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Abstract. The construction of invertible non-linear layers over Fn
p that

minimize the multiplicative cost is crucial for the design of symmetric
primitives targeting Multi Party Computation (MPC), Zero-Knowledge
proofs (ZK), and Fully Homomorphic Encryption (FHE). At the current
state of the art, only few non-linear functions are known to be invert-
ible over Fp, as the power maps x 7→ xd for gcd(d, p − 1) = 1. When
working over Fn

p for n ≥ 2, a possible way to construct invertible non-
linear layers S over Fn

p is by making use of a local map F : Fm
p →

Fp for m ≤ n, that is, SF (x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 where
yi = F (xi, xi+1, . . . , xi+m−1). This possibility has been recently stud-
ied by Grassi, Onofri, Pedicini and Sozzi at FSE/ToSC 2022. Given a
quadratic local map F : Fm

p → Fp for m ∈ {1, 2, 3}, they proved that the
shift-invariant non-linear function SF over Fn

p defined as before is never
invertible for any n ≥ 2 ·m− 1.

In this paper, we face the problem by generalizing such construction. In-
stead of a single local map, we admit multiple local maps, and we study
the creation of nonlinear layers that can be efficiently verified and im-
plemented by a similar shift-invariant lifting. After formally defining the
construction, we focus our analysis on the case SF0,F1(x0, x1, . . . , xn−1) =
y0‖y1‖ . . . ‖yn−1 for F0, F1 : F2

p → Fp of degree at most 2. This is a gen-
eralization of the previous construction using two alternating functions
F0, F1 instead of a single F . As main result, we prove that (i) if n ≥ 3,
then SF0,F1 is never invertible if both F0 and F1 are quadratic, and that
(ii) if n ≥ 4, then SF0,F1 is invertible if and only if it is a Type-II Feistel
scheme.
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1 Introduction

The study of substitutive transformations in the Boolean case (the S-Boxes),
S : Fn2 → Fn2 has led to the discovery of many families of functions with properties
crucial to cryptography, including non-linearity [28], algebraic immunity [27], and
arithmetic complexity. These properties play a significant role in cryptography,
as they can be used to design cryptographic functions with desirable security
properties. From the cryptographic point of view, important classes of non-linear
functions include the (almost) perfect non-linear ((A)PN) ones [28,29]. Given a
function F over Fn2 , let

∆F := max
a6=0,b∈Fn2

|{x ∈ Fn2 | F(x+ a) + F(x) = b}| .

F is said to be ∆F -differentially uniform. In particular, F is perfect non-linear
if ∆F = 1, and almost perfect non-linear if ∆F = 2.

Finding APN functions for n odd is easy. For example, APN functions include

the Gold map [17] x 7→ x2
l+1 for gcd(l, n) = 1, the inverse map [5] x 7→ x−1 ≡ x2l

for n = 2l+ 1, and many others. However, finding APN permutations for n even
is less trivial. In fact, when n ≥ 8 is even, this task is an open problem which
has been nicknamed the Big APN Problem. Several works have been carried on
in order to solve it, including [4, 8–12] among many others.

The research of APN functions is justified by the fact that, if used as S-Boxes,
APN functions provide optimal resilience against differential attacks [6]. Given
pairs of inputs with some fixed input differences, differential cryptanalysis consid-
ers the probability distribution of the corresponding output differences produced
by the cryptographic primitive. Hence, it is natural to consider functions with
low differential probability for preventing it. At the same time, it is well known
that the security against differential (and more generally, statistical) attacks is
achieved by a combination of the linear and the non-linear layers. As a concrete
example, consider the case of the wide-trail design strategy [14], proposed by
Daemen and Rijmen for designing the round transformation of key-alternating
block ciphers that combines efficiency and resistance against linear and differen-
tial cryptanalysis. Instead of spending most of its resources for looking for large
S-Boxes with “good” statistical properties, the wide-trail strategy aims at de-
signing the round transformation(s) in order to maximize the minimum number
of active S-Boxes over multiple rounds. Thus, in symmetric primitives designed
by the wide trail strategy, the idea is to look for linear layers that guarantee
a large number of active S-Boxes over several rounds. This fact together with
the existence of 4-differentially uniform invertible functions for every n ≥ 3 may
imply that the big APN problem previously recalled could be considered a more
theoretical rather than a practical open problem in symmetric cryptography.

At the opposite, the research of low-multiplicative1 non-linear functions over
prime fields Fp for p ≥ 3 prime is currently very relevant for symmetric encryp-
tion schemes designed for applications like Multi Party Computation (MPC),

1 In this paper, we use the term “Fp-multiplication” – or simply, “multiplication” –
to refer to a non-linear operation over Fp.
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Zero-Knowledge proofs (ZK), and Fully Homomorphic Encryption (FHE). MPC
allows different users that do not necessarily trust each other to evaluate a func-
tion on a shared secret without revealing it. FHE allows a user to operate on
encrypted data without decrypting them. Finally, ZK is a technique that allows
to authenticate a secret information without disclosing it. The number of possi-
ble applications of these techniques is countless, including e.g. crypto-currency
as probably the most well known one. In the recent years, several symmetric
primitives over prime fields have been proposed for these applications, includ-
ing MiMC [2], GMiMC [1], Rescue [3], HadesMiMC/Poseidon [22], Cimin-
ion [15], Pasta [16], Reinforced Concrete [21], Neptune [24], Griffin [20],
Anemoi [7], Hydra [25], among others.

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by
the following:

– they are usually defined over prime fields Ftp for a huge prime p ≈ 2128 (or
even bigger), whereas classical schemes are defined over binary fields Fn2 ;

– they can be described via a simple algebraic expression over their natu-
ral field, whereas classical schemes usually admit a very complex algebraic
structure.

In order to be efficient in MPC, FHE, and ZK protocols/applications, the number
of multiplications or/and the multiplication depth necessary to evaluate/verify
the considered symmetric primitive should be minimum. Moreover, besides that,
unlike the case of traditional primitives, the size of the field over which the
scheme is defined does not impact the cost of the performed operations. Apart
from that, due to the large size of the field p, any sub-component (as the non-
linear S-Boxes) that defines the symmetric primitive must be computed on the
fly, that is, it cannot be pre-computed and stored as a look-up table. In both
cases, a simple algebraic structure is in general the most convenient choice for
achieving the best possible performances.

At the current state of the art, only few invertible non-linear functions over
prime fields are known, recalled in the following section. In this paper, we analyze
the possibility to set up invertible quadratic functions over Fnp for MPC-/FHE-
/ZK-friendly symmetric schemes via cyclic shift-invariant functions induced by
multiple local maps.

1.1 Related Works: Shift-Invariant Lifting Functions induced by a
Local Map

Well known examples of invertible non-linear functions over Fp for a prime in-
teger p ≥ 3 include (i) the power maps x 7→ xd, which are invertible if and only
if gcd(d, p− 1) = 1, and (ii) the Dickson polynomials

x 7→ Dα(x) :=

b d2 c∑
i=0

d

d− i

(
d− i
i

)
(−α)ixd−2i ,
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which are invertible for gcd(d, p2 − 1) = 1. Other classes of invertible non-linear
functions constructed via the Legendre symbol and/or the x 7→ (−1)x function
have been recently proposed in [23, 31], but it is currently not clear if they can
be efficiently used for MPC, FHE, and ZK protocols/applications.

When working over Fnp for n ≥ 2, a possible way to set up non-linear in-
vertible functions is by exploiting the Feistel and/or the Lai-Massey [19, 26, 32]
approach. Another approach has been recently considered by Grassi et al. [24] at
FSE/ToSC 2022, and it is inspired by the chi-function, which was introduced in
the setting of cellular automata cryptography in [33] and studied by Joan Dae-
men in his PhD thesis “Cipher and Hash Function Design Strategies based on
linear and differential cryptanalysis” [13]. The chi-function over Fn2 is a nonlin-
ear shift-invariant transformation (i.e., a transformation which does not change
its output when the input is shifted) that can be defined in terms of the local
map χ(x0, x1, x2) = x0 ⊕ (x1 ⊕ 1) · x2. The shift-invariant chi-transformation is
then applied to a binary sequence by taking triplets of the input sequence, with
bits from the beginning of the sequence being used when the end of the input
sequence is reached.

The general scheme with a single local map F : Fmp → Fp is specified as the
substitutive transformation over Fnp such that for each (x0, x1, . . . , xn−1) ∈ Fnp ,
we have

SF (x0, x1, . . . , xn−1) := y0‖y1‖ . . . ‖yn−1 where yi = F (x0, x1, . . . , xm−1) .

