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Abstract—A flurry of excitement amongst researchers and
practitioners has produced modern proof systems built using
novel technical ideas and seeing rapid deployment, especially in
cryptocurrencies. Most of these modern proof systems use the
Fiat-Shamir (F-S) transformation, a seminal method of removing
interaction from a protocol with a public-coin verifier. Some
prior work has shown that incorrectly applying F-S (i.e., using
the so-called “weak” F-S transformation) can lead to breaks of
classic protocols like Schnorr’s discrete log proof; however, little
is known about the risks of applying F-S incorrectly for modern
proof systems seeing deployment today.

In this paper, we fill this knowledge gap via a broad theoretical
and practical study of F-S in implementations of modern proof
systems. We perform a survey of open-source implementations
and find 36 weak F-S implementations affecting 12 different
proof systems. For four of these—Bulletproofs, Plonk, Spartan,
and Wesolowski’s VDF—we develop novel knowledge soundness
attacks accompanied by rigorous proofs of their efficacy. We
perform case studies of applications that use vulnerable im-
plementations, and demonstrate that a weak F-S vulnerability
could have led to the creation of unlimited currency in a private
blockchain protocol. Finally, we discuss possible mitigations and
takeaways for academics and practitioners.

I. INTRODUCTION

Proof systems—cryptographic protocols in which a prover
convinces a verifier of the truth of some public statement—
have seen an explosion of interest from academic researchers
and practitioners. The resulting modern constructions, in par-
ticular those enjoying an additional zero-knowledge property,
are being widely deployed in blockchain and cryptocurrency
settings [5], [26], [55], [66], [68], [77], [80], [84], [94].
A critical security property shared by all proof systems
is soundness—roughly, this guarantees a prover can only
convince a verifier of the truth of actually true statements.
Applications like cryptocurrencies rely on soundness to, e.g.,
prevent attackers from creating money out of thin air.

Most proof systems used in practice are non-interactive:
they consist of a single message from the prover to the
verifier. Though built using novel and varied technical tools,
most modern non-interactive proof systems share a common
design pattern: first, build and analyze an interactive protocol
where the verifier’s messages consist solely of random values
(i.e., it is public-coin), then compile it to a non-interactive
protocol using the Fiat-Shamir (F-S) transformation [35]. The
transformation works by replacing the public-coin verifier with
a hash function: each verifier challenge is derived by the
prover by hashing the transcript of the prover’s messages
thus far. A standard result [76] shows that if done correctly,

this transformation preserves security if the hash function is
modelled as a random oracle [9].

Unfortunately, it is surprisingly easy to implement F-S
incorrectly. An important subtlety, which is not often dis-
cussed, is whether it is necessary to include public information,
such as the statement, in the transcript. The version of the
transformation where the public information is not hashed is
usually called weak F-S; if the public information is hashed,
this is usually called strong F-S (or simply F-S). (See Figure 1
for an example of the differences for Schnorr’s discrete log
proof.) Intuitively, hashing public information ensures that
the proof depends on the public information, preventing a
malicious prover from adaptively choosing it during, or even
after, generating a proof. Prior work has shown that many
classic proof systems, such as Schnorr [79] and Chaum-
Pedersen [25], cannot be adaptively sound if weak F-S is used;
further, this lack of adaptive soundness breaks applications that
use these proof systems. For example, an adaptive soundness
attack on Chaum-Pedersen was shown to compromise the
voting protocols Helios [13] and sVote [46].

Despite these important prior works, little is known about
the risks of weak F-S for the modern proof systems being
used in practice today. This gap in our knowledge is serious
for at least two reasons. First, modern proof systems are built
using newer and arguably more complex technical tools than
classic schemes, meaning prior attacks do not easily translate.
Second, since more proof systems are being deployed than
ever before, the potential attack surface is much larger, and
the consequences of attacks could be more severe. Thus, it is
crucial to understand whether vulnerable code exists and how
it could be exploited.

Our contributions. In this paper, we fill this gap with a broad
study of the risks of weak F-S in modern proof systems. Our
main contributions are fourfold: first, we perform an extensive
survey of over 75 open-source proof system implementations
that use F-S, uncovering 36 weak F-S implementations across
12 different proof systems. Second, for four of the proof
systems with at least one weak F-S implementation, we
construct, analyze, and implement novel knowledge soundness
attacks. Third, we perform case studies of how these proof
systems are used in applications, to understand whether our
weak F-S attacks would have led to breaks of real systems.
One case study shows that it would have been possible to
create unlimited money in the Dusk Network testnet [92].
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Fig. 1: Example weak Fiat-Shamir attack against Schnorr proofs for relation {((G, g), X;x) | X = gx}

Finally, we explore the landscape of mitigations, identifying
design criteria and studying how proposals would apply to
Merlin, a widely-used Rust library for implementing F-S.

Example of F-S for Schnorr. Before describing our contri-
butions in more detail, we will explain the basics of applying
F-S to the classic Schnorr protocol. The left-hand side of
Figure 1 describes the three moves of the interactive protocol
for proving knowledge of the discrete log x of an element
X in a prime-order group G with generator g. For Schnorr,
the group description and generator are examples of public
parameters that define the set of provable statements. The
group element X is the public input about which the prover is
generating a proof, and the value x is the witness the prover
wishes to hide.

The middle box of Figure 1 depicts the two ways of
applying F-S to Schnorr. In weak F-S, only the prover’s first
message A is hashed. In strong F-S, the hash additionally
includes the public parameters and public input. Finally, the
right box of the figure depicts the adaptive attack (due to [13])
that is possible if weak F-S is used: by computing the public
input X as a function of a randomly-generated proof, a
malicious prover can convince a verifier without knowing the
witness. Intuitively, strong F-S prevents this because the public
input X affects the derived challenge c.

Implementation survey. Table I summarizes our imple-
mentation survey of GitHub repositories containing imple-
mentations of proof systems. We used a combination of
manual search and automated dependency checking to find
the repositories. Overall, we identified at least 75 repositories
that attempted to implement a non-interactive proof system
using F-S. Of those, 36 used weak F-S. (For space reasons,
our table lists only the 54 repos of the 12 proof systems that
had at least one weak F-S implementation.) After a preliminary
public disclosure [65] of some of our results, many repositories
were fixed and are marked as such. The main takeaway of our
survey is that misuses of F-S are very widespread, and that
even production-quality code written by experts—who in some
cases are the creators of the proof system—implemented weak
F-S. Interestingly, we found several repositories that made
even more severe mistakes in implementing F-S; Section VIII
contains further discussion of these cases. We followed re-

sponsible disclosure best practices in informing all repository
owners about the vulnerabilities.

New attacks. For four proof systems with at least one
vulnerable implementation—Bulletproofs [22], Plonk [37],
Spartan [82], and Wesolowski’s VDF [90]—we show that
using weak F-S leads to attacks on their soundness when the
prover can choose the public inputs adaptively, as a function of
the proof. Importantly, our results do not invalidate the security
proofs for these schemes—when given explicitly, soundness
proofs for non-interactive, weak F-S variants of these protocols
provide only non-adaptive security.

In Section IV, we show an attack on the (adaptive) knowl-
edge soundness of the Bulletproofs aggregate range proof,
which would allow crafting Pedersen commitments to values
that lie outside the specific range with high probability. In Sec-
tions V and VI, we give our attacks on Plonk and Spartan, two
proofs systems that prove NP-complete constraint satisfaction
problems and are built using the recent polynomial interactive
oracle proofs (IOPs) paradigm [23], [27]. Both work by
having the malicious prover choose one of the public inputs
to the constraint system as a function of the proof; the public
input is chosen to ensure the verification equation—in both
cases, a polynomial identity—holds. Finally, in Section VII
we give our attack on Wesolowski’s VDF. Our attack allows
a malicious prover to craft a proof π for a small delay
parameter t, then compute a much larger parameter T � t for
which π is valid. Thus, the prover can claim to have done T
sequential squarings while having done only t. We implement
our attacks for Bulletproofs, Plonk, and Wesolowski’s VDF,
and experimentally verify that forged proofs can be generated
quickly: for example, our Bulletproofs attack can generate a
forged range proof with 32-bit range in 86 milliseconds.

Aside from the attacks themselves, an important novelty of
our work is that we rigorously prove all four attacks break
a well-specified soundness property of the proof system. For
Bulletproofs, Plonk, and Spartan, we prove our attacks violate
adaptive knowledge soundness via a meta-reduction argument:
roughly, we prove that if an extractor exists for our malicious
prover, this extractor could be used to break a cryptographic
hardness assumption like discrete log. This technique is similar
to the one used in prior work [13], but applying it here



Proof System Codebase Weak F-S?

Bulletproofs [22]

bp-go [87] 3

bulletproof-js [2] 3

simple-bulletproof-js [83] 3

BulletproofSwift [20] 3

python-bulletproofs [78] 3

adjoint-bulletproofs [3] 3

zkSen [98] 3

incognito-chain [51] 3©

encoins-bulletproofs [33] 3©

ZenGo-X [96] 3©

zkrp [52] 3©

ckb-zkp [81] 3©

bulletproofsrb [21] 3©

monero [68] 7

dalek-bulletproofs [29] 7

secp256k1-zkp [75] 7

bulletproofs-ocaml [74] 7

tari-project [85] 7

Litecoin [59] 7

Grin [44] 7

Bulletproofs
variant [40]

dalek-bulletproofs [29] 3©

cpp-lwevss [60] 7

Sonic [61]

ebfull-sonic [18] 3

lx-sonic [58] 3

iohk-sonic [53] 7

adjoint-sonic [4] 7

Schnorr [79] noknow-python [7] 3

Proof System Codebase Weak F-S?

Plonk [37]

anoma-plonkup [6] 3

gnark [17] 3©

dusk-network [31] 3©

snarkjs [50] 3©

ZK-Garage [97] 3©

plonky [67] 7

ckb-zkp [81] 7

halo2 [93] 7

o1-labs [71] 7

jellyfish [34] 7

matter-labs [62] 7

aztec-connect [8] 7

Wesolowski’s
VDF [90]

0xProject [1] 3

Chia [69] 3

Harmony [47] 3

POA Network [70] 3

IOTA Ledger [54] 3

master-thesis-ELTE [48] 3

Hyrax [89]
ckb-zkp [81] 3©

hyraxZK [49] 7

Spartan [82]
Spartan [64] 3©

ckb-zkp [81] 3©

Libra [91] ckb-zkp [81] 3©

Brakedown [43] Brakedown [19] 3

Nova [57] Nova [63] 3©

Gemini [16] arkworks-gemini [38] 3©

Girault [42] zk-paillier [95] 3©

TABLE I: Implementations surveyed. We include every proof system with at least one vulnerable implementation, and survey
all implementations for each one (except classic protocols like Schnorr and Girault). © = has been fixed as of May 15, 2023.

requires new technical ideas; e.g., for Plonk and Spartan, a
trivial extractor may exist for an “easy” constraint system. Our
proofs for Plonk and Spartan show that knowledge soundness
breaks as soon as the relation satisfies a slight strengthening of
worst-case hardness; our analysis here may be of independent
interest.

