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Abstract. The relationship between complexity classes BQP and QMA
is analogous to the relationship between P and NP. In this paper, we
design a quantum bit commitment problem that is in QMA, but not in
BQP. Therefore, it is proved that BQP ̸= QMA. That is, problems that
are verifiable in quantum polynomial time are not necessarily solvable in
quantum polynomial time, the quantum analog of P ̸= NP.
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1 Introduction

Quantum complexity theory is a branch of computational complexity theory
concerned with the definition of complexity classes using quantum computers,
a computational model based on quantum mechanics. BQP and QMA are two
important quantum complexity classes [1,2].

Definition 1 (Bounded-error Quantum Polynomial Time (BQP)). A
language L ∈ BQP if and only if there exists a poly(|x|) time quantum algorithm
f, such that:

• ∀x ∈ L, Pr(f(x) = 1) ≥ 2/3.
• ∀x /∈ L, Pr(f(x) = 1) ≤ 1/3.

Definition 2 (Quantum Merlin Arthur (QMA)). Let B denote the Hilbert
space of one qubit. A language L ∈ QMA if and only if there exists a poly(|x|)
time quantum verifier V, such that:

• ∀x ∈ L, ∃|ψ⟩ ∈ Bpoly(|x|), P r(V (x, |ψ⟩) = 1) ≥ 2/3.
• ∀x /∈ L, ∀|ψ⟩ ∈ Bpoly(|x|), P r(V (x, |ψ⟩) = 1) ≤ 1/3.

The no-communication theorem (or no-signaling principle) [3,4,5] shows that
communication between two observers is not possible using entanglement alone.
In fact, if two observers could transfer information simply by entanglement with-
out additional information exchange, this would lead to the paradox of faster-
than-light (FTL) communication. We have the following theorem and corollary.

Theorem 1 (No-communication Theorem). It is impossible for one ob-
server to communicate information to another observer during the measurement
of an entangled quantum state by making a measurement of a subsystem of the
total state.



Corollary 1. Suppose that Alice and Bob share a Bell state (a, b), where a de-
notes one qubit of the Bell state and b denotes the other one. Alice keeps a and
Bob keeps b, respectively. Without further information exchange, there is no way
for Bob to determine afterward whether a has been measured or not.

The quantum bit commitment problem (or game) proposed in the following
section essentially relies on the no-communication theorem and corollary 1.

2 The Quantum Bit Commitment Problem

Bit commitment is a cryptographic primitive that allows Alice to commit to a
chosen value (e.g., a bit) while keeping it hidden from Bob in the commit phase;
Alice cannot change the value after she has committed to it and can reveal
the committed value with certain proof in the opening phase. Without loss of
generality, we focus on the verifier-based definition of the decision problem of
the quantum bit commitment in an error-free environment for simplicity. Unless
otherwise stated, “randomly” in the following usually means randomly with
equal probability.

The basic idea of the proposed QBC problem is that: Alice and Bob share
n Bell states. Alice has two choices (representing the commitments x = 1 and
x = 0, respectively): either to measure some qubits on her hand at random, or not
to measure any qubits at all. Alice then provides evidence R to finish the commit
phase. The key to the design is that, on the one hand, Alice cannot change her
commitment due to R, i.e., if Alice chooses to measure certain qubits, then in
the opening phase, she cannot convince Bob that she did not measure any qubits
as the measurement is not reversible; if Alice chooses not to measure any qubits,
then in the opening phase, she cannot convince Bob that she has measured
certain qubits as R is bound to the measurement result and the measurement
result is unpredictable. On the other hand, Bob should not be able to distinguish
Alice’s commitment based on R before the opening phase. That is, R should be
the hidden value of the measurement result, rather than the direct measurement
result. In detail, we have the following definition.

Definition 3 (Quantum Bit Commitment (Decision Problem)). Let n
and m be integers, such that n is divisible by 2m, denoted as n = ml (e.g.,
m = 64, l = 16 and n = 1024). Assume that Alice and Bob share n Bell states,

which are denoted as (ai, bi) ≜
|00⟩+|11⟩√

2
with 1 ≤ i ≤ n, where ai represents one

qubit of the ith Bell state and bi represents the other one. Let A ≜ (a1, a2, ..., an)
and B ≜ (b1, b2, ..., bn). Alice keeps the qubit sequence A and Bob keeps B.

