
Non-Interactive Zero-Knowledge from

Non-Interactive Batch Arguments

Jerey Champion

UT Austin

jchampion@utexas.edu

David J. Wu

UT Austin

dwu4@cs.utexas.edu

Abstract

Zero-knowledge and succinctness are two important properties that arise in the study of non-interactive ar-

guments. Previously, Kitagawa et al. (TCC 2020) showed how to obtain a non-interactive zero-knowledge (NIZK)

argument for NP from a succinct non-interactive argument (SNARG) for NP. In particular, their work demonstrates

how to leverage the succinctness property from an argument system and transform it into a zero-knowledge property.

In this work, we study a similar question of leveraging succinctness for zero-knowledge. Our starting point

is a batch argument for NP, a primitive that allows a prover to convince a verier of 𝑇 NP statements 𝑥1, . . . , 𝑥𝑇
with a proof whose size scales sublinearly with 𝑇 . Unlike SNARGs for NP, batch arguments for NP can be built from

group-based assumptions in both pairing and pairing-free groups and from lattice-based assumptions. The challenge

with batch arguments is that the proof size is only amortized over the number of instances, but can still encode full

information about the witness to a small number of instances.

We show how to combine a batch argument for NP with a local pseudorandom generator (i.e., a pseudorandom

generator where each output bit only depends on a small number of input bits) and a dual-mode commitment scheme

to obtain a NIZK for NP. Our work provides a new generic approach of realizing zero-knowledge from succinctness

and highlights a new connection between succinctness and zero-knowledge.

1 Introduction
In a non-interactive argument system for an NP language L, a prover sends a single message 𝜋 to try and convince an

ecient verier that an NP statement 𝑥 is true (i.e., 𝑥 ∈ L). In an argument system [BCC88], we require soundness to

hold against computationally-bounded provers (i.e., a computationally-bounded prover should not be able to convince

the verier of a false statement). Two of the most important properties considered in the context of cryptographic

argument systems are zero-knowledge and succinctness:

• Zero-knowledge: We say a non-interactive argument satises zero-knowledge [GMR85] if the proof 𝜋 for

an NP statement 𝑥 reveals nothing more about 𝑥 other than the fact that the statement is true. We refer to

such arguments as non-interactive zero-knowledge (NIZK) arguments [BFM88]. While NIZKs for NP are

unlikely to exist in the plain model (unless NP ⊆ BPP), a long line of works have constructed NIZKs in the

common reference string (CRS) model from a broad range of algebraic assumptions including factoring [FLS90],

assumptions on pairing groups [CHK03, GOS06, GOS12, LPWW20] and pairing-free groups [JJ21], lattice-based

assumptions [CCH
+
19, PS19], and combinations of multiple assumptions [BKM20].

• Succinctness: A second property of interest is the length of the proof (and by correspondence, the verication

complexity). We say that an argument system for L is succinct if the length of the proof and the running time

of the verier is sublinear (or more commonly, polylogarithmic) in the size of the NP relation associated with

L. Such arguments are referred to as succinct non-interactive arguments, or SNARGs [GW11]. We refer to

[Mic95, Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI
+
13, BCPR14, Gro16, BISW17, BCC

+
17, BISW18,

BBHR18, COS20, CHM
+
20, Set20, ACL

+
22, BS23, CBBZ23] and the references therein for a survey of succinct

arguments.

1

mailto:jchampion@utexas.edu
mailto:dwu4@cs.utexas.edu

Many applications require non-interactive arguments that are simultaneously succinct and zero-knowledge (i.e.,

zkSNARGs). Given a SNARG and a NIZK (argument of knowledge), it is straightforward to obtain a zkSNARG by

direct composition (i.e., the zkSNARG is a NIZK argument of knowledge of a SNARG proof of the statement). A

natural question is whether there is a formal connection between these two fundamental properties of cryptographic

arguments. Previously Kitagawa et al. [KMY20] showed that SNARGs for NP and one-way functions together imply

NIZKs for NP (and by composition, a zkSNARG).
1
The intuition underlying this result is that since the length of a

SNARG proof for an NP statement 𝑥 is much shorter than the length of the associated witness𝑤 , the SNARG proof

simply cannot reveal too many bits of the witness information-theoretically. Then, by composing the SNARG with

leakage-resilient cryptography, this intuition can be leveraged to obtain a NIZK.

Batch arguments and zero knowledge. In this work, we continue this line of inquiry of studying the relation-

ship between succinctness and zero-knowledge. Instead of focusing on SNARGs for NP, which have a very strong

succinctness property and necessitates constructions in either idealized models or based on non-falsiable assump-

tions [GW11], we start with the weaker notion of SNARGs for batch NP languages. This is a notion that has received

extensive study recently [KVZ21, CJJ21a, CJJ21b, HJKS22, WW22, DGKV22, GSWW22, CGJ
+
22, KLVW23] and can be

realized from standard cryptographic assumptions. At a high level, in a non-interactive batch argument (BARG), a

prover can convince a verier of a collection of 𝑇 NP statements (𝑥1, . . . , 𝑥𝑇) with a proof of size poly(_, 𝑠) · 𝑜 (𝑇),
where 𝑠 is the size of the circuit computing the NP relation. In particular, a batch argument amortizes the cost of NP
verication across multiple instances. While this amortization still confers some succinctness, it is certainly possible

for a BARG proof to leak one or more of the underlying witnesses associated with the statements used to construct it.

Thus, we ask the question:

Can we construct a NIZK argument for NP from a non-interactive batch argument for NP?

Our results. In this work, we give a generic construction of NIZKs forNP from a non-interactive batch argument for

NP in conjunction with a dual-mode commitment scheme and a (sub-exponentially-hard) low-locality pseudorandom

generator (PRG) with super-linear stretch. Dual-mode commitment schemes can be built from any lossy/dual-mode

public-key encryption scheme, which is known from most standard assumptions [PW08, HLOV11, AFMP20]. A

low-locality PRG is a PRG where each output bit only depends on a small number of the seed bits. PRGs with constant

locality and super-linear stretch are a notable ingredient in the recent constructions of indistinguishability obfuscation

from well-studied assumptions [JLS21, JLS22]. Our instantiations can rely on locality as high as 𝑐 log _, where 𝑐 < 1

is a constant and _ is the seed length; this is a much weaker requirement compared to the constant locality PRGs

required for indistinguishability obfuscation. The local PRG can in turn be instantiated using Goldreich’s family of

PRGs [Gol00, CM01].

While the additional ingredients we rely on for constructing a NIZK for NP are (much) stronger than one-way

functions, we emphasize that no combination of the underlying primitives by themselves are known to imply NIZKs

for NP. We summarize our main result with the following theorem (see Corollary 3.15 for a formal description and

parameter specication):

Theorem 1.1 (Informal). Let 𝐺 : {0, 1}_ → {0, 1}_𝛿 be a PRG with locality 𝑐 log _ and super-linear stretch 𝛿 > 1

for a (suciently-small) constant 𝑐 < 1 and (suciently-large) 𝛿 > 1. Then, assuming the existence of a dual-mode
commitment scheme, a non-interactive batch argument for NP with (suciently-small) proof size,2 and sub-exponential
hardness of 𝐺 , there exists a NIZK for NP.

Our work highlights a new connection between the succinctness of an argument system and zero-knowledge. It also

provides a new generic approach for constructing NIZKs for NP. Finally, by composing a batch argument satisfying

certain eciency properties (satised by most existing constructions [CJJ21b, WW22, CGJ
+
22]) with a NIZK for

NP, we obtain a zero-knowledge batch argument. Thus, our approach can also be used to generically upgrade a

1
More recently, Chakraborty et al. [CPW23] showed a similar implication holds starting from a mildly-compact computational witness map (a

simpler primitive that is implied by a SNARG for NP).
2
For instance, this is satised if the length of the proof scales polylogarithmically in the number of instances. More generally, we can instantiate

the theorem even if the proof size scales with𝑇 1/2−Y
, where𝑇 is the number of instances and Y > 0 is a constant. We refer to Corollary 3.15 for

the precise characterization.

2

non-interactive batch argument for NP into a zero-knowledge batch argument by relying only on a low-locality PRG

and a dual-mode commitment (neither of which are known to imply NIZKs for NP).

Concurrent work. In a concurrent and independent work, Bitansky et al. [BKP
+
23a, BKP

+
23b] studied the

relationship between batch arguments (both interactive and non-interactive) and statistical witness indistinguishability.

Notably, their work also shows how to leverage batch arguments to construct statistical NIZK arguments (using a

dierent set of techniques relative to this work). In the initial version of their work [BKP
+
23a], they showed how

to construct a statistical NIZK argument for NP with a non-uniform prover from non-interactive batch arguments

and lossy public-key encryption. This result is technically incomparable to ours. On the one hand, the prover in

our construction is uniform while on the other, we require an additional assumption of sub-exponentially hard local

PRGs; moreover, we achieve computational zero knowledge rather than statistical zero knowledge. Subsequent to

the initial posting of this work and [BKP
+
23a], the authors have improved their construction [BKP

+
23b] to obtain

statistical NIZK arguments with a uniform prover by only relying on non-interactive batch arguments and lossy

public-key encryption. This is a strict strengthening over Theorem 1.1. An interesting open question that remains is

whether NIZK arguments can be built from just non-interactive batch arguments and vanilla public-key encryption.

1.1 Technical Overview
Our starting point is the generic approach of Kitagawa et al. [KMY20] who show how to generically transform a SNARG

for NP into a NIZK for NP. The approach of [KMY20] instantiates the hidden-bits paradigm of Feige et al. [FLS90] of

combining a NIZK in the idealized hidden-bits model with a hidden-bits generator (HBG) [QRW19].

NIZKs in the hidden-bitsmodel. The hidden-bits model is an idealizedmodel for constructing non-interactive zero-

knowledge proofs. In this model, a trusted party rst generates a string of uniformly random bits 𝑟1, . . . , 𝑟𝑚
r← {0, 1}

and gives them to the prover. To construct a proof for a statement 𝑥 , the prover selects a subset of indices 𝐼 ⊆ [𝑚]
along with a proof 𝜋 . The verier then receives {𝑟𝑖 }𝑖∈𝐼 and 𝜋 from the trusted party. The model ensures that the

prover cannot inuence the choice of bits 𝑟1, . . . , 𝑟𝑚 and that the verier cannot learn the value of any unrevealed bit

𝑟𝑖 for 𝑖 ∉ 𝐼 . Feige et al. [FLS90] previously showed how to construct a NIZK with statistical soundness and perfect

zero-knowledge in the hidden-bits model for the NP-complete problem of graph Hamiltonicity.

Hidden-bits generators. Given a NIZK in the idealized hidden-bits model, a number of works have shown how to

transform it into a NIZK in the CRS model through a cryptographic compiler [FLS90, BY92, CHK03, GR13, CL18,

QRW19, LPWW20, KMY20]. In this work, we focus on the abstraction based on hidden-bits generators introduced

by Quach et al. [QRW19]. At a high-level, a hidden-bits generator is a cryptographic primitive that generates a

(pseudorandom) sequence of hidden bits. The prover can then open up a subset of the bits while ensuring the

unopened bits remain hidden. Moreover, the hidden-bits generator ensures that the prover has limited control over

the output sequence of bits. In a sense, hidden-bits generators provide a cryptographic realization of the trusted

sampling of the hidden-bits string in the hidden-bits model. Thus, combined with the (unconditional) NIZK for NP
in the hidden-bits model, a hidden-bits generator immediately implies a NIZK for NP in the CRS model. We now

describe the syntax of a hidden-bits generator more formally; we specically consider the adaptation from [KMY20]:

• The setup algorithm Setup takes as input the security parameter _ and an output length 𝑚 and outputs a

common reference string crs.

• The generator algorithm GenBits takes the common reference string crs and outputs a bit-string r ∈ {0, 1}𝑚 of

length𝑚 along with a generator state st. Here, r is the “hidden-bits string.”

• The prove algorithm Prove takes the generator state st and a subset of indices 𝐼 ⊆ [𝑚], and outputs a succinct
proof 𝜋 . The proof 𝜋 is an “opening” to the bits of r indexed by 𝐼 ; we denote these bits by r𝐼 ∈ {0, 1} |𝐼 | .

• The verication algorithm Verify takes as input the common reference string crs, a set of indices 𝐼 ⊆ [𝑚], a
collection of bits r𝐼 ∈ {0, 1} |𝐼 | , and an opening 𝜋 . The verication algorithms decides whether 𝜋 is a valid

opening or not to the bits indexed by 𝐼 (with respect to crs).

3

The hidden-bits generator must in turn satisfy the following properties:

• Correctness: Correctness says that if crs ← Setup(1_, 1𝑚) and (r, st) ← GenBits(crs), then for all sets of

indices 𝐼 ⊆ [𝑚], the opening 𝜋 output by Prove(st, 𝐼) is valid with respect to Verify.

• Binding: The binding property restricts the set of possible openings that can be computed by a computationally-

bounded algorithm. Namely, for each crs in the support of Setup, there exists a subsetVcrs ⊂ {0, 1}𝑚 of “valid”

hidden-bits strings. Namely, no ecient adversary can come up with an accepting proof 𝜋 for a set of indices

𝐼 ⊆ [𝑚] and an assignment r𝐼 ∈ {0, 1} |𝐼 | that is inconsistent with every r′ ∈ Vcrs
(i.e., an assignment r𝐼 such

that for all r′ ∈ Vcrs
, r′

𝐼
≠ r𝐼). Moreover, the set of possible hidden-bits strings induced by a particular CRS

must be sparse: |Vcrs | ≤ 2
𝑚𝛾 poly(_)

for some constant 𝛾 < 1 and where _ is a security parameter.