Application case studies. Dozen of implementations of the
four proof systems we examined are vulnerable to these
attacks, at least in theory. However, this does not necessarily
mean the applications that use them are broken by these
attacks—it could be that external application constraints pre-
vent exploiting weak F-S. To answer this question, we next
look at the applications that use vulnerable proof systems.
Here our findings are more mixed. While we identified one ap-
plication that is unambiguously broken by a weak F-S attack—
we show in Section V-C that it would have been possible
to create unlimited money in the Dusk Network testnet—our
other attacks do not appear to break applications. For Spartan,
we were not able to identify any vulnerable applications. For
Bulletproofs, the implementations we found that were actually
used in real applications were not vulnerable. Nevertheless,
we give a “counterfactual” case study of the Mimblewimble
protocol [55] to determine if our weak F-S attack could have
led to an application break; we find that creating unlimited
money would have been possible. For Wesolowski’s VDF,
constraints on the size of the delay parameter prevent our

malicious proofs from breaking some applications, like the
Chia blockchain, but we found at least one case (the 0x VDF
verifier smart contract) where no constraints exist.

Mitigations. Finally, in Section IX we discuss how to mit-
igate weak F-S attacks. We explore creating tools that can
detect weak F-S vulnerabilities in existing code, and also study
how existing tools, such as the Merlin library for F-S [28],
could be modified to make them harder to misuse. (Several
vulnerable implementations we found used Merlin.) To detect
weak F-S implementations, we describe how information-
flow analysis could be used to ensure variables in common
between the prover and verifier are hashed in the transcript.
To make it harder to implement F-S incorrectly, we suggest
modifying the Merlin API to force programmers to initialize
protocol transcripts with public inputs, or to specify all F-
S inputs and challenges upon initialization of the transcript.
These approaches have some drawbacks, which we discuss in
Section IX-A. We leave an implementation and evaluation of
these tools to future work.

A. Related Works

This paper extends and generalizes our preliminary results,
which were posted in a series of blog posts [65]. Compared
to the blog posts, we perform a more comprehensive imple-
mentation survey which uncover more vulnerable implemen-
tations, give attacks for two more proof systems (Spartan and



Wesolowski’s VDF), provide rigorous proofs that our attacks
break security, and give new case studies of practical impacts.

Our work is about the Fiat-Shamir transformation, originally
given in [35]. Our work also applies to variants of the
transformation for multi-round protocols, such as the BCS
transformation of [11]. We did not study protocols that use
quantum variants of F-S, such as the Unruh’s transforma-
tion [86]; our attacks should extend to these, but we leave
the details to future work. Our attacks do not apply to proof
systems that use only structured reference strings for non-
interactivity, such as Groth16 [45].

Our work is indebted to the seminal paper on weak F-S by
Bernhard et al. [13], which highlighted this issue and gave
attacks against Schnorr and Chaum-Pedersen. A key followup
to [13] that uncovered other weak F-S attacks on similar
sigma protocols, that also break voting systems, is [46]. As
discussed above, our work examines weak F-S in the context
of proof systems built in the last decade or so, which use
new and very different building blocks from older schemes:
these include non-constant-round interactive protocols, such
as Bulletproofs. We use a similar meta-reduction technique
to [13] for analyzing our attacks, though heavily modified to
account for the proof systems’ ability to prove more complex
(even NP-complete) relations.

Our work shows that the four non-interactive proof systems
we studied are not sound in an adaptive setting. There has been
some work finding different kinds of soundness bugs in proof
systems; these bugs are caused by faulty proofs and apply
even in the non-adaptive soundness setting. For example, [36]
found a soundness bug in the BCTV SNARK construction,
and [72] found a soundness bug in vnTinyRAM. Our attacks
do not stem from faulty proofs, but rather from a gap between
what the proofs guarantee and the security that applications
require.

II. PRELIMINARIES

A. Notation

We denote the security parameter by λ, and a negligible
function in λ by negl(λ). Our relations, cryptographic objects,
and adversaries all depend on λ; we often omit this depen-
dency. We use game-based security definitions [10]; here a
game GA1,...,An

S1,...,Sm
denotes a run of parties A1, . . . ,An on a

pre-specified set of procedures given by S1, . . . ,Sm, returning
a bit b ∈ {0, 1}. We denote by Pr

[
GA1,...,An
S1,...,Sm

]
the probability,

over the random coins used by all parties and the game itself,
that the game’s output is 1.

We denote by G a group, either of prime order p or of
unknown order, F a finite field of prime order p, and use
x

$← F to denote uniformly sampling an element in F. We
denote vectors by boldface x ∈ Fn, the inner product of
two vectors x,y ∈ Fn by 〈x,y〉, the element-wise product
by x ◦ y, subvectors by x[i:j] = (xi, xi+1, . . . , xj), vector
subscripts by xa = (xa1 , . . . , xam) where a ∈ [n]m, and
multi-exponentiation between g ∈ Gn and x ∈ Fn by gx.
For y ∈ F, we denote yn = (1, y, . . . , yn−1). We write

Game DLAG (λ)

h
$← G \ {g}

a← A(g, h)
return (ga = h)

Game DL-RELAG,n(λ)

g1, . . . , gn
$← G

(a1, . . . , an)← A(g1, . . . , gn)

return

(
n∏
i=1

gaii = 1

)
∧ ((a1, . . . , an) 6= 0n)

Fig. 2: Games for Discrete Log

p(X) ∈ F<d[X] to denote a (univariate) polynomial of
degree less than d, and p(X) ∈ F[µ] to denote a multilinear
polynomial in µ variables.

Lagrange basis. Given a finite field F and a subgroup H =
〈ω〉 of order n, for every i ∈ [n] we can define the Lagrange
polynomial Li(X) to be the unique polynomial of degree n−1
that satisfies Li(ω

i) = 1 and Li(ω
j) = 0 for j 6= i. For any

vector x ∈ Fn, there exists a unique polynomial p(X) of
degree at most n − 1 that satisfies p(ωi) = xi; we have the
identity p(X) =

∑n
i=1 xi · Li(X).

Multilinear extension. Given g : {0, 1}µ → F, we define

g̃(X1, . . . , Xµ) ∈ F[X1, . . . , Xµ]

to be the unique multilinear polynomial with evaluation
g̃(y) = g(y) for all y ∈ {0, 1}µ, called the multilinear
extension of g. We have the identity

g(X1, . . . , Xµ) =
∑

y∈{0,1}µ
g(y) · ẽq(X, y),

where

eq(X,Y ) =

µ∏
i=1

(Xi · Yi + (1−Xi) · (1− Yi)).

Here ẽq(X,Y ) is the analogue of the Lagrange basis in the
multilinear setting; we have eq(x, x) = 1 and eq(x, y) = 0 if
x 6= y.

B. Discrete Log Assumptions

Let G be a prime-order group (depending on λ), with
generator g and scalar field F.

Definition 1: We say that the discrete log (DL) assumption
holds for G if for all PPT adversaries A, the following proba-
bility is negligible in λ:

AdvDL
G (A) := Pr

[
DLAG (λ)

]
.

We say that the discrete log relation (DL-REL) assumption
holds for G if for all PPT adversaries A and all n ∈ N, the
following probability is negligible in λ:

AdvDL-REL
G,n (A) := Pr

[
DL-RELAG,n(λ)

]
.

The two discrete log assumptions are tightly related [41].
Lemma 1: For every PPT adversary A against DL-REL,

there exists a PPT adversary B against DL, nearly as efficient



as A, such that

AdvDL-REL
G,n (A) ≤ AdvDL

G (B) +
1

|F|
.

C. Interactive Arguments

An interactive argument for an NP relation R is
a tuple of PPT algorithms Π = (Setup,P,V). Here
Setup(1λ) → pp produces public parameters pp given a
security parameter 1λ, and 〈P(w),V〉(pp, x) → {0, 1} is an
interactive protocol whereby the prover P , holding a witness
w, interacts with the verifier V on common input (pp, x) to
convince V that (x,w) ∈ R. At the end, V outputs a bit to
accept or reject the proof.

We require that interactive arguments satisfy complete-
ness and knowledge soundness. Completeness states that
for every pp ← Setup(1λ) and (x,w) ∈ R, we have
〈P(w),V〉(pp, x)→ 1. Knowledge soundness states that there
exists an expected polynomial time extractor E such that
for any stateful PPT adversary P∗, the probability that P∗
manages to convince V on an input x chosen by P∗, yet E
cannot find a witness w for x, is negligible. Here E gets black-
box access to each of the next-message functions of P∗ in the
interactive protocol.

The interactive arguments we consider are public-coin,
meaning that in each round the verifier V samples its mes-
sage uniformly at random from some challenge space. Such
protocols have a (r+ 1)-round format where P sends the first
and last messages. In particular, the transcript is of the form
(a1, c1, . . . , ar, cr, ar+1), where (a1, . . . , ar+1) are messages
sent by P and (c1, . . . , cr) are challenges sent by V .

D. Non-Interactive Arguments in the ROM

The Fiat-Shamir transformation (see Section II-E) is often
used to compile public-coin interactive arguments into their
non-interactive versions in the random oracle model (ROM)
[9]. We denote the random oracle by H : {0, 1}∗ → {0, 1}∗.

Definition 2: A non-interactive argument of knowledge
(NARK) in the ROM for a NP relation R is a tuple of PPT
algorithms Π = (Setup,P,V), with P,V having black-box
access to a random oracle H, with the following syntax:
• Setup(1λ)→ pp : generates the public parameters forR,
• PH(pp, x, w)→ π : generates a proof,
• VH(pp, x, π)→ {0, 1} : checks whether a proof π is valid

with respect to pp and input x.
We require NARKs to satisfy the following properties.
• Completeness. For every (x,w) ∈ R,

Pr

[
VH(pp, x, π) = 1 :

pp← Setup(1λ)

π ← PH(pp, x, w)

]
= 1.

