧ stRev[sID∗] = true :

Return true
M(sID∗) := ∅;
For 1 ≤ ptr ≤ cnt :

If (sent[ptr], recv[ptr]) = (recv[sID∗], sent[sID∗])
∧(holder[ptr], peer[ptr]) = (j, i) ∧ role[sID∗] ̸= role[ptr]:
M(sID∗) := M(sID∗) ∪ {ptr} //session matches

If |M(sID∗)| = 0: // active attack
If crp[j] = true : Return true
Else: Return false

If |M(sID∗)| > 1 : //multiple matching sessions
Return false //This is not a trivial attack.

If |M(sID∗)| = 1 :
Let M(sID∗) = {ptr}
If rev[ptr] = true : Return true
If crp[j] = true ∧ stRev[ptr] = true : Return true
Return false

Fig. 6: The security experiments ExpIND-AA-b
AKE,µ,ℓ,A where b ∈ {0, 1}, where OAKE :=

{EST, INIT,DERresp,DERinit,REVEAL,REV-STATE,CORRUPT,TEST}.
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2. A has access to oracles EST, INIT, DERresp, DERinit, REVEAL, REV-STATE,
CORRUPT, and TEST. Note that A can issue only one query to TEST. The
oracles will reply the corresponding answers to A.

3. At the end of the experiment, A terminates with an output b′.
4. If Trivial(sID∗) = true, the experiment returns 0. Otherwise, return b′.

Details of experiment ExpIND-AA-b
AKE,µ,ℓ,A are given in Fig. 6. IND-AA Security of

AKE requires key indistinguishability in ExpIND-AA-0
AKE,µ,ℓ,A and ExpIND-AA-1

AKE,µ,ℓ,A.

Definition 14 (IND-AA Security of AKE). In experiment ExpIND-AA-b
AKE,µ,ℓ,A with

b ∈ {0, 1}, the IND-AA advantage function of an adversary A against AKE is
defined as

AdvIND-AA
AKE,µ,ℓ,A :=

∣∣∣Pr [ExpIND-AA-0
AKE,µ,ℓ,A ⇒ 1

]
− Pr

[
ExpIND-AA-1

AKE,µ,ℓ,A ⇒ 1
]∣∣∣.

The IND-AA Security of AKE asks AdvIND-AA
AKE,µ,ℓ,A ≤ negl(λ) for all PPT A.

4 Generic Construction of Two-Message AKE and Its
Security Proof

We propose a generic construction of AKE = (Gen, Init,Derinit,Derresp) with ses-
sion key space K from the following building blocks.

– A tagged key encapsulation mechanism scheme TKEM = (TKEM.Gen,TKEM.Encap,
TKEM.Decap), where the encapsulation key space is K.

– A key encapsulation mechanism scheme KEM = (KEM.Gen,KEM.Encap,KEM.Decap)
with encapsulation key space is K and ciphertext space E .

– A public key encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with
message space E .

– A pseudo-random generator PRG : K → K×K.
– A pseudo-random function PRF : K × {0, 1}∗ → K.
– A target collision resistant hash function H : K → Σ, which is randomly

chosen from hash family H. Suppose K = Σ ×Σ.

Our generic construction is given in Fig. 7.Correctness. Suppose the KEM,PKE,TKEM are all (1−δ)-correct, then the AKE
construction is (1− 3δ)-correct.

Next we consider the security of our generic AKE construction.

Theorem 1 (Key Indistinguishablity of AKE). Suppose that KEM, TKEM,
PKE are (1 − δ)-correct, TKEM is an IND-CCA tagged-KEM scheme, KEM is
an IND-CCA secure KEM scheme with output pseudo-randomness, PKE is an
IND-CPA secure PKE scheme satisfying γ-spreadness and γ-key diverse, H is a
target collision resistant hash function (and also a one way function), PRG is a
pseudo-random generator, and PRF is a pseudo-random function. Then for any
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Init(ski, pkj) :

(c1, seedi)← TKEM.Encap(pkj , i)
m11|m12 ← PRG(seedi)
σ := H(m12)

(p̃k, s̃k)← PKE.Gen

M1 := (p̃k, c1)

st := (m11, s̃k, σ,M1)
Return (M1, st)

Derresp(skj , pki,M1) :

Parse M1 = (p̃k, c1)
If TKEM.Decap(skj , c1, i) = ⊥:

Return ⊥
seed′i ← TKEM.Decap(skj , c1, i)
m′

11|m′
12 ← PRG(seed′i)

(c2, seedj)← KEM.Encap(pki)
m21|m22 ← PRG(seedj)

c̃← PKE.Enc(p̃k, c2)
C := m′

12 ⊕m22

M2 := (c̃, C)
K := PRF(m′

11,M1|M2)⊕ PRF(m21,M1|M2)
Return (M2,K)

Derinit(ski, pkj ,M2, st) :

Parse M2 = (c̃, C)

Parse st = (m11, s̃k, σ,M1 = (p̃k, c1))

If PKE.Dec(s̃k, c̃) = ⊥:
Return ⊥

c′2 ← PKE.Dec(s̃k, c̃)
If KEM.Decap(ski, c

′
2) = ⊥:

Return ⊥
seed′j ← KEM.Decap(ski, c

′
2)

m′
21|m′

22 ← PRG(seedj)
If H(C ⊕m′

22) ̸= σ:
Return ⊥

K := PRF(m11,M1|M2)⊕ PRF(m′
21,M1|M2)

Return K

Fig. 7: Generic construction of two-message AKE.

PPT adversary A against AKE that establishes sessions among at most µ users
and at most ℓ sessions per user, we have

AdvIND-AA
AKE,µ,ℓ,A =2µ2ℓ ·

(
(ℓ+ 2) · AdvCCAKEM(BKEM) + (ℓ+ 1) · AdvCCATKEM(BTKEM) + AdvtcrH (BH)

+ℓ · AdvpsKEM(BKEM) + AdvowfH (BH) + (3ℓ+ 2) · AdvpsPRF(BPRF)

+ℓ · AdvCPAPKE(BPKE) + (3ℓ+ 3) · AdvpsPRG(BPRG) + (4ℓ2 + ℓ+ 5) · δ + 2−γ+1
)
.

Proof. We now consider a sequence of games and analyze A’s advantages in
these games. Let Gi,b denote the i-th game w.r.t. ExpIND-AA-b

AKE,µ,ℓ,A. Let advi :=
|Pr [Gi,0 ⇒ 1]− Pr [Gi,1 ⇒ 1]|. Then |advi − advi+1| ≤ 2|Pr [Gi,b ⇒ 1]− Pr [Gi+1,b ⇒ 1]|.
Game G0,b. G0,b is the original experiment ExpIND-AA-b

AKE,µ,ℓ,A. We have

AdvIND-AA
AKE,µ,ℓ,A := |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| = adv0. (1)

Game G1,b. In G1,b, challenger C first chooses (i∗, j∗, sID∗) ←$ [µ]2 × [ℓ]. At the
end of G1,b, if A does not query Test(sID∗) or holder[sID∗] ̸= i∗ or peer[sID∗] ̸= j∗,
C will return 0. Obviously, we have

Pr [G0,b ⇒ 1] = µ2ℓ · Pr [G1,b ⇒ 1],

adv0 = µ2ℓ · adv1. (2)

Let M(sID∗) be the set of all session identities matching with sID∗. Obviously,

Pr [G1,b ⇒ 1]=Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator] (Case 1)

+Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = responder] (Case 2)

+Pr [G1,b ⇒ 1 ∧M(sID∗) ̸= ∅]. (Case 3)

Define Gy
x,b as Gx,b in case y and advyx :=

∣∣Pr [Gy
x,0 ⇒ 1

]
− Pr

[
Gy
x,1 ⇒ 1

]∣∣. Then∣∣advyx − advyx+1

∣∣ ≤ 2
∣∣∣Pr [Gy

x,b ⇒ 1
]
− Pr

[
Gy
x+1,b ⇒ 1

]∣∣∣ ,
adv1 ≤ adv11 + adv21 + adv31 . (3)

Now we consider Pr [G1,b ⇒ 1] the above three cases.
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Case 1: G1,b ⇒ 1 ∧ M(sID∗) = ∅ ∧ role[sID∗] = initiator.
In this case, M(sID∗) = ∅means that no matching session exists for sID∗, and
role[sID∗] = initiator implies that test session is held by an initiator. Then,
in session sID∗, initiator i∗ must suffer from an active attack from adversary
A. If j∗ is further corrupted, then this is a trivial attack leading to G1,b ⇒ 0.
Therefore, for b ∈ {0, 1},

Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator ∧ crp[j∗]] = 0. (4)

On the other hand, ifA both corrupts i∗ and obtains its states by StateReveal(sID∗),
then this is also a trivial attack leading to G1,b ⇒ 0. Therefore,

Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator ∧ crp[i∗] ∧ stRev[sID∗]] = 0.
(5)

Consequently,

Pr
[
G1
1,b ⇒ 1

]
:= Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator]

=Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator ∧ ¬crp[j∗]]
≤Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator ∧ ¬crp[i∗] ∧ ¬crp[j∗]] + (Case 1.1)
Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator ∧ ¬stRev[sID∗] ∧ ¬crp[j∗]] (Case 1.2)

=Pr
[
G1.1
1,b ⇒ 1

]
+ Pr

[
G1.2
1,b ⇒ 1

]
and

adv11 ≤ adv1.11 + adv1.21 . (6)

That means Case 1 can be further divided into the following two subcases:
Case 1.1: ¬crp[i∗] ∧ ¬crp[j∗] in Case 1. In this case, neither i∗ nor j∗ are

corrupted. Now we consider G2,b - G12,b in Case 1.1, and denote it by
G1.1
2,b - G1.1

12,b. The full codes of G1.1
2,b - G1.1

12,b are presented in Fig. 8. Brief
description of G1,b and G1.1

2,b - G1.1
12,b games for Case 1.1 are given in Table

2. Define adv1.1i :=
∣∣Pr [G1.1

i,0 ⇒ 1
]
− Pr

[
G1.1
i,1 ⇒ 1

]∣∣.
Game G1.1

2,b . G
1.1
2,b is the same as G1,b, except that C will return 0 directly if

M(sID∗) ̸= ∅ or role[sID∗] ̸= initiator or crp[i∗] = true or crp[j∗] = true.
Hence, we have

Pr
[
G1.1

2,b ⇒ 1
]
= Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator ∧ ¬crp[i∗] ∧ ¬crp[j∗]].

Game G1.1
3,b . It is the same as G1.1

2,b except for the behavior of Oracles Derresp(sID,
M1 = (p̃k, c1)) and Derinit(sID, M2 = (c̃, C)).
– Derresp(sID,M1 = (p̃k, c1)). During the process, if holder[sID] = j∗ and

peer[sID] = i∗, it will additionally record the intermediate values (c2, seedj∗ ,
m21,m22) with record[c2] := (seedj∗ ,m21,m22), where (c2, seedj∗) ←
KEM.Encap and (m21,m22)← PRG(seedj∗).