In [24], authors proved that, given any quadratic function F : F2
p → Fp, the

corresponding function SF over Fnp for n ≥ 3 as defined in Definition 3 is never
invertible. An equivalent similar result holds when considering quadratic func-
tions F : F3

p → Fp and the corresponding function SF over Fnp for n ≥ 5.
Later on, Grassi considered the possibility to exploit non-invertible non-linear

functions as building blocks for MPC-/FHE-/ZK-friendly schemes in which the
internal state is obfuscated by a secret (e.g., a secret key). In [18], he proved
that the function SF induced by F : F2

p → Fp defined as F (x0, x1) = x20 + x1
(or equivalent) minimizes the probability that a collision occurs among all SF
over Fnp induced by any quadratic function F : Fmp → Fp for m ∈ {1, 2}. Such
probability is upper bounded by p−n.

1.2 Our Contribution

The just mentioned recent results by Grassi concerning non-invertible non-linear
functions cannot be used for setting up symmetric primitives in which the in-
ternal state is not obfuscated by a secret, as the case of a sponge hash function.
Indeed, the absence of a secret key could potentially allow the attacker to control
the inputs in order to ensure that they trigger a collision. Hence, the problem
of constructing invertible non-linear functions with minimal multiplicative com-
plexity remains crucial.

In this paper we adopt the same design to extend the construction: instead
of a single local map, we admit multiple local maps, and we study the creation
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of nonlinear layers that can be efficiently verified and implemented by a similar
shift-invariant lifting. The general scheme with multiple local maps is specified
as

SF0,F1,...,Fn−1(x0, x1, . . . , xn−1) := y0‖y1‖ . . . ‖yn−1
where

yi = Fi(x0, x1, . . . , xm−1) for each i ∈ {0, . . . , n− 1}

and Fi : Fmp → Fp are possibly distinct functions. Instead of working with a
generic function S, in this paper we limit ourselves to consider the case in which
each value yi is specified by cyclically using h fixed local maps F0, F1, . . . , Fh :
Fmp → Fp which depend on m components of the domain vector x0, x1, . . . , xn−1
for m ≤ n, also these variables are taken by shifting the components, namely:

yi = Fimodh(xi, xi+1, . . . xi+m−1),

where indices of variables xi are taken modulo n. We distinguish the case h = 2
that we call the alternating shift-invariant lifting (ASI-liftings), from the case
h > 2 that we call cyclic shift-invariant lifting (CSI-liftings), see Definition 3 in
Section 2. In there, we give a notion of similarity between families of local maps
for which invertibility holds for the entire equivalent class, which allows us to
simplify the proof of invertibility of ASI-liftings to a representative function of
the equivalence class.

In this paper, we limit ourselvses to consider the case h = 2 with F0, F1 :
F2
p → Fp both quadratic, or one linear and one quadratic. In such a case, we

prove that the Feistel Type-II functions [30, 34] are the only ones in which the
scheme we called alternating shift-invariant lifting functions is invertible over
Fnp . More formally, our main result can be summarized as following:

Theorem 1. Let p ≥ 3 be a prime integer, and let n ≥ 3. Let F0, F1 : F2
p → Fp

be two functions. Let SF0,F1 : Fnp → Fp be defined as SF0,F1(x0, x1, . . . , xn−1) :=
y0‖y1‖ . . . ‖yn−1 where

yi = Fimod 2(xi, xi+1, . . . , xi+m−1) for each i ∈ {0, 1, . . . , n− 1}.

Then:

– if F0 and F1 are both of degree 2, then SF0,F1 is never invertible;
– if F0 is linear and F1 is quadratic, then SF0,F1

is invertible for n ≥ 4 if and
only if it is a Feistel Type-II function, e.g.,

yi =

{
xi−1 if i odd

xi−1 + x2i−2 otherwise (if ieven)
.

If n = 3, SF0,F1 is invertible also in the case in which F0 is a linear function of
the form F0(x0, x1) = α1,0;0 · x0 + α0,1;0 · x1 with α1,0;0, α0,1;0 6= 0, and F1 is a

quadratic function of the form F1(x0, x1) = γ ·
(
α0,1;0

α1,0;0
· x0 − α1,0;0

α0,1;0
· x1
)2

+α1,0;1 ·
x0 + α0,1;1 · x1, where γ ∈ Fp and α1,0;1 · α2

1,0;0 6= −α0,1;1 · α2
0,1;0.
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Note that we focus on the case n ≥ 3, since there exist invertible SI-lifting
functions SF (x0, x1) over F2

p induced by quadratic local maps F : F2
p → Fp, as

F (x0, x1) = γ2 · (x0−x1)2 +γ1 ·x1 +γ0 ·x0, with γ0 6= ±γ1 and γ2 6= 0 – see [24]
for details.

The proof of the previous Theorem is divided in two parts:

– in Section 4, we study the case where both F0, F1 are quadratic;
– in Section 5, we study the mixed case, where one function is linear and the

other one is quadratic.

The problem of setting up a substitutive transformation quadratic and in-
vertible over Fnp for generic prime p ≥ 3 and n remains open. Potential ideas for
solving this problem are discussed in Section 6.

2 Preliminary: Notation and Related Works

2.1 Notation

From now on, let p ≥ 3 be a prime number. Let Fp denote the field of integer
numbers modulo p. We use small letters to denote either parameters/indexes
or variables and greek letters to denote fixed elements in Fp. Given x ∈ Fnp ,
we denote by xi its i-th component for each i ∈ {0, 1, . . . , n − 1}, that is, x =
(x0, x1, . . . , xn−1). We use capital letters to denote functions from Fmp to Fp for
m ≥ 1, e.g., F : Fmp → Fp and the calligraphic font to denote functions over Fnp
for n ≥ 1, e.g., S : Fnp → Fnp . Given a matrix M ∈ Fr×cp , we denote by MT ∈c×r
its transpose. We formally define the term “collision” as:

Definition 1 (Collision). Let F be a generic field, and let F be a function
defined over Fn for n ≥ 1. A pair x, y ∈ Fn is a collision for F if and only if
F(x) = F(y) and x 6= y.

2.2 Related Works: Invertibility of SF over Fn
p via a Quadratic

Local Map F : Fm
p → Fp

As already mentioned in the introduction, Grassi et al. [24] studied the invert-
ibility of shift-invariant lifting functions:

Definition 2 (Shift-Invariant lifting). Let p ≥ 3 be a prime integer, and
let 1 ≤ m ≤ n. Let F : Fmp → Fp be a local map. The shift-invariant lifting
(SI–lifting) function SF over Fnp induced by the local map F is defined as

SF (x0, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 such that yi = F (xi, . . . , xi+m−1)

where indexes i of xi are taken modulo n.

In particular, they considered shift-invariant lifting functions SF induced over
Fnp by a quadratic local map F : Fmp → Fp for m ∈ {2, 3}. As a main result, they
proved the following theorem regarding the impossibility to set up permutations
for (i) m = 2 and n ≥ 3 and (ii) m = 3 and n ≥ 5. More formally,
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Theorem 2 ( [24, Theorems 2 & 3]). Let p ≥ 3 be a prime integer, and
let 1 ≤ m ≤ n. Given F : Fmp → Fp a quadratic local map, then the SI–lifting
function SF induced by F over Fnp is not invertible neither if m = 2 and n ≥ 3
nor if m = 3 and n ≥ 5.

For the cases (m,n) ∈ {(2, 2), (3, 3), (3, 4)} they presented some local quadratic
maps F for which SF over Fnp is invertible. In particular, in the case (m,n) =
(2, 2), invertibility can be achieved only with the shift-invariant lifting induced
by a local map having the Lai–Massey structure:

Lemma 1 ( [24, Proposition 8]). Let G : F2
p → Fp a quadratic local map.

Let γ0, γ1 ∈ Fp be such that γ0 6= ±γ1. The shift-invariant lifting function SG
induced by G over Fnp is invertible if and only if

G(x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2 .

3 Alternating/Cyclic Shift-Invariant Lifting Functions
via Multiple Local Maps

In this section, we introduce the concept of shift-invariant functions induced
by multiple local maps, which generalizes the shift-invariant lifting functions
recalled before.

Definition 3 (Cyclic Shift-Invariant Lifting). Let p ≥ 3 be a prime integer
and let 1 ≤ m,h ≤ n. For each i ∈ {0, 1, . . . , h − 1}, let Fi : Fmp → Fp be a
local map. The cyclic shift-invariant lifting (CSI-lifting) function SF0,F1,...,Fh−1

induced by the family of local maps (F0, . . . , Fh−1) over Fnp is defined as

S(x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 where

yi : = Fimodh(xi, xi+1, . . . , xi+m−1)

for each i ∈ {0, 1, . . . , n− 1}, where the sub-indexes are taken modulo n.