• Hiding: The hiding property says that the unopened bits of r are pseudorandom. Namely, for any set 𝐼 ⊆ [𝑚]
and honestly-generated r and 𝜋 , the distribution (crs, 𝐼 , r𝐼 , r𝐼 , 𝜋) is computationally indistinguishable from the

distribution (crs, 𝐼 , r𝐼 , r̂𝐼 , 𝜋) where r̂ r← {0, 1}𝑚 and 𝐼 = [𝑚] \ 𝐼 .

Kitagawa et al. [KMY20] show how to construct a hidden-bits generator satisfying the above properties by combining

a SNARG for NP with a leakage-resilient (weak) pseudorandom function (PRF):

• The CRS contains𝑚 random points in the domain of the PRF 𝑥1, . . . , 𝑥𝑚 and the CRS for the SNARG.

• The hidden-bits string is constructed by sampling a PRF key 𝑘 and setting 𝑟𝑖 ← PRF(𝑘, 𝑥𝑖) for each 𝑖 ∈ [𝑚].

• The opening for a subset 𝐼 ⊆ [𝑚] is a SNARG proof that there exists 𝑘 such that for all 𝑖 ∈ 𝐼 , 𝑟𝑖 = PRF(𝑘, 𝑥𝑖).

In this case, binding follows from security of the (weak) PRF (as long as the length of the PRF key is smaller than the

output length𝑚) in conjunction with soundness of the SNARG (i.e., the only possible openings are to those consistent

with an evaluation under a PRF key 𝑘 on the inputs 𝑥1, . . . , 𝑥𝑚). The hiding property follows by treating the SNARG

proof in the opening as “leakage” on the PRF key and then appealing to leakage-resilient pseudorandomness of the

underlying PRF. Critically, this latter step relies on the length of the SNARG being sublinear in the length of the PRF

key.

Replacing the SNARG with a batch argument. We rst observe that the SNARG proof in the opening is almost
a batch language. Namely, the proof is showing that for each index 𝑖 ∈ 𝐼 , the bit 𝑟𝑖 satises 𝑟𝑖 = PRF(𝑘, 𝑥𝑖). Each
instance is described by a tuple (𝑖, 𝑥𝑖 , 𝑟𝑖) and the witness is the PRF key 𝑘 . The caveat is that in a batch language,

there is no requirement that the prover uses the same witness (i.e., the PRF key 𝑘) for each instance. Namely, if

we use replace the SNARG in the [KMY20] construction with a BARG, then the proof only suces to argue “local

consistency” (i.e., there exists some key 𝑘𝑖 that explains each output bit 𝑟𝑖) rather than “global consistency” (i.e., there

exists a single key 𝑘 that explains each output bit 𝑟𝑖). Certainly, local consistency is insucient as it is trivial to nd a

tuple of keys (𝑘1, . . . , 𝑘𝑚) that explains any candidate hidden-bits string r ∈ {0, 1}𝑚 .

Enforcing consistency. To force the prover to use a consistent PRF key 𝑘 across all of the instances when

constructing the batch argument, we have the prover include a commitment 𝑐 to the PRF key 𝑘 as part of the opening.

Each instance of the batch NP language is now

∃𝑘 : 𝑐 is a commitment to 𝑘 and PRF(𝑘, 𝑥𝑖) = 𝑟𝑖 .

In fact, we note that we can replace the PRF with a pseudorandom generator PRG : {0, 1}_ → {0, 1}𝑚 , and indeed, the

(weak) PRF in the [KMY20] construction is essentially used as a PRG. We will write PRG𝑖 : {0, 1}_ → {0, 1} to denote

the function that takes as input the seed s ∈ {0, 1}_ and outputs the 𝑖th bit of PRG(s). To generate the hidden-bits

string, the generator now samples s r← {0, 1}_ and commits to s with a commitment 𝑐 . The hidden-bits string is

r← PRG(s) and the opening to r𝐼 is a batch argument 𝜋 for the following language:

∀𝑖 ∈ 𝐼 , ∃s ∈ {0, 1}_ : 𝑐 is a commitment to s and PRG𝑖 (s) = 𝑟𝑖 .

4

As long as the commitment is statistically binding (i.e., the commitment 𝑐 can be opened to at most one seed s) and
the batch argument is computationally sound, the scheme satises the binding requirement. In our security analysis

(Theorem 3.3), we technically require a stronger extractability property on the commitment, which allows us to base

binding on semi-adaptive soundness of the underlying BARG; this is the notion achieved by most recent constructions

from standard assumptions [CJJ21b, WW22, HJKS22, DGKV22, HJKS22].
3
In contrast, the construction of [KMY20]

relied on a SNARG with adaptive soundness. This is a stronger requirement that cannot be proven under a black-box

reduction to a falsiable assumption [GW11]. However, this approach for constructing a hidden bits generator does

not satisfy hiding. There are two issues:

• Length of the commitment: The opening now contains a commitment 𝑐 to the PRG seed s. Since 𝑐 is

statistically binding, the length of 𝑐 is at least as long as the seed s.

• Length of the proof: Succinctness of the batch argument says that the length of the proof 𝜋 satises

|𝜋 | = poly(_, |𝐶 |, log |𝐼 |), where 𝐶 is the circuit that takes as input (𝑖, s, 𝑟𝑖) and checks that 𝑐 is a commitment

to s and PRG𝑖 (s) = 𝑟𝑖 . Unlike the case of a SNARG, the length of 𝜋 scales polynomially with the size of the

circuit |𝐶 |. Since 𝐶 takes the PRG seed as input, |𝐶 | ≥ |s|, so the length of 𝜋 is at least as long as the seed s.

The [KMY20] construction argues hiding by relying on leakage resilience of the underlying weak PRF. In their setting,

the only leakage on the PRF key is from the SNARG, whose length is smaller than the length of the PRF key. As such,

the analysis reduces to a standard leakage-resilience argument. In our setting, both the commitment to the PRG seed

and the length of the BARG proof potentially leak too much information about the PRG seed, and we cannot directly

leverage leakage resilience to argue hiding.

Leveraging locality. Our rst observation is that each individual instance in the batch language is checking a

single output bit of the PRG. Since the length of the BARG proof scales with the size of the circuit checking a single

instance, this means that if the circuit for validating a single output bit of the PRG is much smaller than the length

of the overall PRG seed, we can rely on BARG succinctness. One way to construct PRGs with this property is by

relying on locality. We say that a PRG is 𝑘-local if each output bit only depends on at most 𝑘 bits of the seed. If a

PRG is 𝑘-local, then each output bit can be veried with a circuit of size at most 2
𝑘 · poly(_). In this case, to check

that output bit 𝑖 is correctly computed, the relation only needs to check (local) openings for the 𝑘 bits of s that
determine PRG𝑖 (s). For instance, if the PRG has constant locality [Gol00, CM01], and we take the commitment 𝑐 to

be a bit-by-bit commitment to the bits of s, then verifying a single output bit only requires a circuit of size _𝛿 , for

some xed constant 𝛿 > 0 that depends on the BARG scheme and the commitment scheme (but not the seed length of

the PRG). Here _ is the main security parameter (for the BARG and for the commitment scheme). If we set the length

of the PRG seed to be at least 𝑛 > _𝛿 , then we can hope to rely on leakage resilience of the PRG to argue that the

output still has high min-entropy even given the BARG proof. In our constructions (Theorem 1.1 and Corollary 3.15),

we can use 𝑘-local PRGs with locality as high as 𝑘 = 𝑐 log _ for some constant 𝑐 < 1.

We additionally require that our 𝑘-local PRGs be leakage resilient. Here, we rely on sub-exponential hardness and

the Gentry-Wichs leakage-simulation lemma [GW11]. Roughly speaking, it says that if PRG(s) is computationally

indistinguishable from t r← {0, 1}𝑚 against (non-uniform) adversaries of size at most 𝑠 , then there exists an auxiliary

distribution over strings (t, aux∗) such that (PRG(s), aux) is computationally indistinguishable from (t, aux∗) against
(non-uniform) adversaries of size at most 𝑠/2 |aux | . Here aux is a string that can be arbitrarily correlated with s. Thus,
as long as the leakage aux is suciently short (as a function of the seed length) and the PRG satises sub-exponential

security, we can argue that the outputs are still pseudorandom. Finally, we can apply a standard randomness extractor

to t to obtain a sequence of bits that are statistically close to uniform (even given aux∗).

Dual-mode commitments. The only remaining challenge is to ensure that the (statistically-binding) commitment

to the PRG seed s does not leak information about the seed. While it is tempting to rely on computational hiding of

the commitment scheme and replace the commitment to the seed with a commitment to the all-zeroes string, this

hybrid strategy does not work. The BARG proof (in the opening) is generated using the openings to the commitment

3
Semi-adaptive soundness for a batch argument says that the adversary must rst commit to the index 𝑖 of the false statement in the soundness

game. It can adaptively choose the statements 𝑥1, . . . , 𝑥𝑇 after seeing the CRS, with the restriction that instance 𝑥𝑖 must be false.

5

scheme (i.e., the openings to the commitment are part of the witness for the BARG). Alternatively, we can apply

the Gentry-Wichs leakage lemma to argue that the joint distribution (Commit(s), PRG(s), aux) is computationally

indistinguishable from (Commit(0), t, aux∗). As long as the commitment scheme is hiding even for adversaries of

size 2
|aux |

, then security follows. However, there is a circular dependency here, as the length of aux is the length of

the BARG proof, which is at least as long as the commitment (since the commitment is an input to the BARG relation).

As a result, we cannot use complexity leveraging on the commitment as we could with the PRG.

We instead take a dierent “dual-mode” strategy [GOS06, PW08]. Specically, we consider a dual-mode com-

mitment scheme where the CRS can be sampled in one of two (computationally indistinguishable) modes: (1) an

extractable mode which we use to argue binding; and (2) a statistically hiding mode where the commitments now

statistically hide the input. Dual-mode commitments can be constructed from a lossy public-key encryption scheme,

which is implied by most number-theoretic intractability assumptions [PW08, HLOV11, AFMP20].

The idea in the hiding proof then is to rst switch the dual-mode commitment from binding mode into hiding

mode. Observe that this step only changes the public parameters in the scheme. Once the CRS is in hiding mode, the

commitments to the PRG seed s statistically hide s, regardless of the size of the adversary. In this case, we can appeal

to the Gentry-Wichs leakage lemma to argue that the joint distribution (Commit(s), PRG(s), aux) is computationally

indistinguishable from (Commit(0), t, aux∗) assuming only sub-exponential hardness of the PRG. This means the

unopened bits in the hidden-bits string are uniformly random and hiding holds. We provide the full details in Section 3

(Theorem 3.4).

Upgrading BARGs to zkBARGs. For completeness, we conclude with a few remarks on using a NIZK for NP to

generically upgrade a batch argument to a zero-knowledge batch argument (zkBARG). First, we note that the naïve

approach of giving a NIZK proof of knowledge of a BARG proof does not work out of the box. The issue is that the

verication algorithm for the BARG needs to read the statements (𝑥1, . . . , 𝑥𝑇), and thus, the size of the verication

circuit scales linear with 𝑇 . Since the size of a NIZK proof can scale polynomially with the size of the verication

circuit, the size of the NIZK proof of knowledge of a valid BARG proof for (𝑥1, . . . , 𝑥𝑇) can scale polynomially with 𝑇 .

Nonetheless, we can still apply this general approach in the following settings:

• Index BARGs: An index BARG for an NP language is one where the statements are always xed to be the

integers 1, . . . ,𝑇 [CJJ21b]. In an index BARG, the verication algorithm only takes the upper bound 𝑇 as input

and is required to run in time that is polylogarithmic in 𝑇 . We can generically compose an index BARG with a

NIZK to obtain a zero-knowledge index BARG. We can then apply the index-BARG-to-BARG transformation

from [CJJ21b] to the zero-knowledge index BARG forNP to obtain a zkBARG forNP; note here that the [CJJ21b]
transformation preserves zero-knowledge.

• BARGswith split verication: ABARG satises “split verication” [CJJ21b,WW22, CGJ
+
22] if the verication

algorithm decomposes into a (non-succinct) statement-dependent preprocessing step that outputs a short

verication key vk and a (succinct) online verication step that takes the preprocessed key vk and the proof 𝜋

and decides whether to accept or reject the proof. Importantly, the online verication step can be implemented

by a circuit whose size is polylogarithmic in the number of instances 𝑇 . Given a BARG with a split verication

property, it suces to use a NIZK to prove knowledge of a BARG proof that satises the online verication

check. This yields a zkBARG with split verication.

2 Preliminaries
We write _ to denote the security parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set {1, . . . , 𝑛}.
We use boldface letters (e.g., x) to denote vectors. We write poly(_) to denote a xed function that is 𝑂 (_𝑐) for some

𝑐 ∈ N and negl(_) to denote a function that is 𝑜 (_−𝑐) for all 𝑐 ∈ N. We say an event occurs with overwhelming

probability if its complement occurs with negligible probability. We say an algorithm on _-bit inputs is ecient if it

can be computed by a Boolean circuit of size poly(_), or equivalently, if it can be computed by a Turing machine in

poly(_) time with poly(_) bits of advice.
Let D1 =

{
D1,_

}
_∈N and D2 =

{
D2,_

}
∈N be two ensembles of distributions. For functions 𝑠 = 𝑠 () and Y = Y (_),

we say that D1 and D2 are (𝑠, Y)-indistinguishable if for all non-negative polynomials poly(·) and all adversaries A,

6

modeled as Boolean circuits of size at most 𝑠 (_) · poly(_), and all suciently large _ ≥ _A ,��
Pr[A(𝑥) = 1 : 𝑥 ← D1,_] − Pr[A(𝑥) = 1 : 𝑥 ← D2,_]

�� ≤ Y (_).