– Derinit(sID,M2 = (c̃, C)). During the process, if holder[sID] = i∗, and
the output c′2 of PKE.Dec has ever been recorded with record[c′2] :=
(seedj∗ ,m21,m22) by Derresp, it will directly use the recorded values of
(seedj∗ ,m21,m22) for the generation of session key, rather than comput-
ing seedj∗ with KEM.Decap and (m21,m22) with PRG as did in G1.1

2,b .
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Game Init(sID∗) Derresp(sID ∈ P(sID∗)) Derinit(sID) Remark
G1,b Abort if ¬TEST(sID∗) ∨ (holder[sID∗], peer[sID∗]) ̸= (i∗, j∗) with security loss µ2ℓ
G1.1
2,b Abort if M(sID∗) ̸= ∅ ∨ role[sID∗] ̸= initiator ∨ crp[i∗] ∨ crp[j∗] G1,b in Case 1.1

G1.1
3,b

record[c2] :=
(seedj∗ ,m21,m22)

if ∃record[c2] :
use record[c2] for holder[sID] = i∗

Correctness of KEM

G1.1
4,b seedj∗ ←$ K CCA-security of KEM

G1.1
5,b m21,m22 ←$ K pseudo-randomness of PRG

G1.1
6,b

C ←$ K,
m22 := C ⊕m′

12
identical (concept change)

G1.1
7,b

record[i∗, c1] :=
(seedi∗ ,m11,m12)

if ∃record[i∗, c1]:
use record[i∗, c1]

Correctness of tagged TKEM

G1.1
8,b seedi∗ ←$ K CCA-security of tagged TKEM

G1.1
9,b m11,m12 ←$ K pseudo-randomness of PRG

G1.1
10,b

Rejection Rule 1 for sID∗:
reject if m′

12 ̸= m12
target collision resistance of TCR

G1.1
11,b record[c2, C] := sID

Rejection Rule 2 for sID∗:
reject if ∄record[c2, C]

one-wayness of TCR

G1.1
12,b sKey[sID∗]←$ K for sID∗ pseudo-randomness of PRF

Table 2: Brief description of G1,b and G1.1
2,b - G1.1

12,b for Case 1.1

Due to the (1-δ)-correctness of KEM and the fact that user j∗ has at most ℓ
sessions, we have ∣∣∣Pr [G1.1

2,b ⇒ 1
]
− Pr

[
G1.1
3,b ⇒ 1

]∣∣∣ ≤ ℓδ,∣∣adv1.12 − adv1.13

∣∣ ≤ 2ℓδ. (7)

Game G1.1
4,b . It is the same as G1.1

3,b except for Derresp(sID,M1 = (p̃k, c1)).
– Derresp(sID,M1 = (p̃k, c1)). During the process, if holder[sID] = j∗ and

peer[sID] = i∗, the value of seedj∗ is randomly chosen in G1.1
4,b , instead of

being generated by KEM.Encap in G1.1
3,b . The values of c2,m21,m22 are

still the outputs of KEM.Encap and PRG, and (c2, seedj∗ ,m21,m22) is
recorded in the same way as G1.1

3,b .
Due to the CCA security of KEM and the fact user j∗ has at most ℓ sessions,
we have ∣∣∣Pr [G1.1

3,b ⇒ 1
]
− Pr

[
G1.1
4,b ⇒ 1

]∣∣∣ ≤ ℓ · AdvCCAKEM(BKEM),∣∣adv1.13 − adv1.14

∣∣ ≤ 2ℓ · AdvCCAKEM(BKEM). (8)

Game G1.1
5,b . It is the same as G1.1

4,b except for Derresp(sID,M1 = (p̃k, c1)).
– Derresp(sID,M1 = (p̃k, c1)). During the process, if holder[sID] = j∗ and

peer[sID] = i∗, the value of m21,m22 are randomly chosen in G1.1
5,b , in-

stead of being generated by PRG as in G1.1
4,b . The values of c2, seedj∗ are

generated the same way as in G1.1
4,b . And (c2, seedj∗ ,m21,m22) is recorded

in the same way as G1.1
4,b .

Given random seedj∗ , the output of PRG(seedj∗) is pseudo-random. To-
gether with the fact that user j∗ has at most ℓ sessions, we have∣∣∣Pr [G1.1

4,b ⇒ 1
]
− Pr

[
G1.1
5,b ⇒ 1

]∣∣∣ ≤ ℓ · AdvpsPRG(BPRG),∣∣adv1.14 − adv1.15

∣∣ ≤ 2ℓ · AdvpsPRG(BPRG). (9)
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Game G1.1
6,b . It is the same as G1.1

5,b except the computations of C and m22 in
Oracles Derresp(sID,M1 = (p̃k, c1)).
– Derresp(sID,M1 = (p̃k, c1)). During the process, if holder[sID] = j∗ and

peer[sID] = i∗, then C ←$ K and set m22 := C ⊕m′
12.

Recall that in G1.1
5,b , m22 ←$ K and C := m22 ⊕m′

12. It is easy to see that
(m22, C) has identical distribution in the two games. Hence,

Pr
[
G1.1
5,b ⇒ 1

]
= Pr

[
G1.1
6,b ⇒ 1

]
,

adv1.15 = adv1.16 . (10)

Game G1.1
7,b . It is the same as G1.1

6,b except the behavior of Oracles Init(sID∗)

and Derresp(sID,M1 = (p̃k, c1)).
– Init(sID∗). It will additionally record the intermediate values (i∗, c1, seedi∗ ,

m11,m12) for sID∗ with record[i∗, c1] := (seedi∗ ,m11,m12), where (c1, seedi∗)
is the output of TKEM.Encap and (m11,m12) is the output of PRG(seedi∗).

– Derresp(sID,M1 = (p̃k, c1)). During the process, if holder[sID] = j∗ and
peer[sID] = i∗, and (i∗, c1) has already been recorded by Init(sID∗) with
record[i∗, c1] := (seedi∗ ,m11,m12), it will directly use the recorded value
of (seedi∗ ,m11,m12) for the generation of session key and the second
round-message M2, rather than computing them with (c1, seedi∗) ←
TKEM.Decap and (m11,m12)← PRG as did in G1.1

6,b .
Due to the (1-δ)-correctness of TKEM, we have∣∣∣Pr [G1.1

6,b ⇒ 1
]
− Pr

[
G1.1
7,b ⇒ 1

]∣∣∣ ≤ δ,∣∣adv1.16 − adv1.17

∣∣ ≤ 2δ. (11)

Game G1.1
8,b . It is the same as G1.1

7,b except the behavior of Oracles Init(sID∗).
– Init(sID∗). Now seedi∗ is randomly sampled by seedi∗ ←$ K instead of

being generated by (c1, seedi∗) ← TKEM.Encap(pkj∗ , i
∗) in G1.1

7,b . The
oracle records the intermediate values (c1, seedi∗ ,m11,m12) for sID∗ with
record[i∗, c1] := (seedi∗ ,m11,m12), where c1,m11,m12 are computed in
the same way as in G1.1

7,b .
By the CCA security of TKEM, we know that the encapsulated key seedi∗

is pseudo-random. Hence we have∣∣∣Pr [G1.1
7,b ⇒ 1

]
− Pr

[
G1.1
8,b ⇒ 1

]∣∣∣ ≤ AdvCCATKEM(BTKEM),∣∣adv1.17 − adv1.18

∣∣ ≤ 2AdvCCATKEM(BTKEM). (12)

Game G1.1
9,b . It is the same as G1.1

8,b except the behavior of Oracles Init(sID∗).
– Init(sID∗). Now m11,m12 are randomly sampled by m11,m12 ←$ K, in-

stead of m11|m12 ←$ PRG(seedi∗) as did in G1.1
8,b . The oracle records the

intermediate value (c1, seedi∗ ,m11,m12) for sID∗ with record[i∗, c1] :=
(seedi∗ ,m11,m12), where c1, seedi∗ are computed in the same way as in
G1.1
8,b .



Two-Message Authenticated Key Exchange from Public-Key Encryption 19

Given random seedi∗ , the output of PRG(seedi∗) is pseudo-random. So∣∣∣Pr [G1.1
8,b ⇒ 1

]
− Pr

[
G1.1
9,b ⇒ 1

]∣∣∣ ≤ AdvpsPRG(BPRG),∣∣adv1.18 − adv1.19

∣∣ ≤ 2AdvpsPRG(BPRG). (13)

Game G1.1
10,b. It is the same as G1.1

9,b except that the rejection rule is changed
in Oracle Derinit(sID

∗,M2 = (c̃, C)).
– Derinit(sID

∗,M2 = (c̃, C)). During the process, we apply the following
rejection rule.
Rejection Rule 1: If m′

12 ̸= m12, reject the query.
Here m′

12 is the intermediate value and m12 is from record[i∗, c1] =
(seedi∗ ,m11,m12).

Recall that in G1.1
9,b , Derinit(sID

∗,M2 = (c̃, C)) will reject the query if H(m′
12) ̸=

σ, where σ = H(m12) is recorded in state st[sID∗]. Therefore, G1.1
9,b is identical

to G1.1
10,b, unless a hash collision H(m′

12) = H(m12) but m′
12 ̸= m12 happens.

Recall that m12 is randomly distributed. By the TCR property of H, we have∣∣∣Pr [G1.1
9,b ⇒ 1

]
− Pr

[
G1.1
10,b ⇒ 1

]∣∣∣ ≤ AdvtcrH (BH),∣∣adv1.19 − adv1.110

∣∣ ≤ 2AdvtcrH (BH). (14)

Game G1.1
11,b. It is the same as G1.1

10,b except for the behaviors of Oracles
Derresp(sID,M1 = (p̃k, c1)) and Derinit(sID

∗,M2 = (c̃, C)).
– Derresp(sID,M1 = (p̃k, c1)). During the process, if holder[sID] = j∗ and

peer[sID] = i∗, it will record (sID, c2, C) with record[c2, C] := sID, where
c2 is the intermediate encapsulation ciphertext output by (c2, seedj∗)←
KEM.Encap(pki∗) and C is the element in the output message M2 =
(c̃, C).

– Derinit(sID
∗,M2 = (c̃, C)). An additional rejection rule is added. Suppose

c′2 is output by c′2 ← PKE.Dec(c̃).
Rejection Rule 2: If c′2 is never recorded with record[c2 = c′2, C] = sID
by oracle Derresp(·, ·), then reject the query immediately.

Define Z as the event that adversary A ever issued a query (sID∗,M2 =
(c̃, C)) to Derinit such that (sID, c′2 = PKE.Dec(c̃), C) has never been recorded
by Derresp(·, ·) but m′

12 = m12. Here, m′
12 is the intermediate value computed

by Derinit and m12 is from the tuple (i∗, c1, seedi∗ ,m11,m12) recorded by
Init(sID∗). If Z happens, the query will not be rejected in G1.1

10,b, but will
be rejected in G1.1

11,b. Thus G1.1
11,b is the same as G1.1

10,b unless Z happens, i.e.,∣∣∣Pr [G1.1
10,b ⇒ 1

]
− Pr

[
G1.1
11,b ⇒ 1

]∣∣∣ ≤ Pr [Z].
Next, we show that Pr [Z] = negl(λ) due to the one-wayness of H. To this
end, we construct a PPT algorithm BH against the one-wayness of H. Let CH
be the challenger of BH. CH generates m∗ ←$ K, computes σ ← H(m∗) and
gives σ∗ to BH. Then BH will simulate G1.1

11,b for A as follows.
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– Simulation of Init(sID∗). BH invokes (c1,K) ← TKEM.Encap(pkj∗ , i
∗)

and (p̃k, s̃k)← PKE.Gen(ppPKE). Then it randomly samples m11, seedi∗

←$ K and implicitly sets m12 := m∗. Next it records (i∗, c1, seedi∗ ,m11, ?)
with record[i∗, c1] = (seedi∗ ,m11, ?) and sets st[sID∗] = (m11, s̃k, σ

∗,M1 =
(p̃k, c1)). Return M1 to A.