For the follow-up, we use a notation similar to the one introduced in [24], that
is, we denote the d-degree local map Fj as

Fj(x0, x1, . . . , xm−1) :=
∑

0≤i0,...,im−1≤d s.t.
i0+...+im−1≤d

αi0,...,im−1;j · x
i0
0 · · · · · x

im−1

m−1 (1)

for each j ∈ {0, 1, . . . , h− 1}.
The previous definition corresponds to the one proposed in [24] for the case

h = 1. In there, it was pointed out that the function SF is shift-invariant in the
sense that SF ◦Π = Π ◦ SF for each translation permutation Π over Fnp , that
is, a map Π over Fnp defined as

Π(x0, x1, . . . , xn−1) : = xπ(0)‖xπ(1)‖ . . . ‖xπ(n−1) where

∀j ∈ {0, 1, . . . , n− 1} : π(j) : = j + i mod n
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for a certain i ∈ {0, 1, . . . , n − 1}. Here, a similar property holds. The function
SF0,F1,...Fh−1

is “cyclic shift-invariant” in the sense that

Π ◦ SF0,F1,...,Fh−1
(x) = SFπ(0),Fπ(1),...,Fπ(h−1)

◦Π(x)

where the sub-indexes of F are computed modulo h. Hence, note that the π in
the sub-index of F is useless if i is a multiple of h (as for the case h = 1).

In the rest of the paper, we mainly focus on the case h = 2, i.e., functions
SF0,F1(x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 where

yi =

{
F0(xi, xi+1, . . . , xi+m−1) if i is even

F1(xi, xi+1, . . . , xi+m−1) otherwise (if i is odd)
(2)

for each i ∈ {0, 1, . . . , n − 1}, where the sub-indexes of xi are taken modulo n.
We refer to the alternating shift-invariant function SF0,F1

over Fnp defined via
the local maps F0 : Fmp → Fp and F1 : Fmp → Fp as the ”alternating shift-
invariant (m,n)-lifting SF0,F1 induced by the pair (F0, F1)” (for simplicity, we
usually make use of the abbreviation “ASI-lifting function SF0,F1”).

3.1 Balanced Functions and Class of Equivalence

First, we recall the definition of balanced functions in order to prove a necessary
condition for SF0,F1,...,Fh−1

to be invertible. As first thing, we recall a necessary
condition that the functions F0, F1, . . . , Fh−1 must satisfy for SF0,F1,...,Fh−1

being
invertible.

Definition 4 (Balanced Function). Let p ≥ 3 be a prime integer and let
F : Fmp → Fp. We say that F is balanced if and only if

∀y ∈ Fp : |{x ∈ Fmp | F (x) = y}| = pm−1 .

Proposition 1. Let p ≥ 3 be a prime integer, and let 1 ≤ m,h ≤ n. Let
SF0,F1,...,Fh−1

: Fnp → Fnp be the cyclic shift-invariant lifting function induced by
F0, F1, . . . , Fh−1 : Fmp → Fp over Fnp . If at least one function among F0, . . . , Fh−1
is not balanced, then SF0,F1,...,Fh−1

is not invertible.

This is a well known result, and its proof is a simple generalization of the one
provided in [24, Proposition 3].

Next, we introduce an equivalence relation for classifying families of local
maps with similar properties that generalizes the one given in [24].

Definition 5 (Class of Equivalence). Let p ≥ 3 be a prime integer, and let
1 ≤ m,h ≤ n. Let {Fi : Fmp → Fp}1≤i<h and {F ′i : Fmp → Fp}1≤i<h two indexed
sets of functions. We say that the two indexed sets of functions are similar –
denoted as (F0, F1, . . . , Fh−1) ∼ (F ′0, F

′
1, . . . , F

′
h−1) – if and only if there exist

– a factor µ ∈ Fp \ {0};
– a vector ν̄ = ν||ν|| . . . ||ν ∈ Fmp ;
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– h values ωi ∈ Fp \ {0} and h values ψi ∈ Fp for i ∈ {0, 1, . . . , h− 1};

such that we have

F ′i (x) = ωi · Fi(µ · x+ ν̄) + ψi for all x ∈ Fmp and for any integer 0 ≤ i < h.

The following holds:

Lemma 2. The relation ∼ introduced in Definition 5 is an equivalence relation,
i.e., it satisfies the following properties: reflexivity, symmetry, and transitivity.

The proof of this Lemma is equivalent to the one given in [24], where similarity
relation is shown to be an equivalence relation.

We show that in the case of cyclic shift-invariant lifting functions, invertibility
is an invariant by similarity of the two families of functions which induce the
lifting:

Proposition 2. Let p ≥ 3 be a prime integer, and let 1 ≤ m,h ≤ n. Let
F0, F1, . . . , Fh−1 : Fmp → Fp and F ′0, F

′
1, . . . , F

′
h−1 : Fmp → Fp be two similar

families of functions. Let

SF0,F1,...,Fh−1
: Fnp → Fnp , (resp., SF ′0,F ′1,...,F ′h−1

: Fnp → Fnp )

be the cyclic SI-lifting function induced by (F0, . . . , Fh−1) (resp., (F ′0, . . . , F
′
h−1)).

Then, SF0,F1,...,Fh−1
is invertible if and only if SF ′0,F ′1,...,F ′h−1

is invertible.

Proof. By definition of F ′i and SF ′i , we have that

[SF ′i (x0, . . . , xn−1)]i = F ′i (xi, . . . , xi+m−1),

where the sub-indexes are taken modulo n. Since F ′i (x) = ωi · Fi(µ · x+ ν̄) + ψi
for each x ∈ Fmp , it follows that

SF ′i (x) = ωimodh · SFi(µ · x+ ν̄) + ψ̄

where ψ̄ ∈ Fnq such that ψ̄i = ψimodh. That is, SF ′i is equal to SFi pre-composed
and post-composed with two invertible affine functions. This implies that SF ′i is
invertible if and only if SFi is invertible. ut

3.2 Necessary Conditions for Quadratic Functions
F0, F1, . . . , Fh−1 : F2

p → Fp

As next step, we introduce some necessary conditions that the quadratic func-
tions F0, F1, . . . , Fh−1 : F2

p → Fp should satisfy in order to build an invertible
alternating or cyclic shift-invariant lifting SF0,F1,...,Fh−1

.
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Lemma 3. Let p ≥ 3 be a prime integer, and let n ≥ 2 be an integer. Let
F0, F1, . . . , Fh−1 : F2

p → Fp be 1 ≤ h ≤ n be quadratic functions. For each
j ∈ {0, 1, . . . , h− 1} and for each i ∈ {0, 1, 2}, let

α
(i)
j :=

∑
0≤i0,i1,...,ih−1≤i s.t.
i0+i1+...+ih−1=i

αi0,i1,...,ih−1;j (3)

be the sum of the coefficients of the monomials of degree i of the function Fj.
Let I ⊆ {0, 1, . . . , h − 1} be the set of indices such that, for each i ∈ I,

α
(1)
i = α

(2)
i = 0. If

∀i, j ∈ {0, 1, . . . , h− 1} \ I : α
(1)
j · α

(2)
i = α

(2)
j · α

(1)
i ,

then the cyclic SI-lifting SF0,F1,...,Fh−1
over Fnp for n ≥ 3 is not invertible.

Proof. We prove such result by proposing collisions via inputs of the form
(x, x, . . . , x) and (y, y, . . . , y) for x 6= y. A collision occurs if Fj(x, x) = Fj(y, y)
for each j ∈ {0, 1, . . . , h − 1}. By denoting d = x − y 6= 0 and s = x + y, these
conditions hold if

∀j ∈ {0, 1, . . . , h− 1} : s · α(2)
j + α

(1)
j = 0 .

It follows that

– if α
(1)
i = α

(2)
i = 0 for a certain i ∈ {0, 1, . . . , h − 1}, then such condition is

always satisfied independently of s;
– otherwise, if for each i, j ∈ {0, 1, . . . , h− 1} \ {I}, there exists γi,j ∈ Fp \ {0}

such that (i) α
(1)
j = γi,j · α(1)

i and simultaneously (ii) α
(2)
i = γi,j · α(2)

j 6= 0,
then the system reduces to a single equation, and a collision can be found.

Note that the existence of γi,j is equivalent to the condition α
(1)
j ·α

(2)
i = α

(2)
j ·α

(1)
i

to hold. ut

Another important requirement is that the quadratic functions F0, . . . , Fh−1
should not depend on a single variable, otherwise the alternating or cyclic shift-
invariant lifting SF0,...,Fh−1

is not invertible.