We say thatD1 andD2 are computationally indistinguishable if there exists a negligible function Y (_) = negl(_) such
that D1 and D2 are (1, Y)-indistinguishable. We say that D1 and D2 are statistically indistinguishable if the statistical

distance Δ(D1,D2) is bounded by a negligible function negl(_).

Min-entropy. We recall some basic denitions on min-entropy. Our denitions are adapted from those in [DRS04].

For a (discrete) random variable 𝑋 , we write H∞ (𝑋) = − log(max𝑥 Pr[𝑋 = 𝑥]) to denote its min-entropy. For two

(possibly correlated) discrete random variables 𝑋 and 𝑌 , we dene the average min-entropy of 𝑋 given 𝑌 to be

H∞ (𝑋 | 𝑌) = − log(E𝑦←𝑌 max𝑥 Pr[𝑋 = 𝑥 | 𝑌 = 𝑦]). The optimal probability of an unbounded adversary guessing 𝑋

given the correlated value 𝑌 is 2
−H∞ (𝑋 |𝑌)

.

Lemma 2.1 (Conditional Min-Entropy [DRS04, Lemma 2.2]). Let 𝐴, 𝐵 be random variables and suppose there are at
most 2_ elements in the support of 𝐵. Then H∞ (𝐴 | 𝐵) ≥ H∞ (𝐴, 𝐵) − _ ≥ H∞ (𝐴) − _.

Gentry-Wichs leakage lemma. Our analysis will rely on the following “leakage lemma” from [GW11]:

Lemma 2.2 (Indistinguishability with Auxiliary Information [GW11, Lemma 3.1]). Let _ be a security parameter. There
exists a polynomial poly(·) such that the following property holds. Let X = {X_}_∈N and Y = {Y_}_∈N be arbitrary
distributions that are (𝑠, Y)-indistinguishable for some 𝑠 = 𝑠 (_) and Y = Y (_). Let X∗

_
=

{
X∗
_

}
_∈N be an augmented

distribution where X∗
_
is a distribution on pairs (𝑥_, 𝜋_) where 𝑥_ ← X_ and 𝜋 ∈ {0, 1}ℓ (_) can be arbitrarily correlated

with 𝑥_ . Then, there exists a distribution Y∗ =
{
Y∗
_

}
_∈N with the following properties:

• Each Y∗
_
is a distribution on tuples (𝑦_, 𝜋_), where 𝑦_ ← Y_ and 𝜋_ ∈ {0, 1}ℓ (_) .

• The distributionsX∗ andY∗ are (𝑠 ′, Y ′)-indistinguishable, where 𝑠 ′(_) = 𝑠 (_) ·poly(Y (_)/2ℓ (_)) and Y ′(_) = 2Y (_).

Leftover hash lemma. Our constructionwill also rely on the generalized leftover hash lemma (LHL) from [BDK
+
11]:

Theorem 2.3 (LHL with Conditional Min-Entropy [BDK
+
11, Theorem 3.2, adapted]). Let (𝑋,𝑍) be random variables

sampled from some joint distribution D over X ×Z. LetH = {ℎ : X → {0, 1}𝑣} be a family of universal hash functions,
and let 𝐿 = H∞ (𝑋 | 𝑍) − 𝑣 be the entropy loss. Let A(𝑟, ℎ, 𝑧) be a (possibly probabilistic) distinguisher where

Pr[A(𝑟, ℎ, 𝑧) = 1 : 𝑟
r← {0, 1}𝑣, ℎ r←H , (𝑥, 𝑧) ← D] ≤ Y.

Then, the distinguishing advantage of A on the following distributions is at most
√︁
Y/2𝐿 :{

(ℎ(𝑥), ℎ, 𝑧) : (𝑥, 𝑧) ← D
ℎ

r←H

}
and

{
(𝑟, ℎ, 𝑧) : (𝑥, 𝑧) ← D

𝑟
r← {0, 1}𝑣, ℎ r←H

}
Corollary 2.4 (LHL with Conditional Min-Entropy). Let (𝑋,𝑍) be random variables sampled from some joint distribu-
tion D over X ×Z. LetH = {ℎ : X → {0, 1}𝑣} be a family of universal hash functions. Let 𝐿 = H∞ (𝑋 | 𝑍) − 𝑣 be the
entropy loss. Then the statistical distance between the following distributions is at most 2−𝐿/2:{

(ℎ(𝑥), ℎ, 𝑧) : (𝑥, 𝑧) ← D
ℎ

r←H

}
and

{
(𝑟, ℎ, 𝑧) : (𝑥, 𝑧) ← D

𝑟
r← {0, 1}𝑣, ℎ r←H

}
Proof. Follows by setting Y = 1 in Theorem 2.3 (which captures all distinguishers). �

7

Pseudorandom generators. We recall the denition of a pseudorandom generator.

Denition 2.5 (Pseudorandom Generator). Let _ be a security parameter. A pseudorandom generator with output

length𝑚 =𝑚(_) is an eciently-computable function family PRG = {PRG_}_∈N where PRG_ : {0, 1}_ → {0, 1}𝑚 (_) .
For functions 𝑠 = 𝑠 (_) and Y = Y (_), we say that PRG is (𝑠, Y)-secure if the following two distributions are (𝑠, Y)-
indistinguishable: {

PRG_ (𝑥) : 𝑥 r← {0, 1}_
}

and

{
𝑦

r← {0, 1}𝑚 (_)
}
.

We say that PRG is sub-exponentially secure if there exists a constant 𝛼 > 0 and a negligible function Y = negl(_)
such that PRG is

(
2
_𝛼 , Y

)
-secure.

Denition 2.6 (Locality of a PRG). We say a PRG : {0, 1}_ → {0, 1}𝑚 has locality 𝑘 = 𝑘 (_) if each output bit of

PRG(𝑥) is a function of at most 𝑘 bits of the seed 𝑥 . We say that PRG is computable in NC0
if PRG has constant

locality 𝑘 = 𝑂 (1).

Local PRGs constructions. Goldreich [Gol00, MST03] gave the rst candidate local PRG construction (with

constant locality) based on constraint-satisability problems over expander graphs. A long line of subsequent works

have studied variants of Goldreich’s construction [CM01, MST03, CEMT09, App12, ABR12, OW14, AL16, AK19]; we

refer to [App15] for an excellent survey of the state of the art. Notably, PRGs with constant locality and super-linear

stretch have featured prominently in constructions of indistinguishability obfuscation [Lin17, LT17, JLS21, JLS22].

There has also been an extensive line of works studying attacks and ruling out certain instantiations of local

PRGs [MST03, CEMT09, BQ09, OW14, App15, AL16, CDM
+
18, Üna23]. For local PRGs with super-linear stretch _1+𝛿 ,

the most recent attacks [BQ09, Üna23] run in time roughly _𝑂 (_
1−𝛿/𝑘)

where 𝑘 is the locality.

Dual-mode commitments. Next, we recall the notion of a “dual-mode” commitment (also called a “mixed

commitment”) [DN02]. At a high-level, these are non-interactive commitment schemes in the common reference

string (CRS) model where the CRS can be sampled from one of two computationally indistinguishable distributions. In

one distribution (or mode), the commitment scheme is extractable (i.e., given trapdoor information, one can eciently

extract the committed value from a commitment), and in the other distribution (or mode), the commitment scheme is

statistically hiding.
4
We give the formal denition below:

Denition 2.7 (Dual-Mode Bit Commitment [DN02]). A dual-mode bit commitment scheme is a tuple of ecient

algorithms ΠBC = (Setup,Commit,Verify) with the following syntax:

• Setup(1_,mode) → (crs, td): On input the security parameter _ and mode ∈ {bind, hide}, the setup algorithm

outputs a common reference string crs and a trapdoor td (possibly empty).

• Commit(crs, 𝑏) → (𝑐, 𝜎): On input the common reference string crs and a bit 𝑏 ∈ {0, 1}, the commit algorithm

outputs a commitment 𝑐 and an opening 𝜎 .

• Verify(crs, 𝑐, 𝑏, 𝜎) → {0, 1}: On input the common reference string crs, a commitment 𝑐 , a bit 𝑏 ∈ {0, 1}, and an

opening 𝜎 , the verication algorithm outputs a bit 𝑏 ′ ∈ {0, 1}.

Moreover, ΠBC should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all bits 𝑏 ∈ {0, 1}, all modes mode ∈ {bind, hide},

Pr

[
Verify(crs, 𝑐, 𝑏, 𝜎) = 1 :

(crs, td) ← Setup(1_,mode);
(𝑐, 𝜎) ← Commit(crs, 𝑏)

]
= 1.

• Mode indistinguishability: For all ecient adversaries A, and sampling (crsbind, td) ← Setup(1_, bind),
(crshide, td′) ← Setup(1_, hide), we have that��

Pr

[
A(1_, crsbind) = 1

]
− Pr

[
A(1_, crshide) = 1

] �� = negl(_).
4
In some settings, we can require a stronger “equivocation” property in hiding mode where given trapdoor information, one can sample a

commitment 𝑐 and openings for 𝑐 to any value. Our constructions do not require equivocation.

8

• Extractable in binding mode: There exists an ecient algorithm Extract that takes as input a trapdoor td
and a string 𝑐 ∈ {0, 1}∗, and outputs a bit 𝑏 ∈ {0, 1}. Then, for all adversaries A,

Pr

Verify(crs, 𝑐, 𝑏, 𝜎) = 1 ∧ 𝑏 ≠ 𝑏 ′ :
(crs, td) ← Setup(1_, bind);
(𝑐, 𝜎, 𝑏) ← A(crs);
𝑏 ′← Extract(td, 𝑐)

 = negl(_).

• Statistically hiding in hiding mode: For a security parameter _ and a bit 𝛽 ∈ {0, 1}, we dene the hiding
game between an adversary A and a challenger as follows:

1. The challenger starts by sampling (crs, td) ← Setup(1_, hide) and gives crs to A.

2. Algorithm A outputs two messages 𝑏0, 𝑏1 ∈ {0, 1}.
3. The challenger computes (𝑐, 𝜎) ← Commit(crs, 𝑏𝛽) and replies to A with 𝑐 .

4. Algorithm A outputs a bit 𝑏 ′ ∈ {0, 1}, which is the output of the experiment.

Then ΠBC is statistically hiding in hiding mode if there exists a negligible function negl(·) such that for all

adversaries A in the above hiding experiment,

|Pr[𝑏 ′ = 1 | 𝛽 = 0] − Pr[𝑏 ′ = 1 | 𝛽 = 1] | = negl(_).

Constructions of dual-mode commitments. Dual-mode commitments (with extraction) can be built from

any lossy public-key encryption scheme [BHY09], which can in turn be constructed from most standard algebraic

assumptions [PW08, HLOV11, AFMP20]. In particular, a commitment to an input 𝑥 is just a public-key encryption of

𝑥 and the opening is the corresponding encryption randomness. In extracting mode, the extraction trapdoor is the

decryption key.

2.1 Non-Interactive Zero-Knowledge Arguments for NP
We recall the notion of a non-interactive zero-knowledge argument for NP [GMR85, BFM88]. We specically consider

the NP-complete language of Boolean circuit satisability. Namely, for a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
we say that a statement x ∈ {0, 1}𝑛 is a yes instance if there exists a witness w ∈ {0, 1}ℎ such that 𝐶 (x,w) = 1.

Denition 2.8 (NIZK Argument forNP). A non-interactive zero-knowledge argument for Boolean circuit satisability

is a tuple of ecient algorithms ΠNIZK = (Setup, Prove,Verify) with the following syntax:

• Setup(1_) → crs: On input the security parameter _ ∈ N, the setup algorithm outputs a common reference

string crs.

• Prove(crs,𝐶, x,w) → 𝜋 : On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, a statement x ∈ {0, 1}𝑛 , and a witness w ∈ {0, 1}ℎ , the prove algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, x, 𝜋) → 𝑏: On input the common reference string crs, the Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, a statement x ∈ {0, 1}𝑛 , and a proof 𝜋 , the verication algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠNIZK should satisfy the following properties:

• Completeness: For all _ ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all statements x ∈ {0, 1}𝑛 , and
all witnesses w ∈ {0, 1}ℎ where 𝐶 (x,w) = 1,

Pr

[
Verify(crs,𝐶, x, 𝜋) = 1 :

crs← Setup(1_);
𝜋 ← Prove(crs,𝐶, x,w)

]
= 1.

9

• Computational soundness: For all ecient adversaries A,

Pr

[
x ∉ L𝐶 ∧ Verify(crs,𝐶, x, 𝜋) = 1 :

crs← Setup(1_)
(𝐶, x, 𝜋) ← A(1_, crs)

]
= negl(_),

where for a circuit𝐶 : {0, 1}𝑛 ×{0, 1}ℎ → {0, 1}, we dene L𝐶 to be the language of Boolean circuit satisability:

L𝐶 B
{
x ∈ {0, 1}𝑛 : ∃w ∈ {0, 1}ℎ,𝐶 (x,w) = 1

}
.

• Computational zero-knowledge: For every ecient adversary A, there exists an ecient simulator S =

(S1,S2) such that for crs← Setup(1_) and (c̃rs, stS) ← S1 (1_), we have that���Pr [AO0 (crs, ·, ·, ·) (1_, crs) = 1

]
− Pr

[
AO1 (stS , ·, ·, ·) (1_, c̃rs) = 1

] ��� = negl(_),

where the oracles O0 and O1 are dened as follows:

– O0 (crs,𝐶, x,w): On input crs, a circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement x ∈ {0, 1}𝑛 , and a witness
w ∈ {0, 1}ℎ , the oracle outputs ⊥ if 𝐶 (x,w) = 0. If 𝐶 (x,w) = 1, it outputs Prove(crs,𝐶, x,w).