– Simulation of Derresp(sID ∈ P(sID∗),M1 = (p̃k, c1)). BH samples m21, C
←$ K. It checks whether (i∗, c1) appears in record[i∗, c1] = (seedi∗ ,m11, ?)
which is recorded by Init(sID∗). If yes, it retrieves (m11, ?) and sets m′

11 :=
m11 and m22 :=?. Otherwise, it invokes seedi∗ ← TKEM.Decap(skj∗ , c1, i

∗),
m′

11|m′
12 ← PRG(seedi∗) and computes m22 := C ⊕ m′

12. It records
(c2, seedj∗ ,m21,m22) and (c2, C, j

∗) with record[c2] = (seedj∗ ,m21,m22)
and record[c2, C] = sID respectively. For the session key, it computes
sKey[sID] := PRF(m′

11,M1|M2) ⊕ PRF(m′
21,M1|M2). Finally, it returns

M2 := (c̃, C) to A.
– Simulation of Derinit(sID

∗,M2 = (c̃, C)). BH retrieves st[sID∗] = (m11, s̃k,
σ∗,M1 = (p̃k, c1)) and invokes c′2 ← PKE.Dec(s̃k, c̃). If c′2 appears in
record[c2] = (seedj∗ ,m21,m22) which is recorded by Derresp(·, ·), then
it retrieves m21,m22 from record[c2]. If m22 =? then BH aborts the
game (since event Z never happens which will be explained later). If
m22 ̸=?, then it sets m′

22 := m22. If c′2 never appears in any record
(c2 = c′2, seedj∗ ,m21,m22), it computes seedj′ ← KEM.Decap(ski∗ , c

′
2)

and (m′
21|m′

22) ← PRG(seedj′). Next, it computes m′
12 := C ⊕m′

22. If
(sID, c′2, C) has never been recorded by Derresp(·, ·), then BH submits m′

12

to its own challenger as the answer. Otherwise, BH aborts the game. If
event Z happens, it must hold m′

12 = m∗, thus BH wins.
For other oracle simulations, BH does just like G1.1

11,b.
Now we explain why Z never happens when m22 =? during simulation of
Derinit(sID

∗,M2 = (c̃, C ′)). Note that m22 =? implies c1 = c′1 and c2 = c′2
where sID∗ generates c1 and computes c′2 ← Dec(s̃k, c̃) while its partner
session sID generates c2, C and receives c′1. Since sID∗ and sID share the same
c1 and c2, they must share the same m12 and m22. Now, if event Z happens,
then (c2, C) ̸= (c′2, C

′) and m′
12 = m12. Given the fact c2 = c′2, it must hold

that C ̸= C ′, where C is generated by sID and C ′ is received by sID∗. Thus,
m′

12 = C ′ ⊕m22 = C ′ ⊕ (C ⊕m12) = m12 ⊕ (C ⊕ C ′) ̸= m12, leading to a
contradiction. So event Z never happens in this case. Note that BH wins as
long as event Z happens. Consequently, Pr

[
Z in G1.1

11,b

]
≤ AdvowfH (BH), so∣∣∣Pr [G1.1

10,b ⇒ 1
]
− Pr

[
G1.1
11,b ⇒ 1

]∣∣∣ ≤ AdvowfH (BH),∣∣adv1.110 − adv1.111

∣∣ ≤ 2AdvowfH (BH). (15)

Game G1.1
12,b. It is the same as G1.1

11,b except for the generation of session key
sKey[sID∗] in Oracle Derinit(sID

∗,M2 = (c̃, C)).
– Derinit(sID

∗,M2 = (c̃, C)). During the process, if the query (sID∗,M2)
passes Rejection Rule 1 and Rule 2, oracle Derinit uniformly samples
sKey[sID∗] ←$ K, instead of invoking sKey[sID∗] ← PRF(m11,M1|M2) ⊕
PRF(m21,M1|M2) as did in G1.1

11,b.
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Query (sID∗,M2) passes Rejection Rule 1 and Rule 2 means that sID∗

shares the same (c2, C) with some partner session sID ∈ P(sID∗). In other
words, oracle Derresp(sID,M1) also obtains (c2, C), hence results in the same
m21. Then Derresp(sID,M1) may output M2 and generate session key sKey[sID]←
PRF(m1,M1|M2)⊕ PRF(m21,M1|M2).
Hence all the information about m21 leaked toA is limited by PRF(m21,M1|M2).
Recall that sID∗ has no matching session, i.e., M[sID∗] = ∅. Therefore,
M1|M2 ̸= M1|M2. Given that m21 is randomly distributed, we know that
PRF(m21,M1|M2) is pseudo-random, hence PRF(m1,M1|M2)⊕PRF(m21,M1|M2)
is pseudo-random as well. This yields∣∣∣Pr [G1.1

11,b ⇒ 1
]
− Pr

[
G1.1
12,b ⇒ 1

]∣∣∣ ≤ ℓ · AdvpsPRF(BPRF),∣∣adv1.111 − adv1.112

∣∣ ≤ 2ℓ · AdvpsPRF(BPRF), (16)

where factor ℓ is resulted from the guessing strategy of reduction to the
pseudo-randomness of PRF, since there are at ℓ session instance for j∗. Now
A’s view in G1.1

12,b is independent of b. So

adv1.112 =
∣∣Pr [G1.1

12,0 ⇒ 1
]
− Pr

[
G1.1
12,1 ⇒ 1

]∣∣ = 0. (17)

By (7),(8),(9),(10), (11), (12),(13), (14), (15), (16), and (17), we have

adv1.11 ≤ 2 · (AdvCCAKEM(BKEM) + ℓ · AdvCCATKEM(BTKEM) + (ℓ+ 1) · AdvpsPRG(BPRG)
+AdvtcrH (BH) + AdvowfH (BH) + ℓ · AdvpsPRF(BPRF) + (ℓ+ 1) · δ).

(18)
Case 1.2: ¬stRev[sID∗] ∧ ¬crp[j∗] in Case 1. In this case, neither st[sID∗]

nor j∗ is corrupted. Hence, m11 is uniformly distributed which further
guarantees the pseudo-randomness of session key sKey[sID∗].

Game Init(sID∗) Derresp(sID ∈ P(sID∗)) Derinit(sID) Remark
G1,b Abort if ¬TEST(sID∗) ∨ (holder[sID∗], peer[sID∗]) ̸= (i∗, j∗) with security loss µ2ℓ
G1.2
2,b Abort if M(sID∗) ̸= ∅ ∨ role[sID∗] ̸= initiator ∨ stRev[sid∗] ∨ crp[j∗] G1,b in Case 1.2

G1.2
3,b

record[i∗, c1] :=
(seedi∗ ,m11,m12)

if ∃record[i∗, c1]:
use record[i∗, c1]

Correctness of tagged TKEM

G1.2
4,b seedi∗ ←$ K CCA-security of tagged TKEM

G1.2
5,b m11,m12 ←$ K pseudo-randomness of PRG

G1.2
6,b sKey[sID∗]←$ K for sID∗ pseudo-randomness of PRF

Table 3: Brief description of G1,b and hybrid games G1.2
2,b - G1.2

6,b for Case 1.2

Now we consider G2,b - G6,b in Case 1.2, and denote it by G1.2
2,b - G1.2

6,b .
Game G1.2

2,b . In G1.2
2,b , if M(sID∗) ̸= ∅ or role[sID∗] ̸= initiator or crp[j∗] = true

or stRev[sID∗] = true, C will return 0 directly. Hence, we have Pr
[
G1.2
2,b ⇒ 1

]
=

Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = initiator ∧ ¬stRev[sID∗] ∧ ¬crp[j∗]],
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G1.1
2,b ,

#

"

 

!
G1.1

3,b , G1.1
4,b , G1.1

5,b , G1.1
6,b , G1.1

7,b , G1.1
8,b , G1.1

9,b ,

�



�
	G1.1

10,b, G1.1
11,b,
�� ��
 �	G1.1

12,b

sID∗ ←$ [ℓ]
(i∗, j∗) ←$ [µ]× [µ]
for i ∈ [µ]: (pki, ski)← AKE.Gen

b′ ← AOAKE(·)(pk1, . . . , pkµ)
If Trivial(sID∗): Return 0
Return b′

EST(i, j) :

cnt := cnt+ 1, sID := cnt
If sID = sID∗ ∧ (i, j) ̸= (i∗, j∗): abort //Not Case 1.1
(holder[sID], peer[sID]) := (i, j)
(stRev[sID], rev[sID]) := (false, false)
Return sID

CORRUPT(i) :

If i = i∗ ∧ i = j∗: abort //Not Case 1.1
crp[i] := true
Return ski

TEST(sID) : //Only one query
If sID ̸= sID∗: abort //Not Case 1.1
If sKey[sid∗] = ⊥: Return ⊥
K∗

0 ←$ K,K∗
1 := sKey[sID∗]

Return K∗
b

Init(sID) :

If holder[sID] = ⊥ ∨ sent[sID] ̸= ⊥: Return ⊥
role[sID] = initiator
(i, j) := (holder[sID], peer[sID])
(c1, seedi)← TKEM.Encap(pkj , i)

If sID = sID∗ : seedi ←$ K

m11|m12 ← PRG(seedi)

If sID = sID∗: m11,m12 ←$ K

If sID = sID∗ :
record[i, c1] := (seedi,m11,m12)

σ := H(m12)

(p̃k, s̃k)← PKE.Gen

M1 := (p̃k, c1)

st[sID] := (m11, s̃k, σ,M1); sent[sID] := M1

Return M1

Derresp(sID,M1 = (p̃k, c1)) :

If holder[sID] = ⊥ ∨ role[sID] = initiator ∨ sKey[sID] ̸= ⊥:
Return ⊥

If sID = sID∗ : Return ⊥ //Not Case 1.1
role[sID] = responder; (j, i) := (holder[sID], peer[sID])
If TKEM.Decap(skj , c1, i) = ⊥: Return ⊥
seed′i ← TKEM.Decap(skj , c1, i)
m′

11|m′
12 ← PRG(seed′i)

If i = i∗ ∧ j = j∗ ∧ record[i, c1] ̸= ⊥ :
Parse record[i, c1] = (seedi,m11,m12)
seed′i := seedi
(m′

11,m
′
12) := (m11,m12)

(c2, seedj)← KEM.Encap(pki)

If (j, i) = (j∗, i∗) : seedj ←$ K

c̃← PKE.Enc(p̃k, c2)
m21|m22 ← PRG(seedj)�
�

�
�

If (j, i) = (j∗, i∗) :

m21,m22 ←$ K

record[c2] := (seedj ,m21,m22)

C := m′
12 ⊕m22

If (j, i) = (j∗, i∗) :
C ←$ K
m22 := C ⊕m′

12

record[c2] := (seedj ,m21,m22)

record[c2, C] := sID

M2 := (c̃, C)
K1 ← PRF(m′

11,M1|M2)
K2 ← PRF(m21,M1|M2)
K := K1 ⊕K2

sKey[sID] := K
(recv[sID], sent[sID]) := (M1,M2)
Return M2

Derinit(sID,M2 = (c̃, C)) :

If st[sID] = ⊥ ∨ sKey[sID] ̸= ⊥:
Return ⊥

(i, j) := (holder[sID], peer[sID])

Parse st[sID] = (m11, s̃k, σ,M1 = (p̃k, c1))

If PKE.Dec(s̃k, c̃) = ⊥:
Return ⊥

c′2 ← PKE.Dec(s̃k, c̃)
If KEM.Decap(ski, c

′
2) = ⊥:

Return ⊥
If sID = sID∗ ∧ record[(c′2, C)] = ⊥ :

sKey[sID] := reject //Reject Rule 2
Return ⊥

seed′j ← KEM.Decap(ski, c
′
2)

m′
21|m′

22 ← PRG(seed′j)�
�

�
�

If i = i∗ ∧ record[c′2] ̸= ⊥ :
Parse record[c′2] = (seedj ,m21,m22)
seed′j := seedj
(m′

21,m
′
22) := (m21,m22)

m′
12 := C ⊕m′

22

If H(m′
12) ̸= σ:

sKey[sID] := reject
Return ⊥�

�

�

�

If sID = sID∗ :
Retrieve m12 from record[i∗, c1]
If m12 ̸= m′

12 :
sKey[sID] := reject //Reject Rule 1
Return ⊥

K1 ← PRF(m11,M1|M2)
K2 ← PRF(m′

21,M1|M2)
K := K1 ⊕K2�� ��
 �	If sID = sID∗ : K ←$ K
sKey[sID] := K
recv[sID] := M2

Fig. 8: Game G1.1
2,b - G1.1

12,b. Queries to {REVEAL,REV-STATE} are defined as in
the original game in Fig. 6.
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and adv1.22 :=
∣∣Pr [G1.2

2,0 ⇒ 1
]
− Pr

[
G1.2
2,1 ⇒ 1

]∣∣.
Game G1.2

3,b . It is the same as G1.2
2,b except for the behavior of Oracles Init(sID∗)

and Derresp(sID,M1 = (p̃k, c1)).
– Init(sID∗). It will additionally record the intermediate values (i∗, c1, seedi∗ ,m11,

m12) for sID∗ with record[i∗, c1] := (seedi∗ ,m11,m12), where (c1, seedi∗)
are the outputs of TKEM.Encap and m11,m12 are the outputs of PRG.

