
NFT Trades in Bitcoin with Off-chain Receipts

Mehmet Sabir Kiraz1, Enrique Larraia2, and Owen Vaughan2

1 De Montfort University, UK mehmet.kiraz@dmu.ac.uk
2 nChain, UK {e.larraia,o.vaughan}@nchain.com

Abstract. Non-fungible tokens (NFTs) are digital representations of
assets stored on a blockchain. It allows content creators to certify au-
thenticity of their digital assets and transfer ownership in a transpar-
ent and decentralized way. Popular choices of NFT marketplaces infras-
tructure include blockchains with smart contract functionality or layer-2
solutions. Surprisingly, researchers have largely avoided building NFT
schemes over Bitcoin-like blockchains, most likely due to high transac-
tion fees in the BTC network and the belief that Bitcoin lacks enough
programmability to implement fair exchanges. In this work we fill this
gap. We propose an NFT scheme where trades are settled in a single Bit-
coin transaction as opposed to executing complex smart contracts. We
use zero-knowledge proofs (concretely, recursive SNARKs) to prove that
two Bitcoin transactions, the issuance transaction tx0 and the current
trade transaction txn, are linked through a unique chain of transactions.
Indeed, these proofs function as “off-chain receipts” of ownership that
can be transferred from the current owner to the new owner using an
insecure channel. The size of the proof receipt is short, independent of
the total current number of trades n, and can be updated incrementally
by anyone at anytime. Marketplaces typically require some degree of
token ownership delegation, e.g., escrow accounts, to execute the trade
between sellers and buyers that are not online concurrently, and to alle-
viate transaction fees they resort to off-chain trades. This raises concerns
on the transparency and purportedly honest behaviour of marketplaces.
We achieve fair and non-custodial trades by leveraging our off-chain re-
ceipts and letting the involved parties carefully sign the trade transaction
with appropriate combinations of sighash flags.

Keywords: Blockchain · Bitcoin · Zero-knowledge proofs · NFT tokens

1 Introduction

Non-fungible Tokens (NFTs) are digital representations of assets providing own-
ership records stored on a blockchain. They are cryptographic assets on a
blockchain with unique identification codes and pointers to associated meta-
data, possibly stored off-chain. They can be seen as digital passports or a con-
ventional proof-of-purchase of a digital asset, functioning in the same manner
than paper invoices. Blockchains allow two mutually distrustful parties to ex-
change token ownership for cryptocurrency without a trusted intermediary. The

2 Kiraz et al.

exchange is usually atomic in the sense that it happens in the same transaction or
is controlled by a smart contract. NFTs have received huge interest due to their
transparency in transaction details, public verifiability and trustless transfer [32].
Unlike conventional systems, public verifiability and transfer of ownership can
be tracked continuously [31,3,27,33]. Despite the fact that the complete capabil-
ities of NFTs have not yet been fully realized, they are already being utilized in
various business models, including decentralized gaming [18] or e-commerce [7].

NFTs cannot be traded or exchanged in the same way as fungible tokens.
Their size can be dynamically large and they cannot be replicated due to its
non-fungibility. In Ethereum, the ERC-721 standard [16] defines a minimal in-
terface interface to exchange NFTs. It specifies ownership details, security, and
metadata. The ERC-1155 standard [29] builds on top improving several aspects,
such as reducing transaction and storage costs by up to 90%, and batching mul-
tiple types of NFTs into a single contract. On a separate note, platforms that
incorporate off-chain infrastructure enable the listing of tokens, the creation of
new tokens (minting), the connection of sellers with buyers, and on-chain set-
tlement of the exchange. NFT marketplaces (NFTM) like OpenSea, Rarible,
SuperRare, Foundation, or Nifty, fill this gap and sit between the end users and
the blockchain.

NFT security. Token authenticity is the main concern with NFTs. After all,
digital assets can easily be copied in fraudulent tokens. In all existing solutions,
the burden of verifying the authenticity of the purchased token lies on the buyer.
However, as blockchain technology evolves, it becomes harder for regular users
(without specialized hardware) to access the network and check by themselves
the on-chain state. NFTMs facilitate the trades, but they can impose his view of
the blockchain, unilaterally remove tokens from their listings, and tend to rely
on off-chain centralized databases that can serve arbitrary content [23]. This
questions the purported decentralization and transparency of such platforms. In
a recent study [15] a large number of potential vulnerabilities related to NFTMs
were identified. We highlight some of the identified issues.

– Buggy token contracts. Code of custom contracts deployed by users are not
properly audited. They may not pay the seller after the trade, or do not
transfer the ownership at all (non-atomicity).

– Lack of transparency in trading. For example, Nifty uses escrow accounts
and off-chain trades to reduce the transaction fees.

– Control delegation. The NFTM takes control of the token and funds to exe-
cute the trade without interaction between sellers and buyers. If the NFTM
is given full control, it introduces a single point of failure in the security of all
its users. Nifty, Foundation and SuperRare follow this approach via escrow
accounts. OpenSea has a somewhat safer delegation mechanism, requiring
authorization from the seller.

– Royalty evasion. If enforcement of royalties fees is delegated to NFTMs,
buyers can avoid paying the fee by trading in plattforms that do not set
royalties. Also, on-chain standards like ERC-721 do not capture royalties

NFT Trades in Bitcoin with Off-chain Receipts 3

neither. Hence, payments can be settled off-chain, and transfer ownership
on-chain (assuming the parties are willing to conduct non-atomic exchanges).

– Wash trading. Sales volume is artificially inflated to create an illusion of
demand or to inflate financial metrics of their interests. For example, in
Rarible, the more a user spends, the more $RARI tokens it receives. It is
suspected that high-value NFTs such as CryptoKitties are example of wash
trading.