– O1 (stS,𝐶, x,w): On input the simulator state stS , a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement

x ∈ {0, 1}𝑛 , and a witness w ∈ {0, 1}ℎ , the oracle outputs ⊥ if 𝐶 (x,w) = 0. If 𝐶 (x,w) = 1, it outputs

S2 (stS,𝐶, x).

2.2 Non-Interactive Batch Arguments for NP
The main cryptographic primitive we consider in this work is a non-interactive batch argument for NP. As before, we
consider the NP-complete language of Boolean circuit satisability. We now recall the denition of a non-interactive

batch argument for NP from [KPY19, CJJ21a]. Our construction relies on the notion of semi-adaptive soundness used

in [CJJ21b, WW22, DGKV22, KLVW23, CGJ
+
22].

Denition 2.9 (Batch Argument for NP [CJJ21b, adapted]). A non-interactive batch argument (BARG) for Boolean

circuit satisability is a tuple of three ecient algorithms ΠBARG = (Setup, Prove,Verify) with the following syntax:

• Setup(1_, 1𝑇 , 1𝑠) → crs: On input the security parameter _ ∈ N, the number of instances 𝑇 ∈ N, and a bound

on the circuit size 𝑠 ∈ N, the setup algorithm outputs a common reference string crs.

• Prove(crs,𝐶, (x1, . . . , x𝑇), (w1, . . . ,w𝑇)) → 𝜋 : On input the common reference string crs, a Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements x1, . . . , x𝑇 ∈ {0, 1}𝑛 , and witnesses w1, . . . ,w𝑇 ∈ {0, 1}ℎ , the prove
algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, (x1, . . . , x𝑇), 𝜋) → 𝑏: On input the common reference string crs, the Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x𝑇 ∈ {0, 1}𝑛 and a proof 𝜋 , the verication algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠBARG should satisfy the following properties:

• Completeness: For all _,𝑇 , 𝑠 ∈ N, all circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , all statements

x1, . . . , x𝑇 ∈ {0, 1}𝑛 , and all witnesses w1, . . . ,w𝑇 ∈ {0, 1}ℎ where 𝐶 (x𝑖 ,w𝑖) = 1 for all 𝑖 ∈ [𝑇],

Pr

[
Verify(crs,𝐶, x, 𝜋) = 1 :

crs← Setup(1_, 1𝑇 , 1𝑠);
𝜋 ← Prove(crs,𝐶, x,w)

]
= 1,

where x = (x1, . . . , x𝑇) and w = (w1, . . . ,w𝑇).

• Succinct proof size:5 There exists a polynomial poly(·, ·, ·) such that for all _,𝑇 , 𝑠 ∈ N, all crs in the support of

Setup(1_, 1𝑇 , 1𝑠), and all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , the size of the proof 𝜋

output by Prove(crs,𝐶, ·, ·) satises |𝜋 | ≤ poly(_, log𝑇, 𝑠).
5
Previous works [KPY19, CJJ21a, CJJ21b, WW22, DGKV22, CGJ

+
22] also impose requirements on the size of the CRS and the running time of the

verier. These additional properties are not needed in our work.

10

• Semi-adaptive soundness: For a security parameter _, we dene the semi-adaptive soundness game between

an adversary A and a challenger as follows:

1. Algorithm A starts by outputting the number of instances 1
𝑇
, the bound on the circuit size 1

𝑠
, and an

index 𝑖 ∈ [𝑇].
2. The challenger samples a common reference string crs← Setup(1_, 1𝑇 , 1𝑠) and gives crs to A.

3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , statements

(x1, . . . , x𝑇) where each x𝑖 ∈ {0, 1}𝑛 , and a proof 𝜋 .

4. The output of the experiment is 𝑏 = 1 if Verify(crs,𝐶, (x1, . . . , x𝑇), 𝜋) = 1 and for all w𝑖 ∈ {0, 1}ℎ ,
𝐶 (x𝑖 ,w𝑖) = 0. Otherwise, the output is 𝑏 = 0.

Then ΠBARG satises semi-adaptive soundness if for all ecient adversaries A, Pr[𝑏 = 1] = negl(_) in the

semi-adaptive soundness game.

Constructions of batch arguments for NP. Batch arguments for NP have recently been realized from a broad

range of standard assumptions including lattice-based assumptions [CJJ21b, DGKV22] as well as assumptions over

pairing groups [KVZ21, WW22] and pairing-free groups [CGJ
+
22].

2.3 Hidden-Bits Generator
We recall the notion of a hidden-bits generator with subset-dependent proofs from [KMY20]. For a bitstring r ∈ {0, 1}𝑛
and a set of indices 𝐼 ⊆ [𝑛], we write r𝐼 ∈ {0, 1} |𝐼 | to denote the substring corresponding to the bits of r indexed by 𝐼 .

Denition 2.10 (Hidden-Bits Generator [KMY20, Denition 11]). A hidden-bits generator with subset-dependent

proofs is a tuple of ecient algorithms ΠHBG = (Setup,GenBits, Prove,Verify) with the following syntax:

• Setup(1_, 1𝑚) → crs: On input the security parameter _, and the output length𝑚, the setup algorithm outputs

a common reference string crs.

• GenBits(crs) → (r, st): On input the the common reference string crs, the generator algorithm outputs a string

r ∈ {0, 1}𝑚 and a state st.

• Prove(st, 𝐼) → 𝜋 : On input the state st and a subset 𝐼 ⊆ [𝑚], the prove algorithm outputs a proof 𝜋 .

• Verify(crs, 𝐼 , r𝐼 , 𝜋) → 𝑏: On input a common reference string crs, a subset 𝐼 ⊆ [𝑚], a string r𝐼 ∈ {0, 1} |𝐼 | , and a

proof 𝜋 , the verication algorithm outputs a bit 𝑏 ∈ {0, 1}.
We require ΠHBG to satisfy the following properties:

• Correctness: For all𝑚, _ ∈ N and all subsets 𝐼 ⊆ [𝑚], we have

Pr

Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1 :

crs← Setup(1_, 1𝑚);
(r, st) ← GenBits(crs);

𝜋 ← Prove(st, 𝐼)

 = 1.

• Somewhat computational binding: For every crs in the support of the algorithm Setup(1_, 1𝑚), there exists
a setVcrs

with the following properties:

(i) Output sparsity. There exists a universal constant 𝛾 < 1 and a xed polynomial 𝑝 (·) such that for every

polynomial𝑚 =𝑚(_), and every crs in the support of Setup(1_, 1𝑚), |Vcrs | ≤ 2
𝑚𝛾 ·𝑝 (_)

(ii) Computational binding. For every ecient and stateful adversary A,

Pr

r𝐼 ∉ Vcrs
𝐼 ∧ Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1 :

1
𝑚 ← A(1_);

crs← Setup(1_, 1𝑚);
(𝐼 , r𝐼 , 𝜋) ← A(crs)

 = negl(_),

whereVcrs
𝐼
B {r𝐼 : r ∈ Vcrs}.

11

• Computationally hiding: For every polynomial𝑚 =𝑚(_), every subset 𝐼 ⊆ [𝑚], and all ecient adversaries

A, we have ��
Pr[A(crs, 𝐼 , r𝐼 , 𝜋, r𝐼) = 1] − Pr[A(crs, 𝐼 , r𝐼 , 𝜋, r′𝐼) = 1]

�� = negl(_),

where crs← Setup(1_, 1𝑚), (r, st) ← GenBits(crs), 𝜋 ← Prove(st, 𝐼), r′ r← {0, 1}𝑚 , and 𝐼 = [𝑚] \ 𝐼 .

Theorem 2.11 (NIZK from Hidden-Bits Generator [KMY20, Theorem 5]). If there exists a hidden-bits generator with
subset-dependent proofs, then there exists a computational NIZK argument for NP.

3 Hidden-Bits Generator from Batch Arguments
In this section, we show how to construct a hidden-bits generator with subset-dependent proofs using a batch argument

for NP together with a dual-mode commitment and a low-complexity PRG. Then combined with Theorem 2.11, we

obtain a NIZK for NP from the same underlying set of assumptions.

Construction 3.1 (Hidden-Bits Generator from Batch Arguments). Let _ ∈ N be a security parameter and𝑚 be

an output length parameter. Let 𝑛 = 𝑛(_,𝑚) be a PRG seed length parameter and let 𝐵 = 𝐵(_,𝑚) be a block length

parameter. These parameters will be determined in the security analysis. Our construction relies on the following

primitives:

• Let𝐺_ : {0, 1}_ → {0, 1}ℓ (_) be a family of PRGs. Let 𝑘 = 𝑘 (_) be the locality of the PRG (i.e., each output bit of

𝐺_ depends on at most 𝑘 input bits). In the following description, we require that ℓ (𝑛) ≥ 𝑚𝐵.

• Let ΠBC = (BC.Setup,BC.Commit,BC.Verify) be a dual-mode bit commitment scheme.

• Let ΠBARG = (BARG.Setup,BARG.Prove,BARG.Verify) be a batch argument for NP with proof length ℓBARG =

ℓBARG (_,𝑇 , 𝑠), where 𝑠 denotes the size of the underlying NP relation and 𝑇 denotes the number of instances.

• For an index 𝑖 ∈ [ℓ] where ℓ = ℓ (𝑛), let 𝑖1, . . . , 𝑖𝑘 ∈ [𝑛] be the indices of the 𝑘 seed bits on which the 𝑖th output

bit of 𝐺𝑛 (·) depends. Let s ∈ {0, 1}𝑛 be a seed for the PRG, and let 𝐺
(𝑖)
𝑛 : {0, 1}𝑘 → {0, 1} be the circuit that

takes as input the seed bits 𝑠𝑖1 , . . . , 𝑠𝑖𝑘 ∈ {0, 1} and outputs the 𝑖th bit of 𝐺𝑛 (s). Then, for a common reference

string crsBC for the bit commitment scheme, dene the NP relation R[𝑛, crsBC] as follows:

Hard-wired: PRG seed length 𝑛, common reference string crsBC
Statement: circuit 𝐺 (𝑖)𝑛 : {0, 1}𝑘 → {0, 1}, commitments 𝑐1, . . . , 𝑐𝑘 , output 𝑡 ∈ {0, 1}
Witness: bits 𝑠1, . . . , 𝑠𝑘 ∈ {0, 1}, openings 𝜎1, . . . , 𝜎𝑘

Output 1 if all of the following conditions hold:

– For each 𝑖 ∈ [𝑘], BC.Verify(crsBC, 𝑐𝑖 , 𝑠𝑖 , 𝜎𝑖) = 1;

– 𝑡 = 𝐺
(𝑖)
𝑛 (𝑠1, . . . , 𝑠𝑘).

Otherwise, output 0.

Figure 1: Relation R[𝑛, crsBC]
(
(𝐺 (𝑖)𝑛 , 𝑐1, . . . , 𝑐𝑘 , 𝑡), (𝑠1, . . . , 𝑠𝑘 , 𝜎1, . . . , 𝜎𝑘)

)
.

We now construct our hidden-bits generator ΠHBG = (Setup,GenBits, Prove,Verify) as follows:

• Setup(1_, 1𝑚): On input the security parameter _ and the output length𝑚, the setup algorithm proceeds as

follows:

1. Sample a CRS for the dual-mode commitment scheme: (crsBC, td) ← BC.Setup(1_, bind).
2. Let 𝑛 = 𝑛(_,𝑚) be the PRG seed length. Let 𝐶 be the circuit that computes the NP relation R[𝑛, crsBC].

Sample a common reference string crsBARG ← BARG.Setup(1_, 1𝑚𝐵, 1 |𝐶 |).

12

3. Let 𝐵 = 𝐵(_,𝑚) be the block size and sample v1, . . . , v𝑚
r← {0, 1}𝐵 .

Output the common reference string crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚).

• GenBits(crs): On input the common reference string crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚), the generator algo-
rithm proceeds as follows:

1. Sample a PRG seed s r← {0, 1}𝑛 , and compute t = {0, 1}𝑚𝐵 ← 𝐺𝑛 (s).6 Then, for each 𝑖 ∈ [𝑛], compute a

commitment (𝑐𝑖 , 𝜎𝑖) ← BC.Commit(crsBC, 𝑠𝑖) to the bits of the seed.

2. Split t = t1‖t2‖ · · · ‖t𝑚 into blocks where each t𝑖 ∈ {0, 1}𝐵 for each 𝑖 ∈ [𝑚]. Next, for each 𝑖 ∈ [𝑚],
compute 𝑟𝑖 ← vT

𝑖 t𝑖 (where the vectors v𝑖 and t𝑖 are interpreted as vectors in Z𝐵
2
).

The algorithm outputs the hidden-bits string r = 𝑟1‖𝑟2‖ · · · ‖𝑟𝑚 ∈ {0, 1}𝑚 together with the generator state

st = (𝑛, crsBARG, crsBC, s, 𝑐1, . . . , 𝑐𝑛, 𝜎1, . . . , 𝜎𝑛).