Lemma 4. Let p ≥ 3 be a prime integer, and let n ≥ 2 be an integer. Let
F0, F1, . . . , Fh−1 : F2

p → Fp be 1 ≤ h ≤ n quadratic functions. If there exists
l ≤ h such that the quadratic function Fl depends on a single variable, i.e.,

Fl(x0, x1) = α2·(1−i),2i;l · x2i + α1−i,i;l · xi + α0,0;l ,

for i ∈ {0, 1} and where α2·(1−i),i;l 6= 0, then the cyclic SI-lifting SF0,F1,...,Fh−1

defined over Fnp for n ≥ 3 is not invertible.

Proof. As it is well known, a function of the form x 7→ γ2 · x2 + γ1 · x + γ0
for γ2 6= 0 is not invertible and not balanced (indeed, there are (p − 1)/2 Fp
elements with two pre-images, (p− 1)/2 Fp elements with zero pre-image, and 1
Fp element with one pre-image). Since this implies that Fl(x0, x1) is not balanced
as well, we can immediately conclude that SF0,F1,...,Fh−1

is not invertible due to
Proposition 1. ut
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4 Invertible Functions SF0,F1 over Fn
p via Quadratic

F0, F1 : F2
p → Fp

In this section, we show an impossibility result: given two quadratic local maps
F0, F1 : F2

p → Fp, we prove that it is not possible to build an invertible ASI-
lifting SF0,F1

: Fnp → Fnp for n ≥ 3. We recall that for n = 2 there exist quadratic
functions for which S is invertible, e.g., F0(x0, x1) = F1(x0, x1) = x0+(x0−x1)2.

The following proposition represents the main result of this section.

Proposition 3. Let p ≥ 3 be a prime integer. Let F0, F1 : F2
p → Fp be two

quadratic functions. Then the ASI-lifting SF0,F1
over Fnp for n ≥ 3 is not in-

vertible.

We divide the proof of the proposition in two parts:

– the case n ≥ 4 even in Section 4.1;
– the case n ≥ 3 odd in Section 4.2.

We study the case n ≥ 4 even and the case n ≥ 3 odd separately since the
numbers of repetitions of F0 and F1 in SF0,F1

is different if n is odd. Then,
collisions we find in order to prove the non-invertibility of SF0,F1

are slightly
different.

4.1 Proof of Proposition 3 for the Case n Even

We separate the proof for the case n even in three lemmas:

– Lemma 5: α1,1;0 6= 0, α1,1;1 6= 0;
– Lemma 6: α1,1;0 = 0, α1,1;1 6= 0 (or α1,1;0 6= 0, α1,1;1 = 0);
– Lemma 7: α1,1;0 = α1,1;1 = 0.

Together, these lemmas show collisions for each possible ASI-lifting SF0,F1
where

F0, F1 : F2
p → Fp are quadratic and n ≥ 4 is even, proving Proposition 3.

Lemma 5. Let p ≥ 3 be a prime integer, and let n ≥ 4 be an even number.
Let F0, F1 be two quadratic functions such that α1,1;0 6= 0, α1,1;1 6= 0. Then, the
corresponding ASI-lifting SF0,F1 over Fnp is not invertible.

Proof. Consider inputs (x0, x1, x2, x3, . . . , xn−1) and (y0, y1, y2, y3, . . . , yn−1) =
(x0, x1, y2, x3, . . . , xn−1), i.e., two inputs that differ only for the values of x2, y2,
while the others are equal. Then, the system SF0,F1

(x0, x1, x2, x3, . . . , xn−1) =
SF0,F1

(x0, x1, y2, x3, . . . , xn−1) reduces to the two equations

F1(x1, x2) = F1(x1, y2) and F0(x2, x3) = F0(y2, x3),

while the other equations are obviously satisfied (since the inputs are equal).
Such two equations are equal to

α0,2;1 · d2 · s2 +
α1,1;1

2
· d2 · s1 + α0,1;1 · d2 = 0 ,

α2,0;0 · d2 · s2 +
α1,1;0

2
· d2 · s3 + α1,0;0 · d2 = 0 ,

11



via the change of variables

di = xi − yi and si = xi + yi . (4)

Since d2 6= 0, the system can be written in matrix form as[α1,1;1

2 0
0

α1,1;0

2

]
×
[
s1
s3

]
= −

[
α0,2;1 · s2 + α0,1;1

α2,0;0 · s2 + α1,0;0

]
.

The determinant of the left hand side (l.h.s., for short) matrix
α1,1;1·α1,1;0

4 is
always different from zero, given that α1,1;0 6= 0, α1,1;1 6= 0. Then, the system is
compatible and the solution provides a collision for SF0,F1

. ut

Lemma 6. Let p ≥ 3 be a prime integer, and let n ≥ 4 be an even number. Let
F0, F1 be two quadratic functions such that α1,1;0 = 0, α1,1;1 6= 0 (or viceversa).
Then, the corresponding ASI-lifting SF0,F1 over Fnp is not invertible.

Proof. First, note that, since α1,1;0 = 0, at least one between α2,0;0, α0,2;0

is non-zero, otherwise F0 would be linear. Let’s first consider the case where
α2,0;0 6= 0, and let’s consider again inputs of the form (x0, x1, x2, x3, . . . , xn−1)
and (y0, y1, y2, y3, . . . , yn−1) = (x0, x1, y2, x3, . . . , xn−1), with x2 6= y2. Using the
change of variables (4) and considering that d2 6= 0, the system can be written
as [α1,1;1

2 α0,2;1

0 α2,0;0

]
×
[
s1
s2

]
=

[
−α0,1;1

−α1,0;0

]
,

The determinant of the l.h.s. matrix is
α1,1;1

2 · α2,0;0 6= 0, then the system is
compatible, i.e., it has a solution that is a collision for SF0,F1

.
On the other side, if α0,2;0 6= 0, we set up a collision by considering the

inputs (x0, x1, x2, . . . , xn−1) and (y0, y1, y2, . . . , yn−1) = (x0, y1, x2, . . . , xn−1),
where x1 6= y1 and di = 0 for all i 6= 1. The system SF0,F1

(x0, x1, x2, . . . , xn−1) =
SF0,F1

(x0, y1, x2, . . . , xn−1) reduces to the equations F0(x0, x1) = F0(x0, y1) and
F1(x1, x2) = F0(y1, x2), while the other equations are obviously satisfied. Using
that d1 6= 0, it corresponds to[

α0,2;0 0
α2,0;1

α1,1;1

2

]
×
[
s1
s2

]
=

[
−α0,1;0

−α1,0;1

]
.

Since the determinant of the l.h.s. matrix is α0,2;0 · α1,1;1

2 6= 0, then the system
has a solution, i.e., the ASI-lifting has a collision.

The case where α1,1;0 6= 0, α1,1;1 = 0 is equivalent: we can find the collisions
for SF0,F1

starting from inputs (x0, x1, x2, . . . , xn−1), (y0, y1, y2, y3, . . . , yn−1) =
(x0, y1, x2, . . . , xn−1) if α2,0;1 6= 0, while if α0,2;1 6= 0 we work with inputs
(x0, x1, x2, x3, . . . , xn−1), (y0, y1, y2, y3, . . . , yn−1) = (x0, x1, y2, x3, . . . , xn−1).

ut

Lemma 7. Let p ≥ 3 be a prime integer, and let n ≥ 4 be an even number.
Let F0, F1 be two quadratic functions such that α1,1;0 = α1,1;1 = 0. Then, the
corresponding ASI-lifting SF0,F1

over Fnp is not invertible.
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Proof. In order to prove the lemma, we set up a collision by working with the
system SF0,F1

(x0, . . . , xn−1) = SF0,F1
(y0, . . . , yn−1), that is,

α2,0;0 · d0 α0,2;0 · d1 0 0 . . . 0 0
0 α2,0;1 · d1 α0,2;1 · d2 0 . . . 0 0
0 0 α2,0;0 · d2 α0,2;0 · d3 . . . 0 0
...

. . .
. . .

...
0 0 0 0 . . . α2,0;1 · dn−2 α0,2;1 · dn−1

α0,2;1 · d0 0 0 0 . . . 0 α2,0;1 · dn−1


×



s0
s1
s2
...

sn−2

sn−1



=−



α1,0;0 · d0 + α0,1;0 · d1
α1,0;1 · d1 + α0,1;1 · d2
α1,0;0 · d2 + α0,1;0 · d3

...
α1,0;0 · dn−2 + α0,1;0 · dn−1

α1,0;1 · dn−1 + α0,1;1 · d0


(5)

where di and si are defined as in Equation (4). The determinant of the l.h.s. ma-

trix is
(
α
n
2
2,0;0 · α

n
2
2,0;1 − α

n
2
0,2;0 · α

n
2
0,2;1

)
·
∏n−1
i=0 di. Then, by taking di 6= 0 for all

i, the determinant is different from zero if α
n
2
2,0;0 · α

n
2
2,0;1 − α

n
2
0,2;0 · α

n
2
0,2;1 6= 0.