Related Work. The authors in [28] proposed a solution called zero-knowledge
Address Abstraction (zkAA) to eliminate the need for mapping and enables the
direct use of web2 identity in the blockchain. In this way, users can utilize their
web2 identities on blockchain through smart contracts leveraging zero-knowledge
proofs without disclosing their identity.

In [20], the authors presented an auction protocol for NFTs with supports
in multi-chain platforms. The design uses hash time lock transactions and ad-
ditional strategies to control users malicious behaviour. However, without sup-
porting trustless bridges the multichain platform (i.e., the cross-chain asset ex-
change process) could be secured. The authors in [12] presented a multi-stage
NFT transaction protocol, called LiftChain, which builds a NFT transaction
protocol performing a batch of NFT transactions off-chain and then propagates
them on-chain. Although it aims to optimize the cost, the existing interfaces as
a whole are still very expensive and not scalable.

More related to our work, Ordinal Inscriptions [26,17] is a numbering sys-
tem that allows individual satoshis (the smallest Bitcoin denomination), referred
to as sequence numbers, to be tracked and transferred in ownership. In short,
Ordinals can be considered digital assets inscribed in satoshis. More concretely,
satoshis are numbered in the order they are mined and transferred based on
the first-in, first-out principle of transaction inputs and outputs. Proofs can be
created to show that a specific satoshi is indeed present in a specific output.
However, these proofs are large, consisting of the block headers and the Merkle
path to the coinbase transaction that creates the satoshi, and every transaction
that spends the satoshi. Note that the proof size is linear in the number of total
current spends, and it increases with each spend. Unlike NFTs that can be pur-
chased through platforms like OpenSea and Nifty Gateway, there are currently
no marketplaces or wallets dedicated to Ordinals. They can be traded through
Telegram and Discord channels, and the order book is currently maintained as
a Google sheet.

Our contributions and techniques. Researchers generally refrained from
creating and sending NFTs over the BTC network due to its expensive trans-
action fees and purported lack of programmability. In this paper, we fill this
gap by explaining how to achieve fair exchanges without control delegation on
Bitcoin-like blockchains with few transaction fees. More specifically, our main
contributions are as follows.

4 Kiraz et al.

– We design, implement, and benchmark, a proof system to prove and verify
that an issuance transaction tx0 (with an embedded representation of the
token), and the current trade transaction txn are linked through a unique
transaction chain. Our proof system is a recursive SNARK [14,5,2,10,11,22].
This means that if an additional transaction txn+1 is added to the chain, then
the proof πn can be updated into πn+1 incrementally, without requiring all
previous transactions. The proof receipt πn functions as an ‘off-chain receipt ’
handed by the current owner to the new owner of the token. Since we use
SNARKs, the size of πn is constant or just logarithmic in the number n of
total current trades.

– We present a new scheme NFT = (mint, list, sell, buy) to trade NFTs on
Bitcoin-like blockchains in the presence of untrusted marketplaces. A trade
is settled in just one transaction txn and hence it is atomic: the payment
and the ownership transfer cannot be decoupled. We guarantee token au-
thenticity leveraging the off-chain proof receipt πn to dispense access to
the blockchain or the need of trusted intermediaries. To provide fairness for
sellers and buyers without delegating control of tokens or funds to interme-
diaries, we employ appropriate combinations of sighash flags when signing
(unlocking) inputs of txn.

In our NFT scheme, all trades appear on-chain, therefore it is transparent
by design. As mentioned, the trade is settled by publishing a single transac-
tion on-chain, as opposed to deploying complex smart contracts. The off-chain
mechanism for token authenticity is also very flexible and can be enhanced in a
number of ways. For example, the issuer can enforce royalty fees, or wash trad-
ing can be mitigated. Last, it is worth mentioning that although we describe our
NFT scheme for Bitcoin, our techniques are fundamentally independent of the
underlying blockchain technology. This does not come as a surprise as the main
bulk of work happens off-chain, as we shall see. For example, it could be adapted
to Ethereum’s smart contract logic.

Paper organisation. Section 2 gives some background needed. Section 3 intro-
duces transaction chains and discuss their properties. Section 4 explains how to
prove existence of transaction chains in Bitcoin using SNARKs. Finally, Section
5 presents our non-fungible token scheme NFT and analyses its security.

2 Preliminaries

2.1 Bitcoin Transactions

A transaction tx in the Bitcoin network has a unique identifier txid which is
defined as the double SHA256 of the serialized transaction data. The txid is not
part of the transaction itself. A transaction input tx.in contains several fields.
Including a reference to previous transaction ID prevtxid, an output index vout,
(this pair is known as the outpoint), and the unlocking script scriptSig. A
transaction output tx.out contains the index vout of the output, a locking script
scriptPubKey, and the amount of satoshis value locked.

NFT Trades in Bitcoin with Off-chain Receipts 5

Embedding data in transactions Data can be inserted into transactions
at several positions. Data payloads do not play a role in script validation as
they can be embedded between OP PUSH and OP DROP codes or positioned often
an OP RETURN opcode. For example, it is possible to have a pay-to-public-key
script P2PK with embedded data. During the transaction validation, the unlock-
ing script of the spending transaction tx, and the locking script of the parent
transaction prevtx are combined:

⟨scriptSig⟩ || scriptPubKey := ⟨σ sighash⟩ || [P2PK pk] OP RETURN ⟨data⟩ (1)

The unlocking script contains the signature σ, and the locking script is the
P2PK script (with public key pk) and the embedded data. Note that we are not
writing out explicitly the set of opcodes comprising [P2PK pk]. The script is
evaluated in reverse polish notation in the stack of the Bitcoin engine starting
by pushing the data of scriptSig to the stack. Once the P2PK script has been
executed successfully, which includes the signature check, the script becomes
OP RETURN ⟨data⟩ The script execution terminates when opcode OP RETURN is
reached. Hence the appended data is never pushed to the stack, but stored in
the Bitcoin network as part of tx.