If Alice wants to commit to x = 0, she generates an m-bit random bit string
R ≜ r1r2...rm, where each bit ri has a probability of 1/2 of being 0 and a proba-
bility of 1/2 of being 1.

If Alice wants to commit to x = 1, she randomly selects m qubits from A,
denoted in the order as (aj1 , aj2 , . . . , ajm), such that the distance (di = ji+1− ji)
of any two adjacent selected qubits satisfies: l

2 ≤ di <
3l
2 for all 1 ≤ i < m.
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For each selected qubit aji (1 ≤ i ≤ m), Alice randomly chooses the standard
basis {|0⟩, |1⟩} or the Hadamard basis {|+⟩, |−⟩} to measure it (i.e., each qubit
corresponds to a randomly selected basis), and records the measurement basis and
the measurement result yi (i.e., if the measurement result of aji is |0⟩ or |+⟩, it
is recorded as yi = 0; if the measurement result of aji is |1⟩ or |−⟩, it is recorded
as yi = 1). For each selected qubit aji (1 ≤ i ≤ m), Alice generates an output bit

by ri = (yi + yi+1 + di) mod 2, where ym+1 ≜ y1 and dm ≜ n− jm + j1. Then,
Alice set R ≜ r1r2...rm.

Finally, Alice announces R as evidence of commitment. The problem is, given
x′ = 0 or 1, determine whether x′ is Alice’s commitment.

Note that the above QBC problem can be easily extended to the problem of
committing a k-bit x. In such case, Alice and Bob should share nk Bell states.
The decision problem is to determine whether a given k-bit instance x′ is a Yes-
instance or a No-instance (Only one Yes-instance exists, i.e., x′ = x; all other
2k − 1 instances are No-instances). The computational problem is to find the
unique solution x.

For the quantum bit commitment decision problem p defined by Definition 3,
we will show that the verifier Bob can not figure out the value x according to the
publicly available information. Hence, p /∈ BQP. Furthermore, for any instance
x′, the prover Alice can convince Bob it is a Yes-instance or a No-instance with
the proof. Therefore, p ∈ QMA.

In fact, in the subsequent opening phase, Alice reveals her commitment x
with corresponding proofs. For the case x = 0, Alice sends A (as the proof)
to Bob. For each ai ∈ A, bi ∈ B with 1 ≤ i ≤ n, Bob performs Bell state
verification on (ai, bi). If any verification fails, Bob detects that Alice is cheating
and terminates the game. Bob accepts the commitment x = 0 if and only if all
verifications pass.

For the case x = 1, Alice announces the indexes of all the measured qubits
(j1, j2, . . . , jm), the measurement results (y1, y2, . . . , ym), and the correspond-
ing measurement bases. Alice sends all unmeasured qubits in A (denoted as
Ã) to Bob. To verify Alice’s commitment x = 1, Bob measures each qubit in
(bj1 , bj2 , ..., bjm) from B with the corresponding basis provided by Alice, such
that aji and bji were measured using the same basis. Let (y′1, y

′
2, ..., y

′
m) denote

the corresponding measurement results of (bj1 , bj2 , ..., bjm). Then Bob performs
the following checks: 1) Bob checks whether all the equations y′i = yi (1 ≤ i ≤ m)
hold, i.e., the two qubits in each pair (aji , bji) measured with the same basis
should have the same result. 2) For each measured qubit, Bob checks whether
all equations ri = (yi + yi+1 + di) mod 2 hold for 1 ≤ i ≤ m. 3) Bob checks
whether all the equations l

2 ≤ di <
3l
2 hold for 1 ≤ i < m. 4) For each ai ∈ Ã

with bi ∈ B, Bob performs Bell state verification on (ai, bi). If any check fails,
Bob detects that Alice is cheating and terminates the game. Bob accepts the
commitment x = 1 if and only if all checks pass.
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2.1 p /∈ BQP

In this section, we will show that if Alice behaves as described in the QBC game,
Bob cannot figure out x through the qubit sequence B and the bit string R.

