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Abstract. Indistinguishability obfuscation (IO) is at the frontier of
cryptography research for several years. LV16/Lin17 obfuscation schemes
are famous progresses towards simplifying obfuscation mechanism. In
fact, these two schemes only constructed two compact functional en-
cryption (CFE) algorithms, while other things were taken to AJ15 IO
frame or BV15 IO frame. That is, CFE algorithms are inserted into AJ15
IO frame or BV15 IO frame to form a complete IO scheme. The basic
structure of two CFE algorithms can be described in the following way.
The polynomial-time-computable Boolean function is transformed into a
group of low-degree low-locality component functions by using random-
ized encoding, while some public combination of values of component
functions is the value of original Boolean function. The encryptor uses
constant-degree multilinear maps (rather than polynomial-degree multi-
linear maps) to encrypt independent variables of component functions.
The decryptor uses zero-testing tool of multilinear maps to obtain val-
ues of component functions (rather than to obtain values of independent
variables), and then uses public combination to obtain the value of origi-
nal Boolean function. In this paper we restrict IO to be a real white box
(RWB). Under such restriction we point out that LV16/Lin17 CFE al-
gorithms being inserted into AJ15 IO frame are invalid. More detailedly,
such insertion makes the adversary gradually learn the shape of the func-
tion, therefore the scheme is not secure. In other words, such scheme is
not a real IO scheme, but rather a garbling scheme. It needs to be said
that RWB restriction is reasonable, which means the essential contribu-
tion of IO for cryptography research.

Keywords: Indistinguishability obfuscation · Multilinear maps · Yao’s
garbling · Randomized encoding.

1 Introduction

Indistinguishability obfuscation (IO) makes the function unintelligent which, for
arbitrarily chosen values of independent variable, provides nothing except cor-
responding values of the function. In the basic scene of IO there are two sides,



2 Y. Hu et al.

encoding-side (also called obfuscator) and decoding-side (also called computer
or client). Encoding-side presents unintelligent form c of the function c, while
decoding-side chooses the value x and computes c(x)(= c(x)). By the technical
limitation people don’t consider “completely unintelligent” but rather “unintelli-
gent within the group”, that is, consider a public function group {C(·, k), k ∈ K},
where k is the parameter of the group. For some secret k, encoding-side presents
unintelligent form C(·, k) of C(·, k), while decoding-side arbitrarily chooses x and
computes C(x, k)(= C(x, k)), but decoding-side cannot obtain any information
of k by such choice and computation.

IO was first defined by Barak et al [13], and has received a lot of attentions
in the community [2–9, 12, 14, 15, 17–20, 22, 25, 27, 28, 33–43, 46]. To describe our
work clearly, in this section we carefully state those items related to IO, including
the restriction on the function group, virtual black box (VBB), real white box
(RWB), the difference with garbling, and bootstrapping.

1.1 The restriction on the function group

For constructing an IO scheme, the public function group {C(·, k), k ∈ K} should
not be learnable by black box access, otherwise the IO scheme is meaningless [13].
In other words, any function in the group should not leak the information of the
parameter k by polynomially many chosen values of independent variable and
corresponding values of the function. In still other words, the public function
group should not be a cryptographic weak function group. For example, a linear
function group is a cryptographic weak function group, a function group with a
parameter space K too small or with an independent variable range too small
is a cryptographic weak function group, and so on.

1.2 Virtual black box (VBB)

Virtual black box (VBB) means that having IO scheme access to the function
doesn’t obtain more information than having black box access to it. Because
of the restriction in subsection 1.1 that the function group is “unlearnable by
the black box access”, VBB implies that “IO access and black box access are
equally unlearnable”. VBB property is difficult to be proven, and several papers
[13,22,40,43] pointed function groups that cannot obtain VBB IO schemes. Even
though, VBB is still the wish for constructing IO schemes, at least “seemingly
VBB”.

1.3 Real white box (RWB)

Real white box (RWB) means that, for decoding-side, each step of access to
the function by the IO scheme is not a black box access (note that small sized
input-output table should be taken as a white box rather than a black box, for
example, the S-box of a block cipher). RWB property is not mentioned in the IO
literature, and several papers [22, 39, 43] clearly made use of black box in their
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constructions of IO. We argue that RWB property is the essential contribution of
IO for cryptography. If the IO scheme permits black box access, the simplest IO
scheme is taking the function itself as a black box, which is meaningless. What
is more, the following two evidences show the reasonability of RWB property for
IO schemes.

The first evidence comes from the application field of IO. Barak et al [13]
and Lynn et al [39] list a challenging application “transforming private-key en-
cryption into public-key encryption”. Barak et al [13] detailedly state such ap-
plication: to publish an obfuscation of the private-key encryption function to
allow everyone encrypt, yet only one possessing the encryption function (that
is, the owner of the key) should be able to decrypt. That is, the encryptor of
such public-key cryptosystem plays the role of “decoding-side of an IO scheme”
(rather than the role of “encoding-side of an IO scheme”). Here a keypoint is
the security for untrusted environment, that is, the encryptor should be sure
that the whole encryption procedure is his own computation rather than black
box access to an unknown computation. From existing public-key encryption
functions, there is no black box, the difference between authorities of the en-
cryptor and the decryptor only depends on the trapdoor. It may be said that
the encryptor of the public-key cryptosystem calls random number by black box
access. Our explanation is that such a special “black box” is only used for relax-
ing the computation of the encryptor rather than hiding something from him.
In other words, the encryptor can generate random numbers by tossing coins
without accessing to such special “black box”.

The second evidence comes from two complete IO schemes, GGH+13b [25]
and AB15 [9]. The former is called the first IO candidate scheme [17,18], while the
latter is the unique IO scheme directly constructed by multilinear maps [23,24].
Such two schemes satisfy RWB property.

1.4 The difference between IO and garbling

The functionality of IO and garbling are quite similar, both of which can make
the function unintelligent. The unique difference between such two cryptographic
primitives is that an IO scheme is a reusable scheme, while a garbling is a one-
time scheme. Decoding-side of an IO scheme can repeatedly use an unintelligent
form to compute corresponding values of the function for different values of
independent variable, without contacting encoding-side for each computation.
In a garbling scheme an unintelligent form can be used only once, otherwise the
shape of the function may be leaked (There was a “reusable garbling scheme”
[1,29], but we pointed [30] that it is still a one-time scheme). This is the reason
of the following three facts.