Choosing which inputs and outputs are signed The result of the P2PK

script evaluation above is either true or false. It depends on the signature check,
which involves verifying the signature σ using public key pk. The message that
is verified against σ is essentially a portion of the spending transaction tx. The
parts of tx that are signed is controlled with the flag sighash. For example,
if set to sighash all||anyonecanpay in the unlocking script of the i-th input
tx.ini, the signature verification discards all other inputs but uses all outputs
of tx. This allows different parties to add inputs to partially signed Bitcoin
transactions (PSBT) while fixing the outputs (destination addresses). We will
make use of different sighash flags in our NFT scheme of Section 5. See Table
1 for all possible flag values.

Flag value Meaning
sighash all Sign all inputs and all outputs
sighash none Sign all inputs and no output
sighash single Sign all inputs and the output with the same index
sighash all||anyonecanpay Sign its own input and all outputs
sighash none||anyonecanpay Sign its own input and no output
sighash single||anyonecanpay Sign its own input and the output with the same index

Table 1. Values of sighash flag in Bitcoin. Taken from [6].

6 Kiraz et al.

2.2 Recursive SNARKs – Proof Carrying Data

Proof-carrying data (PCD) [14] allows to prove correct execution of distributed
computations run in mutually distrustful nodes. It is a generalization of incre-
mentally verifiable computation (IVC) [30]. It allows to prove that a value zn is
the result of applying a function F iteratively n times

zn = F (zn−1), . . . , z1 = F (z0) (2)

In short, zn = Fn(z0). In blockchains, PCDs have already found applications,
most notably Mina [25] and others [21,9,13].

PCD scheme and properties One can see (2) as the transcript T of a compu-
tation between n nodes where the i-th nodes applies F to its incoming message
zi−1 to produce an outgoing message zi. If this is the case, the whole transcript is
said to be compliant with F . Likewise, zn is compliant with F , if it is the output
of a transcript T compliant with F . A PCD scheme is a triplet of algorithms
PCD = (G,P,V) with the following interface:

– G(1λ, F) → (pk, vk). It takes as input a security parameter λ, and a function
F seen as an arithmetic circuit CF . It produces a pair of verification and
proving keys.

– P(pk, zn, (zn−1, πn−1)) → πn. It takes as public input the outgoing message
zn, and as private input the incoming message zn−1 and a proof πn−1. It
outputs a proof πn for the F -compliance of zn. Namely, a proof for the
existence of messages z0, . . . , zn−1 as in (2).

– V(vk, zn, πn) → {accept, reject}. It takes the public input zn and a proof πn.
It either accepts or rejects the proof for the F -compliance of zn.

We informally state the properties of a PCD scheme, and refer to [5,2,14]
for formal definitions. The scheme is complete if V always accepts proofs πn

generated by the honest prover P. It is succinct if the size of πn is poly(λ, |CF |).
In particular the proof does not grow at each iteration, it only depends on the
complexity of the arithmetic circuit for F . The scheme is knowledge sound if,
given access to the random coins of any cheating prover P∗ that produces a pair
(zn, πn) accepted by the verifier V, it is possible to extract a compliant transcript
T as in (2) with overwhelming probability in the security parameter λ.

Constructing PCDs from SNARKs PCDs can be constructed in two ways.
It was first realized in [2] from preprocessing succinct non-interactive argu-
ments of knowledge (SNARKs) [4] with sublinear verification time (also known
as succinct verification) over a cycle of elliptic curves. Given a preprocessing
SNARK = (G,P,V), the statement zn = Fn(z0) is split in two parts. The first
part proves existence of zn−1 such that zn = F (zn−1); this is done by expressing
F as an arithmetic circuit CF , that is satisfied on public input zn and private in-
put zn−1 only if zn = F (zn−1). The second part proves existence of a valid proof

NFT Trades in Bitcoin with Off-chain Receipts 7

πn−1 attesting to the correctness of the n − 1 previous iterations. This is done
expressing the verifier V as a circuit CV, satisfied on public input vk and private
inputs zn−1, πn−1, only if V(vk, zn−1, πn−1) = accept, where vk is the prepro-
cessed verification key generated by G. The PCD prover proves satisfiability of
both circuits CF and CV on public input zn and private inputs zn−1, πn−1 using
vk as part of its proving key. Another way of constructing PCDs, initiated in
Halo [10], is using a SNARK without succinct verification, but with an accumu-
lation scheme that allows to accumulate the proofs at each step, and postpone
the verification of the proofs. The requirement is that the accumulator must
be succinctly verifiable [10,8,11]. Recently, PCDs have been constructed from
folding schemes, without using SNARKs at all, in Nova [22].

3 Transaction Chains

In this section, we introduce our notion of transaction chains. In the next sec-
tion, we show how to prove the existence of a chain succinctly. The inputs and
outputs of a Bitcoin transaction form ordered sets. We write tx.ins and tx.outr
to respectively denote the s-th input and r-th output.

Definition 1 (Transaction Chain). Let T be a set of transactions. The se-
quence c⃗tx0→txn := (tx0, tx1, . . . , txn−1, txn) with txi ∈ T, is a transaction chain
of length n if for each 1 ≤ i ≤ n some of the inputs of txi references an output
of txi−1.