• Knowledge soundness. For every PPT adversary P∗, there
exists an extractor E running in expected polynomial time
such that the following probability is negl(λ):

AdvKS
Π,R(E ,P∗) :=

∣∣∣Pr[KSP
∗

0,Π(λ)]− Pr[KSE,P
∗

1,Π,R(λ)]
∣∣∣.

The KS games are defined in Figure 3.

Game KSP
∗

0,Π(λ)

pp← Setup(1λ)

(x, π)← (P∗)H(pp)
b← VH(pp, x, π)

return b

Game KSE,P
∗

1,Π,R(λ)

pp← Setup(1λ)

(x, π)← (P∗)H(pp)
b← VH(pp, x, π)

w ← E(P∗, pp, x, π)
return b ∧ (x,w) ∈ R

Fig. 3: Knowledge soundness security games. Here the ex-
tractor E is given the description of P∗; in particular, it may
rewind P∗ and reprogram the random oracle H.

We note that our knowledge soundness definition is both non-
black-box, where the extractor may depend on (the code of)
the malicious prover P∗, and adaptive, meaning the malicious
prover P∗ can choose the pair (x, π) at the same time.
The adaptive strengthening is often necessary in practice, as
evidenced by our case studies (e.g., see Section IV-C). We also
discuss the situation where P∗ may also influence the public
parameters pp in Section VIII. On the other hand, non-black-
box extraction is a weaker extractability requirement [24]1,
including extracting using non-falsifiable knowledge assump-
tions [12], [39], [45], [73]. Looking ahead, our results for
Plonk and Spartan ruling out non-black-box extraction for
“sufficiently hard” relations will also rule out black-box ex-
traction.

E. The Fiat-Shamir Transformation

We define both variants (weak and strong) of the Fiat-
Shamir transformation.

Definition 3: Let Π = (Setup,P,V) be a public-
coin interactive argument with transcript of the form tr =
(a1, c1, . . . , ar, cr, ar+1). The strong Fiat-Shamir transforma-
tion turns Π into a non-interactive argument ΠsFS where:

• SetupsFS(1λ) is the same as Setup(1λ),
• the prover PsFS, on input (pp, x, w), invokes P(pp, x, w),

and instead of asking the verifier for challenge ci in round
i, queries the random oracle to get

ci ← H(pp, x, a1, . . . , ai) ∀ i = 1, . . . , r.

PsFS then outputs the proof π = (a1, . . . , ar, ar+1).
• the verifier VsFS, on input (pp, x, π), derives challenges
ci by querying the random oracle as above, then runs
V(pp, x) on transcript (a1, c1, . . . , ar, cr, ar+1) and out-
puts what V outputs.

The weak Fiat-Shamir transformation is similar, except that
we omit the public parameters pp and the input x from the hash,
so that

ci = H(a1, . . . , ai) ∀ i = 1, . . . , r.

We denote the weak Fiat-Shamir transformed argument by
ΠwFS = (Setup,PwFS,VwFS).

1In contrast, black-box extraction requires a single extractor that works for
all malicious provers, and may only rely on its input-output behavior.



F. Polynomial Interactive Oracle Proofs

We describe the formalism of polynomial IOPs [23], [27]
that underlies Plonk and Spartan.

Polynomial IOP. A (public-coin) polynomial IOP for a
NP relation R (depending on a field F) is a tuple of PPT
algorithms (I,P,V) with the following protocol format. In
the preprocessing phase, the indexer I(F,R) outputs a list of
preprocessed polynomial oracles i. In the interaction phase,
the prover P is given (i,x,w) and the verifier V is given
(i,x). In each round i, P sends a list of polynomial oracles
pi, and V responds with a random challenge ci. In the query
phase, V may query any of the polynomial oracle p, obtained
as part of i or pi for some round i, at any evaluation point z to
get the corresponding evaluation p(z). V then outputs accept or
reject. Completeness and knowledge soundness for polynomial
IOPs are defined similarly to interactive arguments; see [27]
for full definitions.

Polynomial Commitment Scheme. A polynomial commit-
ment scheme (PC) is a tuple of PPT algorithms PC =
(Setup,Commit) and an interactive argument Open with the
following syntax:
• Setup(1λ, µ,D) → pp : sets up public parameters pp

given number of variables µ and maximum individual
degree D,

• Commit(pp, p;ω)→ [p] : outputs a commitment [p] to a
polynomial p ∈ F≤D[X1, . . . , Xµ], using randomness ω,

• Open := 〈PPC(p, ω),VPC〉(pp, [p], x, v) → {0, 1} is a
public-coin interactive argument for the relation p(x) = v
and [p] = Commit(pp, p;ω).

We consider two types of PCs in our paper, one for univariate
polynomials (µ = 1) and one for multilinear polynomials
(D = 1). We define completeness and knowledge soundness
of PC to be the corresponding property for Open.

Compiling to non-interactive arguments. Any polynomial
IOP can be composed with any polynomial commitment
scheme PC to form a public-coin interactive argument Π =
(Setup,P,V), which can then be turned non-interactive via
Fiat-Shamir. The former step is done as follows:
• Setup(1λ) : runs PC.Setup(1λ) → ppPC, I(F,R) → i,

and PC.Commit(ppPC, i) → [i] for all i ∈ i. Outputs
pp = (ppPC, ([i])i∈i).

• 〈P(w),V〉(pp,x) : emulate the interaction phase of the
polynomial IOP, with P sending a polynomial commit-
ment [p] instead of an oracle for each polynomial p. P,V
then emulate the query phase, with each query v ← p(z)
replaced by P sending the evaluation v, followed by an
execution of PC.Open to prove that v = p(z).

III. ATTACK OVERVIEW

In this section, we give a common template for our attacks
against weak Fiat-Shamir transformations, with the attack on
Schnorr (see Figure 1) as an explicit example. In the following
sections, we will use this template to instantiate attacks against
Bulletproofs, Plonk, Spartan, and Wesolowski’s VDF. Since

the details vary greatly between each proof system, we urge
the reader to cross-reference the template here with the details
of each attack.

1) First, we identify the part of the public statement that
is not included in the Fiat-Shamir transformation (e.g.,
certain public parameters or public inputs to a circuit).
For Schnorr, this includes the public input X .

2) We then identify the verification step that relies on these
public values. For Schnorr, the check is gz ?

= A ·Xc.
3) We select arbitrary witness values and randomness for

proof generation, then use them to compute all intermedi-
ate proof values. For Schnorr, we sample random A

$← G
and z $← F.

4) Finally, we use the intermediate values from step 3
to solve for the public value that will always pass
the verification step from step 2. For Schnorr, we set
X = (gz/A)1/c.

We leave to future work the task of using this template to
instantate attacks against other proof systems, especially the
ones appearing in Table I for which we did not give attacks
in this paper.

IV. BULLETPROOFS

In this section, we describe an attack that is possible when
the Bulletproofs aggregate range proof protocol (BP-ARP)
[22] is instantiated with weak Fiat-Shamir and consider the
practical impacts of such an attack on MimbleWimble [55].

A. Protocol Description

Aggregate range proof relation. In an aggregate range
proof, the public input is a vector of commitments V =
(Vi)i∈[m], and the prover’s task is to show that Vi is a
commitment of a value vi belonging to small range [0, 2n−1].
Formally, we consider the relation

RBP-ARP =

{
((m,n,g,h, g, h, u),V, (v,γ)) :

Vj = gvjhγj ∧ vj ∈ [0, 2n − 1] ∀j ∈ [1,m]

}
Here m,n are powers of 2, and g,h ∈ Gm·n, g, h, u ∈ G are
generators with unknown discrete log relations.

Converting to inner product argument. To prove vi ∈
[0, 2n−1] for all i ∈ [m], the prover will commit to the bit de-
composition aL of v1, . . . , vm and prove that: (1) aL ◦aR = 0
where aR = aL − 1m·n, and (2) 〈(aL)[(i−1)n,in−1],2

n〉 = vi
for all i ∈ [m]. To achieve zero-knowledge, the prover also
samples blinding vectors sL, sR

$← Fm·n and computes two
vector polynomials `(X), r(X) ∈ Fm·n[X], which encodes
all checks above into a single inner product claim. Finally, the
inner product claim is proved using the Bulletproofs’ inner
product argument BP-IPA.

We describe the protocol BP-ARP in Figure 5, which uses
the BP-IPA subprotocol in Figure 4. The single range proof
protocol BP-RP is a special case of BP-ARP when m = 1.



Inner Product Relation. Given a power of two n = 2k and
vectors of group elements g,h ∈ Gn,

RIPA =
{
((n,g,h, u), P, (a,b)) | P = gahbu〈a,b〉

}
.

Interaction Phase. Set n0 ← n,g(0) ← g,h(0) ← h,
P (0) ← P,a(0) ← a,b(0) ← b.

For i = 1, . . . , k:
1) P computes ni ← ni−1/2, cL ← 〈a(i)

[:ni]
,b

(i)

[ni:]
〉,

cR ← 〈a(i)

[ni:]
,b

(i)

[:ni]
〉, and

Li ←
(
g

(i−1)

[ni:]

)a(i)
[:ni]

(
h

(i−1)

[:ni]

)b(i)
[ni:] ucL ,

Ri ←
(
g

(i−1)

[:ni]

)a(i)
[ni:]

(
h

(i−1)

[ni:]

)b(i)
[:ni] ucR .

P sends Li, Ri to V .

2) V sends challenge xi
$← F∗.

3) P , V both compute

g(i) ←
(
g

(i−1)

[:ni]

)x−1
i ◦

(
g

(i−1)

[ni:]

)xi
,

h(i) ←
(
h

(i−1)

[:ni]

)xi
◦
(
h

(i−1)

[ni:]

)x−1
i
,

P (i) ← L
x2i
i P

(i−1)R
x−2
i
i .

4) P computes a(i) ← a
(i−1)

[:ni]
· x−1

i + a
(i−1)

[ni:]
· xi and

b(i) ← b
(i−1)

[:ni]
· xi + b

(i−1)

[ni:]
· x−1

i .

After k rounds, P sends a(k),b(k) to V .
Verification. V checks whether

P (k) ?
=
(
g(k)

)a(k) (
h(k)

)b(k)

ua(k)·b(k)

.