Fact 1 Garbling is much easier to be constructed than IO. The former
does not need to consider VBB/RWB, nor to use novel cryptographic tools.
While the latter needs not only to consider both VBB and RWB, but also to
use multilinear maps [23,24], maybe fully-homomorphic encryption (FHE), zero-
knowledge proof (ZK), and so on.
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Fact 2 Garbling is much more mature than IO. The former has complete
security proof, while each candidate of the latter is not clear about the security.

Fact 3 Garbling has much fewer applications than IO. The former is mainly
applied for multi-party computation (MPC) and some similar scenes of one-time
interaction, while the latter, if exists, is a revolutionary advance in public-key
cryptography (A note: the sentence “IO is a revolutionary advance in public-key
cryptography” is an exaggeration. If only the IO scheme doesn’t include any
trapdoor of existing public-key ciphers, can it be called a revolutionary advance.
The present situation is that IO schemes are inseparable from those existing
trapdoors, such as LWE).

1.5 Bootstrapping

Major technical basis of IO is multilinear maps [23, 24], also called graded en-
coding. A simple consensus is that, when the function has its circuit size N , an
IO scheme can be constructed by O(N) degree graded encoding, which can be
seen in AB15 [9]. Two obstacles are that high degree graded encoding has huge
size, and that the security of graded encoding is hard to be proven.

The first question people try to ask is whether IO scheme can be constructed
without graded encoding. After several efforts [2–5] there is no clear answer.

The second question they try to ask is that can an IO scheme be constructed
for the function with large circuit size by low degree graded encoding. More
specifically, can it be constructed for the function with any circuit size by con-
stant degree graded encoding. Such question is called “bootstrapping” and, to
some extent, has a positive answer.

In fact, it was found that the degree of graded encoding needn’t match the
circuit size N of the function, but rather the circuit depth d. That is, IO scheme
can be constructed by O(d) degree graded encoding (needn’t be constructed by
O(N) degree graded encoding). GGH+13b IO scheme [25] sufficiently made use
of such feature, to express the P/poly function by an appropriate NC1 circuit
(simply speaking, essentially decrease the circuit depth). The technical reason
is that the decryption circuit of fully-homomorphic encryption (FHE) and zero
knowledge proof (ZK) can help the function essentially decrease its circuit depth,
although its circuit size tends larger.

Another routine of bootstrapping is making use of functional encryption (FE)
to construct IO schemes [6, 7, 17,34,35,38], which is the focus of this paper.

1.6 About LV16/Lin17 IO schemes and the work of this paper

LV16/Lin17 IO schemes [35, 38] are famous progresses towards simplifying ob-
fuscation mechanism. These two schemes belong to the second routine of boot-
strapping, making use of functional encryption (FE) to construct IO. Detailedly
speaking, these two schemes did not present a complete IO scheme, but only
constructed two compact functional encryption (CFE) algorithms, while other
things were taken to some existing IO frames. That is, CFE algorithms are in-
serted into an IO frame to form a complete IO scheme. Two IO frames which
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were addressed in the LV16/Lin17 IO schemes [35, 38] are AJ15 IO frame [6]
and BV15 IO frame [17]. The basic structures of two CFE algorithms can be
described in the following way. The polynomial-time-computable Boolean func-
tion is transformed into a group of low-degree low-locality component functions
by using randomized encoding [10, 11, 31, 32], while some public combination of
values of component functions is the value of original Boolean function. The en-
cryptor uses constant-degree multilinear maps (rather than polynomial-degree
multilinear maps) to encrypt independent variables of component functions. The
decryptor uses zero-testing tool of multilinear maps to obtain values of compo-
nent functions (rather than to obtain values of independent variables), and then
uses public combination to obtain the value of original Boolean function.

In this paper we restrict IO to be a real white box (RWB), and consider
the case where LV16/Lin17 CFE algorithms are inserted into AJ15 IO frame
[6]. AJ15 frame is originally a multi-input functional encryption (MIFE) frame,
which needs many CFE algorithms as components to form a complete MIFE
scheme. Such MIFE frame is restated to become an IO frame, and such complete
MIFE scheme is restated to become a complete IO scheme. We have following
three observations.

Observation 1 In this case encoding-side/decoding-side of IO is just en-
cryptor/decryptor of CFE. The difference is that, the secret random number
used by CFE encryptor should in IO construction be either predetermined and
not be changed, or only the function of related bits of independent variable,
otherwise the IO scheme violates either RWB or reusability.

Observation 2 Component functions in LV16/Lin17 CFE algorithms are
too simple. When secret random numbers are changed into secret fixed numbers,
shapes of these component functions can be solved by a small number of values of
independent variables and corresponding component functions (or maybe solving
their equivalent shapes).

Observation 3 When shapes of all component functions are known, some
information about the shape of original Boolean function can be obtained by
the public combination. In other words, if secret random numbers in component
functions are changed into secret fixed numbers, randomized encoding doesn’t
promise to protect the shape of original Boolean function, which can be seen from
existing randomized encoding schemes IK00/IK02/AIK04/AIK06 [10,11,31,32]
and Appendix A of this paper.

By the three observations above, the scheme with LV16/Lin17 CFE algo-
rithms inserted into AJ15 IO frame is invalid. More detailedly, such scheme
under RWB requirement may make the adversary gradually learn the shape
of original Boolean function, so that it is not secure. It can only be used for
the scene with secret numbers ever changing, so that it is a garbling scheme
rather than an IO scheme. Indeed LV16/Lin17 have many novel designs, in-
cluding arithmetic circuit, pseudo-random-generator (PRG), low-degree partial
function, punching technique, and so on. But these novel designs are only for
simplifying the computation rather than for avoiding our three observations.
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Besides, this paper takes attention to a conclusion of AJ15 [6] and LV16/Lin17
[35, 38]. The conclusion is that “if CFE is secure, IO can be constructed”. Such
conclusion is at least not strict. A stricter conclusion should be that “if CFE
encryption function is secure, IO can be constructed”. Here a CFE encryption
function is the CFE encryption algorithm with the secret number fixed rather
than ever changing, which can be seen from the latter of this paper.