• Prove(st, 𝐼): On input the state st = (𝑛, crsBARG, crsBC, s, 𝑐1, . . . , 𝑐𝑛, 𝜎1, . . . , 𝜎𝑛) and a set of indices 𝐼 ⊆ [𝑚], the
prove algorithm proceeds as follows:

1. Let t = 𝐺𝑛 (s) and parse t = t1‖t2‖ · · · ‖t𝑚 where each t𝑖 ∈ {0, 1}𝐵 . We will also use the notation t[𝑖] B t𝑖
to refer to the 𝑖th block of t and 𝐺𝑛 [𝑖] B 𝐺

(𝑖)
𝑛 to refer to the circuit computing the 𝑖th bit of 𝐺𝑛 (s). In the

analysis, we will often associate an index 𝑖 ∈ [𝑚𝐵] with a pair (𝑗, 𝛽) ∈ [𝑚] × [𝐵] and vice versa (where

𝑖 = (𝑗 − 1)𝐵 + 𝛽).
2. Let 𝐼 =

{
𝑖 (1) , . . . , 𝑖 (𝐿)

}
, where the indices 𝑖 (1) , . . . , 𝑖 (𝐿) ∈ [𝑚] are in sorted order. For each 𝑗 ∈ [𝐿], 𝛽 ∈ [𝐵],

let t[𝑖 (𝑗) , 𝛽] ∈ {0, 1} denote the 𝛽 th bit of t[𝑖 (𝑗)].
3. By construction, the value of t[𝑖 (𝑗) , 𝛽] depends on at most 𝑘 bits of s. We dene 𝐺𝑛 [𝑖 (𝑗) , 𝛽] to denote the

circuit that reads up to 𝑘 bits of s and outputs t[𝑖 (𝑗) , 𝛽]. Next, we dene the function idx : [𝐿] × [𝐵] × [𝑘] →
[𝑛] where idx(𝑖 (𝑗) , 𝛽, 𝛾) outputs the𝛾 th input bit of s onwhich the output bit t[𝑖 (𝑗) , 𝛽] depends. In particular,
the inputs to the circuit 𝐺𝑛 [𝑖 (𝑗) , 𝛽] consist of bits idx(𝑖 (𝑗) , 𝛽, 1), . . . , idx(𝑖 (𝑗) , 𝛽, 𝑘) of s.

4. For each 𝑗 ∈ [𝐿] and 𝛽 ∈ [𝐵], dene the statement 𝑥 𝑗,𝛽 and associated witness𝑤 𝑗,𝛽 as follows:

𝑥 𝑗,𝛽 =

(
𝐺𝑛 [𝑖 (𝑗) , 𝛽], 𝑐idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝑐idx(𝑖 (𝑗) ,𝛽,𝑘) , t[𝑖 (𝑗) , 𝛽]

)
(3.1)

𝑤 𝑗,𝛽 =

(
𝑠idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝑠idx(𝑖 (𝑗) ,𝛽,𝑘) , 𝜎idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝜎idx(𝑖 (𝑗) ,𝛽,𝑘)

)
. (3.2)

Let 𝐶 be the circuit that computes the NP relation in Fig. 1. Then, compute the proof

𝜋BARG ← BARG.Prove(crsBARG,𝐶, (𝑥1,1, . . . , 𝑥1,𝐵, . . . , 𝑥𝐿,1, . . . , 𝑥𝐿,𝐵), (𝑤1,1, . . . ,𝑤1,𝐵, . . . ,𝑤𝐿,1, . . . ,𝑤𝐿,𝐵)) .

5. Output 𝜋 =
(
𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))

)
.

• Verify(crs, 𝐼 , r𝐼 , 𝜋): On input crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚), a set of indices 𝐼 =
{
𝑖 (1) , . . . , 𝑖 (𝐿)

}
⊆ [𝑚]

(in sorted order), a string r𝐼 ∈ {0, 1}𝐿 , and a proof 𝜋 =
(
𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))

)
, the verication

algorithm proceeds as follows:

1. For each 𝑗 ∈ [𝐿], let 𝑟𝑖 (𝑗) ∈ {0, 1} be the bit of r𝐼 associated with index 𝑖 (𝑗) . Then, for each 𝑗 ∈ [𝐿], check
that 𝑟𝑖 (𝑗) = vT

𝑖 (𝑗)
t𝑖 (𝑗) . Output 0 if any check fails.

2. Using the commitments 𝑐1, . . . , 𝑐𝑛 and the bits of t𝑖 (1) , . . . , t𝑖 (𝐿) , construct the statements 𝑥 𝑗,𝛽 for each

𝑗 ∈ [𝐿] and 𝛽 ∈ [𝐵] according to Eq. (3.1). Let 𝐶 be the circuit that computes the NP relation R[𝑛, crsBC]
in Fig. 1.

3. Output BARG.Verify(crsBARG,𝐶, (𝑥1,1, . . . , 𝑥1,𝐵, . . . , 𝑥𝐿,1, . . . , 𝑥𝐿,𝐵), 𝜋BARG).
6
As noted above, we require that ℓ (𝑛) ≥𝑚𝐵. If ℓ (𝑛) >𝑚𝐵, we truncate the output of𝐺𝑛 to output a string of length exactly𝑚𝐵.

13

Theorem 3.2 (Correctness). If ΠBARG is complete and ΠBC is correct, then Construction 3.1 is correct.

Proof. Take any security parameter _, output length𝑚, and set of indices 𝐼 ⊆ [𝑚]. Let crs← Setup(1_, 1𝑚) where
crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚). Let (r, st) ← GenBits(crs) and 𝜋 ← Prove(st, 𝐼). Consider the output of

Verify(crs, 𝐼 , r𝐼 , 𝜋).

• By construction of GenBits, 𝑟𝑖 = vT
𝑖 t𝑖 for all 𝑖 ∈ [𝐿]. Thus, the rst set of checks in Verify pass.

• Next, for each 𝑗 ∈ [𝐿] and 𝛽 ∈ [𝐵], let 𝑥 𝑗,𝛽 and 𝑤 𝑗,𝛽 be the statement and witness dened as in Eqs. (3.1)

and (3.2). By correctness of ΠBC, it follows that (𝑥 𝑗,𝛽 ,𝑤 𝑗,𝛽) ∈ R[𝑛, crsBC].

• Let 𝜋 =
(
𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))

)
. Since (𝑥 𝑗,𝛽 ,𝑤 𝑗,𝛽) ∈ R[𝑛, crsBC] for all 𝑗 ∈ [𝐿] and 𝛽 ∈ [𝐵],

completeness of ΠBARG implies that

BARG.Verify(crsBARG,𝐶, (𝑥1,1, . . . , 𝑥1,𝐵, . . . , 𝑥𝐿,1, . . . , 𝑥𝐿,𝐵), 𝜋BARG) = 1.

Correspondingly, Verify(crs, 𝐼 , r𝐼 , 𝜋) = 1, as required. �

Theorem 3.3 (Somewhat Computational Binding). Let _ be a security parameter. Suppose there exists a universal
constant 𝛿 < 1 and a xed polynomial 𝑝 (·) such that for every polynomial𝑚 = 𝑚(_), it follows that 𝑛 = 𝑛(_,𝑚) ≤
𝑚𝛿 · 𝑝 (_). Suppose also that ΠBARG satises semi-adaptive soundness, ΠBC is extractable in binding mode, and that
𝐵 = 𝐵(_,𝑚) is polynomially bounded. Then, Construction 3.1 satises somewhat computational binding.

Proof. Let crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚) be a common reference string in the support of Setup(1_, 1𝑚). We

dene the setVcrs ⊂ {0, 1}𝑚 as follows:

Vcrs B
{
(vT

1
t1, . . . , vT

𝑚t𝑚) | ∃s ∈ {0, 1}𝑛 : t1‖ · · · ‖t𝑚 = 𝐺𝑛 (s)
}
.

We now show that each of the requirements in Denition 2.10 is satised:

Output sparsity. This is immediate from the construction: |Vcrs | ≤ 2
𝑛 ≤ 2

𝑚𝛿 ·𝑝 (_)
.

Computational binding. To argue computational binding, we appeal to the fact that ΠBC is extractable in binding

mode and to semi-adaptive soundness of ΠBARG. Formally, suppose there is an ecient adversary A that breaks

computational binding of Construction 3.1 with non-negligible advantage Y. We construct an adversary B that breaks

semi-adaptive soundness of the BARG as follows:

1. Algorithm B starts running A on input the security parameter 1
_
. Algorithm A chooses the output length 1

𝑚
.

2. Algorithm B then samples (crsBC, td) ← BC.Setup(1_, bind) as well as an index 𝑖∗ r← [𝑚𝐵]. It outputs 1𝑚𝐵
as

the number of instances, 1
𝑠
as the size of the circuit (for computing the relation R[𝑛, crsBC] in Fig. 1), and the

chosen index 𝑖∗.

3. Algorithm B receives crsBARG from its challenger. Then, it samples the strings v1, . . . , v𝑚
r← {0, 1}𝐵 . It gives

crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚) to A.

4. Algorithm A outputs an opening (𝐼 , r𝐼 , 𝜋).

5. Algorithm B parses 𝐼 =
{
𝑖 (1) , . . . , 𝑖 (𝐿)

}
and 𝜋 = (𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))). It constructs the statement

x = (𝑥1,1, . . . , 𝑥1,𝐵, . . . , 𝑥𝐿,1, . . . , 𝑥𝐿,𝐵) from 𝑐1, . . . , 𝑐𝑚 and t𝑖 (1) , . . . , t𝑖 (𝐿) according to Eq. (3.1) and denes 𝐶 to be

the circuit that computes the NP relation R[𝑛, crsBC] from Fig. 1.

6. Now, for each 𝑖 ∈ [𝑛], algorithm B runs 𝑠𝑖 ← BC.Extract(td, 𝑐𝑖). Let s = 𝑠1‖ · · · ‖𝑠𝑛 ∈ {0, 1}𝑛 be the extracted

seed. Algorithm B now outputs (𝐶, x, 𝜋BARG) if the index 𝑖∗ satises 𝑖∗ ∈ 𝐼 and 𝑡𝑖∗ ≠ 𝑡 ′
𝑖∗ , where t

′ = 𝐺𝑛 (s).
Otherwise algorithm B outputs ⊥.

First, we argue that algorithm B is admissible.

14

• Suppose that 𝑡𝑖∗ ≠ 𝑡 ′
𝑖∗ where t

′ = 𝐺𝑛 (s). Write 𝑖∗ = (𝑖 (𝑗) , 𝛽) ∈ [𝑚] × [𝐵]. Then,

t[𝑖 (𝑗) , 𝛽] = 𝑡𝑖∗ ≠ 𝐺
(𝑖∗)
𝑛 (s) = 𝐺𝑛 [𝑖 (𝑗) , 𝛽]

(
𝑠idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝑠idx(𝑖 (𝑗) ,𝛽,𝑘)

)
.

• Consider the instance

𝑥𝑖 (𝑗) ,𝛽 =
(
𝐺𝑛 [𝑖 (𝑗) , 𝛽], 𝑐idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝑐idx(𝑖 (𝑗) ,𝛽,𝑘) , t[𝑖 (𝑗) , 𝛽]

)
,

and any candidate witness

𝑤𝑖 (𝑗) ,𝛽 =
(
𝑠 ′idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝑠

′
idx(𝑖 (𝑗) ,𝛽,𝑘) , 𝜎idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝜎idx(𝑖 (𝑗) ,𝛽,𝑘)

)
.

We consider two possibilities:

– Suppose there exists 𝛾 ∈ [𝑘] where 𝑠 ′
idx(𝑖 (𝑗) ,𝛽,𝛾) ≠ 𝑠idx(𝑖 (𝑗) ,𝛽,𝛾) . By extractability of ΠBC, with overwhelming

probability over the choice of crsBC,

BC.Verify
(
crsBC, 𝑐idx(𝑖 (𝑗) ,𝛽,𝛾) , 𝑠

′
idx(𝑖 (𝑗) ,𝛽,𝛾) , 𝜎idx(𝑖 (𝑗) ,𝛽,𝛾)

)
= 0.

Correspondingly, R[crsBC] (𝑥𝑖 (𝑗) ,𝛽 ,𝑤𝑖 (𝑗) ,𝛽) = 0.

– Suppose that for all 𝛾 ∈ [𝑘], 𝑠 ′
idx(𝑖 (𝑗) ,𝛽,𝛾) = 𝑠idx(𝑖 (𝑗) ,𝛽,𝛾) . In this case,

𝐺𝑛 [𝑖 (𝑗) , 𝛽]
(
𝑠 ′idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝑠

′
idx(𝑖 (𝑗) ,𝛽,𝑘)

)
= 𝐺𝑛 [𝑖 (𝑗) , 𝛽]

(
𝑠idx(𝑖 (𝑗) ,𝛽,1) , . . . , 𝑠idx(𝑖 (𝑗) ,𝛽,𝑘)

)
≠ t[𝑖 (𝑗) , 𝛽] .

Once again, R[crsBC] (𝑥𝑖 (𝑗) ,𝛽 ,𝑤𝑖 (𝑗) ,𝛽) = 0.

Thus, we conclude that if 𝑡𝑖∗ ≠ 𝑡 ′
𝑖∗ , then instance 𝑥𝑖 (𝑗) ,𝛽 = 𝑥𝑖∗ is false with all but negligible probability over the choice of

crsBC. Algorithm B only produces an output when 𝑡𝑖∗ ≠ 𝑡 ′
𝑖∗ (i.e., when 𝑥𝑖∗ is false), so algorithm B is admissible for the

semi-adaptive soundness game. To conclude the proof, we compute the advantage ofB. In the semi-adaptive soundness

game, the challenger constructs crsBARG using BARG.Setup(1_, 1𝑚𝐵, 1 |𝐶 |), which is identical to the distribution in

computational binding game. Thus, algorithm B perfectly simulates an execution of the binding game for A. This

means that with probability Y, algorithm A outputs (𝐼 , 𝑟𝐼 , 𝜋) where 𝜋 = (𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))) with the

following two properties:

• Let x = (𝑥1,1, . . . , 𝑥1,𝐵, . . . , 𝑥𝐿,1, . . . , 𝑥𝐿,𝐵) be the statement constructed from 𝑐1, . . . , 𝑐𝑛 and t𝑖 (1) , . . . , t𝑖 (𝐿) according
to Eq. (3.1). Then, we have BARG.Verify(crsBARG,𝐶, x, 𝜋BARG) = 1, where 𝐶 is the circuit computing the NP
relation R[crsBC] from Fig. 1.