Fig. 4: Bulletproofs’ Inner Product Argument BP-IPA

B. Attack Explanation

When BP-ARP is instantiated with a weak Fiat-Shamir
transformation, the challenges are derived without hashing the
commitments V. In this case, we describe an attack against
BP-ARPwFS in Figure 6. Our attack differs from an honest
prover’s algorithm in two ways—first, we sample t1, t2, τx
uniformly at random, and second, we choose vi, γi for i ∈ [m]
after computing the proof π. Our attack extends to the single
(i.e. non-aggregate) range proof as well.

Correctness and performance. We show that our attack
produces accepting proofs. Recall from Figure 5 that the
verifier for BP-ARPwFS checks the following: (1) whether
πBP-IPA is accepting, and (2) whether

gt̂hτx = V(z2,...,zm+1) · gδ(y,z) · T x1 · T x
2

2 (2)

Since our attack uses a valid witness (l, r) to generate πBP-IPA,
this proof will be accepted by the verifier. Our choice of vi, γi
for i ∈ [m] in step 8 of our attack then ensures that Equation 2
holds as well.

We implemented our attack in about 100 lines of Go, and
verified that our forged proofs are accepted by zkrp [52].

Public Parameters. (m,n,g,h, g, h, u).
Public Input. (Vi)i∈[m] Witness. (vi, γi)i∈[m].
Interaction Phase.
1) P samples α, ρ $← F, sL, sR

$← Fm·n and computes
aL ∈ {0, 1}m·n such that

〈(aL)[(j−1)n,jn−1],2
n〉 = vj ∀j ∈ [1,m],

aR = aL − 1m·n,

A = hαgaLhaR , S = hρgsLhsR .

P sends A,S to V .

2) V sends challenges y, z $← F∗.

3) P samples τ1, τ2
$← F and computes

`(X) = (aL − z · 1m·n) + sL ·X,
r(X) = ym·n ◦ (aR + z · 1m·n + sR ·X)

+

m∑
j=1

zj+1 ·
(
0(j−1)n‖2n‖0(m−j)n

)
,

t(X) = 〈`(X), r(X)〉 = t0 + t1 ·X + t2 ·X2,

T1 = gt1hτ1 , T2 = gt2hτ2 .

P sends T1, T2 to V .

4) V sends challenge x $← F∗.
5) P computes

l = `(x), r = r(x), t̂ = 〈l, r〉, µ = α+ ρ · x,

τx = τ2 · x2 + τ1 · x+

m∑
j=1

zj+1 · γj .

P sends t̂, τx, µ to V .

6) V sends challenge w $← F∗.
7) P,V both compute h′ = hy−m·n , u′ = uw, and

P ′ = h−µ ·A · Sx · g−z·1
m·n
· (h′)z·y

m·n

·
m∏
j=1

(h′)z
j+1·2n

[(j−1)n,jn−1](u
′)t̂.

8) P,V engage in BP-IPA for the triple
((m · n,g,h′, u′), P ′, (l, r)).
Verification.
1) V rejects if BP-IPA fails.
2) V computes

δ(y, z) = (z − z2) · 〈1m·n,ym·n〉 −
m∑
j=1

zj+2 · 〈1n,2n〉,

R = Vz2·zm · gδ(y,z) · T x1 · T x
2

2 .

3) V checks whether gt̂hτx ?
= R.

Fig. 5: Bulletproofs’ Aggregate Range Proof BP-ARP

We benchmarked forged proof generation on an Intel Core i9
running at 2.4 GHz with 16 GB of RAM. Our implementation
was able to generate single range proofs (i.e. m = 1) for 8-bit
ranges in about 23.9 milliseconds, for 16-bit ranges in 44.7
milliseconds, and for 32-bit ranges in 86.0 milliseconds. Due
to limitations of the zkrp library, larger ranges could not be
tested.



0) Initialize empty proof π = ε.

1) Sample aL
$← {0, 1}n, α, ρ $← F, sL, sR

$← Fn, and compute

aR = aL − 1n, A← hαgaLhaR , S ← hρgsLhsR .

Append A,S to π.
2) Query challenges y, z ← H(π).

3) Sample t1, t2
$← F, τ1, τ2

$← F and compute

T1 ← gt1hτ1 , T2 ← gt2hτ2 .

Append T1, T2 to π.
4) Query challenge x← H(π).
5) Compute

l← (aL − z · 1n) + sL · x,
r← yn ◦ (aR + z · 1n + sR · x) + z2 · 2n,
t̂ = 〈l, r〉, µ← α+ ρ · x.

Sample τx
$← F and append t̂, τx, µ to π.

6) Query challenge w ← H(π).
7) Compute h′, u′, P ′ as in Figure 5, and a proof πBP-IPA for
the statement P ′ = gl (h′)

r
(u′)t̂. Append πBP-IPA to π.

8) Choose v1, . . . , vm, γ1, . . . , γm ∈ F such that

v1z
2 + · · ·+ vmz

m+1 = t̂− t1 · x− t2 · x2 − δ(y, z), (1)

γ1z
2 + · · ·+ γmz

m+1 = τx − τ2 · x2 − τ1 · x.

Set Vi = gvihγi for all i ∈ [m] and V = (Vi)i∈[m].
9) Output (V, π).

Fig. 6: Weak Fiat-Shamir Attack Against BP-ARPwFS

Provable insecurity. We show that BP-ARPwFS is not knowl-
edge sound if the discrete log relation assumption holds in the
underlying group, and if 2n/|F| is negligible. (Note that this is
usually the case in practice, with typical parameters of n ≤ 64
and |F| ≥ 2256.) The intuition is that at least one of the values
vi computed by the malicious prover falls outside the range
[0, 2n − 1] with overwhelming probability. Hence no efficient
extractor could recover values in the range consistent with the
commitments, since that would lead to a non-trivial discrete
log relation.

Theorem 4: Assume G satisfies DL-REL, and that 2n/|F| =
negl(λ). Then BP-ARPwFS is not knowledge sound.

Proof: Denote by P∗ the weak Fiat-Shamir malicious prover
described in Figure 6, with the following specification for step
8: P∗ chooses v2, . . . , vm uniformly at random, then sets v1 to
satisfy Equation 1. Since P∗ always outputs accepting proofs,
we have Pr

[
KSP

∗

0,BP-ARPwFS

]
= 1. We will show that for every

extractor E , there exists an adversary A, nearly as efficient as
E , against DL-REL such that

Pr
[
KSE,P

∗

1,BP-ARPwFS,R

]
≤ AdvDL-REL

G,2 (A) + negl(λ).

Thus, if DL-REL holds in G, then E has a negligible chance
of outputting a valid witness, and thus BP-ARPwFS cannot be
knowledge sound against P∗. Before we describe A, we note

the following fact about the distribution of v1. By construction,
P∗ chooses v1 to be the unique value such that

v1 = z−2 ·
(
t̂− t1 · x− t2 · x2 − δ(y, z)

)
− v2z − · · · − vmzm−1.

Since t1, t2, v2, . . . , vm are sampled uniformly at random,
it follows that v1 is uniformly distributed. Since 2n/|F| =
negl(λ), we have v1 ∈ [0, 2n − 1] with negligible probability.
The adversary A now works as follows: first, it receives
generators g, h

$← G in the DL-REL game. A then sam-
ples extra random generators g,h, u and sets up the game
KSE,P

∗

1,BP-ARPwFS,R with pp = (m,n,g,h, g, h, u). A runs P∗
once to produce (V, π), then gives E the description of P∗
along with (V, π). When E returns a witness (v′i, γ

′
i)i∈[m], A

returns (v1− v′1, γ1−γ′1) in the DL-REL game. If E outputs a
valid witness, we have a discrete log relation gv1hγ1 = V1 =
gv
′
1hγ

′
1 with v′1 ∈ [0, 2n − 1]. As mentioned above, we know

that v1 ∈ [0, 2n−1] with negligible probability; as long as that
does not happen, A wins whenever E outputs a valid witness.
This concludes our proof.

C. Practical Impacts

We surveyed 20 implementations of Bulletproofs and 2
implementations of a Bulletproofs variant [40] to determine
if they were vulnerable to a weak Fiat-Shamir attack. Of
the 22 codebases surveyed, we found 14 of them to be
vulnerable. Of these 14 vulnerable implementations, 7 of them
appear to be more experimental implementations, describing
themselves as "university projects" or "proofs of concept."
5 of the vulnerable implementations, which have now been
fixed, were developed by organizations, seemingly with the
intent of being used. We believe it is likely that this high
fraction of vulnerable implementations is the result of a typo
(which has been fixed) in the original Bulletproofs paper,
which specified a weak Fiat-Shamir implementation. Most of
the 7 non-vulnerable implementations, on the other hand, were
audited and maintained by organizations with the intent of
using them in production.

Attacking applications that use weak Fiat-Shamir. To
understand how our attack on the soundness of Bulletproofs
could lead to attacks on applications that use vulnerable im-
plementations, we surveyed the applications that use the Bul-
letproofs implementations in our repositories. The two main
applications represented are both privacy-preserving payments
protocols: Monero [68] and MimbleWimble [55]. Fortunately,
it appears that the Bulletproofs repositories used by these
applications implement strong Fiat-Shamir transformations, so
no concrete applications are vulnerable. 2

Because we want to understand how future applications
could be broken by weak Fiat-Shamir transformations, though,
we believe it is useful to perform a counterfactual case study:

2After this paper was accepted, we discovered another vulnerable im-
plementation of Bulletproofs used by Incognito Chain [51], whose privacy
protocol shares similarities with that of Monero. At the time of writing, the
vulnerability has been patched; we will defer a full writeup to a future version
of our paper.



what if an implementation of the MimbleWimble protocol had
used a vulnerable Bulletproofs implementation?

MimbleWimble background. MimbleWimble [55] is a
cryptocurrency protocol that uses Bulletproofs to achieve con-
fidential transactions. Coins are represented as Pedersen com-
mitments to a value v and blinding factor r. Coins are spent by
transactions consisting of input coins {Cin,1, ..., Cin,n}, output
coins {Cout,1, ..., Cout,m}, a value S, and a “transaction kernel”
consisting of different types of validity proofs. The number of
input and output coins is limited in some cases to small values
like 20 and 30, respectively, though Litecoin’s implementation
[59] could potentially allow hundreds of output coins. Among
these proofs is a range proof that the value of each input and
output coin is in a specified range small enough to ensure the
sums

∑n
i=1 vin,i and

∑m
i=1 vout,i do not overflow modulo the

group order p. (A typical choice for p will be roughly 256
bits.) To be a valid transaction, the equation

n∑
i=1

vin,i −
m∑
i=1

vout,i = S mod p (3)

must be satisfied. An important additional constraint is that the
public supply value S is relatively small — e.g., in Litecoin
[59], they must be in the range [0, 264].