Otherwise, if α
n
2
2,0;0 · α

n
2
2,0;1 = α

n
2
0,2;0 · α

n
2
0,2;1, the rows of the matrix are linearly

dependent, i.e., there exists a linear combination among the rows that is equal to
zero. This means that the same linear combination holds for the rows of the right
hand side (r.h.s., for short) vector, i.e., there exist {λi}i∈{0,...,n−1} ∈ Fp \ {0}
such that

n−1∑
i=0

λi · (α1,0;imod 2 · di + α0,1;imod 2 · di+1) = 0.

Let d0 be the variable that satisfies such combination. Then, we can rewrite the
system as

α2,0;1 · d1 α0,2;1 · d2 0 . . . 0 0
0 α2,0;0 · d2 α0,2;0 · d3 . . . 0 0
...

. . .
. . .

...
0 0 0 . . . α2,0;0 · dn−2 α0,2;0 · dn−1

0 0 0 . . . 0 α2,0;1 · dn−1

×

s1
s2
...

sn−2

sn−1



=−


α1,0;1 · d1 + α0,1;1 · d2
α1,0;0 · d2 + α0,1;0 · d3

...
α1,0;0 · dn−2 + α0,1;0 · dn−1

α1,0;1 · dn−1 + d0 · (α0,1;1 + α0,2;1 · s0)

 ,

where s0 is a free variable. The determinant of the l.h.s. matrix is
(
α
n
2
2,0;1 · α

n
2−1
2,0;0

)
·∏n−1

i=1 di, which is non-null if and only if α2,0;0 6= 0 and α2,0;1 6= 0. In such a
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case, a collision exists.

SubCase: α2,0;1 = 0 and α2,0;0 6= 0. In such a case, the linear system (5) is
equal to



α2,0;0 · d0 α0,2;0 · d1 0 0 . . . 0 0
0 0 α0,2;1 · d2 0 . . . 0 0
0 0 α2,0;0 · d2 α0,2;0 · d3 . . . 0 0
...

. . .
. . .

...
...

0 0 0 0 . . . α2,0;0 · dn−2 α0,2;0 · dn−1

α0,2;1 · d0 0 0 0 . . . 0 0


×



s0
s1
s2
...

sn−2

sn−1



=−



α1,0;0 · d0 + α0,1;0 · d1
α1,0;1 · d1 + α0,1;1 · d2
α1,0;0 · d2 + α0,1;0 · d3

...
α1,0;0 · dn−2 + α0,1;0 · dn−1

α1,0;1 · dn−1 + α0,1;1 · d0


.

The determinant of the l.h.s. matrix is −
(
α
n
2
0,2;0 · α

n
2
0,2;1

)
·
∏n−1
i=0 di. Since α0,2;1 6=

0, otherwise F1 would be linear, the determinant is not null unless α0,2;0 = 0. In
such a case, consider SF0,F1(x0, x1, . . . , xn−1) = SF0,F1(y0, y1, . . . , yn−1), that is


α2,0;0 · d0 α0,1;0 0 . . . 0 0

0 α1,0;1 α0,2;1 · d2 . . . 0 0
...

. . .
. . .

...
...

0 0 0 . . . α2,0;0 · dn−2 α0,1;0

α0,2;1 · d0 0 0 . . . 0 α1,0;1

×

s0
d1
...

sn−2

dn−1

 = −


α1,0;0 · d0
α0,1;1 · d2

...
α1,0;0 · dn−2

α0,1;1 · d0

 .

We solve this system of n equations with respect to the variables si for even
i and di for odd i, that gives the set of variables {s0, d1, s2, d3 . . . , sn−2, dn−1}.
We leave the other di’s as free variables.

The determinant of the l.h.s. matrix is∏
i even

di ·
(
α
n
2
2,0;0 · α

n
2
1,0;1 + α

n
2
0,2;1 · α

n
2
0,1;0

)
.

If
(
α
n
2
2,0;0 · α

n
2
1,0;1 + α

n
2
0,2;1 · α

n
2
0,1;0

)
6= 0 and if we choose di 6= 0 for all i, the system

is compatible and there is a collision for the ASI-lifting. Otherwise, there is a
linear combination among the rows of the matrix that is equal to zero, i.e., there
exist {λi}i∈{0,...,n−1} ∈ Fp \ {0} such that∑

i even

(λi · α1,0;0 · di + λi+1 · α0,1;1 · di+2) = 0.
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Then, suppose that d1 satisfies this combination. We can rewrite the system as

α2,0;0 · d0 0 0 0 . . . 0 0
0 α2,0;0 · d2 α0,1;0 0 . . . 0 0
0 0 α1,0;1 α0,2;1 · d4 . . . 0 0
...

. . .
. . .

...
0 0 0 0 . . . α2,0;0 · dn−2 α0,1;0

α0,2;1 · d0 0 0 0 . . . 0 α1,0;1


×



s0
s2
d3
...

sn−2

dn−1


=

− [α1,0;0 · d0;α0,1;1 · d2 + α1,0;1 · d1;α1,0;0 · d2; . . . ;α1,0;0 · dn−2;α0,1;1 · d0]T .

The determinant of the l.h.s. matrix is
∏
i even di ·

(
α
n
2
2,0;0 · α

n
2−1
1,0;1

)
. Since α2,0;0 6=

0 (otherwise F0 would be linear), this determinant is non-zero if α1,0;1 6= 0. If
α1,0;1 = 0, F1 is non-balanced due to Lemma 4, then SF0,F1

is always non-
invertible. The case where α2,0;1 6= 0 and α2,0;0 = 0 is analogous.

SubCase: α2,0;1 = α2,0;0 = 0. In such a case, the linear system (5) reduces to

∀i ∈ {1, 3, . . . , n− 1} : α0,2;0 · di · si = −α1,0;0 · di−1 − α0,1;0 · di
∀i ∈ {0, 2, . . . , n− 2} : α0,2;1 · di · si = −α1,0;1 · di−1 − α0,1;1 · di .

Note that α0,2;1 6= 0 and α0,2;0 6= 0, otherwise F0, F1 would be linear. By taking
di 6= 0 for all i, a solution of such system of equations is given by

∀i ∈ {1, 3, . . . , n− 1} : si = −α1,0;0 · di−1 + α0,1;0 · di
α0,2;0 · di

∀i ∈ {0, 2, . . . , n− 2} : si =
α1,0;1 · di−1 + α0,1;1 · di

α0,2;1 · di
,

which corresponds to a collision for the analyzed ASI-lifting function. ut

4.2 Proof of Proposition 3 for the Case n Odd

In order to prove Proposition 3 in the case n odd, we separate the proof again
in three lemmas:

– Lemma 8: α1,1;0 6= 0;
– Lemma 9: α1,1;0 = 0, α1,1;1 6= 0;
– Lemma 10: α1,1;0 = α1,1;1 = 0.

As before, these lemmas analyze each possible SF0,F1
for F0, F1 : F2

p → Fp are
quadratic functions and n is odd, showing the non-invertibility of the ASI-lifting.

Lemma 8. Let p ≥ 3 be a prime integer, and let n ≥ 3 be an odd number. Let
F0, F1 be two quadratic functions such that α1,1;0 6= 0. Then, the corresponding
ASI-lifting SF0,F1

over Fnp is not invertible.
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Proof. Consider inputs of the form (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) =
(y0, x1, . . . , xn−1), i.e., inputs that differ just in the first element. Referring
to the change of variables in Equation (4), we suppose d0 6= 0, while di =
0 for all i ∈ {1, 2, . . . , n− 1}. Then, the system SF0,F1(x0, x1, . . . , xn−1) =
SF0,F1

(y0, x1, . . . , xn−1) can be represented as[α1,1;0

2 0
0

α1,1;0

2

]
×
[
s1
sn−1

]
= −

[
α2,0;0 · s0 + α1,0;0

α0,2;0 · s0 + α0,1;0

]
.

Since the determinant of the l.h.s. matrix is
(α1,1;0

2

)2 6= 0, the system is compat-
ible, i.e., it is always possible to find a collision for the ASI-lifting. ut

Lemma 9. Let p ≥ 3 be a prime integer, and let n ≥ 3 be an odd number.
Let F0, F1 be two quadratic functions such that α1,1;0 = 0, α1,1;1 6= 0. Then, the
corresponding ASI-lifting SF0,F1 over Fnp is not invertible.