– Derresp(sID,M1 = (p̃k, c1)). During the process, if holder[sID] = j∗ and
peer[sID] = i∗, and the input c1 is consistent, it will directly use the
recorded value of (seedi∗ ,m11,m12) for the generation of session key
and the second round-message M2, rather than computing them with
seedi∗ ← TKEM.Decap and (m11,m12)← PRG as did in G1.1

6,b .
Due to the (1-δ)-correctness of TKEM, we have∣∣∣Pr [G1.2

2,b ⇒ 1
]
− Pr

[
G1.2
3,b ⇒ 1

]∣∣∣ ≤ δ,∣∣adv1.22 − adv1.23

∣∣ ≤ 2δ. (19)

Game G1.2
4,b . It is the same as G1.2

3,b except the behavior of Oracles Init(sID∗).
– Init(sID∗). Now seedi∗ is randomly sampled by seedi∗ ←$ K instead of

being generated by (c1, seedi∗) ← TKEM.Encap(pkj∗) in G1.2
3,b . The or-

acle records the intermediate values (c1, seedi∗ ,m11,m12) for sID∗ with
record[i∗, c1] := (seedi∗ ,m11,m12), where c1,m11,m12 are computed in
the same way as in G1.2

3,b .
By the CCA security of TKEM, we know that the encapsulated key seedi∗

is pseudo-random. Hence we have∣∣∣Pr [G1.2
3,b ⇒ 1

]
− Pr

[
G1.2
4,b ⇒ 1

]∣∣∣ ≤ AdvCCATKEM(BTKEM),∣∣adv1.23 − adv1.24

∣∣ ≤ 2AdvCCATKEM(BTKEM). (20)

Game G1.2
5,b It is the same as G1.2

4,b except the behavior of Oracles Init(sID∗).
– Init(sID∗). Now m11,m12 are randomly sampled by m11,m12 ←$ K, in-

stead of m11|m12 ←$ PRG(seedi) as did in G1.2
4,b . The oracle records the

intermediate value (c1, seedi∗ ,m11,m12) for sID∗ with record[i∗, c1] :=
(seedi∗ ,m11,m12), where c1, seedi∗ are computed in the same way as in
G1.2
4,b .

Given random seedj∗ , the output of PRG(seedj∗) is pseudo-random. So we
have ∣∣∣Pr [G1.2

4,b ⇒ 1
]
− Pr

[
G1.2
5,b ⇒ 1

]∣∣∣ ≤ AdvpsPRG(BPRG),∣∣adv1.24 − adv1.25

∣∣ ≤ 2AdvpsPRG(BPRG). (21)

Game G1.2
6,b . It is the same as G1.2

5,b except for the generation of session key
sKey[sID∗] in Oracle Derinit(sID

∗,M2 = (c̃, C)).
– Derinit(sID

∗,M2 = (c̃, C)). During the process, if the query (sID∗,M2)
leads to H(m′

12) = σ, oracle Derinit uniformly samples sKey[sID∗]←$ K,
instead of invoking sKey[sID∗]← PRF(m11,M1|M2)⊕PRF(m21,M1|M2)
as did in G1.2

5,b .
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Let st[sID∗] = (m11, s̃k, σ,M1 = (p̃k, c1)). If c1 is received by some partner
session sID ∈ P(sID∗), then oracle Derresp(sID,M1) computes the same m11

with sID∗ and generates its session key with sKey[sID] := PRF(m11,M1|M2)⊕
PRF(m21,M1|M2), where M2 is the output message of oracle Derresp(sID,M1).
Therefore, all the information about m11 leaked to adversary A is limited by
PRF(m11,M1|M2). Recall that sID∗ has no matching session, i.e., M[sID∗] =
∅. So M1|M2 ̸= M1|M2. Given that m11 is randomly distributed, we know
that PRF(m11,M1|M2) is pseudo-random, hence PRF(m11,M1|M2)⊕PRF(m21,M1|M2)
is pseudo-random as well. This yields∣∣∣Pr [G1.2

5,b ⇒ 1
]
− Pr

[
G1.2
6,b ⇒ 1

]∣∣∣ ≤ AdvpsPRF(BPRF),∣∣adv1.25 − adv1.26

∣∣ ≤ 2AdvpsPRF(BPRF). (22)

Now A’s view is G1.2
6,b is independent of b. So

adv1.26 =
∣∣Pr [G1.2

6,0 ⇒ 1
]
− Pr

[
G1.2
6,1 ⇒ 1

]∣∣ = 0. (23)

By (19), (20),(21), (22), and (23), we have
adv1.21 ≤ 2 · (AdvCCATKEM(BTKEM) + AdvpsPRG(BPRG) + AdvpsPRF(BPRF) + δ). (24)

By (6), (18), (24), we have

adv11 = 2 ·
(
AdvCCAKEM(BKEM) + (ℓ+ 1) · AdvCCATKEM(BTKEM) + (ℓ+ 2) · AdvpsPRG(BPRG)

+AdvtcrH (BH) + AdvowfH (BH) + (ℓ+ 1) · AdvpsPRF(BPRF) + (ℓ+ 2)δ
)
. (25)

Case 2: G0,b ⇒ 1 ∧ M(sID∗) = ∅ ∧ role[sID∗] = responder. In this case,
M(sID∗) = ∅means that no matching session exists for sID∗, and role[sID∗] =
responder implies that test session is held by a responder.

Then, in session sID∗, responder i∗ must suffer from an active attack from
adversary A. If j∗ is further corrupted, then this is a trivial attack leading
to G1,b ⇒ 0. Therefore, for b ∈ {0, 1},

Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = responder ∧ crp[j∗]] = 0. (26)

Consequently,

Pr
[
G2
1,b ⇒ 1

]
= Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = responder]

= Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = responder ∧ ¬crp[j∗]].

Since party j∗ will never be corrupted in this case, m21 is uniformly dis-
tributed which further grantees the pseudo-randomness of session key sKey[sID∗].

Now we consider G2,b - G6,b in Case 2, and denote it by G2
2,b - G2

6,b.
Game G2

2,b. In G2
2,b, if M(sID∗) ̸= ∅ or role[sID∗] ̸= responder or crp[j∗] =

true, C will return 0 directly. Hence, we have
Pr

[
G2
2,b ⇒ 1

]
= Pr [G1,b ⇒ 1 ∧M(sID∗) = ∅ ∧ role[sID∗] = responder ∧ ¬crp[j∗]].

Game G2
3,b. It is the same as G2

2,b except for the behavior of Oracles Derresp(sID∗,

M1 = (p̃k, c1)) and Derinit(sID,M2 = (c̃, C)).
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Game Derresp(sID
∗) Derinit(sID) Remark

G1,b Abort if ¬TEST(sID∗) ∨ (holder[sID∗], peer[sID∗]) ̸= (i∗, j∗) with security loss µ2ℓ
G2
2,b Abort if M(sID∗) ̸= ∅ ∨ role[sID∗] ̸= responder ∨ crp[j∗] G1,b in Case 2

G2
3,b

record[c2] :=
(seedi∗ ,m21,m22)

if ∃record[c2] :
use record[c2] for holder[sID] = j∗

Correctness of KEM

G2
4,b seedi∗ ←$ K CCA-security of KEM

G2
5,b m21,m22 ←$ K pseudo-randomness of PRG

G2
6,b sKey[sID∗]←$ K pseudo-randomness of PRF

Table 4: Brief description of G1,b and hybrid games G2
2,b - G2

6,b for Case 2

– Derresp(sID
∗,M1 = (p̃k, c1)). During the process, it will additionally record

the intermediate values (c2, seedi∗ ,m21,m22) with record[c2] := (seedi∗ ,m21,
m22), where (c2, seedi∗)← KEM.Encap and (m21,m22)← PRG.

– Derinit(sID,M2 = (c̃, C)). During the process, if holder[sID] = j∗, and
the output c′2 of PKE.Dec has ever been recorded with record[c′2] :=
(seedi∗ ,m21,m22) by Derresp, it will directly use the recorded values of
(seedi∗ ,m21,m22) for the generation of session key, rather than comput-
ing seedi∗ with KEM.Decap and (m21,m22) with PRG as did in G2

2,b.
Due to the (1-δ)-correctness of KEM, we have∣∣∣Pr [G2

2,b ⇒ 1
]
− Pr

[
G3
3,b ⇒ 1

]∣∣∣ ≤ δ,∣∣adv22 − adv23
∣∣ ≤ 2δ. (27)

Game G2
4,b. It is the same as G2

3,b except the behavior of Oracles Derresp(sID∗,M1 =

(p̃k, c1)).
– Derresp(sID

∗,M1 = (p̃k, c1)). During the process, the value of seedi∗ is
randomly chosen in G2

4,b, instead of being generated by KEM.Encap in
G2
3,b. The values of c2,m21,m22 are still the outputs of KEM.Encap and

PRG, and (c2, seedj∗ ,m21,m22) is recorded in the same way as G2
3,b.

Due to the CCA security of KEM, we have∣∣∣Pr [G2
3,b ⇒ 1

]
− Pr

[
G2
4,b ⇒ 1

]∣∣∣ ≤ AdvCCAKEM(BKEM),∣∣adv23 − adv24
∣∣ ≤ 2AdvCCAKEM(BKEM). (28)

Game G2
5,b. It is the same as G2

4,b except the behavior of Oracles Derresp(sID∗,M1 =

(p̃k, c1)).
– Derresp(sID

∗,M1 = (p̃k, c1)). During the process, the value of m21,m22

are randomly chosen in G2
5,b, instead of being generated by PRG as in

G2
4,b. The values of c2, seedi∗ are generated the same way as in G2

4,b. And
(c2, seedi∗ ,m21, m22) is recorded in the same way as G2

4,b.
Given random seedi∗ , the output of PRG(seedi∗) is pseudo-random. We have∣∣∣Pr [G2

4,b ⇒ 1
]
− Pr

[
G2
5,b ⇒ 1

]∣∣∣ ≤ AdvpsPRG(BPRG),∣∣adv24 − adv25
∣∣ ≤ 2AdvpsPRG(BPRG). (29)
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Game G2
6,b. It is the same as G2

5,b except for the generation of session key
sKey[sID∗] in Oracle Derresp(sID

∗,M1 = (p̃k, c1)).
– Derresp(sID

∗,M1 = (p̃k, c1)). During the process, if TKEM.Decap(ski∗ , c1, j
∗) ̸=

⊥, oracle Derresp(sID
∗,M1) uniformly samples sKey[sID∗]←$ K, instead

of invoking sKey[sID∗] ← PRF(m11,M1|M2) ⊕ PRF(m21,M1|M2) as did
in G2

5,b. Besides, oracle Derresp(sID
∗,M1) still records the intermediate

values (c2, seedi∗ , m21,m22) with record[c2] := (seedi∗ ,m21,m22) as did
in G2

5,b.
For any partner session sID ∈ P(sID∗), If oracle Derinit(sID,M2) computes
the same c2 as that in record[c2] = (seedi∗ ,m21,m22), then sID and sID∗ share
the same m21. Then Derinit(sID,M2) may generate session key sKey[sID] ←
PRF(m1,M1|M2)⊕ PRF(m21,M1|M2).
Therefore, all the information about m21 leaked toA is limited by PRF(m21,M1|M2).
Recall that sID∗ has no matching session, i.e., M[sID∗] = ∅. Therefore,
M1|M2 ̸= M1|M2. Given that m21 is randomly distributed, the security of
PRF implies that PRF(m21,M1|M2) is pseudo-random, hence PRF(m1,M1|M2)⊕
PRF(m21,M1|M2) is pseudo-random as well. This yields∣∣∣Pr [G2

5,b ⇒ 1
]
− Pr

[
G2
6,b ⇒ 1

]∣∣∣ ≤ AdvpsPRF(BPRF),∣∣adv25 − adv26
∣∣ ≤ 2AdvpsPRF(BPRF). (30)

Now A’s view is G2
6,b is independent of b. So

adv26 =
∣∣Pr [G2

6,0 ⇒ 1
]
− Pr

[
G2
6,1 ⇒ 1

]∣∣ = 0. (31)

By (27),(28),(29), (30), and (31), we have

adv21 ≤ 2 · (AdvCCAKEM(BKEM) + AdvpsPRG(BPRG) + AdvpsPRF(BPRF) + δ). (32)

Case 3: G1,b ⇒ 1 ∧M(sID∗) ̸= ∅. In this case, M(sID∗) ̸= ∅ means that
there is no active attack on the target test session sID∗.

We define
Pr

[
G3
1,b ⇒ 1

]
:= Pr [G1,b ⇒ 1 ∧M(sID∗) ̸= ∅]..