As mentioned in Section 2.1, in Bitcoin, a transaction txi references a par-
ent transaction txi−1 in its inputs using the identifier txidi−1. We can rely on
the collision resistance of the hash function to ensure distinct identifiers for all
Bitcoin transactions. This ensures that any chain c⃗tx1→txn has no repeated trans-
actions. Also, note that transaction chain is a transitive relation, therefore we can
concatenate two chains c⃗tx0→txn , c⃗txn→txm to obtain a longer transaction chain
c⃗tx0→txm (i.e., by removing the first transaction of the second chain c⃗txn→txm).

We note that there could be more than one chain linking two transactions.
For example, consider the set T = {tx0, tx1, tx2, tx3}, where tx0 has two outputs,
the first output is spent by tx1, and the second output by tx2. If tx3 spends both
tx1 and tx2, then we have two chains c⃗1 = (tx0, tx1, tx3), and c⃗2 = (tx0, tx2, tx3)
linking tx0 with tx3.

We are also interested in chains that are unique. That is, given two trans-
actions there exists only one possible way to link them. We address this issue
fixing the inputs and outputs through which the link is established.

Definition 2 ((r, s)-Primary Chain). Let a set of transactions T and a se-
quence c⃗tx0→txn = (tx0, . . . , txn) with txi ∈ T. We say c⃗tx0→txn is a (r, s)-primary
chain if it is a transaction chain and the input r-th input of txi references the
s-th output of txi−1.

8 Kiraz et al.

tx0 tx1 txn−1 txn

out0

out1

in0

in1

out0in0

out1in1

· · · out0in0

out1in1· · ·

out0in0

out1in1

Fig. 1. A (1, 2)-primary chain. The first input of txi spends the second output of txi−1.

In the lemma below we characterize the set of all possible (r, s)-primary
chains starting at tx0. Namely, there can only be chains that are subsequences

of the largest chain in the set C
(TB)
tx0→, where:

C
(TB)
tx0→ :=

{
c⃗ = (tx0, . . . , txn)

∣∣∣∣ c⃗ is a (r, s)-primary chain (Defn. 2)
txi ∈ TB ∀0 ≤ i ≤ n

}
(3)

Lemma 1 (Non-Diverging Primary Chains). Let TB be the set of all trans-
actions in the Bitcoin network. Let any transaction tx0 in TB, and let c⃗ max

tx0→txn

be an (r, s)-primary chain of maximal length. Then, the set C
(TB)
tx0→ of all (r, s)-

primary transactions starting at tx0 are subsequences of c⃗ max
tx0→txn . That is:

C
(TB)
tx0→ = {(tx0, . . . , txi) | txi ∈ c⃗ max

tx0→txn}

Proof. This is a direct consequence of the double-spending resistance property
of a blockchain. First observe that c⃗ max

tx0→txn is of maximal length, so it cannot be
a subsequence of any other primary chain. Now, if there exists an (r, s)-primary
chain c⃗tx0→txm that is not a proper subsequence of c⃗ max

tx0→txn , then, since both
chains share the same origin tx0, at some point they must diverge. Say they are
equal up to the i-th transaction txi. This means that the s-th output txi has
been spent twice, which is not possible. ⊓⊔

The lemma above also proves that there is only one primary chain of maximal
length. Not surprisingly, the largest (r, s)-primary chain c⃗tx0→txn in Bitcoin is
that whose end transaction txn has the s-th output unspent.

Lemma 2 (Largest Primary Chain). Let TB be the set of all transactions
in the Bitcoin network. Let any tx0 in TB, and let c⃗tx0→txn be an (r, s)-primary
chain such that the s-th output of txn is unspent. Then, c⃗tx0→txn is the largest
(r, s)-primary chain starting at tx0.

Proof. Lemma 1 shows that all (r, s)-primary chains must be subsequences of
the largest (r, s)-primary chain. Now, c⃗tx0→txn cannot be a subsequence of any
other primary chain because the s-th output of txn is unspent. We conclude that
c⃗tx0→txn is the largest chain starting at tx0. ⊓⊔

NFT Trades in Bitcoin with Off-chain Receipts 9

4 Succinct Proofs for Transaction Chains

Consider the following scenario with a prover Alice and a verifier Bob. The first
transaction tx0 is already in the blockchain B and is known to both Alice and
Bob. Alice submits a transaction txn to B and also sends it to Bob. Both parties
now have two transactions (tx0, txn). Alice wants to prove to Bob the statement:

“txn is linked to tx0 through a primary chain c⃗tx0→txn” (4)

Alice generates a proof πn that attest to the veracity of her statement. If Bob
accepts πn as valid, he has the triplet (tx0, txn, πn). Now consider a third actor
Charlie. Bob creates a new transaction txn+1 such that (txn, txn+1) is a primary
chain. He amends Alice’s proof πn to create a new proof πn+1 to also show that
txn+1 is linked to tx0 through a primary transaction chain. He sends (txn+1, πn+1)
to Charlie. The information flow can be visualised in Figure 2. The point we are
trying to make is that proof generation is incremental; new parties can come
in, augment an existing chain in B, and prove correctness of the augmentation
based on older proofs.

Alice Bob Charlie

txn, πn txn+1, πn+1

Fig. 2. Incremental chain augmentation. tx0 is known to all parties. πi proves existence
of chain c⃗tx0→txi .

Trivial solution: Send the primary transaction chain. Alice simply sends the
entire chain c⃗tx0→txn = (tx0, . . . , txn) as her proof πn. Bob can explicitly check
that c⃗tx0→txn is a primary chain appearing in the blockchain B. This solution
requires communication and verification cost linear in the size of the chain O(n).
It also incurs in repetition cost: Charlie has to check the entire chain again, even
though Bob checked it already up to the n-th link.

Efficient solution: Use SNARKs. Alice sends to Bob the last transaction txn,
and a short SNARK proof πn attesting to the existence of c⃗tx0→txn . Bob verifies
πn and checks that txn is in B. The size of the transmitted proof is now |πn| =
O(log(n)), a significant improvement compared with the trivial solution above.
See Table 2 for a comparison summary.