• The bits r𝐼 satisfy r𝐼 ∉ Vcrs
𝐼

. This means that for every seed s ∈ {0, 1}𝑛 , there must exist some output index

𝑖 ∈ [𝑚𝐵] such that 𝑡𝑖 ≠ 𝐺
(𝑖)
𝑛 (s).

Thus, with probability Y, both of the above conditions hold. In particular, this means thatA outputs (𝐼 , r𝐼 , 𝜋) such that

there exists some index 𝑖 ∈ [𝑚𝐵] where 𝑡𝑖 ≠ 𝑡 ′
𝑖
= 𝐺

(𝑖)
𝑛 (s). Now, algorithm B samples 𝑖∗ r← [𝑚𝐵] and moreover 𝑖∗ is

independent ofA’s view. Thus, 𝑖 = 𝑖∗ with probability at least 1/𝑚𝐵, in which case, algorithm B outputs the instance

(𝐶, x) with the proof 𝜋BARG. Again from the above conditions, BARG.Verify(crsBARG,𝐶, x, 𝜋BARG) = 1, and algorithm

B succeeds in breaking semi-adaptive soundness of ΠBARG. We conclude that algorithm B breaks semi-adaptive

soundness of ΠBARG with advantage Y/𝑚𝐵 − negl(_), and the claim follows. �

Theorem 3.4 (Computational Hiding). Suppose the following conditions hold:

• The PRG𝐺_ is sub-exponentially secure (i.e., there exists a constant 𝛼 > 0 and a negligible function YPRG = negl(_)
such that 𝐺_ is

(
2
_𝛼 , YPRG

)
-secure).

• The bit commitment scheme ΠBC satises mode indistinguishability and is statistically hiding in hiding mode.

15

• The length of the BARG proof ℓBARG = poly(_,𝑚) is polynomially-bounded.

• The length of the PRG seed satises 𝑛 = 𝑛(_,𝑚) ≥ max(_, ℓ𝑐BARG) for some constant 𝑐 > 1/𝛼 , and the block size
satises 𝐵 = 𝐵(_,𝑚) ≥ 𝜔 (log _) + ℓBARG.

Then, for all polynomially-bounded𝑚 =𝑚(_), Construction 3.1 is computationally hiding.

Proof. Let 𝐼 ⊆ [𝑚] be an arbitrary subset. We start by dening two distributions Dreal and Dideal that will be helpful

for our analysis:

• Dreal (1_): On input the security parameter _ ∈ N, the real distribution constructs the output as follows:

– Sample (crsBC, td) ← BC.Setup(1_, hide).
– Sample crsBARG ← BARG.Setup(1_, 1𝑚𝐵, 1 |𝐶 |).
– Let 𝑛 = 𝑛(_,𝑚) and sample s r← {0, 1}𝑛 and compute (𝑐𝑖 , 𝜎𝑖) ← BC.Commit(crsBC, 𝑠𝑖) for each 𝑖 ∈ [𝑛].
– Compute t← 𝐺𝑛 (s) and output (𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t).

• Dideal (1_): Same asDreal (1_) except we replace each 𝑐𝑖 with a commitment to 0 and t with a uniformly random

string: (𝑐𝑖 , 𝜎𝑖) ← BC.Commit(crsBC, 0) for each 𝑖 ∈ [𝑛] and t r← {0, 1}𝑚𝐵
.

We now show that if 𝐺𝑛 is sub-exponentially secure (and the commitment scheme is statistically hiding), then Dreal
and Dideal are also indistinguishable to a sub-exponential time algorithm.

Lemma 3.5. Suppose 𝐺_ is
(
2
_𝛼 , YPRG

)
-secure for some constant 𝛼 > 0 and negligible function YPRG = negl(_) and

that ΠBC is statistically hiding in hiding mode. Suppose also that ℓBARG = poly(_,𝑚), and 𝐵 ≥ 𝜔 (log _) + ℓBARG,
𝑛 ≥ max(_, ℓ𝑐BARG) for some constant 𝑐 > 1/𝛼 . Then, there exists a negligible function Yideal = negl(_) such that for all
subsets 𝐼 ⊆ [𝑚], Dreal and Dideal are

(
2
𝑛𝛼 , Yideal

)
-indistinguishable

Proof. We start by dening a sequence of hybrid experiments:

• Hyb
0
: This is the real distribution Dreal.

• Hyb𝑖 : Same as Hyb
0
except for all 𝑗 ≤ 𝑖 , we now sample commitments (𝑐 𝑗 , 𝜎 𝑗) ← BC.Commit(crsBC, 0). The

commitments for 𝑗 > 𝑖 are sampled as in Hyb
0
.

• Hyb𝑛+1: Same as Hyb𝑛 except t r← {0, 1}𝑚𝐵
. This is the ideal distribution Dideal.

We now show that each adjacent pair of experiments are indistinguishable.

Claim 3.6. Suppose ΠBC is statistically hiding in hiding mode. Then, there exists a negligible function Y0 = negl(_)
such that for all (possibly super-polynomial) functions 𝑠0 = 𝑠0 (_) and all 𝑖 ∈ [𝑛], the distributions Hyb𝑖−1 and Hyb𝑖 are
(𝑠0, Y0)-indistinguishable.

Proof. Suppose there exists an adversary A of size 𝑠0 that can distinguish Hyb𝑖−1 and Hyb𝑖 with non-negligible

advantage 𝛿 . We use A to construct an adversary B that breaks hiding of ΠBC as follows:

1. Algorithm B receives crsBC from its challenger. It samples crsBARG ← BARG.Setup(1_, 1𝑚𝐵, 1 |𝐶 |), s r← {0, 1}𝑛 ,
and computes t← 𝐺𝑛 (s).

2. Then, for 𝑗 < 𝑖 , algorithm B computes (𝑐 𝑗 , 𝜎 𝑗) ← BC.Commit(crsBC, 0) and for 𝑗 > 𝑖 , it computes (𝑐 𝑗 , 𝜎 𝑗) ←
BC.Commit(crsBC, 𝑠 𝑗). Algorithm B submits (𝑠𝑖 , 0) as its challenge and sets 𝑐𝑖 to be the challenger’s response.

3. Algorithm B gives (𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t) to A and outputs whatever A outputs.

If 𝑐𝑖 is a commitment to 𝑠𝑖 , then algorithm B perfectly simulates distribution Hyb𝑖−1 and if 𝑐𝑖 is a commitment to 0,

then algorithm B perfectly simulates distribution Hyb𝑖 . Thus, algorithm B also succeeds with advantage 𝛿 , and the

claim follows. �

16

Claim 3.7. Suppose 𝐺_ is
(
2
_𝛼 , YPRG

)
-secure for some constant 𝛼 > 0 and negligible function YPRG = YPRG (_) = negl(_).

Then, Hyb𝑛 and Hyb𝑛+1 are
(
2
𝑛𝛼 , Y ′PRG

)
-indistinguishable, where Y ′PRG = YPRG (𝑛).

Proof. Suppose there exists an adversary A of size 𝑠A ≤ 2
𝑛𝛼

that can distinguish Hyb𝑛 (1_) and Hyb𝑛+1 (1_) with
advantage 𝛿 > Y ′PRG. We use A to construct an adversary B that breaks PRG security with seed length 𝑛:

1. At the beginning of the experiment, algorithm B receives a challenge t ∈ {0, 1}𝑚𝐵
.

2. B samples crsBC ← BC.Setup(1_, hide), crsBARG ← BARG.Setup(1_, 1𝑚𝐵, 1 |𝐶 |). For each 𝑖 ∈ [𝑛], it computes

(𝑐𝑖 , 𝜎𝑖) ← BC.Commit(crsBC, 0).

3. Algorithm B gives (𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t) to A and outputs whatever A outputs.

By construction, the size of algorithm B is 𝑠A + poly(_,𝑚, 𝐵, |𝐶 |) ≤ 𝑠A · poly(𝑛), where the inequality holds since

𝑚, 𝐵, |𝐶 | are all polynomially-bounded (in both _ and 𝑛). If t = 𝐺𝑛 (s) for some s r← {0, 1}𝑛 , then B perfectly simulates

Hyb𝑛 (1_) forA. Otherwise, if t r← {0, 1}𝑚𝐵
, then B perfectly simulates Hyb𝑛+1 (1_) forA. Thus, algorithm B breaks

security of 𝐺𝑛 with the same advantage 𝛿 > Y ′PRG = YPRG (𝑛). �

By Claims 3.6 and 3.7, we can set Yideal = 𝑛 · Y0 + YPRG (𝑛(_,𝑚)) = negl(_). The latter equality follows since 𝑛(_,𝑚) ≥ _.

The lemma now follows by a hybrid argument. �

To complete the proof, we start by appealing to the Gentry-Wichs leakage simulation lemma (Lemma 2.2). Take any

subset 𝐼 ⊆ [𝑚]. We start by dening the augmented distribution D∗real = D
∗
real (1

_):

• Sample (𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t) ← Dreal (1_) according to the real distribution. Each commitment 𝑐𝑖 is

computed as (𝑐𝑖 , 𝜎𝑖) ← BC.Commit(crsBC, 𝑠𝑖) where s r← {0, 1}𝑛 and t = 𝐺𝑛 (s).

• Let st = (𝑛, crsBARG, crsBC, s, 𝑐1, . . . , 𝑐𝑛, 𝜎1, . . . , 𝜎𝑛), and compute 𝜋 = (𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))) ←
Prove(st, 𝐼).

• Output (𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t) and the auxiliary information aux = 𝜋BARG. By denition, |aux| =
|𝜋BARG | = ℓBARG.

By Lemma 3.5, the distributions Dreal and Dideal are (𝑠ideal, Yideal)-indistinguishable for 𝑠ideal = 2
𝑛𝛼

and a negligible

function Yideal = negl(_). Without loss of generality, we can assume that Yideal ≥ 2
−𝑛𝛼/2

(e.g., we can set Yideal =

max

(
Y ′ideal, 2

−𝑛𝛼/2)
, where Y ′ideal is the negligible function from Lemma 3.5). By Lemma 2.2, there exists an augmented

distributionD∗ideal = D
∗
ideal (1

_) over tuples
(
(𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t), aux′

)
where (𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t) ←

Dideal (1_) and aux′ ∈ {0, 1}ℓBARG . Moreover, the distributions D∗real and D
∗
ideal are (𝑠aug, Yaug)-indistinguishable where

𝑠aug = 𝑠ideal · poly(Yideal/2ℓBARG) = 2
𝑛𝛼 · poly(Yideal/2ℓBARG)

and Yaug = 2 · Yideal = negl(_). Since Yideal ≥ 2
−𝑛𝛼/2

and 𝑛 ≥ ℓ𝑐BARG for some constant 𝑐 > 1/𝛼 , this means that

𝑠aug = 2
Ω (𝑛𝛼)

. We summarize this in the following claim:

Claim 3.8. Under the same conditions as in the statement of Lemma 3.5, the distributionsD∗real andD
∗
ideal are (𝑠aug, Yaug)-

indistinguishable where 𝑠aug = 2
Ω (𝑛𝛼) and Yaug = negl(_).

To complete the proof, we proceed via a sequence of hybrid experiments:

• Hyb
0
: This is the real distribution where the challenger samples the bits r and the proof 𝜋 as in the real scheme:

– The challenger rst samples crs ← Setup(1_, 1𝑚). In particular, crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚),
where (crsBC, td) ← BC.Setup(1_, bind), crsBARG ← BARG.Setup(1_, 1𝑚𝐵, 1 |𝐶 |), 𝐶 is the circuit that

computes the NP relation R[𝑛, crsBC] from Fig. 1, and v1, . . . , v𝑚
r← {0, 1}𝐵 .

17

– Next, the challenger samples the bits r by running (r, st) ← GenBits(crs) and a proof by computing

𝜋 ← Prove(st, 𝐼). In particular, the challenger rst samples a seed s r← {0, 1}𝑛 and computes t← 𝐺𝑛 (s).
It splits t = t1‖t2‖ · · · ‖t𝑚 into blocks where each t𝑖 ∈ {0, 1}𝐵 for each 𝑖 ∈ [𝑚]. For each 𝑖 ∈ [𝑚], the
challenger computes 𝑟𝑖 ← vT

𝑖 t𝑖 and sets r = 𝑟1‖ · · · ‖𝑟𝑚 ∈ {0, 1}𝑚 .
– To construct the proof 𝜋 , the challenger computes the commitments (𝑐𝑖 , 𝜎𝑖) ← BC.Commit(crsBC, 𝑠𝑖)

for each 𝑖 ∈ [𝑛]. It then parses 𝐼 =
{
𝑖 (1) , . . . , 𝑖 (𝐿)

}
, where the indices 𝑖 (1) , . . . , 𝑖 (𝐿) ∈ [𝑚] are in

sorted order. The challenger then constructs the statement (𝑥1,1, . . . , 𝑥1,𝐵, . . . , 𝑥𝐿,1, . . . , 𝑥𝐿,𝐵) and witness

(𝑤1,1, . . . ,𝑤1,𝐵, . . . ,𝑤𝐿,1, . . . ,𝑤𝐿,𝐵) according to Eq. (3.1) and Eq. (3.2). It constructs the BARG proof as in

Prove:

𝜋BARG ← BARG.Prove(crsBARG,𝐶, (𝑥1,1, . . . , 𝑥1,𝐵, . . . , 𝑥𝐿,1, . . . , 𝑥𝐿,𝐵), (𝑤1,1, . . . ,𝑤1,𝐵, . . . ,𝑤𝐿,1, . . . ,𝑤𝐿,𝐵)),

and sets 𝜋 =
(
𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))

)
.