Game G3
2,b. In G3

2,b, if M(sID∗) = ∅, C will abort and return 0 directly. Hence,

we have Pr
[
G3
2,b ⇒ 1

]
= Pr

[
G3
1,b ⇒ 1

]
= Pr [G1,b ⇒ 1 ∧M(sID∗) ̸= ∅],

adv31 = adv32 . (33)

Game G3
3,b. In G3

3,b, if |M(sID∗)| > 1, then C will abort and return 0 directly.
We now analyse Pr [|M(sID∗)| > 1] depending on the role of sID∗.
(I) role[sID∗] = initiator. In this case, |M(sID∗)| > 1 means that there are

at least two sessions sID1 and sID2 generating the same second round
message (c̃,m12⊕m22). According to (1−δ)-correctness of PKE, sID1, sID2

must encrypt the same c2 to get c̃ but using independent randomness.
Further by the γ-spreadness of PKE, we get Pr [|M(sID∗)| > 1] ≤ δ+2−γ .
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(II) role[sID∗] = responder. In this case, |M(sID∗)| > 1 means that there
are at least two sessions sID1 and sID2 generating the same first round
message (c1, p̃k) using independent randomness. By the γ-diversity of
PKE, we get Pr [|M(sID∗)| > 1] ≤ 2−γ .

Therefore,
∣∣∣Pr [G3

3,b ⇒ 1
]
− Pr

[
G3
3,b ⇒ 1

]∣∣∣ ≤ Pr [|M(sID∗)| > 1] ≤ δ + 2−γ ,∣∣adv32 − adv33
∣∣ ≤ 2(δ + 2−γ). (34)

Note that G3
3,b ⇒ 1 only if |M(sID∗)| = 1, i.e., there exists only one session

sID′ matching the target test session sID∗.
Game G3

4,b. In G3
4,b, challenger C will first randomly choose a session sID′

among the sessions of user j∗. At the end of G3
4,b, C will check whether

M(sID∗) = {sID′} (sID′ is matching with sID∗). If not, C will abort and return
0 directly. User j∗ has at most ℓ sessions, so Pr

[
G3
3,b ⇒ 1

]
= ℓ·Pr

[
G3
4,b ⇒ 1

]
,

adv33 = ℓ · adv34 . (35)

For the pair (sID∗, sID′), one role is initiator and the other responder. For
simplicity, we denote the initiator session by sIDI and the responder session
by sIDR. Meanwhile, We define (I,R) := (holder[sIDI ], peer[sIDI ]).
If A both corrupts I and obtains its state by StateReveal(sIDI), then this is
a trivial attack leading to G3

4,b ⇒ 0. Therefore,

Pr
[
G3
4,b ⇒ 1

]
≤ Pr

[
G3
4,b ⇒ 1 ∧ ¬crp[I]

]
+ (Case 3.1)

Pr
[
G3
4,b ⇒ 1 ∧ ¬stRev[sIDI ]

]
, (Case 3.2)

adv34 ≤ adv3.14 + adv3.24 . (36)

Case 3.1: G3
4,b ⇒ 1 ∧ ¬crp[I]. In this case, the initiator I is never corrupted.

Hence m21 is uniformly distributed which further guarantees the pseudo-
randomness of session key sKey[sID∗].

Define (G3.1
i,b ⇒ 1) := (G3

i,b ⇒ 1 ∧ ¬crp[I]).

Game Derresp(sIDR) Derinit(sID) Remark
G1,b Abort if ¬TEST(sID∗) ∨ (holder[sID∗], peer[sID∗]) ̸= (i∗, j∗) with security loss µ2ℓ
G3
2,b Abort if M(sID∗) ̸= ∅ G1,b in Case 3

G3
3,b Abort if |M(sID∗)| > 1 γ-diversity and γ-spreadness of PKE

G3
4,b Abort if M(sID) ̸= {sID′} with security loss ℓ

G3.1
5,b Abort if initiator party I in sID∗, sID′ is corrupted G3

4,b in Case 3.1

G3.1
6,b

record[c2] :=
(seedR,m21,m22)

if ∃record[c2]:
use record[c2] for holder[sID] = I

Correctness of KEM

G3.1
7,b seedR ←$ K CCA-security of KEM

G3.1
8,b m21,m22 ←$ K pseudo-randomness of PRG

G3.1
9,b sKey[sIDR] ←$ K sKey[sIDI ] := sKey[sIDR] pseudo-randomness of PRF

Table 5: Brief description of games G1,b, G3
2,b - G3

4,b and G3.1
5,b - G3.1

9,b for Case 3.1
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Game G3.1
5,b . In G3.1

5,b , challenger C will abort and return 0 directly as long as
crp[I] = true. We have

Pr
[
G3.1
5,b ⇒ 1

]
= Pr

[
G3
4,b ⇒ 1 ∧ ¬crp[I]

]
,

adv3.14 = adv3.15 . (37)

Game G3.1
6,b . It is the same as G3.1

6,b except for the behavior of Oracles Derresp(sIDR,M1

= (p̃k, c1)) and Derinit(sIDI ,M2 = (c̃, C)).
– Derresp(sIDR,M1 = (p̃k, c1)). It will additionally record the intermediate

values (c2, seedR,m21,m22) with record[c2] := (seedR,m21,m22), where
(c2, seedR) ← KEM.Encap and (m21,m22)← PRG.

– Derinit(sID,M2 = (c̃, C)).During the process, if holder[sID] = I, and
the output c′2 of PKE.Dec has ever been recorded with record[c′2] :=
(seedR,m21,m22) by Derresp, it will directly use the recorded values of
(seedR,m21,m22) for the generation of session key, rather than comput-
ing seedR with KEM.Decap and (m21,m22) with PRG as did in G3.1

5,b .
Due to the (1-δ)-correctness of KEM, we have∣∣∣Pr [G3.1

5,b ⇒ 1
]
− Pr

[
G3.1
6,b ⇒ 1

]∣∣∣ ≤ ℓδ,∣∣adv3.15 − adv3.16

∣∣ ≤ 2ℓδ. (38)

Game G3.1
7,b . It is the same as G3.1

6,b except for the behavior of Oracle Derresp(sIDR,M1

= (p̃k, c1)).
– Derresp(sIDR,M1 = (p̃k, c1)). The value of seedR is randomly chosen

in G3.1
7,b , instead of being generated by KEM.Encap in G3.1

6,b . The val-
ues of c2,m21,m22 are still the outputs of KEM.Encap and PRG, and
(c2, seedR,m21,m22) is recorded in the same way as G3.1

6,b .
Due to the CCA security of KEM, we have∣∣∣Pr [G3.1

6,b ⇒ 1
]
− Pr

[
G3.1
7,b ⇒ 1

]∣∣∣ ≤ AdvCCAKEM(BKEM),∣∣adv3.16 − adv3.17

∣∣ ≤ 2AdvCCAKEM(BKEM). (39)

Game G3.1
8,b . It is the same as G3.1

8,b except for the behavior of Oracle Derresp(sIDR,M1

= (p̃k, c1)).
– Derresp(sIDR,M1 = (p̃k, c1)). The value of m21,m22 are randomly cho-

sen in G3.1
7,b , instead of being generated by PRG as in G3.1

7,b . The values of
c2, seedR are generated the same way as in G2

7,b. And (c2, seedR,m21,m22)

is recorded in the same way as G2
7,b.

Given random seedR, the output of PRG(seedR) is pseudo-random. We have∣∣∣Pr [G3.1
7,b ⇒ 1

]
− Pr

[
G3.1
8,b ⇒ 1

]∣∣∣ ≤ AdvpsPRG(BPRG),∣∣adv3.17 − adv3.18

∣∣ ≤ 2 · AdvpsPRG(BPRG). (40)

Game G3.1
9,b . It is the same as G3.1

8,b except for the generation of session key
sKey[sID∗] in Oracle Derresp(sIDR,M1 = (p̃k, c1)).
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– Derresp(sIDR,M1 = (p̃k, c1)). During the process, if TKEM.Decap(skR, c1, I) ̸=
⊥, oracle Derresp(sIDR,M1) uniformly samples sKey[sIDR]←$ K, instead
of invoking sKey[sIDR]← PRF(m11,M1|M2)⊕ PRF(m21,M1|M2) as did
in G2

8,b. Besides, oracle Derresp(sIDR,M1) still records the intermediate
values (c2, seedR,m21,m22) with record[c2] := (seedR,m21,m22) as did
in G2

8,b.
– Derinit(sIDI ,M2 = (c̃, C)). During the process, if the query (sIDI ,M2)

leads to H(m′
12) = σ, oracle Derinit computes sKey[sIDI ] := sKey[sIDR],

instead of invoking sKey[sIDI ]← PRF(m11,M1|M2)⊕PRF(m21,M1|M2)
as did in G1.2

8,b .
For any partner session sID ∈ P(sIDR) \ {sIDI}, if oracle Derinit(sID,M2)
computes the same c2 as that in record[c2] = (seedR,m21,m22), then sID and
sIDR share the same m21. Note that Derinit(sID,M2) may generate session
key sKey[sID]← PRF(m1,M1|M2)⊕ PRF(m21,M1|M2).
Therefore, all information about m21 leaked toA is limited by PRF(m21,M1|M2).
Recall that sIDR only matches with sIDI . Therefore, M1|M2 ̸= M1|M2.
Given that m21 is randomly distributed, the security of PRF implies PRF(m21,M1|M2)
is pseudo-random, hence PRF(m1,M1|M2) ⊕ PRF(m21,M1|M2) is pseudo-
random as well. This yields∣∣∣Pr [G3.1

8,b ⇒ 1
]
− Pr

[
G3.1
9,b ⇒ 1

]∣∣∣ ≤ AdvpsPRF(BPRF),∣∣adv3.18 − adv3.19

∣∣ ≤ 2AdvpsPRF(BPRF). (41)

Now A’s view is G3.1
9,b is independent of b. So

adv3.19 =
∣∣Pr [G3.1

9,0 ⇒ 1
]
− Pr

[
G3.1
9,1 ⇒ 1

]∣∣ = 0. (42)

By (43), (38),(39),(40), (41), and (42), we have

adv3.14 ≤ 2 · (AdvCCAKEM(BKEM) + AdvpsPRG(BPRG) + AdvpsPRF(BPRF) + δℓ). (43)

Case 3.2: G3
4,b ⇒ 1∧¬stRev[sIDI ]. In this case, the state of initiator session

sIDI is never revealed. Hence m21 is uniformly distributed which further
guarantees the pseudo-randomness of session key sKey[sID∗].

Define (G3.2
i,b ⇒ 1) := (G3

i,b ⇒ 1 ∧ ¬stRev[sIDI ]). Next we will prove that
adv3.11 = negl(λ) with games G1,b, G3

2,b - G3
4,b and G3.2

5,b - G3.2
11,b. The brief

description of G1,b, G3
2,b - G3

4,b and G3.2
5,b - G3.2

11,b for Case 3.2 is shown in Table
6 and the full codes of games G3

2,b - G3
4,b, G

3.2
5,b - G3.2

10,b are shown in Fig. 9.
Game G3.2

5,b . In game G3.2
5,b , challenger C will abort the game and return 0

directly as long as stRev[sIDI ] = true. Hence, we have

Pr
[
G3.2
5,b ⇒ 1

]
= Pr

[
G3
4,b ⇒ 1 ∧ ¬stRev[I]

]
,

adv3.24 = adv3.25 . (44)

Game G3.2
6,b . It is the same as G3.2

5,b except for the behavior of Oracles Derresp(sIDR,

M1 = (p̃k, c1)) and Derinit(sIDI ,M2 = (c̃, C)).
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Game Derresp(sIDR) Derinit(sID) Remark
G1,b Abort if ¬TEST(sID∗) ∨ (holder[sID∗], peer[sID∗]) ̸= (i∗, j∗) with security loss µ2ℓ
G3
2,b Abort if M(sID∗) ̸= ∅ G1,b in Case 3

G3
3,b Abort if |M(sID∗)| > 1 γ-diversity and γ-spreadness of PKE

G3
4,b Abort if M(sID) ̸= sID′ with security loss ℓ

G3.2
5,b Abort if the state of initiator session sIDI is revealed G3

4,b in Case 3.2

G3.2
6,b

record[c̃] := c2, record[c2] :=
(seedR,m21,m22)

if ∃record[c̃] or ∃record[c2]:
use record[c̃] or record[c2] for holder[sID] = I

Correctness of KEM and PKE

G3.2
7,b c̃← PKE.Enc(p̃k, 0) CPA-security of PKE

G3.2
8,b seedR ←$ K output pseudo-randomness of KEM

G3.2
9,b m21,m22 ←$ K pseudo-randomness of PRG

G3.2
10,b sKey[sIDR] ←$ K sKey[sIDI ] := sKey[sIDR] pseudo-randomness of PRF

Table 6: Brief description of G1,b, G3
2,b - G3

4,b and G3.2
5,b - G3.2

11,b for Case 3.2

– Derresp(sIDR,M1 = (p̃k, c1)). It will additionally record the intermediate
values (c2, seedR,m21,m22) and (c̃, c2) with record[c2] := (seedR,m21,m22)
and record[c̃] := c2 respectively, where (c2, seedR) ← KEM.Encap(pkI),
(m21,m22)← PRG(seedR) and c̃← PKE.Enc(p̃k, c2).