In order to avoid any misunderstandings and refute any justifications from
the authors of the LV16/Lin17 schemes, this paper presents a large number
of notes and explanations. Yet this paper does not discuss the case where the
LV16/Lin17 CFE are inserted into BV15 [17], another IO frame, which will be
presented in another paper.

2 Preliminaries: IO, Graded Encoding, Garbling,
Randomized Encoding, and FE

2.1 Definition and Four Notes of Indistinguishability Obfuscation
(IO)

Definition 1. A uniform PPT machine IO is called an indistinguishability ob-
fuscator [25] for a circuit class {Cλ} if the following two conditions are satisfied:

(1) Correctness. For all security parameters λ, for all circuits c ∈ Cλ, for all
inputs x,Pr [c (x) = c (x) : c← IO (λ, c)] = 1

(2) Indistinguishability. For any PPT distinguisher D, there exists a negli-
gible function α such that the following holds. For all security parameters λ,
for all pairs c0, c1 ∈ Cλ, we have that if c0(x) = c1(x) for all inputs x, then
|Pr [D (IO (λ, c0)) = 1]− Pr [D (IO (λ, c1)) = 1]| ≤ α (λ).

Note 1. The circuit class {Cλ} should be “black box access unlearnable” (see
the statement in subsection 1.1 of this paper).

Note 2. c should be reusable. That is, once c is constructed, it should be fixed
and repeatedly used for computing c(x) (= c(x)) of different values of x. If c is
used only once, it is much easier to be constructed, and is the component of
garbling, a weaker primitive.

Note 3. The above two notes show that c is a virtual black box (VBB, see the
statement in subsection 1.2 of this paper).

Note 4. c should be a real white box (RWB, see the statement in subsection 1.3
of this paper).

2.2 Graded Encoding

Graded encoding (also called multi-linear map) [23, 24] is the most important
component of IO and sometimes unique component (That is, sometimes graded
encoding itself is IO).
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For a Boolean circuit c, operations of encoding-side are as follows. He encodes
c into c, and encodes independent variable range X into X (That is, encodes
each value from {0, 1} of each entry Xi of X = (X1, · · · , Xn). So that X =(
X1,0, X1,1, · · · , Xn,0, Xn,1

)
). He also constructs the decoding tool T (also called

zero-testing tool, which can test value just at one point, neither sooner nor later).
Then he submits {X, c, T}.

Decoding-side obtains {X, c, T}, and chooses x fromX according to his choice
of x. Then he can compute T (x, c) which is equal to c(x).

The first challenge is to guarantee T (x, c) = c(x) for any x with leaking
nothing else, and the second challenge is to reduce the huge size. All candidates
of graded encoding are not very sure to face such two challenges, so that an effort
is to ease the role of graded encoding in the IO structure (see the statement in
subsection 1.5 of this paper).

2.3 About Garbling and Randomized Encoding

Garbling [10, 11, 31, 32, 44, 45] can be taken as a one-time version of IO, so that
it is much simpler than IO. Although some garbling schemes [31] have limited
ability for small number of reusability, no garbling candidate can be taken as
a true reusable scheme. Besides, there was a “reusable garbling scheme” [1, 29],
but we pointed [30] it is still a one-time scheme.

A technical difference of garbling is that,X is not completely sent to decoding-
side, but rather by using “one-out-two oblivious transfer”. That is, for each entry
Xi of X = (X1, · · · , Xn), decoding-side can and only can choose to receive one
from {Xi,0, Xi,1}, while encoding-side doesn’t know the choice of decoding-side.

Randomized encoding [10, 11, 31, 32] is a special type of garbling, to express
a function in terms of a group of low-degree low-locality functions with random
parameters.

2.4 FE

Functional encryption (FE) can be simply described as that the encryptor en-
crypts the plaintext to obtain the ciphertext, while the decryptor decrypts the
ciphertext to obtain only the value of some function of the plaintext (nothing
else about the information of the plaintext). A consensus is that FE is a simpler
cryptographic primitive than IO, and easier to be proven the security, so that a
research item is constructing IO by FE [6, 17, 34, 35, 38]. AJ15 [6] made use of
multi-input FE (MIFE) as the frame, compact FE (CFE) as the components,
function-private FE (FPFE) as the technique, to construct IO scheme.

3 Cryptanalysis of AJ15 IO frame

3.1 Why MIFE

Multi-input FE (MIFE) is such special FE, that the plaintext is separated into
many parts which are respectively encrypted into ciphertext parts. For decryp-
tion, these ciphertext parts are combined to compute the value of the function
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of the whole plaintext. Such MIFE structure is easy to be transformed into IO
structure, because decoding-side of IO scheme needs selective decoding ability
rather than simple decoding ability. More detailedly, decoding-side arbitrarily
chooses values of independent variable and computes corresponding values of
the function.

3.2 FPFE

Function-private FE (FPFE) is another special FE, for which the decryptor can
only obtain the value of the function of the plaintext, neither other information
about the plaintext nor that about the shape of the function. Brakerski [21]
presented a scheme to transform an ordinary FE into an FPFE, described as the
following. Suppose the function is f .

The system first takes an additional operation to hide the shape of f . It
takes a secret-key encryption system (SKE.Enc,SKE.Dec), and computes c =
SKE.Enc(k, f), c′ = SKE.Enc(k′, f ′), where k and k′ are keys of the secret-key
encryption system, f is original function, f ′ is another function (that is, f and
f ′ are taken as two bit-strings, encrypted by keys k and k′ respectively, and
obtains c and c′ respectively).

The encryptor makes use of the encryption algorithm of ordinary FE, to
encrypt extended plaintext (m,m′, k, k′) rather than original plaintext m.

The system generates functional decryption key for the decryptor, which is
of the extended function Uc,c′ , rather than original function f , where Uc,c′ is
shown in Table 1. For understanding Table 1 we present following explanation:
when f (as a bit-string) is known, m (as another bit-string) is known, then f(m)
can be obtained by a public algorithm. In other words, f (as a function) belongs
to a public function group.

The decryptor makes use of the functional decryption key of the extended
function Uc,c′ and the decryption algorithm of ordinary FE, to obtain Uc,c′(m,m′,
k, k′) (= f(m), as long as k ̸= ⊥).

Table 1. Function Uc,c′ .