– The challenger gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A. Algorithm A then outputs a bit 𝑏 ∈ {0, 1} which is the output

of the experiment.

• Hyb
1
: Same asHyb

0
except the challenger now samples the commitment CRS (crsBC, td) ← BC.Setup(1_, hide).

In this experiment, the distribution of

(
(crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t), 𝜋BARG

)
is distributed according to D∗real.

• Hyb
2
: Same as Hyb

1
except the challenger samples components

(
(crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t), 𝜋BARG

)
← D∗ideal.

Specically, the experiment now proceeds as follows:

– The challenger samples

(
(crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t), 𝜋BARG

)
← D∗ideal, v1, . . . , v𝑚

r← {0, 1}𝐵 , and sets

crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚).
– Next, the challenger splits t = t1‖t2‖ · · · ‖t𝑚 into blocks where each t𝑖 ∈ {0, 1}𝐵 for each 𝑖 ∈ [𝑚]. For each
𝑖 ∈ [𝑚], the challenger computes 𝑟𝑖 ← vT

𝑖 t𝑖 and sets r = 𝑟1‖ · · · ‖𝑟𝑚 ∈ {0, 1}𝑚 .
– The challenger sets the proof 𝜋 =

(
𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))

)
and gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A.

• Hyb
3
: Same as Hyb

2
except the challenger samples r𝐼

r← {0, 1}|𝐼 | .

• Hyb
4
: Same as Hyb

3
except the challenger samples

(
(crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t), 𝜋BARG

)
← D∗real.

• Hyb
5
: Same as Hyb

4
except the challenger samples crsBC ← BC.Setup(1_, bind). Note that this coincides with

the ideal distribution.

Lemma 3.9. Suppose ΠBC satises mode indistinguishability. Then, Hyb
0
and Hyb

1
are computationally indistinguish-

able.

Proof. Suppose there is an adversary A of size 𝑠0 = poly(_) that distinguishes the outputs of Hyb
0
and Hyb

1
with

non-negligible probability 𝛿 . We use A to construct an adversary B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B receives the security parameter 1
_
and a common reference string

crsBC from the challenger.

2. B samples crsBARG ← BARG.Setup(1_, 1𝑚𝐵, 1 |𝐶 |) and v1, . . . , v𝑚 r← {0, 1}𝐵 . It constructs the common reference

string crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚).

3. Algorithm B computes (r, st) ← GenBits(crs) and 𝜋 ← Prove(st, 𝐼).

4. Algorithm B gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A and outputs whatever A outputs.

By construction, algorithm B has size 𝑠0 + poly(_,𝑚, 𝐵, |𝐶 |) ≤ 𝑠0 · poly(_) which holds due to 𝑚, 𝐵, |𝐶 | all being
poly(_). When crsBC is sampled in binding mode, then algorithm B perfectly simulates Hyb

0
for A. Alternatively, if

crsBC is sampled in hiding mode, then algorithm B perfectly simulates Hyb
1
for A. Critically, neither the GenBits

nor the Prove algorithms require knowledge of the trapdoor td for the bit commitment scheme. Thus, algorithm B
succeeds with the same advantage 𝛿 . �

18

Lemma3.10. Under the same conditions as in the statement of Claim 3.8,Hyb
1
andHyb

2
are (𝑠aug, Yaug)-indistinguishable

for 𝑠aug = 2
Ω (𝑛𝛼) and Yaug = negl(_).

Proof. Suppose there is an adversaryA with size 𝑠aug that distinguishes Hyb1 and Hyb2 with advantage 𝛿 > Yaug. We

construct algorithm B that distinguishes the distributions D∗real (1
_) and D∗ideal (1

_) as follows:

1. Algorithm B receives (𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t, 𝜋BARG) from the challenger. It parses t = t1‖ · · · ‖t𝑚 ∈
{0, 1}𝑚𝐵

where each t𝑖 ∈ {0, 1}𝐵 . In addition, algorithm B samples v1, . . . , v𝑚
r← {0, 1}𝐵 .

2. Algorithm B computes 𝑛 = 𝑛(_,𝑚) and sets crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚). For each 𝑖 ∈ [𝑚], it com-

putes 𝑟𝑖 ← vT
𝑖 t𝑖 and sets r = 𝑟1‖ · · · ‖𝑟𝑚 . Finally, it sets 𝜋 = (𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))), where

𝐼 =
{
𝑖 (1) , . . . , 𝑖 (𝐿)

}
.

3. Algorithm B gives (crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to A and outputs whatever A outputs.

Since algorithm A has size 𝑠aug, the size of algorithm B is bounded by 𝑠aug + poly(_,𝑚, 𝐵) ≤ 𝑠aug · poly(_) since𝑚
and 𝐵 are both polynomially-bounded. By construction, when the challenge is sampled from the real distribution

D∗real, algorithm B perfectly simulates the distribution in Hyb
1
. Alternatively, if the challenge is sampled from the

ideal distribution D∗ideal, algorithm B perfectly simulates the distribution in Hyb
2
. Correspondingly, algorithm B is

able to distinguish D∗real (1
_) and D∗ideal (1

_) with advantage 𝛿 > Yaug which contradicts Claim 3.8. �

Lemma 3.11. Suppose 𝐵 ≥ 𝜔 (log _) + ℓBARG. Then, Hyb2 and Hyb3 are statistically indistinguishable.

Proof. Let 𝐼 = {𝑖 (1) , 𝑖 (2) , . . . , 𝑖 (𝑚−𝐿) } ⊆ [𝑚]. We dene a sequence of intermediate experiments Hyb
2, 𝑗 for each

𝑗 ∈ {0, . . . ,𝑚 − 𝐿} as follows:

• Hyb
2,0: Same as Hyb

2
. In particular, the challenger samples

(
(𝐼 , crsBARG, crsBC, 𝑐1, . . . , 𝑐𝑛, t), 𝜋BARG

)
← D∗ideal,

v1, . . . , v𝑚
r← {0, 1}𝐵 and sets crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚). It parses t = t1‖ · · · ‖t𝑚 where t𝑖 ∈ {0, 1}𝐵

and computes r ← (vT
1
t1‖ · · · ‖vT

𝑚t𝑚). Finally, it sets 𝜋 =
(
𝜋BARG, (𝑐1, . . . , 𝑐𝑛), (t𝑖 (1) , . . . , t𝑖 (𝐿))

)
and gives

(crs, 𝐼 , r𝐼 , 𝜋, r𝐼) to the adversary.

• Hyb
2, 𝑗 : Same as Hyb

2, 𝑗−1 except 𝑟𝑖 (𝑗)
r← {0, 1} . Note that Hyb

2,𝑚−𝐿 is identical to Hyb
3
.

We now appeal to the leftover hash lemma to show that for all 𝑗 ∈ [𝑚−𝐿], the statistical distance betweenHyb
2, 𝑗−1 (1_)

and Hyb
2, 𝑗 (1_) is negligible.

Claim 3.12. Suppose 𝐵 ≥ 𝜔 (log _) + ℓBARG. Then, for all 𝑗 ∈ [𝑚 − 𝐿], the statistical distance between Hyb
2, 𝑗−1 (1_) and

Hyb
2, 𝑗 (1_) is negligible.

Proof. The only dierence between the two distributions is that in Hyb
2, 𝑗−1, the challenger samples 𝑟𝑖 (𝑗) ← vT

𝑖 (𝑗)
t𝑖 (𝑗) ,

whereas in Hyb
2, 𝑗 , the challenger samples 𝑟𝑖 (𝑗)

r← {0, 1} . First, dene the random variable 𝑍 to be

𝑍 =

(
𝑛, crsBARG, crsBC, {v𝑖 }𝑖≠𝑖 (𝑗) , 𝐼 , r𝐼 ,

(
𝜋BARG, (𝑐1, . . . , 𝑐𝑛), {t𝑖 }𝑖∈𝐼

)
, r𝐼\{𝑖 (𝑗) }

)
.

Observe that the adversary’s view in the two experiments then consists of the tuple

(
𝑟𝑖 (𝑗) , v𝑖 (𝑗) , 𝑍

)
. In both Hyb

2, 𝑗−1
and Hyb

2, 𝑗 , the challenger samples t r← {0, 1}𝑚𝐵
. By construction, t𝑖 (𝑗) is independent of all of the components in 𝑍

other than 𝜋BARG. In conjunction with Lemma 2.1, we can now write

H∞
(
t𝑖 (𝑗) | 𝑍

)
= H∞

(
t𝑖 (𝑗) | 𝜋BARG

)
≥ H∞ (t𝑖 (𝑗)) − |𝜋BARG | = 𝐵 − ℓBARG ≥ 𝜔 (log _),

since 𝐵 ≥ 𝜔 (log _) + ℓBARG. Then, by the (generalized) leftover hash lemma (Corollary 2.4), we can conclude that the

statistical distance between the distributions(
vT

𝑖 (𝑗)
t𝑖 (𝑗) , v𝑖 (𝑗) , 𝑍

)
and

(
𝑟𝑖 (𝑗) , v𝑖 (𝑗) , 𝑍

)
,

where v𝑖 (𝑗)
r← {0, 1}𝐵 and 𝑟𝑖 (𝑗)

r← {0, 1} is at most 2
−(𝜔 (log_)−1)/2 = negl(_). Since the statistical distance between the

two experiments is negligible, the claim holds. �

19

The lemma now follows from Claim 3.12 and a standard hybrid argument (since𝑚 = poly(_)). �

Lemma3.13. Under the same conditions as in the statement of Claim 3.8,Hyb
3
andHyb

4
are (𝑠aug, Yaug)-indistinguishable

for 𝑠aug = 2
Ω (𝑛𝛼) and Yaug = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma 3.10. �

Lemma 3.14. Suppose ΠBC satises mode indistinguishability. Then, Hyb
4
and Hyb

5
are computationally indistin-

guishable.

Proof. Follows by an analogous argument as the proof of Lemma 3.9. �

Combining Lemmas 3.9 to 3.11, 3.13 and 3.14 yields the theorem. �

Parameter selection. We now describe one candidate approach for instantiating the parameters in Construction 3.1:

Corollary 3.15 (Hidden-Bits Generator from Batch Arguments). Let 𝑘 = 𝑘 (_) be a locality parameter and suppose that
𝐺_ : {0, 1}_ → {0, 1}ℓ (_) is a 𝑘-local PRG. Suppose ΠBARG is a non-interactive batch argument satisfying semi-adaptive
soundness, ΠBC is a dual-mode commitment scheme, and that these underlying schemes satisfy the following conditions:

• PRG parameters: Suppose there exists a constant 𝛼 ∈ (0, 1) and a negligible function YPRG = negl(_) such
that 𝐺_ is

(
2
_𝛼 , YPRG

)
secure. Moreover, suppose there exists a constant 𝛿1 ∈ (0, 1) such that 𝑘 ≤ 𝛿1 log _ and a

constant 𝑠 > 1 such that ℓ (_) ≥ _𝑠 . In words, we assume that 𝐺_ has super-linear stretch, logarithmic locality, and
sub-exponential security.

• BARG succinctness: Suppose there exists constants 𝑑 > 0, 𝛿2 ∈ (0, 1) and a polynomial 𝑞 = 𝑞(_) such that the
proof length ℓBARG = ℓBARG (_,𝑇 , 𝑠) for ΠBARG satises

ℓBARG (_,𝑇 , 𝑠) ≤ 𝑠𝑑 ·𝑇 𝛿2 · 𝑞(_),

where 𝑇 denotes the number of instances and 𝑠 denotes a bound on the size of the circuit.

• Block size: Suppose 𝐵 = _ + ℓBARG.

Let 𝛿 ′
1
= (𝑑 · 𝛿1 + Y)/(1 − 𝛿2) for an arbitrarily small constant Y > 0, 𝛿 ′

2
= 𝛿2/(1 − 𝛿2), and 𝑞′(_) = 𝑞(_)1/(1−𝛿2) . Suppose

moreover that the parameters satisfy the following properties:

• Hardness parameter: 𝛼 > 𝛿 ′
1
+ 𝛿 ′

2
.

• Seed length: 𝑛 = max(_, (𝑚𝛿′
2 · 𝑞′(_) ·𝑂 (_𝛿′2))1/(𝛼−𝛿′1−Y′)) for an arbitrary constant 0 < Y ′ < 𝛼 − 𝛿 ′

1
− 𝛿 ′

2
.

• Stretch: 𝑠 ≥ (𝛼 − 𝛿 ′
1
− Y ′) (1 + 𝛿 ′

2
)/𝛿 ′

2
+ 𝛿 ′

1
.

Then Construction 3.1 is a hidden-bits generator with subset-dependent proofs.

Proof. Take any input length𝑚. Let crs = (𝑛, crsBARG, crsBC, v1, . . . , v𝑚) ← Setup(1_, 1𝑚). We rst bound the size of

the circuit 𝐶 that computes the relation R[𝑛, crsBC]:

• By construction, |crsBC | = poly(_). Correspondingly, the size of the circuit computing BC.Verify is poly(_).

• Next,𝐺
(𝑖)
𝑛 is a function on 𝑘-bit inputs, so it can be computed by a circuit of size 2

𝑘 · poly(𝑘). Since 𝑘 ≤ 𝛿1 log𝑛,

we can bound

|𝐶 | ≤ 𝑛𝛿1 · poly(log𝑛) = 𝑂 (𝑛𝛿1+Y/𝑑).