– Derinit(sID,M2 = (c̃, C)). During the process, if holder[sID] = I, and the
input c̃ has ever been recorded with record[c̃] := c′2 by Derresp, it will
directly use the recorded value of c′2 for the generation of session key,
rather than computing c′2 with c′2 ← PKE.Dec(s̃k, c̃) as did in G3.2

5,b . Mean-
while, if c′2 has ever been recorded with record[c′2] := (seedR,m21,m22)
by Derresp, it will directly use the recorded value of (seedR,m21,m22)
for the generation of session key, rather than computing seedR with
seedR ← KEM.Decap(skI , c

′
2) and (m21,m22) with PRG as did in G3.2

5,b .
Due to the (1-δ)-correctness of PKE and KEM, we have∣∣∣Pr [G3.2

5,b ⇒ 1
]
− Pr

[
G3.2
6,b ⇒ 1

]∣∣∣ ≤ 2ℓδ,∣∣adv3.25 − adv3.26

∣∣ ≤ 4ℓδ. (45)

Game G3.2
7,b . It is the same as G3.2

6,b except for the generation of c̃ in Oracles
Derresp(sIDR,M1 = (p̃k, c1)).
– Derresp(sIDR,M1 = (p̃k, c1)). It will compute c̃ ← PKE.Enc(p̃k, 0), in-

stead of c̃← PKE.Enc(p̃k, c2) as did in G3.2
6,b . It also records the interme-

diate values (c̃, c2) with record[c̃] := c2 in the same way as G3.2
6,b .

According to the CPA security of PKE, we have∣∣∣Pr [G3.2
6,b ⇒ 1

]
− Pr

[
G3.2
7,b ⇒ 1

]∣∣∣ ≤ AdvCPAPKE(BPKE),∣∣adv3.26 − adv3.27

∣∣ ≤ 2AdvCPAPKE(BPKE). (46)

Note that c̃ is now independent of seedR.
Game G3.2

8,b . It is the same as G3.2
7,b except that in Oracles Derresp(sIDR,M1 =

(p̃k, c1)), seedR is randomly chosen with seedR ←$ K, instead of being gen-
erated by (c2, seedR)← KEM.Encap(pkI) as did in G3.2

7,b .
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Due to the output pseudo-randomness of KEM, when the randomness r is
randomly chosen, seedR generated by (·, seedR)← KEM.Encap(pkI) will also
be uniformly distributed, even if skI is known to A. So∣∣∣Pr [G3.2

7,b ⇒ 1
]
− Pr

[
G3.2
8,b ⇒ 1

]∣∣∣ ≤ AdvpsKEM(BKEM),∣∣adv3.27 − adv3.28

∣∣ ≤ 2AdvpsKEM(BKEM). (47)

Game G3.2
9,b . It is the same as G3.2

8,b except that in Oracles Derresp(sIDR,M1 =

(p̃k, c1)), m21,m22 are randomly chosen with m21,m22 ←$ K, instead of be-
ing generated with m21|m22 ← PRG(seedR) as did in G3.2

8,b . Since seedR is
uniformly distributed, the security of PRG implies that∣∣∣Pr [G3.2

8,b ⇒ 1
]
− Pr

[
G3.2
9,b ⇒ 1

]∣∣∣ ≤ AdvpsPRG(BPRG),∣∣adv3.28 − adv3.29

∣∣ ≤ 2AdvpsPRG(BPRG). (48)

Game G3.2
10,b. It is the same as G3.2

9,b except that Oracles Derresp(sIDR,M1 =

(p̃k, c1)) uniformly samples session key sKey[sIDR]←$ K and Derinit(sIDI ,M2 =
(c̃, C)) sets its session key as sKey[sIDI ] := sKey[sIDR].
Recall that sKey[sIDI ] := sKey[sIDR] = PRF(m11,M1|M2)⊕PRF(m21,M1|M2)
in G3.2

9,b . Note that m21 is uniformly distributed in G3.2
10,b and no information

about m21 is leaked to A. Then the security of PRF implies the pseudo-
randomness of PRF(m21,M1|M2), so PRF(m11,M1|M2)⊕PRF(m21,M1|M2)
is also pseudo-random. Therefore,∣∣∣Pr [G3.2

9,b ⇒ 1
]
− Pr

[
G3.2
10,b ⇒ 1

]∣∣∣ ≤ AdvpsPRF(BPRF),∣∣adv3.29 − adv3.210

∣∣ ≤ 2AdvpsPRF(BPRF). (49)

Finally, in G3.2
11,b, the test session key sKey[sID∗] is independent of b. Hence,

adv3.211 =
∣∣Pr [G3.2

11,0 ⇒ 1
]
− Pr

[
G3.2
11,1 ⇒ 1

]∣∣ = 0. (50)

By (44), (45),(46),(48), (49), and (50), we have adv3.24 ≤

2 · (AdvCPAPKE(BPKE) + AdvpsKEM(BKEM) + AdvpsPRG(BPRG) + AdvpsPRF(BPRF) + 2ℓδ).
(51)

By (33), (34), (35), (36), (43), (51), we have

adv31 ≤ 2ℓ ·
(
AdvCPAPKE(BPKE) + AdvpsKEM(BKEM) + 2AdvpsPRG(BPRG) +

2AdvpsPRF(BPRF) + AdvCCAKEM(BKEM) + 4ℓδ
)
+ 4(δ + 2−γ). (52)

By (1), (2), (3), (25), (32), (52), we have

AdvIND-AA
AKE,µ,ℓ,A =2µ2ℓ ·

(
(ℓ+ 2) · AdvCCAKEM(BKEM) + (ℓ+ 1) · AdvCCATKEM(BTKEM) + AdvtcrH (BH)

+ℓ · AdvpsKEM(BKEM) + AdvowfH (BH) + (3ℓ+ 2) · AdvpsPRF(BPRF)

+ℓ · AdvCPAPKE(BPKE) + (3ℓ+ 3) · AdvpsPRG(BPRG) + (4ℓ2 + ℓ+ 5) · δ + 2−γ+1
)
.

□
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Remark 2. If the building block PKE is replaced by a CCA-secure one, our AKE
protocol can achieve unidirectional explicit authentication, where the initiator
can authenticate the responder. Furthermore, m11 can be removed from AKE and
the session key is K := PRF(m21,M1|M2), instead of K := PRF(m11,M1|M2)⊕
PRF(m′

21,M1|M2). This change yields a smaller round-state size. The price is a
slight increase in computation and communication complexity, due to the CCA-
secure PKE. Let us first explain how unidirectional explicit authentication of
responder is achieved by the message M2 = (c̃, C) with the help of CCA-secure
PKE. If c̃ is an invalid ciphertext (from adversary), it either results in abort
or leads to a different message m′

22, where m′
22 ← Dec(ski,Dec(s̃k, c̃)). Conse-

quently, H(m′
22⊕C) ̸= σ unless the one-wayness or TCR property of H is broken.

Similarly, if C is modified by adversary, then H(m′
22 ⊕ C) ̸= σ as well. In both

cases, M2 is rejected by the initiator. Next we explain why m11 can be removed
when PKE is a CCA-secure one. In the security proof above, m11 only serves
the proof of Case 1.2. In Case 1.2, the adversary does not corrupt j∗’s long-term
secret key and does not get the ephemeral secret key s̃k of PKE. Then Case 1.2
can take an analogous argument, just like how Case 1.1 makes use of the CCA
security of KEM, to finish the proof without the help of m11. By dropping m11,
the size of round state is shortened by at least λ bits.

5 Instantiations of Two-Message AKE

In this section, we will present instantiations of AKE in the standard model
and the quantum random oracle model (QROM) respectively. To this end, we
consider instantiations of the underlying building blocks of AKE.

In [1], Abe et al. presented a simple tranformation from any IND-CCA secure
PKE with proper plaintext ciphertext to an IND-CCA secure TKEM. So we will
seek IND-CCA secure PKE scheme instead of IND-CCA secure TKEM.

5.1 Instantiation of AKE in the Standard model

Here we show the instantiation of AKE from the LWE assumption.

– We take Peikeit’s LWE-based PKE [16] as the underlying CCA secure PKE.
– We take Regev’s LWE-based PKE [17] as the underlying CPA secure PKE.
– We take the LWE-based BPR-PRF [3] as the underlying PRF (PRG as well).
– We take the LMPR-Hash [15] as the underlying TCR hash function. Then

the TCR security is based on the Short-Interger-Solution (SIS) assumption.

Note that when PKE is used as KEM, the plaintext is uniformly chosen as
the encapsulation key and independent of the secret key and the public key.
Therefore, without the knowledge of ciphertext, the plaintext is uniform to the
adversary even if the adversary obtains the public/secret key pair. Consequently,
the output pseudo-randomness of KEM holds naturally in this case.

Since the LWE assumption implies the SIS assumption, we immediately ob-
tain an LWE-based two-message AKE in the standard model.
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G3
2,b,

#

"

 

!
G3

3,b, G3.2
4,b , G3.2

5,b , G3.2
6,b , G3.2

7,b , G3.2
8,b , G3.2

9,b„
�� ��G3.2

10,b

sID∗ ←$ [ℓ]

sID′ ←$ [ℓ]

(i∗, j∗) ←$ [µ]× [µ]
for i ∈ [µ]:

(pki, ski)← AKE.Gen

b′ ← AO(·)(pk1, . . . , pkµ)
If Trivial(sID∗): Return 0
If M(sID∗) = ∅ : Return 0 //Not Case 3�� ��If |M(sID∗)| > 1: Return 0

If M(sID∗) ̸= {sID′}:Return 0

Return b′

EST(i, j) :

cnt := cnt+ 1, sID := cnt
If sID = sID∗ ∧ (i, j) ̸= (i∗, j∗): abort //Not Case 3

If sID = sID′ ∧ (i, j) ̸= (j∗, i∗): abort

(holder[sID], peer[sID]) := (i, j)
(stRev[sID], rev[sID]) := (false, false)
Return sID

StateReveal(sID) :

If sID = sIDI : abort

stRev[sID] := true
Return st[sID]

TEST(sID) : //Only one query
If sID ̸= sID∗: abort //Not Case 3
If sKey[sid∗] = ⊥: Return ⊥
K∗

0 ←$ K,K∗
1 := sKey[sID∗]

Return K∗
b

Init(sID) :

If holder[sID] = ⊥ ∨ sent[sID] ̸= ⊥: Return ⊥
role[sID] = initiator

If sID = sID∗ : sIDI := sID∗, sIDR := sID′

If sID = sID′ : sIDI := sID′, sIDR := sID∗

(i, j) := (holder[sID], peer[sID])
(c1, seedi)← TKEM.Encap(pkj , i)
m11|m12 ← PRG(seedi)
σ := H(m12)

(p̃k, s̃k)← PKE.Gen

M1 := (p̃k, c1)

st[sID] := (m11, s̃k, σ,M1); sent[sID] := M1

Return M1

Derresp(sID,M1 = (p̃k, c1)) :

If holder[sID] = ⊥ ∨ role[sID] = initiator ∨ sKey[sID] ̸= ⊥:
Return ⊥

role[sID] = responder
(j, i) := (holder[sID], peer[sID])
If TKEM.Decap(skj , c1, i) = ⊥: Return ⊥
seed′i ← TKEM.Decap(skj , c1, i)
m′

11|m′
12 ← PRG(seed′i)

(c2, seedj)← KEM.Encap(pki)

c̃← PKE.Enc(p̃k, c2)

If sID = sIDR : c̃← PKE.Enc(p̃k, 0)