4.1 Proving Existence of Primary Chains Recursively

Recall from Section 3 that for a set of transactions TB in blockchain B, and
tx0 ∈ TB, the set C

(TB)
tx0→ denotes all the (r, s)-primary chains starting at tx0.

10 Kiraz et al.

Method Communication Verification
Send chain O(n): send n− 1 transactions O(n): check n− 1 transactions

SNARK-based O(log(n)): send txn and πn O(log(n)): verify πn

Table 2. Comparison of solutions to check primary chains c⃗tx0→txn .

Thus, we can formalize the informal statement (4) in the following NP relation:

RTB,tx0 :=

{
(txn; c⃗)

∣∣∣∣ c⃗ = (tx0, tx1, . . . , txn−1, txn)

c⃗ ∈ C
(TB)
tx0→

}
(5)

In principle the prover needs the entire chain c⃗ linking txn to tx0 as private
information to prove statement (4). He would somehow need to get the chain
c⃗ either from the previous prover or from B. This poses a problem because the
chain may be large and we would like to avoid sending it between parties. The
observation is that provided the chain from tx0 up to the parent txn−1 is a
primary chain, we just need to ensure the last link holds. We ensure the chain
c⃗tx0→txn−1

is a primary chain validating a proof πn−1 for the parent transaction
txn−1 using a recursive SNARK.

Description of the circuit. The recursive circuit Cptc for primary transaction
chains is described in Figure 3. Note that the circuit has hard-coded in its de-
scription the transaction identifier txid0 of the first transaction tx0 of the chain.
Also, as described, the circuit uses a SNARK with succinct verification.

Cptc((txn, bbase); (txn−1, πn−1)):

Public input txn, bbase. The last transaction in the chain, and a ‘base case’ flag
Private input txn−1, πn−1. The parent transaction and (an optional) proof πn−1 for

satisfiability of Cptc on public input txn−1.

1. Parse txn.inr = txid||vout
2. Check vout = s
3. If bbase = true (base case), check txid = txid0 // txid0 hard-coded
4. If bbase = false (recursive case):

(a) Check txid = SHA256d(txn−1)
(b) Check πn−1 is valid for public input (txn−1, bbase)

Fig. 3. Circuit to prove existence of a (r, s)-primary chain c⃗tx0→txn .

The recursive SNARK (PCD) for primary transaction chains Having
described the circuit Cptc, the preprocessing PCD to prove satisfiability of Cptc is
the triplet of algorithms PCDptc = (Gptc,Pptc,Vptc) with the following interface.

NFT Trades in Bitcoin with Off-chain Receipts 11

– Gptc(1
λ, txid0) → (pk, vk). On input a security parameter λ and the identifier

of the first transaction txid0 it outputs a pair of proving and verification keys
pk, vk.

– Pptc(pk, (txn, bcase); (txn−1, πn−1)) → πn. On input a proving key, the public
input (txn, bcase), and the private input (txn−1, πn−1) it generates a proof πn

attesting to the existence of a chain c⃗tx0→txn . Thus (txn, c⃗tx0→txn) ∈ RTB,tx0 .
– Vptc(vk, (txn, bcase), πn) → {accept, reject}. On input a verification key vk and

the public input (txn, bcase) it either accepts or rejects.

We emphasize that txid0 needs to be known in advance to use it in step (3) of
Cptc. The later means that PCDptc can be used only for the chain that starts at
tx0.

Theorem 1. Let TB be the set of transactions in the Bitcoin network. If the
verifier Vptc accepts a proof πn for txn ∈ TB, then there exists a chain c⃗tx0→txn

in TB with overwhelming probability.

Proof. Using the soundness of PCDptc, it is enough to show that if the circuit
Cptc accepts txn then it exists a chain c⃗tx0→txn with overwhelming probability.
We will use the following claim that holds true in Bitcoin.

Claim. All coinbase transactions in the Bitcoin network have one unique out-
point whose parent ID reference is the zero-byte array.

The proof of the theorem is concluded proving the following lemma.

Lemma 3. Let TB be the set of Bitcoin transactions at a given time. If tx0 ∈ TB
is not an ancestor of txn ∈ TB, then Cptc rejects on public input txn. Thus,
∀txn−1, π, bbase it holds false = Cptc((txn, bbase), (txn−1, πn−1)) with overwhelming
probability.

Proof. All transactions in Bitcoin originate from a coinbase transaction. Let c⃗ =
(txcb, tx1 . . . , txn) be an (r, s)-primary chain connecting a coinbase transaction
txcb with txn. Now, assume by contradiction that Cptc accepts txn. By hypothesis
tx0 is not an ancestor of txn, and we assume all transactions in TB have different
identifiers. Therefore the base case of Cptc is not triggered, and there must be
a valid proof πn−1 for the parent txn−1. Repeating this argument backwards,
there must exist a valid proof πcb−1 for the parent of the coinbase transaction
txcb. In other words, the prover used a ‘parent’ transaction txcb−1 for txcb whose
identifier is the zero-byte array — see the claim above. The later cannot occur
in practice due to the collision resistance of SHA256. This concludes the proof
of the lemma and the theorem. ⊓⊔

4.2 Implementation Details and Benchmarks

Circuit logic. We have implemented several circuit gadgets to construct Cptc

from Figure 3. For simplicity we set r = s = 0.

– first outpoint OK(tx, txid). Evaluates to true iff tx.in0 = txid||0

12 Kiraz et al.

– txid OK(tx, txid). Evaluates to true iff txid = SHA256d(tx)
– proof OK(tx, π). Evaluates to true iffV(vk, (tx, false), π) = accept. Here recall

from Section 2.2 that V is the verification logic of the underlying SNARK
used in the construction of the PCD, and vk the verification key.