Proof. Let start from inputs (x0, x1, x2, . . . , xn−1) and (y0, y1, y2, . . . , yn−1) =
(x0, y1, x2, . . . , xn−1), where only x1 6= y1, while the others are equal. In such a
case, by using the change of variables defined in Equation (4) and the fact that
d1 6= 0, the system SF0,F1

(x0, x1, x2, . . . , xn−1) = SF0,F1
(x0, y1, x2, . . . , xn−1) can

be written as [
α0,2;0 0
α2,0;1

α1,1;1

2

]
×
[
s1
s2

]
= −

[
α0,1;0

α1,0;1

]
.

Since the determinant of the l.h.s. matrix is α0,2;0 · α1,1;1

2 and α1,1;1 6= 0, the
system is compatible if and only if α0,2;0 6= 0. Otherwise, we can find a collision
for SF0,F1

using inputs (x0, x1, x2, x3, . . . , xn−1) and (y0, y1, y2, y3, . . . , yn−1) =
(x0, x1, y2, x3, . . . , xn−1), i.e., with d2 6= 0 and di = 0 for i 6= 2. Then, the system
is [α1,1;1

2 α0,2;1

0 α2,0;0

]
×
[
s1
s2

]
= −

[
α0,1;1

α1,0;0

]
.

The determinant of the l.h.s. matrix is α2,0;0 · α1,1;1

2 6= 0, since α2,0;0 6= 0,
otherwise F0 would be a linear function. ut

Lemma 10. Let p ≥ 3 be a prime integer, and let n ≥ 3 be an odd number.
Let F0, F1 be two quadratic functions such that α1,1;0 = α1,1;1 = 0. Then, the
corresponding ASI-lifting SF0,F1

over Fnp is not invertible.

Proof. The proof is analogous to the one provided to prove Lemma 7. ut

5 Invertible Functions SF0,F1 over Fn
p via Linear F0 and

Quadratic F1 (or Vice-Versa)

In this section, we analyse the ASI-lifting functions SF0,F1
over Fnp induced by a

linear local map F0 : F2
p → Fp and a quadratic one F1 : F2

p → Fp, or vice-versa.
The main result is given in the following proposition.
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Proposition 4. Let p ≥ 3 be a prime integer, and let n ≥ 3. Let F0 : F2
p → Fp

be a linear function and F1 : F2
p → Fp a quadratic function, or vice-versa. If

n > 3, then SF0,F1 is invertible if and only if it is a Type-II Feistel scheme, that
is,

– F0 (resp., F1) depends on one variable only, and
– F1(x0, x1) = α1−i,i;1 · xi + H(x1−i) for i ∈ {0, 1}, where H : Fp → Fp is a

quadratic function (resp., F0(x0, x1) = α1−i,i;0 · xi +H(x1−i)).

If n = 3, then SF0,F1 is invertible if and only if

– it is a Type-II Feistel scheme (as before), or
– F0(x0, x1) = α1,0;0 · x0 + α0,1;0 · x1, α1,0;0, α0,1;0 6= 0, and F1(x0, x1) =

γ ·
(
α0,1;0

α1,0;0
· x0 − α1,0;0

α0,1;0
· x1
)2

+α1,0;1 · x0 +α0,1;1 · x1, with γ ∈ Fp and α1,0;1 ·
α2
1,0;0 6= −α0,1;1 · α2

0,1;0 .

The proof is organized as follows:

– first, for n ≥ 4, we show that if one of the two functions is linear and depends
on a single variable only, then the only invertible ASI-liftings are the Type-II
Feistel schemes;

– in Section 5.1, we study the case n ≥ 4 even, showing that no ASI-lifting
SF0,F1

is invertible besides the Type-II Feistel one;
– in Section 5.2, we study the case n ≥ 3 odd. We divide the proof in two

subcases: Lemma 13 deals with the case where F0 is quadratic and F1 lin-
ear, while Lemma 14 proves the proposition for F0 linear and F1 quadratic,
including the special result for the case n = 3.

As we did in the previous section, we study the cases n even and n odd
separately, since the numbers of repetitions of F0 and F1 in SF0,F1 is different
if n is odd. Moreover, due to Definition 5, we assume α0,0;0 = α0,0;1 = 0, and
we usually work with a linear function of the form Fl(x0, x1) = x0 + α · x1 or
Fl(x0, x1) = x1 + α · x0 for α ∈ Fp and l ∈ {0, 1}.

Type-II Feistel Schemes for n ≥ 4. First of all, we consider the case in
which one function is linear and depends on a single variable only. In the next
lemma, we prove that the only functions SF of this form that are invertible are
the Type-II Feistel schemes [30,34].

Lemma 11. Let p ≥ 3 be a prime integer, and let n ≥ 4. Let Fj(x0, x1) = xi
for i, j ∈ {0, 1} be a linear function over Fp that depends on one variable only.
The corresponding ASI-lifting function SF0,F1

over Fnp for n ≥ 4 is invertible if
and only if F1−j is linear in one of the two variables, that is, F1−j(x0, x1) =
xl +H(x1−l) for l ∈ {0, 1}.

We point out that the previous scheme corresponds to a Type-II Feistel scheme.
We emphasize that for n = 3 there exist ASI-lifting functions SF0,F1

that are
invertible even if (i) F0 (resp., F1) is linear and does not depend on a single
variable and (ii) SF0,F1

is not a Type-II Feistel scheme – see Lemma 14.
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Proof. We limit ourselves to propose the proof for the case n ≥ 4 even only. The
proof for the case n ≥ 5 odd is analogous, independently of the fact that F0 or
F1 is linear.

W.l.o.g., let F0(x0, x1) = x0 (i.e., α0,1;0 = 0) – the other cases are analogous
since n is even. Then, given a generic quadratic function F1, we have that y =
SF0,F1

(x) corresponds to

yi = α2,0;1 · x2i + α1,1;1 · xi · xi+1 + α0,2;1 · x2i+1 + α1,0;1 · xi + α0,1;1 · xi+1 ,

yi+1 = xi+1 ,

for each i ∈ {1, 3, . . . , n− 1}. By replacing the second equation in the first one,
we get

α2,0;1 · x2i + (α1,1;1 · yi+1 + α1,0;1) · xi + (α0,2;1 · y2i+1 + α0,1;1 · yi+1 − yi) = 0

for each i ∈ {1, 3, . . . , n − 1}. Note that each equation depends on a different
variable xi. By working independently on each one of such equations, it follows
that the ASI-lifting function SF0,F1

is always invertible if and only if

– the coefficient of the monomial x2i is zero, that is, α2,0;1 = 0;
– the coefficient of the monomial xi is non-null, that is, α1,1;1 ·yi+1+α1,0;1 6= 0.

Since yi+1 can take any possible value, then the second condition is satisfied only
by α1,1;1 = 0 and α1,0;1 6= 0. This concludes the proof.

ut

5.1 Proof of Proposition 4 for the Case n Even

In this subsection, we only consider the case F0 linear and F1 quadratic. We
emphasize that the case F0 quadratic and F1 linear is equivalent, since n is even.

Lemma 12. Let p ≥ 3 be a prime integer, and let n ≥ 4 be an even number.
Let F0(x0, x1) = α1,0;0 · x0 + α0,1;0 · x1 be a linear function over Fp, while let
F1(x0, x1) be a quadratic function over Fp. Then, the corresponding ASI-lifting
SF0,F1

over Fnp is invertible if and only if

1. α1,0;0 = 0 or α0,1;0 = 0;
2. F1(x0, x1) = α1−i,i;1 · xi + H(x1−i) for i ∈ {0, 1}, where H : Fp → Fp is a

quadratic function.

Proof. We already proved in Lemma 11 that, if α1,0;0 = 0 or α0,1;0 = 0, Type-II
Feistel are the only invertible ASI-liftings. For this reason, we consider the case
F0(x0, x1) = x0+α0,1;0 ·x1 with α0,1;0 6= 0. Here, we prove that the corresponding
SF0,F1

is never invertible by constructing a collision. Let y = SF0,F1
(x), then

yi = α2,0;1 · x2i + α1,1;1 · xi · xi+1 + α0,2;1 · x2i+1 + α1,0;1 · xi + α0,1;1 · xi+1,

yi+1 = xi+1 + α0,1;0 · xi+2
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for each i ∈ {1, 3, 5, . . . , n− 1}. By replacing xi+1 = yi+1 − α0,1;0 · xi+2, we get
equations of the form

α2,0;1 · x2i − α1,1;1 · α0,1;0 · xi · xi+2 + α0,2;1 · α2
0,1;0 · x2i+2

+xi · (α1,1;1 · yi+1 + α1,0;1) + xi+2 · (−2 · α0,2;1 · α0,1;0 · yi+1 − α0,1;1 · α0,1;0)

+α0,2;1 · y2i+1 + α0,1;1 · yi+1 − yi = 0.