If sID = sIDR : record[c̃] := c2

If sID = sIDR: seedj ←$ K

m21|m22 ← PRG(seedj)

If sID = sIDR: m21,m22 ←$ K ×K

If sID = sIDR:
record[c2] := (seedj ,m21,m22)

C := m′
12 ⊕m22

M2 := (c̃, C)
K := PRF(m′

11,M1|M2)⊕ PRF(m21,M1|M2)
sKey[sID] := K�� ��If sID = sIDR : sKey[sID] ←$ K
(recv[sID], sent[sID]) := (M1,M2)
Return M2

Derinit(sID,M2 = (c̃, C)) :

If st[sID] = ⊥ ∨ sKey[sID] ̸= ⊥: Return ⊥
(i, j) := (holder[sID], peer[sID])

Parse st[sID] = (m11, s̃k, σ,M1 = (p̃k, c1))

If PKE.Dec(s̃k, c̃) = ⊥:
Return ⊥

c′2 ← PKE.Dec(s̃k, c̃)

If holder[sID] = I ∧ record[c̃] ̸= ∅:
c′2 := record[c̃]

If KEM.Decap(ski, c
′
2) = ⊥:

Return ⊥
seed′j ← KEM.Decap(ski, c

′
2)

m′
21|m′

22 ← PRG(seed′j)

If holder[sID] = I ∧ record[c′2] ̸= ∅:
Parse record[c′2] = (seedj ,m21,m22)
(seedj′ ,m

′
21,m

′
22) := (seedj ,m21,m22)

m′
12 := C ⊕m′

22

If H(m′
12) ̸= σ:

sKey[sID] := reject
Return ⊥

K := PRF(m11,M1|M2)⊕ PRF(m′
21,M1|M2)

sKey[sID] := K�� ��If sID = sIDI : sKey[sID] := sKey[sIDR]

recv[sID] := M2

Fig. 9: Game G3
2,b - G3

4,b, G
3.2
5,b - G3.2

10,b. Queries to OAKE := {REVEAL,CORRUPT}
are defined as in the original game in Fig. 6.
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In fact, there are many other choices for the building blocks, so our generic
construction actually leads to many two-message AKE schemes from standard
assumptions in the standard model.

5.2 AKE from CPA-secure PKE in the QROM

5.2.1 PRF and TCR. We simply take hash function as PRF (and PRG)
and TCR.

– We take a hash function H1 : K ×X → K as a PRF.
– We take a hash function H2 : K → Σ, where K = Σ ×Σ as a TCR.

The securities of PRF and TCR have already proved in QROM, as shown in
Lemma 1 and Lemma 2.

Lemma 1 (PRF from QROM, Corollary 1 from [5]). Let H : K×X → Y
be a quantum-accessible random oracle. This function PRF(k, x) := H(k, x) may
be used as a quantum-accessible PRF with a key k ←$ K. For any PRF-adversary
A making at most q queries to H and any number of queries to Fk, its advantage
satisfies AdvpsPRF(A) ≤ 2q/

√
|K|.

Lemma 2 (TCR Hash from QROM, Theorem 3.1 from [21]). There is a
universal constant α such that the following holds. Let H : K → Σ be a quantum-
accessible random oracle. Then any algorithm making q quantum queries to H
outputs a collision for H with probability at most α(q + 1)3/|Σ|.

5.2.2 KEM and TKEM from FO transformation in QROM. Lately,
Don et al. [7] proved FO-transform with explicit rejection can be applied in
QROM. Hence, an IND-CCA secure KEM can be constructed from IND-CPA
secure PKE, via FO-transform. The constructed scheme KEMFO is shown in Fig.
10 and its security is given in Lemma 3.

Encap(pk , τ )

m ←$ M
c := Enc(pk,m;G(m |τ ))

K := H(m |τ )

Return (c,K)

Decap(sk, c , τ ) :

m′ := Dec(sk, c)

If m′ = ⊥ or Enc(pk,m′;G(m′ |τ )) ̸= c:
Return ⊥

Else return K := H(m′ |τ )

Fig. 10: KEMFO from FO transformation (without gray box) and TKEMFO from
FO transformation (with gray box).

Lemma 3 (IND-CCA Security of KEMFO, Theorem 6.1 from [7]). If PKE
is a (1− δ)-correct IND-CPA secure public key encryption scheme satisfying γ-
spreadness and G,H are quantum-accessible random oracles, then the KEMFO in
Fig. 10 is IND-CCA secure.
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Lemma 1 implies output pseudo-randomness of KEMFO as shown below.

Lemma 4 (Output Pseudo-Randomness of KEMFO). For any adversary
A against output pseudo-randomness of KEMFO, issuing at most q (quantum)
queries to H, its advantage satisfies AdvpsKEM(A) ≤ 2q/

√
|M|.

Proof. The output pseudo-randomness of KEMFO requires the two distributions
{ H(m) | m ←$M } and { K | K ←$ K } are computational indistinguishable
even if A makes at most q (quantum) queries to H. Lemma 1 already shows that
H can be used as a PRF. Consequently, H(m) is pseudo-random to A since m
is randomly chosen. □

Now we extend FO-transform to Tagged KEM in QROM. The construction
of Tagged KEM is almost the same as KEMFO. We just attach the tag τ to
message m (m′) as the input of G and H. Assume PKE is IND-CPA secure with
γ-spreadness. The construction of TKEMFO from PKE is shown in Fig. 10.

In Lemma 5, we show that the IND-CCA security of TKEMFO can be reduced
to IND-CPA security of PKE in QROM.
Lemma 5 (IND-CCA security of TKEMFO). If PKE is a (1 − δ)-correct
IND-CPA secure public key encryption scheme satisfying γ-spreadness and G,H
are quantum-accessible random oracles, then TKEMFO in Fig. 10 is IND-CCA
secure.

The intuition for the proof of Lemma 5 is as follows. Suppose that G :
M × T → K is a quantum-accessible random oracle, then for each τ ∈ T ,
Gτ :M→K defined by Gτ (m) := G(m, τ) is also a quantum-accessible random
oracle. Hence, the proof of Lemma 5 almost verbatim follows that of Lemma 3.
We omit it here and put it in Appendix B.

5.2.3 The Final AKE in QROM. Given the above instantiations of PRG,
PRF, TCR Hash, and KEM and TKEM constructed from CPA-secure PKE
in QROM, we immediately obtain a generic construction of AKE from CPA-
secure PKE in QROM. For further optimization, we replace the computation of
session key K := PRF(m11,M1|M2)⊕PRF(m21,M1|M2) with hash function K :=
H(m11|m21|M1|M2). With the following quantum-accessible random oracles, we
obtain the final construction of our AKE protocol in Fig. 11.

- G : K × T → R, which is used to generate randomness in PKE.
- H : K → Σ, which is used as a target collision resistant hash function. Here
K = Σ ×Σ,

- H1 : K × T → K, which is used to generate encapsulation key.
- H2 : K × {0, 1} → K, which is used as a pseudo-random generator.
- H : {0, 1}∗ → K, which is used to generate session key.
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Init(ski, pkj) :

m1 ←$ K
c1 ← Enc(pkj ,m1;G(m1|i))
seedi ← H1(m1|i)
m11 ← H2(seedi|0)
m12 ← H2(seedi|1)
σ := H(m12)

(p̃k, s̃k)← PKE.Gen

M1 := (p̃k, c1)

st := (m11, s̃k, σ,M1)
Return (M1, st)

Derresp(skj , pki,M1) :

Parse M1 = (p̃k, c1)
m′

1 ← Dec(skj , c1)
If m′

1 = ⊥ ∨ Enc(pkj ,m
′
1;G(m′

1|i)) ̸= c1:
Return ⊥

else:
seed′i := H1(m

′
1|i)

m′
11 ← H2(seed

′
i|0);m′

12 ← H2(seed
′
i|1)

m2 ←$ K
c2 ← Enc(pki,m2;G(m2))
seedj ← H1(m2)
m21 ← H2(seedj |0);m22 ← H2(seedj |1)
c̃← Enc(p̃k, c2)
C := m′

12 ⊕m22

M2 := (c̃, C)
K := H(m′

11|m21|M1|M2)
Return (M2,K)

Derinit(ski, pkj ,M2, st) :

Parse M2 = (c̃, C)

Parse st = (m11, s̃k, σ,M1 = (p̃k, c1))

If Dec(s̃k, c̃) = ⊥:
Return ⊥

c′2 ← Dec(s̃k, c̃)
m′

2 ← Dec(ski, c
′
2)

If Enc(pki,m′
2;G(m′

2)) ̸= c′2:
Return ⊥

else:
seed′j := H1(m

′
2)

m′
21 ← H2(seed

′
j |0),m′

22 ← H2(seed
′
j |1)

If H(C ⊕m′
22) ̸= σ:

Return ⊥
K := H(m11|m′

21|M1|M2)
Return K

Fig. 11: Generic construction of AKE from CPA-secure PKE in QROM.
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Appendix

A Useful Lemmas for Quantum Random Oracles

A.1 Extractable Quantum Random Oracle Simulation

We first recall some definitions and main theorem in [7].

Definition 15. Let f : X × Y → C be an arbitrary fixed function with Y =
{0, 1}n, we define

Γ (f) := max
x,c
|{y|f(x, y) = c}|.

Definition 16. Let R ⊆ X × {0, 1}n be a relation. We define

Γ (R) := max
x∈X
|{y ∈ {0, 1}n|(x, y) ∈ R}|.

Next we recall the Theorem 4.3 and Proposition 4.4 in Lemma 6 (we only
list the entries which will be used in the following proof.)

Lemma 6 (Theorem 4.3 in [7]). For a fixed function f : X × {0, 1}n → C,
there is an efficient simualor S that has two interfaces S.RO : X → {0, 1}n and
S.E : C → X ∪ {⊥} and has the following properties:

(1) If S.E is unused, S is perfectly indistinguishable from the random oracle RO.
(2.a) Any two subsequent independent queries to S.RO commute. We refer two

subsequent queries as being independent if the input to one query does not
depend on the output of the other.

(2.b) Any two subsequent independent queries to S.E commute.
(2.c) Any two subsequent independent queries to S.E and S.RO 8

√
2Γ (f)/2n-

almost-commute.
(4.b) If h = S.RO(x) and x̂ = S.E(f(x, h)) are two subsequent classical queries

such that no prior query to S.E has been made, then

Pr [x̂ = ⊥] ≤ 2 · 2−n.

(4.c) (Proposition 4.4 in [7].) Let R′ ⊆ X × C be a relation. Consider a query
algorithm A that makes q queries to the S.RO interface of S but no query
to S.E, outputting some (c1, . . . , cℓ) ∈ Cℓ. For each i, let x̂i then be obtained
by making an additional query to S.E on input ti. Then

Pr
(c1, . . . , cℓ)← AS.RO

x̂i ← S.E(ci)

[
∃i : (x̂i, ci) ∈ R′] ≤ 128 · q2Γ (R)/2n,

where R ⊆ X × Y is the relation (x, y) ∈ R⇔ (x, f(x, y)) ∈ R′.
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A.2 O2H Lemma

Now we recall the well-know O2H lemma proposed in [19]. We will use its general
version which is Theorem 3 in [2].

Lemma 7. Let S ⊆ X be random. Let G,H : X → Y be random functions
satisfying ∀x /∈ S,G(x) = H(x). Let z be a random bitstring. (S,G,H, z may
have arbitrary joint distribution.)

Let A be quantum oracle algorithm with query number q.
Let BH be an oracle algorithm that on input z does the following: pick i←$

{1, ..., q}, run AH(z) until (just before) the i-th query, measure all query input
registers in the computational basis, output the set T of measurement outcome.

Then,∣∣Pr [b = 1 : b← AH(z)
]
− Pr

[
b = 1 : b← AG(z)

]∣∣ ≤ 2q
√
Pr

[
S ∩ T ̸= ∅ : T ← BH(z)

]
.

B FO transformation of TKEM

This part follows the proof of CCA-security of KEM from FO-transformation in
[7]. The sequence of hybrid games and proof are almost the same as proof in [7].
We will show them for completeness.

The construction of TKEM is shown in Fig 10. We will prove the following
theorem.