Attacking MimbleWimble. Ordinarily, the range proofs
prevent the committed coin values from being large enough to
overflow mod p; however, our attack allows one to compute
valid range proofs for commitments to uniformly random
elements of Zp (which are highly likely to be outside the
range). Thus, to craft a valid transaction that forges money,
an attacker need only construct output coins with values that
satisfy Equation 3. The difficulty of doing this depends on
whether the protocol uses the aggregate range proof for all
coins, or a single range proof for each coin.

In the case where each output coin has its own range
proof—and therefore each value can be chosen independently
of all others—we can express this as a generalized birthday
problem [88] with as many lists as there are output coins.
For simplicity, assume the attacker uses 30 output coins. In
expectation, as soon as each list has 2dlog pe/30 ≈ 29 elements,
a solution will exist, but may be difficult to compute efficiently.
By applying the k-sum algorithm of [88] for k = 30, we
can compute a solution in time roughly 243 after computing
roughly 243 forged proofs for each of the 30 coins. (For
simplicity, we ignore other choices an attacker could make,
such as choosing S or some of the input coins, that might
make the attack less expensive.)

Our attack relies on being able to choose each output coin’s
value independently of all others. If MimbleWimble used the
Bulletproofs aggregate range proof protocol, our generalized
birthday attack would not obviously translate, since the last
step of the weak Fiat-Shamir forgery would choose all 30
output coins at the same time. Surprisingly, we show that an
even easier attack is possible against MimbleWimble if an
aggregate range proof is used. (See Figure 6, which shows our

attack against BP-ARP instantiated with a weak Fiat-Shamir
transformation.) Note in the figure that in the last step, the
public input V is chosen by solving linear equations for the
values and blinding factors. Adding in Equation 3 as another
linear constraint on the values, we only have two constraints
and 30 variables. Thus, the attacker can freely choose the
values of 28 of the output coins, and must only set the last
two so that the forged proof is valid and the balance equation
holds. This attack is very fast, needing only to solve a small
linear system in F.

In both cases, once the attacker has crafted a valid transac-
tion with forged output coins, they have created funds out of
thin air by overflowing the balance equation. To spend newly-
created coins whose values are outside the allowed range,
the attacker would need to craft another weak F-S proof that
overflows the balance equation again.

V. PLONK

A. Protocol Description

Constraint system. Plonk handles fan-in two arithmetic
circuits with unlimited fan-out. For such a circuit with n gates
and m wires, we define a constraint system C = (V,Q) where

• V = (a,b, c) ∈ ([m]n)
3 consists of the left, right, and

output sequence.
• Q = (qL,qR,qO,qM,qC) ∈ (Fn)

5 consists of selector
vectors.

Here F is a finite field containing a subgroup H = 〈ω〉 of
order n. An assignment of values to wires x ∈ Fm satisfies C
if

qL ◦ xa + qR ◦ xb + qO ◦ xc + qM ◦ xa ◦ xb + qC = 0.

To define a relation R based on C, we set a subset {1, . . . , `}
of the wires to be public inputs PI and the rest to be the
witness. The constraint system is set up so that the first `
constraints are of the form xai − PIi = 0, where ai = i.

Converting to polynomial constraints. Plonk proves the
satisfiability of its constraint system by reducing to certain
polynomial identities. We encode vectors into polynomials in
the Lagrange basis, i.e. we define qY(X) =

∑n
i=1(qY)iLi(X)

for Y ∈ {L,R,O,M,C}. The public input and witness are
encoded into three polynomials p(X) =

∑n
i=1 xpiLi(X) for

p ∈ {a, b, c}. Circuit satisfiability then reduces to checking
that eq(X) vanishes on H , where

eq(X) = a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X)

+ c(X)qO(X) + PI(X) + qC(X).

We also need to check the consistency of the wiring. [37]
defines a permutation σ : [3n] → [3n] that encodes this
consistency check, converts it into polynomial constraints by
letting the prover send a polynomial z(X), and then checks
that the following holds over H: (1) (z(X) − 1)L1(X) = 0
and (2) per(X) = 0, where

per(X) = (a(X) + βX + γ)(b(X) + βk1X + γ)

(c(X) + βk2X + γ)z(X) − (a(X) + βSσ1(X) + γ)

(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(ωX).



Preprocessed Polynomials.
• Selector polynomials qL(X), qR(X), qO(X), qM(X), qC(X).
• Permutation polynomials (Sσ1(X), Sσ2(X), Sσ3(X)).

Public Input. (wi)i∈[`]. Witness. (wi)i∈[`+1,3n].
Interaction Phase.
1) P samples b1, . . . , b6

$← F and sends wire polynomials

a(X) =

n∑
i=1

wiLi(X) + (b1X + b2)ZH(X),

b(X) =

n∑
i=1

wn+iLi(X) + (b3X + b4)ZH(X),

c(X) =

n∑
i=1

wn+iLi(X) + (b5X + b6)ZH(X).

2) V sends permutation challenges β, γ $← F.

3) P samples b7, b8, b9
$← F and sends permutation polynomial

z(X) = (b7X
2 + b8X + b9)ZH(X) + L1(X) +

n∑
i=2

Li(X) ·

i−1∏
j=1

(wj+βω
j−1+γ)(wn+j+βk1ω

j−1+γ)(w2n+j+βk2ω
j−1+γ)

(wj+βω∗(j)+γ)(wn+j+βω∗(n+j)+γ)(w2n+j+βω∗(2n+j)+γ)
.

4) V sends quotient challenge α $← F.
5) P computes quotient polynomial

t(X) =
1

ZH(X)

(
eq(X) + α per(X) + α2(z(X)− 1)L1(X)

)
split into three parts

t(X) = t′lo(X) +Xnt′mid(X) +X2nt′hi(X).

P then samples b10, b11
$← F and sends polynomials

tlo(X) = t′lo(X) + b10X
n,

tmid(X) = t′mid(X)− b10 + b11X
n,

thi(X) = t′hi(X)− b11.

Query Phase.
1) V samples evaluation challenge z

$← F.
2) V queries the polynomial oracles qY(X) for
Y ∈ {L,R,O,M,C}, Sσj(X) for j ∈ {1, 2, 3}, a(X),
b(X), c(X), z(X), tlo(X), tmid(X), thi(X) at z, and z(X) at
zω. V receives the corresponding evaluations from P .

3) V computes ZH(z) = zn − 1, L1(z) = ω(zn−1)
n(z−ω)

, and
PI(z) =

∑
i∈[`] wiLi(z).

4) V uses the above evaluations to check that Equation 4 holds
at z, namely that

eq(z) + α · per(z) + α2 · (z(z)− 1)L1(z)

= ZH(z)(tlo(z) + zntmid(z) + z2nthi(z)).

Fig. 7: The Plonk Polynomial IOP

Here Sσj(X) are uniquely defined based on σ for j ∈
{1, 2, 3}, k1, k2 are chosen such that H 6= k1H 6= k2H , and
β, γ are the verifier’s challenges. The three vanishing claims
over H can be batched together with a challenge α, and by
the prover sending a quotient polynomial t(X) satisfying

eq(X)+α ·per(X)+α2 ·(z(X)−1)L1(X) = ZH(X)t(X), (4)

where ZH(X) =
∏
h∈H(X − h).

The Plonk polynomial IOP. We now describe Plonk as
a polynomial IOP; see Figure 7 for the full protocol. By a
slight abuse of notation, we use Plonk (and later Spartan) to
refer to both the polynomial IOP and the interactive argument
obtained after instantiating with a polynomial commitment
scheme; the usage will be clear from context. The preprocessed
polynomials consist of the selector polynomials qY(X) for
Y ∈ {L,R,O,M,C}, and the polynomials Sσj(X) for j ∈
{1, 2, 3}. In the first round, the prover P sends polynomials
a(X), b(X), c(X) encoding the public input and witness.
The verifier V responds with challenges β, γ $← F used in
the permutation argument. In the second round, P sends the
permutation polynomial z(X), and V responds with challenge
α

$← F used in batching the polynomial checks. In the third
round, P sends the quotient polynomial t(X), broken down
into three parts tlo(X), tmid(X), thi(X) of small degree to
be compatible with the polynomial commitment scheme. (To
achieve zero-knowledge, all the polynomials sent here by P
are blinded.) In the query phase, V samples an evaluation
point z

$← F, then checks the polynomial identity (4) at z
by querying all polynomials sent by P at that point.

Our exposition differs from [37], which described Plonk
with certain optimizations specific to the KZG polynomial
commitment scheme [56]. This does not affect the applicability
of our attack, as discussed next.

B. Attack Explanation

We consider the weak Fiat-Shamir variant PlonkwFS, which
is the non-interactive argument obtained by applying the trans-
formation in Section II-F to the Plonk polynomial IOP. Our
attack is presented in Figure 8; there, we assume that Plonk is
instantiated with a polynomial commitment scheme supporting
polynomials of degree up to n + 5, and denote by [p] the
commitment to a polynomial p(X). Since the public input PI
is not bound to the challenges, our cheating prover will do the
following: (1) in the first three rounds, send commitments to
arbitrarily chosen polynomials, (2) provide a proof of correct
evaluations for all polynomials at the challenge point, and (3)
set the public input PI to satisfy the verifier’s check.

Specializing our attack to [37]. The Plonk protocol in
[37] leverages the homomorphic property of KZG to make
the following optimizations. First, the prover only needs to
send evaluations (a(z), b(z), c(z),Sσ1(z),Sσ2(z), z(ωz)), and
the verifier will homomorphically compute a commitment
to the linearized polynomial r(X). Instead of checking that
Equation 4 holds at z, the verifier only needs to check
r(z) = 0. Second, the evaluation checks can be batched
together with challenges u, v

$← F. Our attack easily spe-
cializes to these optimizations, with the only change in step
7. In that step, the malicious prover will compute evaluations
(a(z), b(z), c(z),Sσ1(z),Sσ2(z), z(ωz)) and append them to π,
query challenge v ← H(π), then compute a batched proof of
correct evaluations and append it to π.



0) Initialize empty proof π = ε. Compute preprocessed poly-
nomials qY(X) for Y ∈ {L,R,O,M,C} and Sσj(X) for
j ∈ {1, 2, 3}. Compute their commitments {[qY]}, {[Sσj]} and
append them to pp.