Uc,c′(m,m′, k, k′)
1.If k ̸= ⊥, compute f ← SKE.Dec(k, c) and output f(m).
2.Else, if k′ ̸= ⊥, compute f ′ ← SKE.Dec(k′, c′) and output f ′(m′).
3.Else, output ⊥.

The decryption algorithm the decryptor uses is of ordinary FE, so that he
can obtain the shape of the extended function Uc,c′ and the value of c. He
cannot obtain k, because k is a part of the plaintext. Therefore he cannot obtain
f (f = SKE.Dec(k, c)). That means that the scheme satisfies the requirement of
FPFE.

The price is huge. First, to hide f from the decryptor. f is extended into
(c, k), where k is only known by the encryptor, and c only by the decryptor.
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Then, to make f deeply hidden, another function f ′ is extended into (c′, k′),
where k′ is only known by the encryptor, and c′ only by the decryptor. Finally,
the decryptor only knows (c, c′) which is the parameter of much bigger function of
much longer plaintext, making it much more complicated to generate functional
decryption key for such function.

3.3 AJ15 MIFE frame [6]

AJ15 MIFE frame is the starting point of AJ15 IO frame [6]. This frame makes
use of Brakerski FPFE transformation [21] to realize such functionality: the
plaintext is separated into N+1 parts to be encrypted respectively, the decryptor
combines N+1 ciphertexts to compute the value of the function of the plaintext
entity, and at same time it should be guaranteed not to leak more than an ordi-
nary FE frame does. In AJ15 [6], the description of MIFE frame is an iteration,
where “arity-amplification” and “function-privacy” are implemented alternately.
We point out that their description has a mistake. More detailedly, their defini-
tion of function (Fig.2 of [6]) makes the iteration unsustainable. However, this
mistake is not essential, and only needs a minor modification. We restate AJ15
MIFE frame in this subsection.

This frame needs N + 1 ordinary FE schemes, { FE(0), FE(1),· · · , FE(N)}
(For the purpose of simply stating, encryption keys of these FE schemes are
omitted). This frame needs a secret-key encryption system (SKE.Enc,SKE.Dec).
This frame needs a pseudo-random function PRF. This frame also gives the
encryptor a special ability which is constructing functional decryption keys for
{FE(1),· · · , FE(N)} (But cannot construct functional decryption key for FE(0)).
This frame is described as follows. Suppose the function is f .

Operations of the encryptor (Encryption)

Step 1 Take the plaintext m, and separate it into N + 1 parts: m =
(m(0),m(1), · · · ,m(N)).

Step 2 Randomly choose (m′(1), · · · ,m′(N)), ((k(0), k′(0)), (k(1), k′(1)), · · · , (k(N−1),
k′(N−1))), (τ (1), · · · , τ (N)),K.

The purpose of choosing these random numbers is to make FE schemes in the
frame encrypt extended plaintexts. The extended plaintexts FE schemes encrypt
are as shown in Table 2.

Table 2. Extended plaintexts to be encrypted by FE schemes

FE scheme The extended plaintext to be encrypted

FE(N).Enc
(
(k(0), k′(0)), · · · , (k(N−1), k′(N−1)), (m(N),m′(N), 1, τ (N), N)

)
FE(N-1).Enc

(
(k(0), k′(0)), · · · , (k(N−2), k′(N−2)), (m(N−1),m′(N−1), 1, τ(N−1), N − 1), (m(N),m′(N), 1, τ(N), N)

)
... · · ·
FE(1).Enc

(
(k(0), k′(0)), (m(1),m′(1), 1, τ (1), 1), · · · , (m(N),m′(N), 1, τ (N), N)

)
FE(0).Enc

(
(m(0), · · · ,m(N)), PRF (K, τ (1), · · · , τ (N))

)
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Step 3 ComputeM (N) ← FE(N).Enc((k(0), k′(0)), · · · , (k(N−1), k′(N−1)), (m(N),
m′(N), 1, τ (N), N))

Step 4 For i = 1, · · · , N − 1, define the function f (i) as the following.

f (i)((k(0), k′(0)), · · · , (k(i−1), k′(i−1)), (m(i+1),m′(i+1), 1, τ (i+1), i+ 1), · · · ,
(m(N),m′(N), 1, τ (N), N))

=FE(i).Enc((k(0), k′(0)), · · · , (k(i−1), k′(i−1)), (m(i),m′(i), 1, τ (i), i), (m(i+1),m′(i+1),

1, τ (i+1), i+ 1), · · · , (m(N),m′(N), 1, τ (N), N))

(A reminder for readers: (m(i),m′(i), 1, τ (i), i) is a part of parameters of the
function f (i), rather than a part of independent variables). Then randomly
choose another function f ′(i).

Step 5 Define the function f (0) as the follow.

f (0)
(
(m(1),m′(1), 1, τ (1), i1), · · · , (m(N),m′(N), 1, τ (N), iN )

)
=

{
⊥, there is some j ∈ {1, · · · , N} , such that ij ̸= j
FE(0).Enc

(
(m(0), · · · ,m(N)), PRF (K, (τ (1), · · · , τ (N)))

)
, else

(A reminder for readers: (m(0),K) is a part of parameters of the function f (0),
rather than a part of independent variables). Then randomly choose another
function f ′(0).

Step 6 For i = 0, · · · , N − 1, compute c(i) ← SKE.Enc(k(i), f (i)), c′(i) ←
SKE.Enc(k′(i), f ′(i)), where k(i) and k′(i) are taken as keys.

Step 7 For i = 0, · · · , N − 1, by {c(i), c′(i)} extend the function f (i) into

U
(i)

c(i),c′(i)
, as the following detail. First, extend the independent variable of f (i),

((k(0), k′(0)), · · · , (k(i−1), k′(i−1)), (m(i+1),m′(i+1), 1, τ (i+1), i+1), · · · , (m(N),m′(N)

, 1, τ (N), N)), into the independent variable of U
(i)

c(i),c′(i)
, ((k(0), k′(0)), · · · , (k(i), k′(i)),

(m(i+1),m′(i+1), 1, τ (i+1), i+1), · · · , (m(N),m′(N), 1, τ (N), N)), so that the inde-

pendent variable of U
(i)

c(i),c′(i)
is just the plaintext of FE(i).Enc (See Table 2).

Second, U
(i)

c(i),c′(i)
is shown in Table 3.