Theorem 2. Let PKE be a (1 − δ)-correct public key encryption scheme satis-
fying γ-spreadness. Let A be any IND-CCA adversary against TKEM, making
qD ≥ 1 queries to the decapsulation oracle Decap and qG and qH (quantum)
queries to G : M× T → R and H : M× T → K, respectively, where G and
H are modeled as random oracles. Let q := qG + qH + 2qD. Then, there exists a
IND-CPA adversary BPKE against PKE with

AdvCCATKEM(A) ≤ 2q

√
AdvCPAPKE(BPKE) + 24q2(

√
δ + 2−γ/4).

Proof. We first analyze the sequence of hybrids for a fixed key pair (pk, sk). Let
δsk be the maximum probability of a decryption error and gsk be the maximum
probability of any ciphertext, so that E[δsk] ≤ δ and E[gsk] ≤ 2−γ with the
expectation over (pk, sk)← Gen.
Game 0. In Game 0, we first sample a random oracle F and define G(m|τ) :=
F (0|m|τ) and H(m|τ) := F (1|m|τ). Now we consider both challenger and adver-
sary access this single random oracle F . When convenient, we sometimes refer to
F (0|·) as G and F (1|·) as H. These changes do not affect the adversary’s view or
the game’s outcome. Game 0 is still the IND-CCA game for TKEM with fixed
key pair (pk, sk). Therefore,

Pr [b = b′ in Game 0] =
1

2
+ AdvCCATKEM(A).
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Game 1. In Game 1, we introduce a new oracle F ′. Let m∗ denote the mes-
sage encrypted in challenge ciphertext c∗ and τ∗ denote the tag submitted by
adversary Ask. We define F ′(0|m∗|τ∗) := r′ and F ′(1|m∗|τ∗) := k′ for uni-
formly random r′ ∈ R and k′ ∈ K, while letting F ′(b|m|τ) = F (b|m|τ) for
(m, τ) ̸= (m∗, τ∗) and b ∈ {0, 1}. Note that F ′ is still a purely random function.
We also define G′ := F ′(0|·) and H ′ := F ′(1|·).

Game 1 is the same as Game 0, except for the following changes. After
(m∗, τ∗) have been produced and before A can access to Decap oracle, challenger
C first queries r′ = G′(m∗|τ∗) then computes c′ := Enc(pk,m∗; r′). Furthermore,
Decap oracle changes as follows.

- Decap(sk, c, τ) : If (c, τ) = (c′, τ∗), it will compute the decrypt result using
random oracle G and H. Otherwise, it will use random oracle G′ and H ′.

We claim that

Pr [b = b′ in Game 1] = Pr [b = b′ in Game 0] =
1

2
+ AdvCCATKEM(Ask).

For any decryption query (ci, τi), let mi ← Dec(sk, ci). Then there are three
cases:

1. mi ̸= m∗ 2. mi = m∗ but τi ̸= τ∗ 3. mi = m∗ and τi = τ∗

In case 1 and case 2, we have F ′(b|mi|τi) = F (b|mi|τi). In case 3, we ei-
ther have ci = c′, where nothing changes by definition of the game, or else
Enc(pk,m∗;G(m∗|τ∗)) = c∗ ̸= ci and Enc(pk,m∗;G′(m∗|τ∗)) = c′ ̸= ci, and
hence the re-encryption check fails and Ki = ⊥ in both Game 0 and Game 1.
Therefore, the view of A in Game 0 and Game 1 is the same.
Game 2. Game 2 is identical to Game 1, except that C uses F ′ to reply all
Decap calls (also for (ci, τi) = (c′, τ∗)) and all random oracle calls made by A.
The challenge ciphertext c∗ = Enc(pk,m∗;G(m∗|τ∗)) and key K0 = H(m∗|τ∗)
are still computed using F . Note that in Game 2, K0 = H(m∗|τ∗) is independent
of m∗, τ∗ and F ′, exactly as K1 is, which means that Ask can only win with
probability 1

2 .
Hence, we have

|Pr [b = b′ in Game 1]− Pr [b = b′ in Game 2]| = AdvCCATKEM(Ask).

By the Lemma 7 (O2H Lemma), we have

AdvCCATKEM(Ask) = |Pr [b = b′ in Game 1]− Pr [b = b′ in Game 2]|

≤ 2(qG + qH + 2)
√

Pr [(m′, τ ′) = (m∗, τ∗) in Game 3],
(53)

where Game 3 is introduced by the O2H lemma to extract an input where F
and F ′ differs. There are total qG + qH quantum queries to G′ and H ′, and 2qD
classical queries incurred by Decap oracle. Note that Game 1 and Game 2 have
the same behavior of Decap(c, τ) except A queries Decap(c′, τ∗). Hence, B can
only consider the (qG + qH) quantum queries plus two classical queries incurred
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by Decap(c′, τ∗). B first randomly chooses these qG+qH+2 queries and measures
the input of j-th query to F and obtains (m, τ). Then B sets (m′, τ ′) := (m, τ)
and returns whether (m′, τ ′) = (m∗, τ∗). Besides, rather than measuring Decap’s
classical query to G′ and H ′ upon decryption query (ci, τi) = (c′, τ∗), we can
equivalently set m′ := mi = Dec(sk, c′) and τ ′ := τ∗.

Since we are concerned with the measurement outcome (m′, τ ′) only, it is
irrelevant whether the game stops right after the measurement, or it continues
until A outputs b′.
Game 4. Game 4 is the same as Game 3 except for the behavior of random
oracle G′. In Game 4, we replace G′ with the extractable RO-simulator S from
Lemma 6 for the fixed function f : (M×T )×R → C, ((m, τ), r) 7→ Enc(pk,m; r).
Furthermore, at the very end of the game, we invoke the extractor interface S.E
to compute (m̂i, τ̂i)← S.E(ci) for each (ci, τi) that A queried to Decap. By (1)
in Lemma 6, given that the S.E queries take place only after the run of A, we
have

Pr
[
(m′, τ ′) = (m∗, τ∗) in Game 4

]
= Pr

[
(m′, τ ′) = (m∗, τ∗) in Game 3

]
. (54)

Furthermore, consider (4.c) in Lemma 6 for relation R′ := {((m, τ), c) : Dec(sk, c)
̸= m}, then the event

P † := [∀i : m̂i = mi ∨ m̂i = ⊥]
holds except with probability ϵ1 := 128(qG + qD)2Γ (R)/|R| for ΓR, which here
means that Γ (R)/|R| = δsk. Thus,

Pr
[
(m′, τ ′) = (m∗, τ∗) ∧ P † in Game 4

]
≥ Pr

[
(m′, τ ′) = (m∗, τ∗) in Game 4

]
− ϵ1.

(55)
Game 5. Game 5 is the same as Game 4, except for the behavior of oracle
Decap(c, τ).

- Decap(c, τ) : It first computes m← Dec(sk, c) and queries g := S.RO(m|τ).
Then, it queries m̂|τ̂ ← S.E(c) immediately instead of querying S.E(c) after
the game simulation ends.

Since the result of m̂ is never used in Game 5, any queries to S.E(c) are inde-
pendent of queries to S.E(c) and S.RO(m|τ). By (2.b) and (2.c) of Theorem
6, each swap of a S.RO with a S.E query affects the final probability by at
most 8

√
2Γ (f)/|R| = 8

√
2gsk. Since there are qD queries of S.E and (qD + qG)

queries of S.RO, we have Game 4 and Game 5 are the same except with proba-
bility 8qD(qD + qG)

√
2gsk.

Suppose we just swap the latest S.E(cqD ) query to oracle Decap, i.e., no query
to S.E before S.E(cqD ). Let (m̂qD , τ̂qD ) ← S.E(cqD ). By (4.b) of Theorem 6,
m̂qD = ⊥ implies Enc(pk,mqD ;S.RO(mqD |τqD )) ̸= cqD ) expect with probability
2 · 2−n. Repeating the above step and applying the union bound, we find that
event P † implies

P := [∀i : m̂i = mi ∨ (m̂i = ⊥ ∧ Enc(pk,mi;S.RO(mi|τi)) ̸= ci)]
except with probability qD · 2 · 2−n. Thus,

Pr
[
(m′, τ ′) = (m∗, τ∗) ∧ P in Game 5

]
≥ Pr

[
(m′, τ ′) = (m∗, τ∗) ∧ P † in Game 4

]
−ϵ2,

(56)
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with ϵ2 := 2qD ·
(
(qG + qD) · 4

√
2gsk + 2−n

)
.

Game 6. Game 6 is the same as Game 5, except for the behavior of oracle
Decap(c, τ).

- Decap(c, τ) : It first computes m← Dec(sk, c) and queries g := S.RO(m|τ),
m̂|τ̂ ← S.E(c). Then, it returns K := ⊥ if m̂ = ⊥ and returns K := H ′(m̂|τ)
if m̂ ̸= ⊥, rather than returning ⊥ if Enc(pk,m; g) ̸= c and returning K :=
H ′(m|τ) if Enc(pk,m; g) = c as did in Game 5.

Here, we note that if the event
Pi = [m̂i = mi ∨ (m̂i = ⊥ ∧ Enc(pk,mi;S.RO(mi|τi)) ̸= ci)]

holds for a given i, then the above change will not affect Decap’s response Ki.
Therefore, we have

Pr
[
(m′, τ ′) = (m∗, τ∗) ∧ P in Game 6

]
= Pr

[
(m′, τ ′) = (m∗, τ∗) ∧ P in Game 5

]
.

(57)
Game 7. Game 7 is the same as Game 6 except for the method of obtaining
m′. In Game 7, m′ is obtained by the following two ways:

1. With probability (qG + qH)/(qG + qH + 2qD) , m′ is obtained by measuring
a random query of A to either S.RO or H ′.

2. With probability 2qD/(qG + qH + 2qD), m′ is obtained by set m′ := m̂i′ ,
where i′ ←$ [qD].

Recall that in Game 6, m′ is obtained by measuring a random query of A to
either S.RO or H ′ with probability (qG + qH)/(qG + qH + 2), or by outputting
m̂i with (ci, τi) = (c′, τ∗) with probability 2/(qG + qH + 2). Since conditioned
on the first case being chosen or the latter with i = i′, Game 7 coincides with
Game 6, we have

Pr
[
(m′, τ ′) = (m∗, τ∗) in Game 7

]
≥ qG + qH + 2

qG + qH + 2qD
·Pr

[
(m′, τ ′) = (m∗, τ∗) in Game 6

]
.

(58)
Note that after Game 7, B does not need to compute c′ := Enc(pk,m∗;G′(m∗|τ∗)).
In other words, B does not need to use m∗ in the game.
Game 8. In Game 8, we drop out all the S.RO(mi|τi) queries from Decap oracle,
or equivalently, move them to the end of the execution of the game. Invoking
once again (2.c) of Theorem 6, we then get

Pr
[
(m′, τ ′) = (m∗, τ∗) in Game 8

]
≥ Pr

[
(m′, τ ′) = (m∗, τ∗) in Game 7

]
−ϵ3, (59)

for ϵ3 = (qD + 1) · qG · 8
√
2gsk.

Note that in Game 8, B can simulate Decap oracle without knowledge of the
secret key sk, and thus we can construct a OW-CPA (IND-CPA) attacker Bsk
against PKE, which takes as input a public key pk and an encryption c∗ of a
random message m∗ ∈M, and outputs m∗ with the given probability, i.e.,

Pr [(m′, τ ′) = (m∗, τ∗) in Game 8] ≤ AdvCPAPKE(B). (60)
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By (53), (54), (55), (56), (57), (58), (59), (60) and setting q := qH+qG+2qD,
we have

AdvCCATKEM(Ask) ≤ 2(qG + qH + 2)

√
q

qH + qD + 2
(AdvCPAPKE(Bsk) + ϵ3) + ϵ1 + ϵ2

≤ 2q

√
AdvCPAPKE(Bsk) + ϵ2 + ϵ3 + 2q

√
ϵ1

≤ 2q(

√
AdvCPAPKE(Bsk) +

√
ϵ2 + ϵ3) + 2q

√
ϵ1,

√
ϵ2 + ϵ3 =

√
2qD · 4(qG + qD + qG + 1/qD)

√
2gsk + 2−n

≤ 6
√
qGqD(g

1/4
sk + 2−n/2) ≤ 12q · g1/4sk .

Finally, taking the expectation over (pk, sk) ← Gen and applying Jensen’s in-
equality, we prove that the construction of Fig 10 is a secure IND-CCA TKEM.
□
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