On the one hand, according to the no-communication theorem, Bob learns
nothing about Alice’s operations (measurements) by entanglement. For any qubit
in A (and the same in B), Bob cannot tell if the qubit has been measured (or
if it has collapsed). Therefore, Bob gets no information about x based on the
qubit sequence B alone.

On the other hand, for each qubit aji with 1 ≤ i ≤ m, Alice randomly (with
equal probability) chooses either the standard basis {|0⟩, |1⟩} or the Hadamard
basis {|+⟩, |−⟩} to perform the measurement. Then, based on the superposition

principle and the entanglement property (i.e., (ai, bi) =
|00⟩+|11⟩√

2
= |++⟩+|−−⟩√

2
),

the measurement leads to a collapse of the quantum state. The probability of
getting a result of 0 is 1/2 and the probability of getting a result of 1 is 1/2,
a result that neither Alice nor Bob could predict. For the case of x = 1, it
means that the output R ≜ r1r2...rm based on the measurement results can be
any binary string R ∈ {0, 1}m. That is, R and a random number of m bits are
indistinguishable. Therefore, Bob cannot distinguish between two commitments
based on the m output bits R alone.

Furthermore, if Alice chooses to measure certain qubits (i.e., x = 1), then
based on the Bell state entanglement property, Bob has exactly the same set
of qubits B as A. In the following, we will show that Bob cannot figure out
x through the qubit sequence B and the m output bits R. In fact, if R is a
completely random binary string for Bob, then Bob gets no information about
Alice’s choice x. Moreover, since the positions of the measured qubits are un-
known to Bob, it is impossible to divide the whole sequence of qubits B into
multiple samples, but only to analyze the quantum sequence B by looking at
it as a whole (one sample), thus avoiding distinguishing the commitments with
statistical methods by POVM measurements.

For any instance R ≜ r1r2...rm with x = 1, there are many possible states
that can output the same R. For example, there are two states that have different
measurement bases but yield the same measurement outcome, or two states that
have different positions for the i-th measured qubit but have the same parity
of the index, and both states will output the same R. Therefore, based on the
no-communication theorem, Bob cannot infer which qubit was measured from
the sequence B and the output bits. For Bob, (d1, d2, . . . , dm) is a completely
random binary string. That is, for Bob, each (di mod 2) has an equal chance
of being either 0 or 1. In [6], Shannon indicated that unconditional security can
only be achieved when the length of the key is at least equal to the length of the
plaintext. For ease of analysis, we rewrite the function ri = (yi+yi+1+di) mod 2
as ri = (yi⊕yi+1)⊕(di mod 2). This means that the output bits R ≜ r1r2 . . . rm
are a completely random binary string for Bob, and therefore, Bob cannot obtain
any information about the measurement results and hence cannot deduce x.

For the case of x = 0, the Bell state (|00⟩+|11⟩)/
√
2 has a density operator of

(|00⟩+ |11⟩)/
√
2)(⟨00|+ ⟨11|)/

√
2). Taking the trace over the second qubit yields
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the reduced density operator for the first qubit ρmix = (|0⟩⟨0| + |1⟩⟨1|)/2. For
the case of x = 1, the qubit sequence B has many possible states. This is because
the possible input to the output R is not unique, including the m positions and
corresponding measurement bases chosen by Alice, as well as the unpredictable
measurement results. Each different combination of parameters can get the same
output bits. When Alice announces the unique R ≜ r1r2...rm based on the
measurement results, let the set of all possible states of the qubit sequence B be
|ψ1⟩, |ψ2⟩, ..., |ψN ⟩. Let ρx be the reduced density matrix corresponding to the
mixture B when classical bit x is committed. Since each qubit of the sequence
B is independent of the other, we get