Step 8 For i = 0, · · · , N − 1, construct the functional decryption key of the

function U
(i)

c(i),c′(i)
for FE(i), and denote such decryption key by M (i).

Step 9 For i = 0, · · · , N , take M (i) as corresponding ciphertext of m(i) for
the frame (A reminder for readers: M (N) is in fact corresponding ciphertext
of an extended plaintext for FE(N), and the extended plaintext includes m(N).
For i = 0, · · · , N − 1, M (i) is in fact a functional decryption key for FE(i), and
the shape of the function is related to m(i)). Submit (M (0), M (1),· · · , M (N−1),
M (N)) to the decryptor.

Operations of the system (Constructing functional decryption key)
Construct the functional decryption key of original function f for FE(0), and

take it as the functional decryption key of f for the frame, to be submitted to
the decryptor.
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Table 3. Function U
(i)

c(i),c′(i)

U
(i)

c(i),c′(i)
((k(0), k′(0)), · · · , (k(i), k′(i)), (m(i+1),m′(i+1), 1, τ (i+1), i+ 1), · · · , (m(N),

m′(N), 1, τ (N), N))

1.If k(i) ̸= ⊥, compute f (i) ← SKE.Dec(k(i), c(i)) and out-
put f (i)((k(0), k′(0)), · · · , (k(i−1), k′(i−1)), (m(i+1),m′(i+1), 1, τ (i+1), i +
1), · · · , (m(N),m′(N), 1, τ (N), N)).

2.Else, if k′(i) ̸= ⊥, compute f ′(i) ← SKE.Dec(k′(i), c′(i)) and out-
put f ′(i)((k(0), k′(0)), · · · , (k(i−1), k′(i−1)), (m(i+1),m′(i+1), 1, τ (i+1), i +
1), · · · , (m(N),m′(N), 1, τ (N), N)).
3.Else, output ⊥.

Operations of the decryptor (Decryption)
First, it can be seen that M (N) is the first row of Table 2.
For FE(N), use M (N−1) acting on the first row of Table 2, to obtain the

second row of Table 2 (as long as k(N−1) ̸= ⊥).
For FE(N−1), use M (N−2) acting on the second row of Table 2, to obtain the

third row of Table 2 (as long as k(N−2) ̸= ⊥).
· · · · · ·
For FE(1), use M (0) acting on the next last row of Table 2, to obtain the last

row of Table 2 (as long as k(0) ̸= ⊥).
Finally for FE(0), use the functional decryption key submitted by the system,

acting on the last row of Table 2, to obtain f(m(0), · · · ,m(N)).
Because the shapes of {f (0), · · · , f (N−1)} include some information about

(m(0), · · · ,m(N−1)), extended functions {U (0)

c(0),c′(0)
, · · · , U (N−1)

c(N−1),c′(N−1)} are needed
to hide the shapes of {f (0), · · · , f (N−1)} from the decryptor. It can be seen that
Table 3 and Table 1 are essentially same, which are from FPFE transforma-
tion [21].

3.4 AJ15 IO frame [6]

Suppose the function which needs to be obfuscated is g(x1, · · · , xN ), where
each entry xi of the independent variable (x1, · · · , xN ) is a bit variable. Now
MIFE frame in subsection 3.3 is transformed into an IO frame. First, the en-
cryptor and the system of MIFE frame are combined to become encoding-
side of IO frame, and the decryptor of MIFE frame becomes decoding-side of
IO frame. Second, all symbols of subsection 3.3 are still used in this subsec-
tion, but (m(0),m(1), · · · ,m(N)) and f should be re-defined as such: m(0) = g,
(m(1), · · · ,m(N)) = (x1, · · · , xN ), and f(m(0),m(1), · · · ,m(N)) = f(g, x1, · · · , xN ) =
g(x1, · · · , xN ). In other words, f is taken as a public function group, while g is
a secret function of such public group. The IO frame is described as follows.

Operations of encoding-side (Obfuscation)
Step 1 For i = 1, · · · , N , m(i) = 0, 1, under MIFE frame compute corre-

sponding ciphertext M (i) of m(i). More detailedly, when m(i) = 0 the corre-

sponding ciphertext is denoted by M
(i)
0 , and when m(i) = 1 the corresponding
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ciphertext is denoted byM
(i)
1 (A reminder for readers: these operations are under

MIFE frame the operations of the encryptor).
Step 2 Under MIFE frame compute corresponding ciphertext M (0) of m(0)

(A reminder for readers: such operation is under MIFE frame the operation of
the encryptor).

Step 3 Under MIFE frame compute the functional decryption key of f ,
keyMIFE(f) (A reminder for readers: such operation is under MIFE frame the
operation of the system).

Step 4 Take {keyMIFE(f), M
(0), (M

(1)
0 , M

(1)
1 ), · · · , (M (N)

0 , M
(N)
1 )} as the

obfuscation of the function g, to be submitted to decoding-side (A reminder for

readers: decoding-side should know that M
(i)
0 corresponds m(i) = 0, and M

(i)
1

corresponds m(i) = 1).
Operation of decoding-side (Computation)
Arbitrarily choose the value of the independent variable (x1, · · · , xN ), let

(m(1), · · · ,m(N)) = (x1, · · · , xN ), take corresponding (M (1), · · · ,M (N))(= (M
(1)

m(1) ,

· · · ,M (N)

m(N))) of such (m(1), · · · ,m(N)), and, by {keyMIFE(f), M
(0), M (1), · · · ,

M (N)}, under MIFE frame compute f(m(0),m(1), · · · ,m(N))(= g(x1, · · · , xN ))
(A reminder for readers: decoding-side can repeat above operations, that is,
choose different values of (x1, · · · , xN ) and compute corresponding values of
g(x1, · · · , xN )).

3.5 Several explanations for AJ15 IO frame

AJ15 IO frame separates the independent variable into parts bitwise rather than
a multi-bits part, for the purpose of decreasing the number of texts submitted
to decoding-side. A part of the independent variable including h bits needs 2h

related texts to be submitted, while h parts with a single bit for each only need
totally 2h related texts.

AJ15 IO frame takes g as m(0) rather than m(i) for i = 1, · · · , N , for the pur-
pose of computing the text including g as late as possible, in favour of protecting
the shape of g.