Note that each equation can be interpreted as a local map on the variables
xi, xi+2. Hence, let’s fix the values of y0, y2, . . . , y2j , . . . , yn−2 ∈ Fp such that

y′ = y0 = y2 = . . . = y2j = . . . = yn−2

for a certain y′ ∈ Fp, and let’s introduce the function Gy′ : F2
p → Fp defined as

Gy′(x0, x1) = β2,0 · x20 + β1,1 · x0 · x1 + β0,2 · x21 + β1,0 · x0 + β0,1 · x1,

where

β2,0 = α2,0;1 , β1,1 = −α1,1;1 · α0,1;0 , β0,2 = α0,2;1 · α2
0,1;0 ,

β1,0 = α1,1;1 · y′ + α1,0;1 , β0,1 = −2 · α0,2;1 · α0,1;0 · y′ − α0,1;1 · α0,1;0.

Let’s now consider the SI-lifting SGy′ over Fn/2p defined via the local map Gy′ .
Note that a collision for SGy′ implies a collision on SF0,F1

over Fnp as well, i.e.,
SGy′ (x0, x1, . . . , xn/2−1) = SGy′ (x

′
0, x
′
1, . . . , x

′
n/2−1) implies

SF0,F1
(y′ − α0,1;0 · x0, x0, y′ − α0,1;0 · x1, x1, . . . , y′ − α0,1;0 · xn/2−1, xn/2−1)

=SF0,F1
(y′ − α0,1;0 · x′0, x′0, y′ − α0,1;0 · x′1, x′1, . . . , y′ − α0,1;0 · x′n/2−1, x

′
n/2−1) .

Hence, in order to prove our result, it is sufficient to show that SGy′ is not

invertible over Fn/2p : this immediately implies that SF0,F1
cannot be invertible.

Due to Theorem 2, such S-Box SGy′ is not invertible for n
2 ≥ 3, i.e., n ≥ 6.

In the case n/2 = 2, the S-Box SGy′ is invertible if

Gy′(x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2

with γ0 6= ±γ1, as proved in Lemma 1.
Then, by the definition of our local map, the SI-lifting is invertible if

1. β2,0 = β0,2, that is, α2,0;1 = α0,2;1 · α2
0,1;0;

2. β1,1 = −2 · β2,0, that is, α1,1;1 =
2·α2,0;1

α0,1;0
= 2 · α0,2;1 · α0,1;0;

3. β1,0 6= ±β0,1, that is, y′ · (α1,1;1 ± 2 · α0,2;1 · α0,1;0) 6= −α1,0;1 ∓ α0,1;1 · α0,1;0,

where the third condition is satisfied if

3.a ±2 · α0,2;1 · α0,1;0 = −α1,1;1 (note that y′ can take any possible value);
3.b ±α0,1;1 · α0,1;0 6= −α1,0;1.

By replacing the second condition in (3.a) and since α0,1;0 6= 0, we get the
condition ±2 · α0,2;1 = −2 · α0,2;1, which is satisfied if and only if α0,2;1 = 0. By
the first condition, we also have α2,0;1 = 0. By the second condition, it follows
that α1,1;1 = 0. Since α2,0;1 = α1,1;1 = α0,2;1 = 0, we have that F1 must be
linear in order to get invertibility for n even. Hence, the ASI-lifting SF0,F1

is
never invertible for n ≥ 4 if F1 is quadratic and if α1,0;0, α0,1;0 6= 0. ut
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5.2 Proof of Proposition 4 for the Case n ≥ 3 Odd

We are going to consider separately the following two cases: Lemma 13 covers
the case where F0 is a quadratic function and F1 is linear, while Lemma 14 deals
with F0 linear and F1 quadratic. In the case n ≥ 5, the only invertible non-linear
functions SF0,F1

are the ones with a Feistel structure. Note that in the case n = 3
there is an extra case in which the function SF0,F1

is invertible without being a
Type-II Feistel scheme – see Lemma 14.

Lemma 13. Let p ≥ 3 be a prime integer, and let n ≥ 3 be an odd number. Let
F0 be a quadratic function over Fp, while let F1(x0, x1) = α1,0;1 · x0 + α0,1;1 · x1
be a linear function over Fp. Then, the corresponding ASI-lifting SF0,F1

over Fnp
is invertible if and only if it is a Type-II Feistel Scheme, that is,

– α1,0;1 = 0 or α0,1;1 = 0;

– F0(x0, x1) = αi,1−i;0 · xi + H(xi) for i ∈ {0, 1}, where H : Fp → Fp is a
quadratic function.

Proof. Since the invertibility of Type-II Feistel schemes in the case F1(x0, x1) =
x0 or F1(x0, x1) = x1 is treated in Lemma 11, we focus on F1(x0, x1) = α1,0;1 ·
x0 + α0,1;1 · x1, with α1,0;1, α0,1;1 6= 0. We show that, in such a case, a collision
always occurs for SF0,F1

.

In order to find the collision, let consider the inputs (x0, x1, . . . , xn−1) and
(y0, y1, . . . , yn−1) = (y0, x1, . . . , xn−1), where y0 6= x0. Then, the system repre-
senting SF0,F1

(x0, x1, . . . , xn−1) = SF0,F1
(y0, x1, . . . , xn−1) reduces to

α2,0;0 · d0 · s0 +
α1,1;0

2
· d0 · s1 + α1,0;0 · d0 = 0 ,

α0,2;0 · d0 · s0 +
α1,1;0

2
· d0 · sn−1 + α0,1;0 · d0 = 0 ,

via the variables di, si introduced in (4). If α1,1;0 6= 0, the system admits the
solution

s1 = −2
α1,0;0 + α2,0;0 · s0

α1,1;0
and sn−1 = −2

α0,1;0 + α0,2;0 · s0
α1,1;0

which corresponds to a collision for the analysed ASI-lifting function. If other-
wise α1,1;0 = 0, then one between α2,0;0 and α0,2;0 should be non-zero, otherwise
F0 would be linear. We study separately these two subcases.

SubCase: α1,1;0 = 0, α2,0;0 6= 0. In such a case, using the change of variables
introduced in (4), the collision SF0,F1

(x0, x1, . . . , xn−1) = SF0,F1
(y0, y1, . . . , yn−1)
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corresponds to the linear system



α2,0;0 · d0 α0,2;0 · s1 + α0,1;0 0 0 . . . 0 0
0 α1,0;1 0 0 . . . 0 0
0 0 α2,0;0 · d2 α0,1;0 . . . 0 0
...

. . .
. . .

...
0 0 0 0 . . . α1,0;1 0

α0,2;0 · d0 0 0 0 . . . 0 α2,0;0 · dn−1


×



s0
d1
s2
d3
...

dn−2

sn−1



=−



α1,0;0 · d0
α0,1;1 · d2
α1,0;0 · d2
α0,1;1 · d3

...
α0,1;1 · dn−1

α1,0;0 · dn−1 + α0,1;0 · d0


.

We solve this system of n equations with respect to the variables si for even i
and di for odd i, that gives the set of variables {s0, d1, s2, d3 . . . , sn−1}. We leave
the others as free variables.

The determinant of the l.h.s. matrix is α
n+1
2

2,0;0 · α
n−1
2

1,0;1 ·
∏
i even di. Then, if we

take di 6= 0 for all even i, the system is compatible and the ASI-lifting has
a collision if α2,0;0 6= 0 (since α1,0;1 6= 0). The last case to analyse is when
α2,0;0 = α1,1;0 = 0 (and so α0,2;0 6= 0).

SubCase: α1,1;0 = α2,0;0 = 0, α0,2;0 6= 0. Working as before, the system of
equations corresponding to the collision is given by

α0,2;0 · d1 0 0 . . . 0 0
0 α0,1;1 0 . . . 0 0
0 α1,0;0 α0,2;0 · d3 . . . 0 0
...

. . .
. . .

...
0 0 0 . . . α0,1;1 0
0 0 0 . . . α1,0;0 α0,2;0 · d0


×



s1
d2
s3
...

dn−1

s0


= −



α1,0;0 · d0 + α0,1;0 · d1
α1,0;1 · d1
α0,1;0 · d3

...
α1,0;1 · dn−2

α0,1;0 · d0


.

This time, we solve this system of n equations with respect to the variables
{s1, d2, s3 . . . , dn−1, s0}. We leave the others as free variables. In such a case, the

determinant of the l.h.s. matrix is α
n+1
2

0,2;0 · α
n−1
2

0,1;1 · d0 ·
∏
i odd di. Then, by taking

di 6= 0 for i = 0 and for each i odd, the determinant is always non-zero. As a
result, the system is compatible and we can find a collision for the ASI-lifting.

ut

Lemma 14. Let p ≥ 3 be a prime integer, and let n ≥ 3 be an odd number. Let
F0(x0, x1) = α1,0;0 · x0 + α0,1;0 · x1 be a linear function over Fp, while let F1 be
a quadratic function over Fp.