ρ0 =

n⊗
i=1

ρmix ≈ ρ1 =

N∑
i=1

1

N
|ψi⟩ ⟨ψi|,

with

|ψ1⟩ = [

m⊗
i=1

(
1

2
(|yi⟩⟨yi|+ |y′i⟩⟨y′i|)⊗ I l

2−1)]⊗ In−ml
2
,

|ψ2⟩ = [

m⊗
i=1

(
1

2
(|ȳi⟩⟨ȳi|+ |ȳ′i⟩⟨ȳ′i|)⊗ I l

2−1)]⊗ In−ml
2
,

|ψ3⟩ =
1

2
(|y1⟩⟨y1|+ |y′1⟩⟨y′1|)⊗I l

2
⊗ [

m⊗
i=2

(
1

2
(|ȳi⟩⟨ȳi|+ |ȳ′i⟩⟨ȳ′i|)⊗I l

2−1)]⊗In−ml
2 −1,

|ψ4⟩ =
1

2
(|ȳ1⟩⟨ȳ1|+ |ȳ′1⟩⟨ȳ′1|)⊗I l

2
⊗ [

m⊗
i=2

(
1

2
(|yi⟩⟨yi|+ |y′i⟩⟨y′i|)⊗I l

2−1)]⊗In−ml
2 −1,

...

|ψN−1⟩ = In−ml
2
⊗

m⊗
i=1

(I l
2−1 ⊗

1

2
(|yi⟩⟨yi|+ |y′i⟩⟨y′i|)),

|ψN ⟩ = In−ml
2
⊗

m⊗
i=1

(I l
2−1 ⊗

1

2
(|ȳi⟩⟨ȳi|+ |ȳ′i⟩⟨ȳ′i|)),

such that N is the number of all combinations that satisfy the equation ri =
(yi+yi+1+di) mod 2 for all 1 ≤ i ≤ m, and Iz = 1

2z I
⊗z, yi ∈ {0, 1}, y′i ∈ {+,−};

If yi = 0, then y′i = +, else y′i = −; ȳi and ȳ′i are the negations of yi and y′i,
and (y1, y2, ..., ym) is the possible measurement result corresponding to R. The
parameter l indicates that on average one qubit may be measured among l
qubits, and the probability of the measurement result being 0 or 1 is equal for
Bob. Hence the trace distance between ρ0 and ρ1 can be arbitrarily small as l
increases. Next, we will analyze why Bob is unable to distinguish between these
two mixed states.

The indistinguishability of mixed states ρ0 and ρ1 when there is only one
copy of the mixed state:
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Let ρ0 and ρ1 be two mixed states, with ρ0 being the maximum mixed state,
i.e.,

ρ0 =

n⊗
i=1

ρmix =
1

2n
I⊗n =

∑
i

1

2n
|ϕi⟩⟨ϕi|,

where 2n is the dimension of the system, I⊗n is the n-fold tensor product of
the identity operator, and |ϕi⟩ is a set of orthogonal and normalized bases. The
other mixed state, ρ1, is given by

ρ1 =

N∑
i=1

1

N
|ψi⟩ ⟨ψi| =

∑
i

pi|ϕi⟩⟨ϕi|,

where pi > 0 is a probability distribution. Furthermore, Alice can choose to
measure on the standard or Hadamard basis, each qubit is a mixed state for
Bob, and thus pi > 0.

To prove the conclusion, we need to consider the results of arbitrary measure-
ments on these two mixed states. According to the rules of quantum mechanics,
a measurement will cause the state function to collapse to some eigenstate. For
the mixed state ρ0, the probability of measuring |ϕi⟩⟨ϕi| is

Tr(|ϕi⟩⟨ϕi|ρ0) =
1

2n
Tr(|ϕi⟩⟨ϕi|) =

1

2n
> 0.

For the mixed state ρ1, the probability of measuring |ϕi⟩⟨ϕi| is

Tr(|ϕi⟩⟨ϕi|ρ1) = pi > 0.

Although the probabilities are different, each measurement result is possible to
come from either ρ0 or ρ1, and since there is only one copy of the mixed state,
it is impossible to distinguish between these two mixed states when ρ0 and ρ1
close to each other. Furthermore, we have the following theorem.

Theorem 2 (Holevo-Helstrom). In general, the best success probability to
discriminate two mixed states represented by ρ0 and ρ1 is given by 1

2+
1
2 (

1
2Tr|ρ0−

ρ1|).

As l increases, the trace distance 1
2Tr|ρ0−ρ1| between ρ0 and ρ1, correspond-

ing to different commitment values, can be arbitrarily small from Bob’s point of
view. Therefore, according to the Holevo-Helstrom theorem, as l increases, the
probability that Bob can successfully distinguish between two commitments is
arbitrarily close to 1/2.