1) Choose arbitrary polynomials a(X), b(X), c(X) ∈ F<n[X].
Compute [a], [b], [c] and append them to π.

2) Query challenges β, γ ← H(π).

3) Choose an arbitrary polynomial z(X) ∈ F<n[X]. Compute
[z] and append it to π.

4) Query challenge α← H(π).

5) Choose arbitrary polynomials tlo(X), tmid(X) ∈ F<n[X] and
thi(X) ∈ F<n+5[X]. Compute [tlo], [tmi], [thi] and append them
to π.

6) Query challenge z← H(π).

7) Compute evaluations at z of polynomials
{qY(X)}Y∈{L,R,O,M,C}, {Sσj(X)}j∈[3], a(X), b(X), c(X),
z(X), z(ωX), tlo(X), tmid(X), thi(X), along with proofs of
correct evaluations. Append evaluations and their proofs to π.

8) Set the public input PI ∈ F` to satisfy the equation∑̀
i=1

PIi · Li(z) = ZH(z)
(
tlo(z) + zntmid(z) + z2nthi(z)

)
− eq′(z)− α · per(z)− α2 · (z(z)− 1)L1(z), (5)

where

eq′(z) = a(z)b(z)qM(z) + a(z)qL(z) + b(z)qR(z)

+ c(z)qO(z) + qC(z).

9) Output (PI, π).

Fig. 8: Weak Fiat-Shamir Attack Against PlonkwFS

Efficiency. Asymptotically, our attack runs in time O(n),
which is faster than the O(n log n) time of generating honest
proofs due to the use of FFTs. When ` ≥ 2, given a proof
generated according to our attack, one can reuse the same
proof for different choices of PI as long as PI is chosen to
satisfy Equation 5.

We implemented our attack in 300 lines of JavaScript and
verified our proofs are accepted by snarkjs. We benchmarked
the forged proof generation on the same machine as our
Bulletproofs attack in Section IV. Our implementation was
able to generate proofs for constraint systems of size 256 in
5167 milliseconds and for constraint systems of size 2048 in
8057 milliseconds.

Provable insecurity. We show that our attack breaks the
knowledge soundness of PlonkwFS, assuming the Plonk re-
lation R satisfies a variant of worst-case hardness.

Definition 5: A relation R ⊆ F` × Fn satisfies all-but-
one (worst-case) hardness (ABO-H) if there exists i ∈ [`] and
PI[ î ] ∈ F`−1 such that for all PPT adversariesA, the following
probability is negligible in λ:

AdvABO-H
R (A) := Pr

[
(PI, w) ∈ R | (PIi, w)← A(PI[ î ])

]
.

Here PI[ î ] denotes the public input without the ith entry.
We briefly comment on the strength of this hardness notion.

If R is not hard in the worst case, any proof system for
R trivially satisfies knowledge soundness, since there exists
a PPT extractor E that brute forces the witness from any
public input. Therefore, worst-case hardness is a necessary
assumption; our notion is slightly stronger than the worst-case
hardness for R by requiring that for some i ∈ [`], worst-case
hardness holds for a related relation Ri that puts PIi as part
of the witness instead of the public input. We expect ABO-H
to hold for many relations in practice, such as the relation for
the pre-image of a hash.

Theorem 6: Assume the Plonk relationR satisfies ABO-H.
Then PlonkwFS is not knowledge sound.

The intuition for the proof is as follows. Note that for any
i ∈ [`] and x ∈ F`−1, the malicious prover in our attack
can construct an accepting proof with PI[ î ] = x. Thus, an
extractor would have to find a witness for that choice of PI[ î ],
which breaks the ABO-H property of R.

Proof: Assume that the Plonk relation R satisfies ABO-H, and
let i ∈ [`], x ∈ F`−1 be the hard instance for R. Denote by P∗
the malicious prover for the attack described in Figure 8, with
the following specification for step 8: P∗ sets PI[ î ] = x, then
computes the unique value of PIi that satisfies Equation 5. We
will show that for every extractor E , there exists an adversary
A, nearly as efficient as E , against ABO-H of R such that

Pr
[
KSE,P

∗

1,PlonkwFS,R

]
≤ AdvABO-H

R (A).

Similar to the above proof, this will imply that PlonkwFS is
not knowledge sound. The adversary A works as follows. A
receives x from the ABO-H game. A then computes the public
paramters pp (which includes the preprocessed polynomial
commitments), and runs P∗ once to get a pair (PI, π) with
PI[ î ] = x. It then sends (P∗, pp,PI, π) to E , and once E
returns a witness w, A outputs (PI, w). We can easily see
that if game KSE,P

∗

1,PlonkwFS,R outputs 1, then E outputs a valid
witness; hence, A wins the ABO-H game as well.

C. Practical Impacts

Affected implementations. We surveyed 12 implementations
of Plonk to determine if they were vulnerable to an attack
against their Fiat-Shamir transformations. Of the 12 imple-
mentations surveyed, we found 5 to be vulnerable, 4 of which
have now been fixed. To understand how our attack on the
soundness of Plonk could impact applications using vulnerable
implementations, we investigate the application of one of the
vulnerable implementations we found: Dusk Network. We
selected Dusk because it is a nontrivial application of Plonk for
which we found a vulnerable implementation, and it’s fairly
well-documented. The Dusk Network protocol is currently in
its Daylight Testnet launch with a full deployment of the
protocol on the roadmap for the near future.

Dusk Network background. Dusk Network is a privacy-
preserving distributed ledger protocol [32]. It uses a UTXO-
based transaction model called Phoenix, which works over
“notes” stored on the ledger. (We will explain only the details



relevant for our attack.) For simplicity, we can think of each
note as being a commitment to a value. A transaction is defined
by a set of input notes (in1, . . . , inm), a set of (newly-created)
output notes (out1, . . . , outn), and a zero-knowledge proof of
correctness π generated using Plonk. To spend each input note,
the payer must reveal its nullifier—a random, unique identifier
of an input that prevents double-spending, but does not reveal
the input itself. In Dusk, the nullifier is computed as a hash
of the note’s index in the Merkle tree and the opening of its
commitment.

The transaction circuit (described in more detail in [30], §3)
takes as public inputs the Merkle root, the output notes, and the
nullifiers of the input notes. It takes as private input the input
notes, their openings, their Merkle paths, and the openings of
the output notes. It verifies that each nullifier corresponds to a
valid input note, each input note has a valid path to the Merkle
root, the output commitment is well-formed, and that the sums
of the values of the inputs and outputs are equal.

Attacking Dusk Network. Our attack on PlonkwFS’s weak
Fiat-Shamir transformation lets us obtain a satisfying proof for
an arbitrary witness by setting the public input to be a specific
value that will satisfy the verifier’s check. Notably, our attack
actually allows for an attacker to set all but one of the public
inputs to arbitrary values; the last public input must be set to
the (unique) value that causes the verifier’s check to pass. To
use our attack against Dusk, then, we must make sure that
there is some public input that can be set arbitrarily and is not
checked elsewhere in the protocol. We observe that the nullifier
is a natural choice for this—its only external constraint is a
check that it has not been used by any previous transaction;
further, by design it is a random-looking value.

Thus, an attacker can use our attack to create verifying
transactions that do not satisfy the circuit’s constraints. One
clear way to exploit this is to steal funds from the Dusk
Network: an attacker can create a transaction that spends
one input and sends outputs with arbitrarily large values to
themselves. Because the output coins can be chosen freely,
the attacker can ensure the output notes are well-formed and
can be later traded for other coins.

VI. SPARTAN

A. Protocol Description

Constraint system. Spartan proves the satisfiability of rank-
one constraint systems (R1CS). A R1CS relation is defined
by a tuple (F, A,B,C,m, n, `) where A,B,C ∈ Fm×m are
matrices, each with at most n = Ω(m) non-zero entries, and
m ≥ ` + 1. Given a R1CS public input PI ∈ F`, a R1CS
witness is a vector w ∈ Fm−`−1 such that if Z = (PI, 1, w),
then (A · Z) ◦ (B · Z) = C · Z. Spartan also requires that
m = 2µ is a power of two, and ` = m/2− 1.

Converting to polynomial constraints. We interpret the
matrices A,B,C as functions from {0, 1}µ × {0, 1}µ to F,
and similarly Z : {0, 1}µ → F, by writing the indices as their

Protocol Notation.
e← 〈PSC(p),VSC(r)〉(µ, d, T ),

where p ∈ F≤d[X1, . . . , Xµ] satisfies
∑
x∈{0,1}µ g(x) = T , and

r = (r1, . . . , rµ) ∈ Fµ is VSC’s randomness.
Interaction Phase. For i = 1, . . . , µ:
1) P computes and sends

pi(X) =
∑

xi+1,...,xµ∈{0,1}

p(r1, . . . , ri−1, X, xi+1, . . . , xµ).

2) V sends ri
$← F.

Query Phase.
1) V checks that p1(0) + p1(1) = T .
2) V checks that pi(0) + pi(1) = pi−1(ri−1) for 2 ≤ i ≤ µ.

Output. P , V outputs e = pµ(rµ) supposedly equal to
p(r1, . . . , rµ).

Fig. 9: The Sumcheck Protocol

Preprocessed Polynomials. Multilinear extensions Ã(X,Y ),
B̃(X,Y ), C̃(X,Y ) of R1CS matrices A,B,C ∈ Fm×m.
Public Input. PI ∈ Fm/2−1. Witness. w ∈ Fm/2.
Interaction Phase. Let µ = logm.
1) P sends the multilinear extension w̃ of the witness w.

2) V sends challenge τ $← Fµ.
3) P and V engage in a sumcheck protocol for

ex ← 〈PSC(GPI,τ ),VSC(rx)〉(µ, 3, 0),

where GPI,τ (X) is defined as in Equation 6.
4) P computes vA = A(rx), vB = B(rx), vC = C(rx) and
sends (vA, vB , vC) to V .

5) V sends challenges rA, rB , rC
$← F.

6) P and V engage in another sumcheck protocol for

ey ← 〈PSC(Hrx),VSC(ry)〉(µ, 2, T ),

where Hrx(Y ) and T are defined as in Equation 7.
Query Phase.
1) Reject if either of the sumcheck instances fail.

2) Check that ex
?
= (vA · vB − vC) · ẽq(rx, τ).

3) Query Ã, B̃, C̃ at (rx, ry) and receive evaluations v1, v2, v3

respectively.
4) Query w̃ at (ry)[1:] and receive evaluation vw.