Using the above gadgets, we can construct the following circuits for the base
case and recursive case, respectively:

parent is txid0(txn) := first outpoint OK(txn, txid0)

primary chain OK(txn, txn−1, πn−1) :=

txid OK(txn−1, txidn−1) ∧ first outpoint OK(txn, txidn−1) ∧ proof OK(txn−1, πn−1)

The circuit Cptc is then set to:

Cptc((tx, bbase); (txn−1, πn−1)) :=

(bbase = true ∧ parent is txid0(txn))

∨
(bbase = false ∧ primary chain OK(txn, txn−1, πn−1))

PCD scheme. We have implemented the SNARK scheme PCDptc defined in
the previous section following the approach of [2]. Namely, using cycles of elliptic
curves to implement the verification logic as part of the circuit in step (4b) of
Cptc. The underlying SNARK is Groth16 [19]. Our implementation is written in
Rust and uses arkworks library [1]. The cycle of curves is MNT4-MNT6. These
are MNT curves [24] of embedding degrees 4 and 6, respectively. For production
code, the size of the fields should be large, i.e. of size ≈ 750 bits.

In Table 3 we report benchmarks for the time it takes to prove and verify a
proof. The tests have run in a laptop, 2019 MacBook Pro 2.6 GHz 6 Cores i7,
12 Threads, 32 GB Memory, and in an embedded processor (SoC) Raspberry Pi
ARM BCM2835 1.80 GHz 1 Processor, 4 Cores, 4 Threads, 3.71 GB Memory.
The most expensive gadgets are txid OK and proof OK. The former needs to
generate constraints for two evaluations of the hash function SHA256, which is
not zero-knowledge friendly. The later contains the logic of the Groth16 verifier
V. We have fixed the transaction size to 226 bytes – the minimum size of a
Bitcoin transaction. This means the compression function of SHA256 is applied
twice to generate txid from tx.

5 An Application: NFTs with Atomic and Fully-Fair
Swaps

We define a non-fungible token scheme (NFT) as a tuple of algorithms NFT =
(mint, list, sell, buy). In our scheme, minting a token tk essentially embeds tk in
a transaction tx0. A user with public key pkU is the owner of tk, if there exist
a (r, s)-primary transaction chain c⃗tx0→txn , with the s-th output of txn unspent
and controlled by pkU . Owners can list their tokens for trading, and listed tokens
can be exchanged placing sell or buy trade orders.

NFT Trades in Bitcoin with Off-chain Receipts 13

Standard laptop Smartphone
(MacBook Pro) (Raspberry Pi)

Proving time 171 secs (≈ 3 mins) 970 secs (≈ 16 mins)
Verification time 3 secs 5 secs

Proof size 270 bytes
Table 3. Times for proving and verifying satisfiability of circuit Cptc recursing Groth16
over MNT-753 cycle.

5.1 Description of the Scheme

Mint tokens. The issuer embeds the digital token tk in an issuance transaction
tx0. He then creates the SNARK proving key and verification key, and generates
the mint transaction tx1 as the first link of an (r, s)-primary chain c⃗tx0→tx1 along
with a proof π1. Both transactions tx0,tx1 are uploaded to the blockchain and
the mint process is finished. See Figure 4 for the algorithm mint.

Note that only the issuer can unlock the s-th output of tx0 using his secret
signing key skI . Hence, the issuer owns freshly minted tokens.

mint(1λ, tk, pkI , skI):

1. Create the issuance transaction tx0 with token tk embedded in some of the
outputs. (See equation (1) for OP RETURN data). The s-th output locks no funds
with a P2PK script using a public key pkI controlled by the issuer.

2. Run the setup of the NFT program using the identifier txid0 of tx0:

(pk, vk)← Gptc(1
λ, txid0)

3. Create the mint transaction tx1 whose r-th input spends the s-th output of tx0.
Unlock the r-th input using the signing key skI .

4. Create a proof for the (r, s)-primary chain c⃗tx0→tx1 = (tx0, tx1), running:

π1 ← Pptc(pk, (tx1, bcase); (tx0, π0)),

the boolean flag is set to bcase = true, and since this is the first link of the chain,
the previous proof is empty π0 = ∅.

5. Upload both transactions tx0, tx1 to the blockchain, and publish pk, vk.

Fig. 4. Minting tokens in Bitcoin.

List tokens (with off-chain receipts). Before a token tk can be traded, the
keys pk, vk, and the first proof π1 generated by the issuer are publicly announced.
This can be done via embedding the keys in the mint transaction tx1. Addition-
ally, the data can stored off-chain such as a list maintained by a marketplace.
We emphasize that the keys and the mint transaction tx1 can be also published

14 Kiraz et al.

by the issuer. Ultimately, the issuer is responsible for authenticating this data,
not the marketplace.

To mark a token ready for trading, the marketplace receives the transaction
txn from the current owner (if n = 1, from the issuer), checks it is linked with
the previous transaction txn−1, and if so generates the proof πn (the off-chain
receipt). The algorithm for listing is given in Figure 5.

list(Lnft, tk, n, txn):

1. If n = 1, add entry (tk, pk, vk, tx1, π1) to list Lnft. // tx1 is the mint transaction
2. Else (n > 1) do:

(a) Retrieve entry etk = (tk, pk, vk, txn−1, πn−1) from Lnft

(b) Check r-th input of txn spends s-th output of txn−1. If not, abort and halt.
(c) πn ← Pptc(pk, (txn, false); (tx0, πn−1)) // generate proof (off-chain receipt)
(d) Update entry etk = (tk, pk, vk, txn, πn) in Lnft

Fig. 5. Listing tokens in an marketplace with off-chain receipts.