20

For this choice of parameters, the length ℓBARG of the BARG proof satises

ℓBARG = ℓBARG (_,𝑚𝐵, |𝐶 |) ≤ |𝐶 |𝑑 · (𝑚𝐵)𝛿2 · 𝑞(_) = 𝑛𝑑𝛿1+Y ·𝑚𝛿2 · ℓ𝛿2BARG · 𝑞(_) ·𝑂 (_
𝛿2).

Equivalently, this means

ℓBARG ≤ (𝑛𝑑𝛿1+Y ·𝑚𝛿2)1/(1−𝛿2) · 𝑞(_)1/(1−𝛿2) ·𝑂 (_𝛿2/(1−𝛿2)) = 𝑛𝛿
′
1 ·𝑚𝛿′

2 · 𝑞′(_) ·𝑂 (_𝛿′2),

We now consider the requirements of Theorem 3.3, Theorem 3.4 and the requirement on the PRG stretch:

• Theorem 3.4 requires that 𝑛 ≥ max(_, ℓ𝑐BARG) for some constant 𝑐 > 1/𝛼 . Let 𝑐 = 1/(𝛼 − Y ′) > 1/𝛼 . By
assumption, we now have

𝑛𝛼−𝛿
′
1
−Y′ ≥ 𝑚𝛿′

2 · 𝑞′(_) ·𝑂 (_𝛿′2).
In particular, this means that

𝑛𝛼−Y
′ ≥ 𝑛𝛿

′
1 ·𝑚𝛿′

2 · 𝑞′(_) ·𝑂 (_𝛿′2) ≥ ℓBARG .

Correspondingly, we have (𝑛𝛼−Y′)𝑐 = 𝑛 ≥ ℓ𝑐BARG, as required.

• Theorem 3.3 requires that 𝑛 ≤ 𝑚𝛿 · poly(_) for some (universal) constant 𝛿 ∈ (0, 1). Since 𝑞 = poly(_) and
𝛼, 𝛿 ′

1
, Y ′ are all constants, we currently have that 𝑛 ≤ 𝑚𝛿′

2
/(𝛼−𝛿′

1
−Y′) · poly(_). By construction, we have that

0 < 𝛼 − 𝛿 ′
1
− 𝛿 ′

2
− Y ′, so 𝛿 ′

2
< 𝛼 − 𝛿 ′

1
− Y. Thus, setting 𝛿 = 𝛿 ′

2
/(𝛼 − 𝛿 ′

1
− Y ′) < 1 satises the requirement.

• Finally, we require that ℓ (𝑛) ≥ 𝑚𝐵, or equivalently, 𝑛𝑠 ≥ 𝑚𝐵. By construction,

𝑛𝑠 = 𝑛𝛿
′
1𝑛𝑠−𝛿

′
1 ≥ 𝑛𝛿

′
1 ·

(
𝑚𝛿′

2 · 𝑞′(_) ·𝑂 (_𝛿′2)
) (𝑠−𝛿′

1
)/(𝛼−𝛿′

1
−Y′)

≥ 𝑛𝛿
′
1 ·

(
𝑚𝛿′

2 · 𝑞′(_) ·𝑂 (_𝛿′2)
) (1+𝛿′

2
)/𝛿′

2

≥ 𝑛𝛿
′
1 ·𝑚1+𝛿′

2 · (𝑞′(_)) (1+𝛿′2)/𝛿′2 ·𝑂 (_1+𝛿′2).

Finally, we have

𝑚𝐵 =𝑚_ +𝑚ℓBARG ≤ 𝑚_ + 𝑛𝛿′1 ·𝑚1+𝛿′
2 · 𝑞′(_) ·𝑂 (_𝛿′2) ≤ 𝑛𝑠 ,

as required. �

Candidate instantiations. For illustrative purposes, we now describe some instantiations of Corollary 3.15.

• Suppose we instantiate Construction 3.1 and Corollary 3.15 with a batch argument where the proof size scales

polylogarithmically with the number of instances:

ℓBARG (_,𝑇 , 𝑠) ≤ 𝑠𝑑 · polylog(𝑇) · 𝑞(_)

for some constant 𝑑 > 0. This is satised by most existing BARG constructions [CJJ21b, WW22, DGKV22,

KLVW23, CGJ
+
22]. In this case, the constant 𝛿2 in Corollary 3.15 can be made arbitrarily small. Then we

can instantiate Corollary 3.15 with any 𝑘-local PRG that is secure against 2
_𝛼
-size adversaries with locality

𝑘 ≤ 𝛿1 log _ and stretch 𝑠 > 1 + 𝑑𝛿1, provided that 𝛼/𝛿1 > 𝑑 . For example, we can rely on sub-exponential

hardness of Goldreich’s local PRG [Gol00] with logarithmic locality.

• We can also instantiate Construction 3.1 and Corollary 3.15 with a “mildly-succinct” batch argument where the

BARG proof size scales polynomially with the number of instances:
7

ℓBARG (_,𝑇 , 𝑠) ≤ 𝑠𝑑 ·𝑇 𝛿2 · 𝑞(_)

for constants 𝛿2 ∈ (0, 1/2) and 𝑑 > 0. In this case, we can instantiate Corollary 3.15 with a 𝑘-local PRG that is

secure against 2
_𝛼
-size adversaries with locality 𝑘 ≤ 𝛿1 log _ and stretch 𝑠 > 1 + 𝛿 ′

1
+ 𝛿 ′

2
, as long as 𝛿 ′

1
< 𝛼 − 𝛿 ′

2

(for 𝛿 ′
1
, 𝛿 ′

2
as in Corollary 3.15). In particular, we can still rely on sub-exponential hardness of Goldreich’s PRG

with logarithmic locality, but the sub-exponential hardness parameter 𝛼 increases as 𝛿2 increases.

7
We note here that additionally assuming a rate-1 string oblivious transfer protocol [DGI

+
19], such a BARG can be transformed into a BARG

where the proof size scales polylogarithmically with the number of instances [KLVW23]. In this case, we would be able to appeal to our previous

instantiation.

21

NIZK from batch arguments. Combining Theorem 2.11 and Corollary 3.15, we now obtain a NIZK for NP from a

batch argument for NP:

Corollary 3.16 (NIZK from Batch Arguments). Suppose there exists a semi-adaptively-sound BARG, a dual-mode
commitment scheme, and a sub-exponentially secure PRG with super-linear stretch and locality at most 𝑘 = 𝑐 log𝑛 with
𝑐 < 1 and 𝑛-bit inputs. Then there exists a computational NIZK argument for NP.

Remark 3.17 (Using Non-Local PRGs). We note that a local PRG is not strictly necessary for Construction 3.1. It is

sucient to construct a PRG where each output bit of the PRG can be veried by a circuit of size 𝑛𝛿 where 𝑛 is the seed

length and 𝛿 < 1 is a constant. Any PRG with this local verication property suces for our main transformation.

Acknowledgments
We thank Brent Waters for helpful feedback on this work. D. J. Wu is supported by NSF CNS-2151131, CNS-2140975,

a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References
[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-bias generators. In

TCC, 2012.

[ACL
+
22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri AravindaKrishnan Thyagara-

jan. Lattice-based SNARKs: Publicly veriable, preprocessing, and recursively composable. In CRYPTO,
2022.

[AFMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group actions and

applications. In ASIACRYPT, 2020.

[AK19] Benny Applebaum and Eliran Kachlon. Sampling graphs without forbidden subgraphs and unbalanced

expanders with negligible error. In FOCS, 2019.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local functions and their

countermeasures. In STOC, 2016.

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality from random local

one-way functions. In STOC, 2012.

[App15] Benny Applebaum. The cryptographic hardness of random local functions - survey. IACR Cryptol. ePrint
Arch., 2015.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum

secure computational integrity. IACR Cryptol. ePrint Arch., 2018, 2018.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. J. Comput.
Syst. Sci., 37(2), 1988.

[BCC
+
17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Sha Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran

Tromer. The hunting of the SNARK. J. Cryptol., 30(4), 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to

succinct non-interactive arguments of knowledge, and back again. In ITCS, 2012.

[BCI
+
13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive

arguments via linear interactive proofs. In TCC, 2013.

22

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way

functions. In STOC, 2014.

[BDK
+
11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-Xavier Stan-

daert, and Yu Yu. Leftover hash lemma, revisited. In CRYPTO, 2011.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications

(extended abstract). In STOC, 1988.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption and

commitment secure under selective opening. In EUROCRYPT, 2009.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their application to

more ecient obfuscation. In EUROCRYPT, 2017.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via linear multi-prover

interactive proofs. In EUROCRYPT, 2018.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor hash via correlation

intractability for approximable relations. In CRYPTO, 2020.

[BKP
+
23a] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini Vasudevan. Batch

proofs are statistically hiding. IACR Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/archive/
2023/754/20230525:044715.

[BKP
+
23b] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini Vasudevan. Batch

proofs are statistically hiding. IACR Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/archive/
2023/754/20230725:080608.

[BQ09] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way function. In APPROX-
RANDOM, 2009.

[BS23] Ward Beullens and Gregor Seiler. Labrador: Compact proofs for R1CS from module-sis. In EUROCRYPT,
2023.

[BY92] Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of trapdoor permutations. In

CRYPTO, 1992.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with linear-time prover

and high-degree custom gates. In EUROCRYPT, 2023.

[CCH
+
19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and Daniel

Wichs. Fiat-shamir: from practice to theory. In STOC, 2019.

[CDM
+
18] Georoy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella. On the concrete

security of goldreich’s pseudorandom generator. In ASIACRYPT, 2018.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way function candidate

and myopic backtracking algorithms. In TCC, 2009.

[CGJ
+
22] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Correlation

intractability and SNARGs from sub-exponential DDH. IACR Cryptol. ePrint Arch., 2022.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In

EUROCRYPT, 2003.

[CHM
+
20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.

Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In EUROCRYPT, 2020.

23

https://eprint.iacr.org/archive/2023/754/20230525:044715
https://eprint.iacr.org/archive/2023/754/20230525:044715
https://eprint.iacr.org/archive/2023/754/20230725:080608
https://eprint.iacr.org/archive/2023/754/20230725:080608

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from

standard assumptions. In CRYPTO, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, 2021.

[CL18] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. In TCC, 2018.

[CM01] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC. In FOCS, 2001.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive

proofs from holography. In EUROCRYPT, 2020.

[CPW23] Suvradip Chakraborty, Manoj Prabhakaran, and Daniel Wichs. A map of witness maps: New denitions

and connections. In PKC, 2023.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communica-

tion. In TCC, 2012.

[DGI
+
19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky. Trapdoor

hash functions and their applications. In CRYPTO, pages 3–32, 2019.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments

for batch-NP and applications. In FOCS, 2022.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable

commitment schemes with constant expansion factor. In CRYPTO, 2002.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to generate strong keys from

biometrics and other noisy data. In EUROCRYPT, 2004.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on a

single random string (extended abstract). In FOCS, 1990.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and

succinct NIZKs without PCPs. In EUROCRYPT, 2013.

[GMR85] Sha Goldwasser, Silvio Micali, and Charles Racko. The knowledge complexity of interactive proof-

systems (extended abstract). In STOC, 1985.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. IACR Cryptol. ePrint Arch.,
2000.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In

EUROCRYPT, 2006.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for non-interactive zero-knowledge. J.
ACM, 59(3), 2012.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. J. Cryptol., 26(3), 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, 2016.

[GSWW22] Rachit Garg, Kristin Sheridan, Brent Waters, and David J. Wu. Fully succinct batch arguments for np

from indistinguishability obfuscation. In TCC, 2022.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsiable

assumptions. In STOC, 2011.

24

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. Snargs for P from sub-

exponential DDH and QR. In EUROCRYPT, 2022.

[HLOV11] Brett Hemenway, Benoît Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption: Constructions

from general assumptions and ecient selective opening chosen ciphertext security. In ASIACRYPT, 2011.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-exponential DDH. In

EUROCRYPT, 2021.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.

In STOC, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over F𝑝 , DLIN, and
PRGs in NC

0
. In EUROCRYPT, 2022.

[KLVW23] Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments

and RAM delegation. In STOC, 2023.

[KMY20] Fuyuki Kitagawa, Takahiro Matsuda, and Takashi Yamakawa. NIZK from SNARG. In TCC, 2020.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In STOC, 2019.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,

post-quantum security, and SNARGs. In TCC, 2021.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In CRYPTO,
2017.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear

error-correcting codes. In ASIACRYPT, 2013.

[LPWW20] Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of statistical NIZKs:

Dual-mode DV-NIZKs and more. In EUROCRYPT, 2020.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local

PRGs. In CRYPTO, 2017.

[Mic95] Silvio Micali. Computationally-sound proofs. In Proceedings of the Annual European Summer Meeting of
the Association of Symbolic Logic, 1995.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On Y-biased generators in NC
0
. In FOCS, 2003.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal polynomial stretch. In

CCC, 2014.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical veriable

computation. In IEEE Symposium on Security and Privacy, 2013.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.

In CRYPTO, 2019.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC, 2008.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verier NIZKs for all NP from

CDH. In EUROCRYPT, 2019.

[Set20] Srinath T. V. Setty. Spartan: Ecient and general-purpose zkSNARKs without trusted setup. In CRYPTO,
2020.

25

[Üna23] Akin Ünal. Worst-case subexponential attacks on PRGs of constant degree or constant locality. In

EUROCRYPT, 2023.

[WW22] BrentWaters andDavid J.Wu. Batch arguments for NP andmore from standard bilinear group assumptions.

In CRYPTO, 2022.

26

	Introduction
	Technical Overview

	Preliminaries
	Non-Interactive Zero-Knowledge Arguments for NP
	Non-Interactive Batch Arguments for NP
	Hidden-Bits Generator

	Hidden-Bits Generator from Batch Arguments