To guarantee the effectiveness, AJ15 IO frame requires {FE(0), FE(1),· · · ,
FE(N)} to be compact FE schemes (CFE).

3.6 Cryptanalysis of AJ15 IO frame under RWB

Under RWB requirement, each of {M (0),(M
(1)
0 , M

(1)
1 ), · · · , (M (N)

0 , M
(N)
1 )} is

a fixed value rather than a black box, so the secret random numbers used for
constructing each of them (including the encryption key of related FE scheme)
should be changed into secret fixed numbers. The detailed observations are as
follows. When m(N) is fixed, {(k(0), k′(0)), · · · , (k(N−1), k′(N−1)), (m′(N), τ (N)),
the encryption key of FE(N) } should be fixed (See the first row of Table 2).
For i = 1, · · · , N − 1, when m(i) is fixed, {m′(i), τ (i), the encryption key of
FE(i)} should be fixed (See the constructing procedure of M (i), operations of the
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encryptor step 4-8, subsection 3.3. In this case M (i) is a functional decryption
key for FE(i+1), and the parameter of the function includes {m′(i), τ (i), the
encryption key of FE(i)}). {K, the encryption key of FE(0) } should be constants
(Because m(0) = g is fixed, M (0) is a functional decryption key for FE(1), and
the parameter of the function includes {K, the encryption key of FE(0)}). These
observations are just Proposition 1.

Proposition 1. In AJ15 IO frame satisfying RWB,

(1) Secret random numbers {(k(0), k′(0)), · · · , (k(N−1), k′(N−1)), (m′(N),
τ (N)), the encryption key of FE(N) } are only functions of m(N).

(2) For i = 1, · · · , N − 1, secret random numbers {m′(i), τ (i), the encryption
key of FE(i)} are only functions of m(i).

(3) {K, the encryption key of FE(0)} are only secret constants.

Besides secret random numbers of IO frame, encryption algorithms of FE
schemes, {FE(0).Enc, FE(1).Enc, · · · , FE(N).Enc}, may have other random num-
bers, which should be fixed as (m(1), · · · ,m(N)) fixed. The detailed observations
are as follows. When m(N) is fixed, random number of FE(N).Enc (if exists)
should be fixed (See the first row of Table 2). For i = 1, · · · , N − 1, when m(i)

is fixed, random number of FE(i).Enc (if exists) should be fixed (See the con-
structing procedure of M (i), operations of the encryptor step 4-8, subsection
3.3. In this case M (i) is a functional decryption key for FE(i+1), and random
number of FE(i).Enc is an implicit parameter of such function). Random number
of FE(0).Enc (if exists) should be constant (Because m(0) = g is fixed, M (0) is
a functional decryption key for FE(1), and random number of FE(0).Enc is an
implicit parameter of such function). These observations are just Proposition 2.

Proposition 2. In AJ15 IO frame satisfying RWB,

(1) Random number of FE(N).Enc (if exists) is only a function of m(N).

(2) For i = 1, · · · , N − 1, random number of FE(i).Enc (if exists) is only a
function of m(i).

(3) Random number of FE(0).Enc (if exists) is only a constant.

Now observe the protection of IO frame for g. Decoding-side obtains {M (0),(M
(1)
0 ,

M
(1)
1 ), · · · , (M (N)

0 , M
(N)
1 )}, where {(M (1)

0 , M
(1)
1 ), · · · , (M (N)

0 , M
(N)
1 )} and cor-

responding computations have no relation with g. M (0) is related to g, but the
shape of g is hidden by FPFE transformation ( [21] and construction of ex-

tended function U
(0)

c(0),c′(0)
in this paper, see subsection 3.3). Then decoding-side

uses M (0) for FE(1) to obtain

FE(0).Enc
(
(m(0),m(1), · · · ,m(N)), PRF (K, τ (1), · · · , τ (N))

)
=FE(0).Enc

(
(g,m(1), · · · ,m(N)), PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N)))

) (1)
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Then he uses keyMIFE(f) for FE
(0) to obtain

f
(
(m(0),m(1), · · · ,m(N)), PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N)))

)
=f(g,m(1), · · · ,m(N))

=g(m(1), · · · ,m(N))

(2)

Notice that FE(0).Enc in formula (1) is not an ordinary encryption algorithm
of FE(0), but rather a special encryption algorithm with random number fixed.
In other words, in this case FE(0).Enc is a fixed function of the plaintext, called
encryption function. Recall AJ15 [6] and LV16/Lin17 [35, 38] which have such
conclusion: “If secure CFE exists, IO can be constructed”. Above observations
show that such conclusion is at least not strict, and a stricter conclusion should
be Proposition 3.

Proposition 3. (Revised conclusion of Theorem 5.2 of AJ15 [6]) If secure CFE
encryption function exists, IO can be constructed.

Another special point of AJ15 IO frame is PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N)))
in formulae (1) and (2). First, its position in FE(0).Enc is plaintext position
(rather than random number position). Second, the computation result by using
the functional decryption key keyMIFE(f) to be f(g,m(1), · · · ,m(N)) has no re-

lation with it. Now we call PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))) the redundant
plaintext of {FE(0).Enc, keyMIFE(f)}, and the following Proposition 4 holds.

Proposition 4. Replace PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))) by any value in
formula (1), then it can still be correctly decrypted to obtain f(g,m(1), · · · ,m(N)) =
g(m(1), · · · ,m(N)).

4 LV16/Lin17 CFE Algorithms [35,38]

Let c be a polynomial-time computable Boolean function. Take the plaintext x.

4.1 LV16 CFE Algorithm

Operations of the encryptor (Encryption)

Step 1 (garbling)Use Yao’s garbling of c [16,26,29,31,32,44,45] to construct I
Boolean functions c∗i (x, k) = Y aoi (x, PRF (k)), i ∈ {1, 2, · · · , I}, where k
is randomly chosen, PRF is a pseudorandom function.