5) Check that ey
?
= (rA · v1 + rB · v2 + rC · v3) · vZ , where

vZ =
(
(ry)0 · (̃PI, 1)((ry)[1:]) + (1− (ry)0) · vw

)
.

Fig. 10: The Spartan Polynomial IOP

binary representation. We then consider the multilinear exten-
sions Ã, B̃, C̃, Z̃ of these functions, and define the polynomial

FPI(X) = A(X) ·B(X)− C(X),

where M(X) =
∑
y←{0,1}µ M̃(X, y) · Z̃(y) for



M ∈ {A,B,C}. Note that FPI(X) vanishes on {0, 1}µ
if and only if Z satisfies the R1CS relation. We turn this
vanishing condition into a sumcheck instance by defining
GPI,τ (X) = FPI(X) · ẽq(X, τ) for a random τ ∈ Fµ, supplied
by the verifier. The goal is then to prove that∑

x∈{0,1}µ
GPI,τ (x) = 0. (6)

The Spartan polynomial IOP. We describe the full protocol
in Figure 10, which uses the sumcheck protocol described in
Figure 9. The preprocessed polynomials consist of the mul-
tilinear extensions Ã(X,Y ), B̃(X,Y ), C̃(X,Y ) of the R1CS
matrices A,B,C. In the first round, the prover P sends the
multilinear extension w̃, and V sends challenge τ

$← Fµ.
Both parties then engage in a sumcheck protocol to prove
Equation 6; after this V receives an evaluation ex supposedly
equal to GPI,τ (rx), where rx is V’s randomness during the
run of sumcheck. Since V cannot evaluate this itself, both
parties engage in another run of sumcheck. P sends three
values vA, vB , vC supposedly equal to A(rx), B(rx), C(rx)
respectively, and V checks that

ex = (vA · vB − vC) · ẽq(rx, τ).

Next, V responds with three challenges rA, rB , rC
$← F

to batch three sumcheck instances into one. The second
sumcheck instance is then∑

y∈{0,1}µ
Hrx(y) = T, (7)

where

Hrx(Y ) =
(
rAÃ(rx, Y ) + rBB̃(rx, Y ) + rCC̃(rx, Y )

)
Z̃(Y ),

T = rA · vA + rB · vB + rC · vC .

After running sumcheck on Equation 7, V receives an
evaluation ey supposedly equal to (rAÃ(rx, ry)+rBB̃(rx, ry)+

rCC̃(rx, ry))Z̃(ry), for V’s randomness ry during the run of
sumcheck. V now queries Ã, B̃, C̃ at (rx, ry) for evaluations
v1, v2, v3, and w̃ at (ry)[1:] for evaluation vw, and checks that

ey = (rA · v1 + rB · v2 + rC · v3) · vZ , (8)

where vZ =
(
(ry)0 · (̃PI, 1)((ry)[1:]) + (1− (ry)0) · vw

)
. V also

performs checks for each sumcheck instance and rejects the
results if either of the instances rejects them.

B. Attack Explanation

Figure 11 gives an attack against SpartanwFS, which is
the non-interactive argument obtained by applying the trans-
formation in Section II-F to the Spartan polynomial IOP
described in Figure 10. The attack is similar to the one against
PlonkwFS: first, the malicious prover P∗ chooses polynomials
(including witnesses) that will satisfy all verification equations
except Equation 8. Then, to finish P∗ crafts PI according to
Equation 9 so as to satisfy this final check.

0) Compute commitments [Ã], [B̃], [C̃] and append them to pp.
Initialize empty proof π = ε.
1) Choose arbitrary multilinear polynomial w̃ ∈ F[µ], compute
[w] and append it to π.
2) Query challenge τ ← H(π).
3) For each of the two sumcheck instances:

a) In each round i ∈ [µ], sample an arbitrary polynomial
pi(X) of appropriate degree that satisfies

pi(0) + pi(1) = pi−1(ri−1).

Compute [pi] and append it to π.
b) Query challenge ri ← H(π).

4) Between the two sumchecks, choose arbitrary vA, vB , vC ∈ F
such that

ex = (vA · vB − vC) · ẽq(rx, τ).

Query challenges rA, rB , rC ← H(π).

5) Compute evaluations v1 = Ã(rx, ry), v2 = B̃(rx, ry),
v3 = C̃(rx, ry), vw = w̃((ry)[1:]) and valid proofs of openings.
Append evaluations and opening proofs to π.
6) Set the public input PI ∈ F` to satisfy the equation

(̃PI, 1)((ry)[1:]) = (ry)
−1
0 · (vZ − (1− (ry)0) · vw) , (9)

where
vZ = ey · (rA · v1 + rB · v2 + rC · v3)

−1.

7) Output (PI, π).

Fig. 11: Weak Fiat-Shamir Attack Against SpartanwFS

Provable insecurity. Our attack against SpartanwFS satisfies
the same properties as with our attack on PlonkwFS—namely
that a malicious prover can arbitrarily choose all entries of
PI except one. Thus, we can prove that our attack breaks
the knowledge soundness of SpartanwFS assuming the same
ABO-H property of the R1CS relation R. The proof is similar
to that of Theorem 6.

Theorem 7: Assume the R1CS relationR satisfies ABO-H.
Then SpartanwFS is not knowledge sound.

Proof: Assume that the R1CS relationR satisfies ABO-H, and
let i ∈ [`], x ∈ F`−1 be the hard instance for R. Denote by
P∗ the malicious prover for the attack described in Figure 11,
with the following specification for step 8: P∗ sets PI[ î ] = x,
then computes the unique value of PIi that satisfies Equation 9.
Note that P∗ can do this since we can write

(̃PI, 1)(r) =
∑

y∈{0,1}µ−1

(PI, 1)(y) · ẽq(r, y)

=

m/2−2∑
k=1

PIk · ẽq(r, bin(k)) + ẽq(r, bin(m/2− 1)).

Here we denote r = (ry)[1:], and bin(k) is the binary
representation of k. Since this is a linear equation in terms
of PIk’s, to solve (̃PI, 1)(r) = v for any value v, we can
fix all but one entry PI[ î ] and find a unique solution for the
remaining entry PIi.



• Setup(1λ): Generate a finite abelian group G of unknown
order. Pick an efficiently computable hash functions HG :
{0, 1}∗ → G to be modeled as a random oracle. Return
pp = (G,HG).

• Eval(pp, T, x):

1) Compute y ← HG(x)
2T by repeated squaring.

2) Compute π ← PFS(pp, T, x, y) as the F-S transformed prover
of the interactive argument VDF.

• Verify(pp, T, x, y, π): Return the result of the F-S verifier
VFS(pp, x, y, π).

Interactive Argument VDF:

RVDF =
{
(pp, (T, x, y), ∅) | y = HG(x)

2T
}
.

1) V sends to P a 2λ-bit prime ` uniformly at random.

2) Let g = HG(x). P computes π = gb2
T /`c and sends π to V .

3) V computes r = 2T mod ` and accepts if and only if π` ·
gr = y.

Fig. 12: Wesolowski’s verifiable delay function. The Fiat-
Shamir transformed argument is described in prose below.

We now show that for every extractor E , there exists an
adversary A, nearly as efficient as E , against ABO-H of R
such that

Pr
[
KSE,P

∗

1,SpartanwFS,R

]
≤ AdvABO-H

R (A).

Similar to the above proof, this will imply that SpartanwFS is
not knowledge sound. The adversary A receives x from the
ABO-H game, then computes pp← Setup(1λ) and (PI, π)←
P∗(pp) such that PI[ î ] = x. It then sends (P∗, pp,PI, π) to
E , and when E outputs w, A outputs (PI, w). We can see that
if the game KSE,P

∗

1,SpartanwFS,R
returns 1, then E finds a valid

witness w; thus, A wins in the ABO-H game. This proves the
inequality.

C. Practical Impacts

We found two implementations of Spartan; both were vul-
nerable to this attack but were fixed following an initial public
disclosure of our results. Interestingly, the reference imple-
mentations of two follow-ups to Spartan, Brakedown [43] and
Nova [57], were also vulnerable. Our attack has no impact on
applications—as far as we know, no applications currently use
Spartan (or related protocols) in production. Still, our attack
gives firm evidence that future applications of Spartan should
use strong F-S.

VII. WESOLOWSKI’S VDF

We describe an attack against a weak Fiat-Shamir transfor-
mation in a verifiable delay function (VDF) [14] constructed
by Wesolowski [90]. In Section VII-C, we discuss how our
attack affects the security of vulnerable implementations in
practice.

Verifiable delay functions. A VDF is a function whose out-
put is only known after a certain time delay, and additionally
comes with a proof of correct evaluation. Formally, it is a tuple
of three algorithms:
• Setup(1λ)→ pp outputs public parameters,
• Eval(pp, T, x) → (y, π) evaluates the VDF with time

delay T on input x, returning output y along with a proof
π. Eval is required to generate y deterministically,

• Verify(pp, T, x, y, π) verifies the proof.
VDFs are required to satisfy completeness, soundness, and
sequentiality; for full definitions see e.g. [14], [15], [90]. We
note one significant departure of our syntax from the syntax of
previous works: we allow the time delay T to be an input to the
Eval algorithm, instead of T being determined ahead of time as
a parameter to Setup. We also consider an adaptive soundness
notion for VDF, i.e. given pp← Setup(1λ), an attacker cannot
output (T, x, y, π) with y 6= Eval(pp, T, x) that would make
Verify accept the proof; previous works did not allow an
attacker to choose the delay parameter. We believe that our
modeling choices are closer to practice, as many applications
(see Section VII-C) do afford attackers such capabilities.

A. Protocol Description

We describe the interactive argument of [90] in Figure 12.
The argument uses a function HG that hashes bit strings into
the group G. Let g = HG(x). To convince the verifier it has
computed y that equals g2T , the prover (implicitly) begins by
sending y to the verifier. Then, the verifier samples a random
prime ` of 2λ bits, where λ is the security parameter, and sends
` to the prover. The prover replies with the value π = gb2

T /`c;
finally, the verifier computes the residue r = 2T mod ` and
accepts if π`gr = y. Applying the Fiat-Shamir transformation
to this argument entails deriving ` by hashing the prover’s
first message with a hash function Hprime that outputs 2λ-
bit primes. The paper specifies the exact transformation to be
used as ` = Hprime(g, y). We call the resulting non-interactive
argument VDFwFS.