Transfer tokens. We explain how to transfer tokens via an (r, s)-primary chain
with r ̸= s. For simplicity we use a (1, 2)-primary chain as in Figure 1. The trade
is a non-interactive process that is fair for both parties, the seller and the buyer.
The outcome of the process is a single transaction txn+1 with two inputs and
two outputs. The first output pays the seller, and the second output transfers
token ownership to the buyer. If txn+1 is accepted in the blockchain, the seller
gets paid and the buyer is the new owner of the token (via the (1, 2)-primary
chain). Otherwise, none of them gets anything.

We detail two flavours of transfers (trading orders). In sell orders, the seller
initiates the trade and sets the offer price sats. In buy orders, the buyer ini-
tiates, and sets the bid price. In either case, the initiator of the trade creates
a partially-signed bitcoin transaction (PSBT) txn+1, and sends it to the other
party, who finalizes it filling the remaining inputs and outputs. The inputs of the
transaction are unlocked signing with an appropriate combination of sighash
flags for security. The exchanged information flows in one direction (one round),
which means the parties do not need to be online at the same time. See Figure
6 for the algorithms sell, buy.

5.2 Fairness for the Buyer and Seller

We deem an NFT scheme correct if there cannot be multiple legitimate owners
of the same token tk at a given time. We say the exchange is fair if, provided a
sell or buy trade transaction txn+1 is accepted in the blockchain, then the buyer
is the new owner of the token tk, and the seller is rewarded in sats.

NFT Trades in Bitcoin with Off-chain Receipts 15

sell(sats, pkS , pkB , txn, πn, vk):

– Seller inputs: sats, pkS , txn
– Buyer inputs: pkB , txn, πn, vk

Offer: The seller initiates the trade.

1. Create a PSBT txn+1 with the first in-
put spending the second output of txn.
The first output of txn+1 locks sats (the
offer price) with his public key pkS .

2. Unlock the first input of txn+1 signing
with sighash single||anyonecanpay.
From now on, the first output of txn+1

cannot be changed, but more inputs
and outputs can be added.

3. Publicly announce the PSBT txn+1.

Finalize: The buyer settles the trade.

1. Check accept
?
=

Vptc(vk, (txn, false), πn). If the proof is
not valid, reject and halt.

2. Add a a second input to txn+1 with
funds sats, and a second output to
txn+1 locked with his public key pkB ·

3. The second input is unlocked sign-
ing with sighash all or with
sighash single. From now on, no
input, in particular the first one, nor
the second output can be changed.

4. The transaction txn+1 is ready

buy(sats, pkS , pkB , txn, πn, vk):

– Seller inputs: pkS , txn
– Buyer inputs: sats, pkB , txn, πn, vk

Bid: The buyer initiates the trade.

1. Check accept
?
=

Vptc(vk, (txn, false), πn). If the proof is
not valid, reject and halt.

2. Create a PSBT txn+1 with the first in-
put spending the second output of txn.
The first output of txn+1 is left unspec-
ified.

3. Add a second input funding txn+1 with
sats (the bid price). Add a second out-
put locked with his public key pkB .

4. Unlock the second input signing with
sighash single. From this point on,
neither the second output nor the two
inputs can be changed, but more out-
puts can be added.

5. Publicly announce the PSBT txn+1.

Finalize: The seller settles the trade.

1. Add the first output of txn+1 locking
sats with his public key pkS .

2. Unlocks the first input of txn+1 sign-
ing with sighash all (or any other flag
that signs its own output).

3. The transaction txn+1 is ready

Fig. 6. Selling and buying tokens without control delegation in Bitcoin.

Correctness. The correctness of our scheme NFT = (mint, list, sell, buy) is due
to the non-diverging property of primary chains (cf. lemma 1). Primary chains
originating at a given transaction tx0 can only be subsequences of the largest
primary chain. Put differently, there cannot be ‘forked’ chains.

Fairness for the buyer. This is achieved due to two observations. First, since
the buyer successfully verifies the proof πn of the seller, then there exists a
primary chain c⃗tx0→txn ; this follows from the soundness of PCDptc and theorem
1. Therefore, there also exists a (1, 2)-primary chain c⃗tx0→txn+1 because the buyer
explicitly adds the second output of txn+1 (in both, sell and buy orders). Second,
at the time txn+1 is accepted in the blockchain, since its first output is unspent,
it is guaranteed that c⃗tx0→txn+1

is the largest primary chain (cf. lemma 2); note
the second output of txn+1 is controlled by the public key pkB of the buyer,

16 Kiraz et al.

and the first input is always signed by the buyer when he funds txn (signing
with either sighash all or sighash single). If the seller sends the token to
someone else in between, the first input of txn+1 is a double spend, so it will not
be accepted in the blockchain. If someone else changes the second output (so the
buyer would not acquire ownership), his payment will not go through neither.

Fairness for the seller. This trivially holds because the seller always locks
the payment sats in the first output of txn+1, which is always signed (using
either sighash single||anyonecanpay in sell orders, or any other flag that signs
the first output in buy orders); if the buyer does not fund txn+1 properly, it
will never be accepted on-chain, and the seller still owns the token because the
second output of txn remains unspent.

5.3 Further Remarks

Identifying corrupted users. The seller can prove knowledge of the signing
key needed to unlock the first input of the last traded transaction txn to the
NFTM when he engages in the list algorithm (e.g., by signing a challenge mes-
sage). The buyer can also prove the knowledge of the signing keys that unlocks
the sats funding the trade transaction txn+1 when she initiates a buy order or
finalises a sell order.