In summary, based on the principle of superposition, the probability that a
dishonest Bob can derive the value of x through the qubit sequence B and the
m output bits can be arbitrarily small as l increases. Therefore, p /∈ BQP.
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2.2 p ∈ QMA

In this section, we will show that once Alice has made her commitment, i.e.,
announced the m output bits R, she will not be able to successfully cheat Bob
later.

The goal of dishonest Alice’s cheating is that she is able to declare any
commitment value at will in the opening phase. If Alice chooses x in the commit
phase, then Alice would like to have the ability to switch her commitment to
1 − x in the opening phase. Nevertheless, as a basic principle, we assume that
Alice will not employ such a cheating strategy, which has a negligible probability
of success and a non-negligible probability of cheating being detected. In other
words, Alice will not engage in dishonest operations from which she gets no
benefit.

Based on the superposition principle, Alice has no strategy to determine
whether the selected qubit aji outputs 0 or 1 before measuring it for the case
of x = 1. Moreover, each selected qubit aji output of 0 or 1 is independent,
and Pr(ri = 0) = Pr(ri = 1) = 1/2. If Alice chooses to measure some of the
qubits and some of the qubits remain entangled for the selected qubits aji (1 ≤
i ≤ m), then this strategy makes Alice’s probability of successfully switching
commitment values in the opening phase decrease exponentially as m increases,
and the probability of being detected as cheating is non-negligible. Therefore,
Alice cannot get any benefit from using such a cheating strategy.

For the case of x = 0, the success probability of convincing Bob to accept x =
1 decreases exponentially as m increases. In this case, Alice measures the qubits
in the opening phase, and since the measurement outcomes are unpredictable,
the probability of the output bits matching the previously given random bits
(evidence) is only 1/2m. Alice may forge the argument yi to make the equation
ri = (yi + yi+1 + di) mod 2 hold. Without loss of generality, suppose that the
measurement basis of aji is k = 0, and the measurement result is h = 0, and
then she will announce that kcheat = 1 ̸= k, hcheat = 1 ̸= h. Then the probability
that this selected qubit is accepted by Bob (i.e., the probability that the qubit
bji will be accepted) is Pr(h′ = 1|k′ = kcheat ̸= k) = 1/2, where k′, h′ are Bob’s
records on qubit bji .

To convince Bob to accept x = 1, Alice considers forging the measurement
result yi to make the output consistent with the evidence R. The question is
how to forge as few qubits measurement results as possible. Assuming that Alice
already has measured aji and got yi, now Alice chooses (the best strategy is
under the condition l ≤ di <

3l
2 ) to measure the next qubit aji+1

to get yi+1. If
ri = (yi + yi+1 + di) mod 2 holds (with 1/2 probability) for the corresponding
ri in R, then Alice continues to choose to measure the next qubit aji+2

. If ri =
(yi + yi+1 + di) mod 2 does not hold, Alice can consider measuring one more
qubit backward between aji and aji+1 as the new aji+1 , and set the original aji+1

to aji+2
. According to ri = (yi+yi+1+di) mod 2, if Alice chooses to measure one

more qubit backward, there are two possible cases, each with probability 1/2: In
one case, according to yi+1, Alice has a 1/2 probability of getting two matching
output bits (ri, ri+1), both of which satisfy the equation, and a 1/2 probability
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of getting two mismatched output bits (r̄i, r̄i+1). In the other case, no matter
whether the measurement result is 0 or 1, there is always a measurement result
that needs to be forged, i.e., which outputs (r̄i, ri+1) or (ri, r̄i+1). If it is the
former, Alice should choose to measure one more qubit backward; if it is the
latter, it is better to continue measuring forward instead of measuring one more
qubit backward.