Step 2 (randomized encoding)For each i ∈ {1, 2, · · · , I}, use AIK randomized
encoding of c∗i [10,11,31,32] to construct J Boolean functions c∗∗ij (x, k, s) =
AIKij (x, k, PRG (s)), j ∈ {1, 2, · · · , J}, where s is randomly chosen, PRG
is a low-degree low-locality pseudorandom generator. Notice that AIKij is
a low-degree low-locality Boolean function, therefore c∗∗ij (x, k, s) is a low-
degree low-locality Boolean function.
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Step 3 For each i ∈ {1, 2, · · · , I}, j ∈ {1, 2, · · · , J}, define function c∗∗∗ij as

c∗∗∗ij (x, k, s, b) =

{
c∗∗ij (x, k, s) , for b = 0
any function, for b = 1

The purpose of constructing such c∗∗∗ij is to make so called “decryption key”
complicated enough, so as to hide the shape of c∗∗ij .

Step 4 (graded encoding) Up to now, each c∗∗∗ij is a low-degree low-locality
Boolean function.By using graded encoding, encode x into x, and parameters
(k, s, b) into (k, s, b) (A reminder for readers: graded encoding is bitwise
encoding). Submit {x, k, s, b}.

Operations of the system (Constructing functional decryption key)
By using graded encoding, encode each c∗∗∗ij into c∗∗∗ij . Construct decoding

tool (zero-testing tool) T , to guarantee T (x̄, k̄, s̄, b̄, c∗∗∗ij ) = c∗∗∗ij (x, k, s, b). Submit{
{c∗∗∗ij }, T

}
.

Operations of the decryptor (Decryption)

Step 1 (graded decoding) By obtained {x, k, s, b, c∗∗∗ij , T}, compute T (x, k, s, b, c∗∗∗ij ) =
c∗∗∗ij (x, k, s, b) = c∗∗ij (x, k, s).

Step 2 (randomized decoding) Use {c∗∗ij (x, k, s), i = 1, · · · , I, j = 1, · · · , J} to
compute {c∗i (x, k), i = 1, · · · , I}.

Step 3 (degarbling)Use {c∗i (x, k), i = 1, · · · , I} to compute c(x).

4.2 Lin17 CFE Algorithm

Operations of the encryptor (Encryption)

Step 1∼3 Same as Step 1∼3 of operations of the encryptor of LV16 scheme
(see subsection 4.1).

Step 4 (increasing the number of variables to decrease the degree) Take x ×
x = {xuxv}, and we know xu · xu = xu. Similarly, take x × k = {xukv},
x×s = {xusv}, x×b = {xub}, k×k = {kukv}, k×s = {kusv}, k×b = {kub},
s×s = {susv}, s×b = {sub}. For each i ∈ {1, · · · , I}, j ∈ {1, · · · , J}, express
c∗∗∗ij as the function of (x×x, x×k, x×s, x×b, k×k, k×s, k×b, s×s, s×b,
b), rather than only the function of (x, k, s, b). That is, take an expression
c∗∗∗∗ij (x×x, x×k, x×s, x×b, k×k, k×s, k×b, s×s, s×b, b) = c∗∗∗ij (x, k, s, b),
then c∗∗∗∗ij has a lower degree than c∗∗∗ij .

Step 5 (graded encoding) By using graded encoding, encode (x× x, x× k, x×
s, x×b, k×k, k×s, k×b, s×s, s×b, b) into (x× x, x× k, x× s, x× b, k × k, k × s,
k × b, s× s, s× b, b) (A reminder for readers: graded encoding is bitwise en-
coding). Submit {x× x, x× k, x× s, x× b, k × k, k × s, k × b, s× s, s× b, b}.

Operations of the system (Constructing functional decryption key)
By using graded encoding, encode each c∗∗∗∗ij into c∗∗∗∗ij . Construct decoding

tool (zero-testing tool) T , to guarantee T (x× x, x× k, x× s, x× b, k × k, k × s,
k × b, s× s, s× b, b, c∗∗∗∗ij ) = c∗∗∗∗ij (x×x, x× k, x× s, x× b, k× k, k× s, k× b, s×
s, s× b, b)

(
= c∗∗∗ij (x, k, s, b)

)
. Submit

{
{c∗∗∗∗ij }, T

}
.

Operations of the decryptor (Decryption)
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Step 1 (graded decoding) By obtained {x× x, x× k, x× s, x× b, k × k, k × s,
k × b, s× s, s× b, b, {c∗∗∗∗ij }, T}, compute T (x× x, x× k, x× s, x× b, k × k,

k × s, k × b, s× s, s× b, b, c∗∗∗∗ij ) = c∗∗∗∗ij (x× x, x× k, x× s, x× b, k × k, k ×
s, k × b, s× s, s× b, b) = c∗∗∗ij (x, k, s, b).

Step 2∼3 Same as Step 2∼3 of operations of the decryptor of LV16 scheme
(see subsection 4.1).

5 Cryptanalysis of LV16/Lin17 CFE Algorithms Inserted
into AJ15 IO Frame under RWB

5.1 LV16/Lin17 CFE Algorithms Are Taken as FE(0) of AJ15 IO
Frame

Under RWB requirement, this section presents cryptanalysis of LV16/Lin17 CFE
algorithms which are inserted into AJ15 IO frame. More detailedly, we consider
the case where LV16/Lin17 CFE algorithms are taken as FE(0) of AJ15 IO frame
(see subsection 3.6). In such case the plaintext x = (g,m(1), · · · ,m(N), PRF (K,
τ (1)(m(1)), · · · , τ (N)(m(N)))) (see formula (1)), where PRF (K, τ (1)(m(1)), · · · ,
τ (N)(m(N))) is the redundant plaintext of {FE(0).Enc, keyMIFE(f)} (see formula
(1) and Proposition 4), K is a constant (see (3) of Proposition 1). According
to RWB requirement, random numbers {k, s, b} used in LV16/Lin17 CFE algo-
rithms should be changed into constants (see (3) of Proposition 2), and b = 0.

LV16/Lin17 schemes [35, 38] didn’t describe the use of the redundant plain-
text, so we respectively take two understandings, natural understanding and
alternative understanding, described in subsections 5.2 and 5.3.

5.2 Cryptanalysis of FE(0) under Natural Understanding

Because the function c
(
g,m(1), · · · ,m(N), PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N)))

)
=

f(g,m(1), · · · ,m(N)) = g(m(1), · · · ,m(N)) has no relation with the redundant
plaintext PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))), natural understanding is that
its garbling and randomized encoding {c∗i }, {c∗∗∗ij } ({c∗∗∗∗ij }) all have no rela-

tion with the redundant plaintext PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))).
Now {c∗∗∗ij } are low-degree low-locality functions of (g,m(1), · · · ,m(N), k, s, b),

which are learnable, and g cannot be hidden. Detailedly, decoding-side of AJ15
IO frame (the decryptor of FE(0)) gradually probes the information of g, in the
following three steps.