Trade latency. The main overhead of our NFT scheme is when listing tokens.
Therein, the off-chain proof receipt πn for the previous transaction trade txn
is generated. We report roughly three minutes runtime for the prover Pptc to
generate πn for the previous trade transaction txn (see Table 3). However, since
πn is independent of txn+1, the algorithm list can be executed well ahead of time.
Due to the full fairness of our NFT scheme, the buyer only needs to check πn

in a sell or buy order. This means that from users perspective, the trade is done
almost instantaneous, which is the time to verify the proof πn with Vptc.

Royalties and wash trading Each transaction in a chain can have a distin-
guished output with a specific amount locked by a fixed public key pkI controlled
by the NFT issuer. Similarly, wash trading can be mitigated by putting a cap in
the number of trades for which a proof receipt can be generated. Both features
can be encoded in the primary chain circuit Cptc of Figure 3. If the fee is not
paid, or the trade counter reaches the upper bound, users will not be able to
generate the off-chain proof receipt.

References

1. Arkworks zksnark ecosystem. https://arkworks.rs (2023)
2. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via

cycles of elliptic curves. In: CRYPTO Conference. Springer (2014)

https://arkworks.rs

NFT Trades in Bitcoin with Off-chain Receipts 17

3. Besançon, L., Da Silva, C.F., Ghodous, P., Gelas, J.P.: A blockchain ontology for
dapps development. IEEE Access (2022)

4. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. IACR Cryptol. ePrint Arch. (2014)

5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC. ACM (2013)

6. Bitcoin SV Wiki. https://wiki.bitcoinsv.io/index.php/SIGHASH_flags
7. Blancaflor, E., Aladin, K.: Analysis of the nft’s potential impact in an e-commerce

platform: A systematic review. In: Proceedings of the 10th International Confer-
ence on Computer and Communications Management. ACM (2022)

8. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying data
from additive polynomial commitments. In: CRYPTO 2021. Springer (2021)

9. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. IACR Cryptology ePrint Archive (2020)

10. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. IACR Cryptology ePrint Archive (2019)

11. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumu-
lation schemes. IACR Cryptol. ePrint Arch. (2020)

12. Chaparala, H.K., Doddala, S.V., Showail, A., Singh, A., Gazzaz, S., Nawab, F.:
Liftchain: A scalable multi-stage nft transaction protocol. In: 2022 IEEE Interna-
tional Conference on Blockchain (Blockchain) (2022)

13. Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs
via incremental verification for ledger systems. IACR Cryptology ePrint Archive
(2020)

14. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: Innovations in Computer Science - ICS. Proceedings. Tsinghua University
Press (2010)

15. Das, D., Bose, P., Ruaro, N., Kruegel, C., Vigna, G.: Understanding security issues
in the NFT ecosystem. CoRR (2021)

16. Entriken, W., Shirley, D., Evans, J., Sachs, N.: ERC-721: Non-fungible token stan-
dard. EIP (2018), https://eips.ethereum.org/EIPS/eip-721

17. Ordinal inscription. https://ordinals.com/ (2023)
18. Fowler, A., Pirker, J.: Tokenfication - the potential of non-fungible tokens (nft)

for game development. In: Annual Symposium on Computer-Human Interaction
in Play. ACM (2021)

19. Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances in
Cryptology - EUROCRYPT 2016. Springer (2016)

20. Guo, H., Chen, M., Ou, W.: A lightweight nft auction protocol for cross-chain en-
vironment. In: Machine Learning for Cyber Security. Springer Nature Switzerland
(2023)

21. Kattis, A., Bonneau, J.: Proof of necessary work: Succinct state verification with
fairness guarantees. IACR Cryptology ePrint Archive (2020)

22. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. In: CRYPTO 2022. Springer Nature Switzerland (2022)

23. Marlinspike, M.: My first impressions of web3. https://moxie.org/2022/01/07/
web3-first-impressions.html (2022)

24. Miyaji, A., Nakabayashi, M., Nonmembers, S.: New explicit conditions of elliptic
curve traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences (2001)

25. O(1) Labs: Mina cryptocurrency. https://minaprotocol.com (2017)

https://wiki.bitcoinsv.io/index.php/SIGHASH_flags
https://eips.ethereum.org/EIPS/eip-721
https://ordinals.com/
https://moxie.org/2022/01/ 07/web3-first-impressions.html
https://moxie.org/2022/01/ 07/web3-first-impressions.html
https://minaprotocol.com

18 Kiraz et al.

26. Ordinal theory handobbok. https://docs.ordinals.com/ (2023)
27. Park, A., Kietzmann, J., Pitt, L., Dabirian, A.: The evolution of nonfungible to-

kens: Complexity and novelty of nft use-cases. IT Professional (2022)
28. Park, S., Lee, J.H., Lee, S., Chun, J.H., Cho, H., Kim, M., Cho, H.K., Moon, S.M.:

Beyond the blockchain address: Zero-knowledge address abstraction. Cryptology
ePrint Archive (2023)

29. Radomski, W., Cooke, A., Castonguay, P., Therien, J., Binet, E., Sandford, R.:
ERC-1155: Multi token standard. EIP (2018), https://eips.ethereum.org/EIPS/
eip-1155

30. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Fifth Theory of Cryptography Conference, TCC. Springer
(2008)

31. Vasan, K., Janosov, M., Barabási, A.L.: Quantifying NFT-driven networks in
crypto art. Scientific Reports (2022)

32. Wang, Q., Li, R., Wang, Q., Chen, S.: Non-fungible token (NFT): overview, eval-
uation, opportunities and challenges. CoRR (2021)

33. Wu, B., Wu, B.: NFT: Crypto As Collectibles. Apress (2023)

https://docs.ordinals.com/
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155

	NFT Trades in Bitcoin with Off-chain Receipts