As a conclusion, for a given measured qubit aji+1 , there are three possible
scenarios: 1) The measurement result yi+1 happens to output ri, and Alice does
not need to forge. 2) If Alice chooses to measure one more qubit backward,
there is a 1/2 probability of output (ri, ri+1) and no forgery is needed, and
a 1/2 probability of output (r̄i, r̄i+1), which requires forging yi+1. 3) If Alice
continues measuring forward, the measurement result yi+1 needs to be forged.
In summary, on average, for each measured qubit, the probability of needing to
falsify a measurement result is 5/16 = 1/2×0+1/4×(1/2×0+1/2×1/2)+1/4×1.
For the case of x = 0, the success probability of Alice convincing Bob that x = 1
in the opening phase is 1/25m/16.

For the case of x = 1, the success probability of convincing Bob to accept
x = 0 in the opening phase decreases exponentially as m increases. When Alice
announces that she has chosen x = 0, Bob will verify whether each qubit pair is
still in the Bell state. Each measured qubit will be detected with a probability
of 1/2 in the Bell state verification. Therefore, the success probability of Alice’s
cheating is 1/2m.

In summary, the probability of Alice’s cheating success decreases exponen-
tially as m increases. Therefore, p ∈ QMA.

The MLC Attack (no-go theorem): The well-known proof [7,8,9] of the
impossibility of unconditionally secure QBC was supposed to be general. How-
ever, we will show that it is not general. In fact, in the generality proof of the
impossibility of secure quantum bit commitment [9], the authors use a simplified
version of Yao’s model [10]. It is this simplified version that makes the proof not
general.

In [9], pp. 179-180, there is “However, there are two significant distinctions
between Yao’s model and ours. First, Yao’s model deals with mixed initial states
whereas we assume that the initial state of each machine is pure. Second, in
Yao’s model, the user D does two things in each round of the communication:
D carries out a measurement on the current mixed state of the portion of the
space, HD ⊗HC , in his/her control and then performs a unitary transformation
on HD⊗HC . In our model, the measurement step has been eliminated.” In fact,
not all protocols can be assumed to start from a pure state. For example, if
we assume that the protocol starts with pre-shared Bell states (as the proposed
scheme), then it is a mixed state from either Alice’s or Bob’s point of view.

Moreover, regarding the reason why the measurement step can be eliminated,
the authors explain that: “Essentially, we give Alice and Bob quantum computers
and quantum storage devices. Therefore, they can execute a quantum bit com-
mitment scheme by unitary transformations.” This does not make sense. In fact,
based on the quantum superposition principle, the measurement is irreversible
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and the result is unpredictable, while the unitary transformation is reversible.
There is an implicit requirement for using the simplified version of Yao’s model,
i.e., if Alice can get evidence of commitment without the measurement (i.e., can
delay the measurement), then the simplified version will perfectly match such
a case. However, there are possible schemes (e.g., the proposed scheme) where
Alice cannot get valid evidence of commitment without the measurement (That
is, not in all cases, Alice can delay the measurement), otherwise, allowing Bob
to detect Alice cheating with a probability close to 1 in the opening phase. The
inability to delay the measurement makes it impossible for Alice to switch the
commitment in the opening phase.

For the proposed scheme, suppose Alice chooses not to measure any qubits
during the commit phase (i.e., x = 0). The desired effect of this strategy is that
Alice can successfully switch the commitment to x = 1 with a large probability in
the opening phase, which is an MLC EPR-type attack [9]. However, we will prove
by reduction to absurdity that if Alice can successfully switch the commitment
from x = 0 to x = 1 with a large probability, then this will lead to the paradoxical
result of FTL transmission.

In non-ideal bit commitment (for the case ρ0 ̸= ρ1), the authors describe
Alice’s attack behavior as follows [9]: “Since |ψ0⟩AB and |1⟩com are very similar,
Bob clearly has a hard time in detecting the dishonesty of Alice. Therefore, Alice
can cheat successfully with a very large probability.” This means that the state
of the sequence B′ in the opening phase is very similar or identical to a certain
quantum state |ψi⟩ ∈ {|ψ0⟩, |ψ1⟩, ..., |ψN ⟩}, so Alice can cheat successfully with a
very large probability. However, theoretically, when the reduced density matrix
of the receiver is ρ0, the probability of outputting R ≜ r1r2...rm is 1/2m, while
the probability of implementing this attack is “a very large probability”.