The first step, take {c∗∗∗ij } as low-degree low-locality functions of (m(1), · · · ,m(N)),
while (g, k, s) as only fixed parameters of these functions, to compute shapes of
{c∗∗∗ij }. Each c∗∗∗ij has relation with O(1) bits of (m(1), · · · ,m(N)), so 2O(1) val-
ues of such O(1) bits determine the shape of c∗∗∗ij . These shapes are possible
to directly leak g, because randomized encoding does not promise to hide the
function when random numbers are changed into constants. At least we know
that the shape of each c∗∗∗ij presents 2O(1) equations of O(1) bits of (g, k, s).
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The second step, compute shapes of {c∗i } by those of {c∗∗∗ij }. This step is
simple because it is randomized decoding with symbols. Notice that parameter
s has been eliminated, with parameters (g, k) left.

The third step, compute the shape of c(g, ·) by those of {c∗i }. This step is
simple because it is de-garbling with symbols. Notice that parameter k has been
eliminated, with parameter g left. In other words, the shape of g(·) (= c(g, ·)) is
obtained. g is a general function rather than a simple one, so the obtained shape
is not the original shape of the function g, but it is never an “unintelligent shape
(obfuscated shape)”.

Each of the above three steps can obtain some information of the shape of
the original function g. So that the IO scheme is not secure.

5.3 Cryptanalysis of FE(0) under Alternative Understanding

Alternative understanding is that {c∗i }, {c∗∗∗ij } ({c∗∗∗∗ij }) do have relation with

PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))), but do not with (k, s), that is, (k, s) is re-
placed by PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))). In other words, PRF (K, τ (1)(m(1)),
· · · , τ (N)(m(N))) is a part of the plaintext of FE(0) in terms of definition, while
the random number in garbling-RE of c in terms of functionality. At first look,
such alternative structure is perfect, which makes random number of garbling-
RE to be kept random without increasing the degree of graded encoding.

However, we find a weakness of such alternative structure, called “difference
perceptibility”. Suppose we take a fixed bit p of PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))).
According to (3) of Proposition 2, graded encoding procedure for p should not
include random number, so graded encoding value p of p is a fixed function of p.
That is, when decoding-side of AJ15 IO frame (the decryptor of FE(0)) finds two
graded encoding values p1 and p2 of p not equal, he knows p1 + 1 = p2 without
knowing the value of {p1, p2}.

“Difference perceptibility” makes decoding-side of AJ15 IO frame (the de-
cryptor of FE(0)) to obtain equally many equations. Our analysis is like the first
step in the last subsection as follows. Take a c∗∗∗ij . Suppose c∗∗∗ij is related with

a1 bits of (m(1), · · · ,m(N)), denoted by m∗. Suppose c∗∗∗ij is related with a2 bits

of PRF (K, τ (1)(m(1)), · · · , τ (N)(m(N))), denoted by p∗. Suppose c∗∗∗ij is related

with a3 bits of g, denoted by g∗. Another part of (m(1), · · · ,m(N)) without m∗

is denoted by m∗∗. When (m(1), · · · ,m(N)) = (0, · · · , 0), corresponding value of
p∗ is denoted by p∗0 (the decryptor of FE(0) does not know p∗0, but can obtain
p∗0). The value of g

∗ can be obtained by the decryptor. Now with known {g∗, p∗0},
operations of the decryptor of FE(0) are as follows.

For each value of m∗, choose 2a2 values of m∗∗, compute m∗ and correspond-
ing p∗ = p∗0+δ, where δ is an a2-dimensional Boolean vector, and the decryptor
of FE(0) can obtain δ (because of the above described “difference perceptibil-
ity”). The chosen 2a2 values of m∗∗ should satisfy such condition: to guarantee
δ takes 2a2 different values (because the length of m∗∗ is far larger than a2, and
PRF is a pseudo-random function, such condition is easy to be satisfied). By
(g∗,m∗, p∗0+δ) and zero-testing tool obtain c∗∗∗ij (g∗,m∗, p∗0+δ), and obtain the



18 Y. Hu et al.

equation of (g∗, p∗0):

c∗∗∗ij = c∗∗∗ij (g∗,m∗, p∗0+δ).

When m∗ takes all values of {0, 1}a1 , δ takes all values of {0, 1}a2 , the decryptor
of FE(0) obtains 2a1+a2 equations of (g∗, p∗0). On the other hand, (g∗, p∗0) is
a2 + a3-dimensional Boolean vector, so 2a2+a3 equations are enough to solve it.
If a1 ≥ a3, (g

∗, p∗0) is solved. Notice that bits of (g∗, p∗0) not only appear in c∗∗∗ij ,
but also other functions of randomized encoding function family, to make related
equations of other functions easier to be solved, finally g is leaked.

5.4 A Supplement

There may be such an idea that for FE(0).Enc, the graded encoding value of a
plaintext bit is related not only with the value of this bit, but also with values
of other plaintext bits (it means that a plaintext bit only has two values, while
its graded encoding has exponentially many values). Such structure avoids the
restriction of (3) of Proposition 2. Can it be such?

Notice that the zero-testing tool decoding-side of AJ15 IO frame (the decryp-
tor of FE(0)) owns is fixed. “Each bit has exponentially many graded encoding
values” & “fixed zero-testing tool”, which is a higher requirement for graded
encoding, and such a scheme has not appeared.
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Appendix A

Suppose that in randomized encoding schemes secret random numbers are changed
into secret fixed numbers, and shapes of component functions are known. The
leakage of the shape of original Boolean function is as the follow.

Randomized encoding schemes IK00/IK02/AIK04 [10,31,32] still have some
abilities to hide original Boolean function, but far from protecting the shape
of original Boolean function, and cannot promise that. More importantly, the
premise of such hiding ability is that decoding-side knows nothing about the orig-
inal Boolean function. For IO application, decoding-side knows that the original
Boolean function is from a public function group, therefore the hiding is more
fragile.

Randomized encoding scheme AIK06 [11] completely reveals the shape of
original Boolean function.
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