If n ≥ 5, then the corresponding ASI-lifting SF0,F1
defined over Fnp is invert-

ible if and only if it is a Type-II Feistel Scheme, that is,
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– α1,0;0 = 0 or α0,1;0 = 0;
– F1(x0, x1) = αi,1−i;0 · xi + H(xi) for i ∈ {0, 1}, where H : Fp → Fp is a

quadratic function.

If n = 3, then SF0,F1
is invertible if and only if either (i) the condition just

given holds, or (ii) F0(x0, x1) = α1,0;0 · x0 + α0,1;0 · x1 for α1,0;0, α0,1;0 6= 0 and

F1(x0, x1) = γ ·
(
α0,1;0

α1,0;0
· x0 −

α1,0;0

α0,1;0
· x1
)2

+ α1,0;1 · x0 + α0,1;1 · x1

where γ ∈ Fp and α1,0;1 · α2
1,0;0 6= −α0,1;1 · α2

0,1;0 .

Proof. Again, the case F0(x0, x1) = x0 or F0(x0, x1) = x1 follows from Lemma 11,
so we limit ourselves to consider the case F0(x0, x1) = α1,0;0 ·x0 +α0,1;0 ·x1 with
α1,0;0, α0,1;0 6= 0. We start by showing that for n ≥ 5 the ASI-lifting is never
invertible, i.e., we can always find a collision.

In order to prove it, let’s start by considering (x0, x1, x2, x3, x4, . . . , xn−1) and
(y0, y1, y2, y3, y4, . . . , yn−1) = (x0, x1, y2, y3, x4, . . . , xn−1), i.e., two inputs that
differ just in y2 6= x2 and y3 6= x3. Using the change of variables of Equation (4),
the system reduces to

d2 ·
(
α0,2;1 · s2 +

α1,1;1

2
· s1 + α0,1;1

)
= 0 ,

α1,0;0 · d2 + α0,1;0 · d3 = 0 ,

d3 ·
(
α2,0;1 · s3 +

α1,1;1

2
· s4 + α1,0;1

)
= 0 .

Since α1,0;0, α0,1;0 6= 0, the second equation is satisfied by d2 = −α0,1;0

α1,0;0
· d3. By

taking d2, d3 6= 0, the other equations reduce to

α0,2;1 · s2 +
α1,1;1

2
· s1 = −α0,1;1 ,

α2,0;1 · s3 +
α1,1;1

2
· s4 = −α1,0;1 .

If α1,1;1 6= 0, then the system admits a solution, which corresponds to a colli-
sion. Similar result holds for α1,1;1 = 0 and α0,2;1, α2,0;1 6= 0. Hence, the only
remaining cases to analyse are (i) α1,1;1 = α0,2;1 = 0 and α2,0;1 6= 0, or (ii)
α1,1;1 = α2,0;1 = 0 and α0,2;1 6= 0. We limit ourselves to analyse the first case,
since the other one is analogous.

SubCase: α1,1;1 = α2,0;1 = 0, α0,2;1 6= 0. By using the change of variables of
Equation (4), the system SF0,F1

(x0, . . . , xn−1) = SF0,F1
(y0, . . . , yn−1) is equal to



α1,0;0 α0,1;0 0 0 . . . 0 0
0 α1,0;1 α0,2;1 · d2 0 . . . 0 0
0 0 0 α0,1;0 . . . 0 0
...

. . .
. . .

...
0 0 0 0 . . . α1,0;1 α0,2;1 · dn−1

α0,1;0 0 0 0 . . . 0 0


×



d0
d1
s2
d3
...

dn−2

sn−1


= −



0
α0,1;1 · d2
α0,1;0 · d3
α1,0;0 · d2

...
α0,1;1 · dn−1

α1,0;0 · dn−1


.
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We solve this system with respect to the variables {d0, d1, s2, d3 . . . , dn−2, sn−1},
i.e., variables di for odd i and for d0 and variables si for even i ≥ 2. We leave
the others as free variables.

Since the determinant of the l.h.s. matrix is −α
n+1
2

0,1;0 · α
n−1
2

0,2;1 ·
∏
i≥2 even di, if

we choose each di 6= 0 for i ≥ 2 even, then the system is compatible and the
ASI-lifting is not invertible.

SubCase: n = 3. Finally, we prove the result for n = 3. Given F0(x0, x1) =
α1,0;0 · x0 + α0,1;0 · x1 for α0,1;0, α1,0;0 6= 0, the system y = SF0,F1

(x) is

α1,0;0 · x0 + α0,1;0 · x1 = y0 ,

α2,0;1 · x21 + α0,2;1 · x22 + α1,1;1 · x1 · x2 + α1,0;1 · x1 + α0,1;1 · x2 = y1 ,

α1,0;0 · x2 + α0,1;0 · x0 = y2 .

By replacing x1 =
y0−α1,0;0·x0

α0,1;0
, x2 =

y2−α0,1;0·x0

α1,0;0
in the second equation, we get

x20 ·
(
α2,0;1 · α2

1,0;0

α2
0,1;0

+
α0,2;1 · α2

0,1;0

α2
1,0;0

+ α1,1;1

)
+ x0 ·

(
y0 ·

(
−2 · α2,0;1 · α1,0;0

α2
0,1;0

− α1,1;1

α1,0;0

)
+ y2 ·

(
−2 · α0,2;1 · α0,1;0

α2
1,0;0

− α1,1;1

α0,1;0

)
− α1,0;1 · α1,0;0

α0,1;0
− α0,1;1 · α0,1;0

α1,0;0

)
+
α2,0;1

α2
0,1;0

· y20 +
α0,2;1

α2
1,0;0

· y22 +
α1,1;1

α0,1;0 · α1,0;0
· y0 · y2 +

α1,0;1

α0,1;0
· y0 +

α0,1;1

α1,0;0
· y2 − y1 = 0 .

Working as in the proof of Lemma 11, the ASI-lifting is always invertible if and
only if

– the coefficient of the monomial x20 is zero, that is, α2,0;1 · α4
1,0;0 + α0,2;1 ·

α4
0,1;0 + α1,1;1 · α2

1,0;0 · α2
0,1;0 = 0;

– the coefficient of the monomial x0 is non-null, that is,

1. −2 · α2
1,0;0 · α2,0;1 − α1,1;1 · α2

0,1;0 = 0 ,
2. −2 · α0,2;1 · α2

0,1;0 − α1,1;1 · α2
1,0;0 = 0 ,

3. α1,0;1 · α2
1,0;0 6= −α0,1;1 · α2

0,1;0 .

By combining these conditions, we get that the ASI-lifting is invertible if

F1(x0, x1) = γ ·
(
α0,1;0

α1,0;0
· x0 −

α1,0;0

α0,1;0
· x1
)2

+ α1,0;1 · x0 + α0,1;1 · x1

where γ ∈ Fp and α1,0;1 · α2
1,0;0 6= −α0,1;1 · α2

0,1;0 . ut

6 Summary and Open Problems for Future Work

In this paper, we show that it is impossible to have invertibility of alternating
shift-invariant lifting functions SF0,F1

over Fnp induced by two local quadratic
maps F0, F1 : F2

p → Fp. When we relax conditions and we take one of the two
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local maps to be linear, we find some invertible functions. Unfortunately, for
each n ≥ 4, we get only the already known Type-II Feistel schemes.

Our findings provide some insights, though it leaves open for future research
the problem of setting up invertible quadratic non-linear functions over Fnp in-
duced by local maps. An obvious possible way to solve it is to consider local
maps F0, F1, . . . , Fh−1 : Fmp → Fp defined over a larger input domain by taking
m ≥ 3. Another strategy may consist of generalizing the current construction.
E.g., let’s focus on the case of the SI-lifting function SF over Fnp for F : Fmp → Fp.
In the current definition, the function F takes in input consecutive elements
xi, xi+1, . . . , xi+m−1. A possible way to generalize such definition consists of al-
lowing for non-consecutive inputs, as formally given in the following definition.

Definition 6. Let p ≥ 3 be a prime integer, and let 1 ≤ m ≤ n be two positive
integers. Let F : Fmp → Fp, and let j1, j2, . . . , jm−1 ∈ {1, 2, . . . , n − 1} be m − 1
distinct integers. We define SF,[j1,j2,...,jm−1] over Fnp as

SF,[j1,j2,...,jm−1](x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1

where

yi = F (xi, xi+j1 , xi+j2 , . . . , xi+jm−1
) for each i ∈ {0, 1, . . . , n− 1}.

A similar construction can be proposed for cycling and alternating shift-invariant
functions as well. We leave the problem to study their invertibility as future work.
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