For the sake of simplicity in analysis, let us consider a simplified version of
the proposed scheme: set n = 100, m = 2 and ri = yi ⊕ yi+1, which satisfies the
approximate equation ρ0 ≈ ρ1 (ρ0 and ρ1 are defined in the following paragraph).
Denote the output bits according to the measurement results as y1y2 → r1r2,
where 00 → 00, 01 → 11, 10 → 11, and 11 → 00. Theoretically, the measurement
result y belongs to {00, 01, 10, 11} with the same probability.

Suppose Alice chooses not to measure any qubits in the commit phase (i.e.,
x = 0) and claims that R = 00. In the opening phase, if Alice can cheat suc-
cessfully with a large probability, this means she can make the measurement
value y ∈ {00, 11} occur with a very high probability and the measurement
value y ∈ {01, 10} occur with a very small probability. That is to say, for each
sample, Alice has the ability to make its measurement value y ∈ {00, 11} (case
x = 1) with a probability greater than 1/2 or simply to keep the Bell states
(case x = 0). Obviously, the receiver Bob can obtain the density matrix of the
sequence B which maintains the Bell states denoted as ρ0. Moreover, although
Bob does not know the measurement bases and positions, he can exhaustively
enumerate the states satisfying R = 00 with all possible combinations of mea-
surement bases and positions, and obtain the density matrix corresponding to
the equal probability of occurrence, denoted as ρ1. Since ρ0 and ρ1 are not ex-

9



actly equal, there exists a POVM that allows Bob to distinguish them with a
non-zero probability ϵ. Although this probability ϵ is small for a single sample,
assuming the total number of samples is M , the probability that Bob will never
succeed in distinguishing x is (1 − ϵ)M . It can be seen that as the number of
samples increases, the probability of Bob successfully distinguishing 1− (1−ϵ)M
will infinitely converge to 1. That is, Bob can figure out Alice’s commitment
value x, as long as the number of samples is large enough.

That is, if this assumption is true, it means that at some point, Alice can
switch between Bell states and R = 00 by performing local unitary transforma-
tions. For each sample, if Alice wants to send 0 to Bob, she keeps Bell states,
otherwise, she switches to R = 00. Meanwhile, when there are enough sam-
ples (e.g. 1 million samples), Bob can figure out whether Alice sent him a 0 or
a 1 without further information exchange, but through POVM measurements.
That is, without additional information exchange, Alice can send 1-bit informa-
tion to Bob through entanglement alone (under the assumption that considers
the pre-shared n = 100 Bell states as one sample, and suppose Alice and Bob
pre-shared 1 million samples). This obviously violates the principle of no faster-
than-light communication, so the assumption can not be true. Therefore, it can
be concluded that Alice was unable to change her commitment by delaying mea-
surement after the announcement of the evidence.

Finally, we summarize why the delayed measurement entanglement attack
strategy cannot successfully attack the proposed scheme, as follows:

1) If this attack strategy is able to attack the proposed scheme effectively,
i.e., in the opening phase, Alice is able to switch the commitment from x = 0,
to x = 1. Then, this strategy should also be able to attack a simplified version
of the proposed scheme effectively (n = 100, m = 2 and ri = yi ⊕ yi+1).

2) Then, without any information from Alice, Bob is able to determine
whether 0 and 1 are balanced with more than 1/2 probability by measuring
and counting, and let the probability be 1/2+ϵ.

3) Although, for 1 sample, ϵ is very small, if enough samples are shared
between Alice and Bob, say 1 million samples, then Bob can with a probability
close to 1 be able to distinguish whether Alice wants to send him a 0 or a 1 (as
long as Alice performs local operations for x = 0 (or x = 1) for all of these 1
million samples).

4) Thus, this directly leads to the fact that Alice and Bob can transmit 1 bit
of information between them, just by entanglement, which clearly violates the
principle of no FTL communication.

Therefore, it is impossible for Alice to successfully switch her commitment
after the commit phase.

3 Conclusion

We prove that BQP ̸= QMA. The impact of this result is profound. Based on
this scheme, we can get quantum one-way functions (although the existence of
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classical one-way functions is still unknown). Secure bit commitment has impor-
tant applications in a number of cryptographic protocols, including secure coin
tossing, obvious transfer, zero-knowledge proofs, and secure computation.
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