B. Attack Explanation

We observe that the paper [90] specified a F-S transfor-
mation that leaves out several parameters, such as the time
delay T and the group description G; thus, the paper is
recommending weak F-S. This allows us to break the adaptive
soundness of the VDF (defined above); our attack is presented
in Figure 13. In our attack, the malicious prover first computes
a legitimate proof for a small time delay t. Then, because
this proof does not depend on t, the prover will choose a
much larger delay T that leads to the verifier computing the
same r value in the last step. The proof will still verify for
the larger delay T , though the prover only did t sequential
squarings. By our choice of T , with high probability we will
have y 6= HG(x)2T ; otherwise, we know that HG(x)2T−2t = 1,
which allows us to deduce the group order of G, breaking the
low order assumption (as stated in [15]). We summarize with
the following theorem.

Theorem 8: VDFwFS does not satisfy adaptive soundness.



1) Pick a small time delay t. For an arbitrary x ← {0, 1}∗,
compute y = g2t where g = HG(x).
2) Compute the proof π ← PFS(pp, T, x, y), which in particular
is equal to π = gb2

t/`c where ` = Hprime(g, y).
3) Pick a large T such that 2T ≡ 2t mod `. In particular, we
can pick T = t+ `− 1. More generally, we can pick T = t+ o
where o is the order of 2 modulo `.
4) Output ((T, x, y), π).

Fig. 13: Weak Fiat-Shamir Attack Against VDFwFS

Note that we are not claiming the soundness result in [90] is
incorrect, merely that it implicitly assumes the delay parameter
is fixed.

C. Practical Impacts

Affected implementations. To assess the practical impacts
of our attack against the VDF’s weak Fiat-Shamir Transforma-
tion, we first checked if any implementations use weak F-S.
We found that every implementation of Wesolowski’s VDF we
checked implemented weak F-S. We suspect this is because
the paper [90] explicitly recommends weak F-S.

On the adaptivity of attackers in choosing T . Next, we
looked at the applications that use vulnerable implementations.
We found that the dominant use of VDFs in practice are in
cryptocurrency protocols for some kind of proof of work—
for example, the Chia protocol uses VDFs to let miners prove
they have reserved some amount of storage space for some
amount of time. These protocols allow the delay to change
dynamically, depending on the state of the chain; thus, an
attacker could still (in principle) influence the chosen delay.

Further constraints in practice. Our attack is theoretically
possible, but turns out not to affect most implementations
because of a small, but consequential, implementation choice:
the data type used for the delay parameter T is often much too
small to fit a delay parameter chosen by our malicious prover.
For example, in Chia, the delay parameter is a 64-bit integer,
but our malicious prover’s delay parameter will be roughly
256 bits, unless 2 has small order modulo the challenge prime
`. We suspect that this happens with very small probability;
assuming the order of 2 modulo ` is uniformly distributed,
the probability of choosing ` that gives such a small order is
about 2−192.

Nevertheless, for implementation choices that allow the time
delay to be up to 256 bits, our attack is realizable. Such is the
case for two VDF verifiers written in Solidity and Python [1]:
Solidity’s default integer type is 256 bits, and Python does not
have a priori bounds on its integers. We developed a proof-
of-concept exploit for those verifiers; forged proof generation
takes less than a second.

In summary, our attack only leads to a latent vulnerability
for applications where the delay parameter T is constrained
to be much smaller than the challenge prime `. An interesting
question for future work is whether it is possible to prove

adaptive soundness for VDFwFS when this condition is en-
forced. Still, we believe strong F-S (i.e., hashing all public
information, including the delay parameter and the group
description) is the right choice for implementations.

VIII. DISCUSSION

In this section, we discuss some general points related to
our attacks. We discuss whether our attacks could be detected,
document other kinds of broken F-S implementations we
found, and study one case in more detail.

Detection of weak F-S attacks. Understanding how de-
tectable our attacks are in practice requires answering two
related questions. First, do forged public inputs have the same
distribution as real ones? And second, do our proofs have the
same distribution as honestly-generated ones?

Our attacks rely on choosing part of the public inputs as
a function of the proof; thus, the public inputs output by our
attacks do not necessarily have the same distribution as real
ones. For Bulletproofs, the public input is a perfectly hiding
commitment in both the real case and for our forger. The
public inputs of our Wesolowski attack seem easily detectable,
since actually performing≈ 2256 squarings in an RSA group—
as our forged proofs show the prover did—would be virtually
impossible. For Plonk and Spartan, only one public input
is chosen as a function of the proof and the other public
inputs; intuitively, this input looks like a uniformly random
field element. Reasoning about whether this is detectable is
difficult, since it is highly contextual.

The proofs output by our attacks have the same distribution
as honest ones in some cases, but not others: e.g., our forged
Plonk proofs consist of hiding commitments to polynomials
and their evaluations; the hiding property guarantees the
distribution is the same as an honest prover. In contrast,
though, our attack on Wesolowski’s VDF outputs proofs that
are distinguishable from honest ones, since they prove false
statements—any party that computes the real VDF output can
tell our claimed value is not correct.

In cases where our public inputs and forged proofs have the
right distribution, any detection of attacks against weak F-S
will have to rely on outside heuristics; for instance, monitoring
the public supply in, e.g. MimbleWimble, could help detect
if funds are being stolen through such an attack. Determining
who is responsible for the attack would likely be more difficult.

Other misuses of Fiat-Shamir. Our implementation survey
uncovered other kinds of F-S mistakes:

1) Not including one (or more) of the prover’s messages in
the hash computation.

2) Initializing a new transcript when invoking the
prover/verifier for a subprotocol.

3) Not including all public parameters (e.g., R1CS matrices
or group generators) in the hash computation.

Case 2 can be thought of as a special case of case 1;
by initalizing a new transcript, one effectively excludes the
prover’s messages from earlier in the protocol. Both cases 1



and 2 trivially lead to soundness attacks, even in the non-
adaptive case.

For case 3, the impact is going to depend on whether the
public parameters are fixed, or could be attacker-chosen in
some cases. Some public parameters, like generators for cyclic
groups, are nearly always hard-coded and so may not need to
be hashed. However, a public parameter that could be attacker-
chosen is the circuit/R1CS representation for a proof system
like Plonk or Spartan. If the verifier accepts arbitary circuits
from a prover, and this circuit is not included in the Fiat-
Shamir computation, then this can be abused. We wish to
highlight this as a case deserving further study, since in many
emerging applications of proof systems (such as private smart
contract platforms like Aleo [5]), user-specified circuits that
represent arbitrary programs are a feature of the application.

IX. MITIGATING WEAK F-S
In this section, we suggest how academic researchers can

clarify the evident confusion about the correct use of F-S.
We also suggest designs for tools that can detect weak F-
S implementations programmatically, and make it easier to
implement F-S correctly.

Suggestions for researchers. In reading recent papers about
proof systems that use F-S, we noticed a clear pattern that may
explain why confusion is so widespread. Most papers present
and analyze the interactive version of the protocol, then state
that F-S can be used to make the protocol non-interactive,
but without specifying how this should be done, or giving too
little information. An example is simply stating the “transcript”
should be hashed, without saying what the transcript includes.

We suggest that, to minimize misconceptions and possi-
bilities for error, researchers who present new protocols as
interactive should be very precise about the way F-S should
be applied to render their protocol non-interactive. Ideally, this
includes explicitly identifying the public parameters, inputs,
and prover messages that should be hashed, and specifying
how to hash them.

This is not a perfect solution, since misunderstandings exist
even amongst researchers: the few papers that attempt to be
prescriptive about the exact transformation sometimes even
state it incorrectly. For example, the original versions of both
the Bulletproofs and Wesolowski’s VDF papers explicitly rec-
ommend weak F-S. (We notified the authors; the Bulletproofs
paper has since been updated.)

A. Automated Tooling
We explore some programmatic solutions that can either

detect the incorrect use of the Fiat-Shamir transformation,
or help the programmer in implementing the transformation
correctly.

Criteria. We identify four key criteria to evaluate our tooling
proposals, as well as any existing tooling for Fiat-Shamir, in
the context of reducing weak F-S vulnerabilities.

1) Correctness: for detection, the tool should have a low
error rate, and for implementation, the tool should result
in correct implementations of Fiat-Shamir,

2) Simplicity: the tool should be easy to use, requiring
minimal modification to the pracitioner’s workflow,

3) Misuse-resistance: it should be difficult to use the tool in
incorrect or unintended ways,

4) Efficiency: the tool should add negligible overhead to the
runtime of the proof system.

For existing tooling, we are aware of the Merlin library
[28] that implements a Transcript object with two operations:
one for adding messages and one for deriving challenges.
The library provides support for domain separation, message
framing, and protocol composition; it has been used in many
proof system libraries written in Rust. However, despite its
intentional design, Merlin does not enforce the correct use
of Fiat-Shamir, and indeed many of the weak Fiat-Shamir
implementations we found used Merlin.

We present a few different ideas for discouraging and
detecting incorrect Fiat-Shamir usage. First, Merlin could
be extended to have an explicit function for adding in the
public statement to the transcript. If the user does not call
this function, Merlin can raise a warning alerting the user
to a potential weak F-S attack. Although this would not
automatically prevent incorrect instances of Fiat-Shamir, we
believe it would reduce the likelihood of users missing these
public values, which were the most common implementation
mistake we found.

In addition to the above measure for discouraging misuse,
we’ve also begun implementing an extension to Merlin that
requires developers to specify all Fiat-Shamir inputs and chal-
lenges when the transcript is initialized. Generating challenges
without providing all the required inputs will result in an error,
alerting developers to potential weak Fiat-Shamir transforma-
tions. Additionally, explicitly listing the Fiat-Shamir inputs and
challenges encourages developers to carefully consider Fiat-
Shamir requirements.

For detection, we can utilize information flow analyses to
determine which objects flow to both the proof and verification
result (either directly or indirectly). We can compare these
objects to those passed to the transcript. If there is a mismatch,
then it is likely that Fiat-Shamir is implemented incorrectly.
Since the tool acts as a plug-in during testing, it adds zero
overhead (efficiency), and ideally only requires few changes
to be integrated (simplicity and misuse-resistance). However,
this approach suffers from a false negative rate, as it would
not be able to check whether two objects are equal, even
though they might be computed differently, i.e. the prover
computes a proof element, while the verifier receives such a
proof element. Detecting when these values are missing from
the Fiat-Shamir computation would require dynamic equality
checking on values shared between the prover and the verifier.
Even though this approach would reduce the false negative
rate, it would increase the false positive rate, as many of these
shared values will not be required for Fiat-Shamir.
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