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ABSTRACT
Protocols for state-machine replication (SMR) often trade off perfor-

mance for resilience to network delay. In particular, protocols for

asynchronous SMR tolerate arbitrary network delay but sacrifice

throughput/latency when the network is fast, while partially syn-

chronous protocols have good performance in a fast network but

fail to make progress if the network experiences high delay. Existing

hybrid protocols are resilient to arbitrary network delay and have

good performance when the network is fast, but suffer from high

overhead (“thrashing”) if the network repeatedly switches between

being fast and slow, e.g., in a network that is typically fast but has

intermittent message delays.

We propose Abraxas, a generic approach for constructing a hy-

brid protocol from any “fast” protocol Πfast and asynchronous

protocol Πslow to achieve (1) security and performance equivalent

to Πslow under arbitrary network behavior, and (2) performance

equivalent to Πfast when conditions are favorable. We instantiate

Abraxas with the best existing protocols for Πfast (Jolteon) and

Πslow (2-chain VABA), and show experimentally that the resulting

protocol significantly outperforms Ditto, the previous state-of-the-

art hybrid protocol.
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1 INTRODUCTION
Protocols for state-machine replication (SMR) [18, 22, 24] form

the core of distributed ledger technologies or blockchains. SMR

allows a distributed set of parties to agree on an unbounded, or-

dered sequence (i.e., a chain) of blocks, each of which contains some

predetermined number of transactions. Security for SMR in the

presence of some fraction of malicious parties requires two funda-

mental properties: consistency and liveness. Consistency requires
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that all honest parties agree on any blocks they output. Liveness

guarantees progress, in the sense that if all honest parties hold

some transaction as input, then that transaction will eventually be

included in some block output by those parties.

Resilience to network delays vs. performance. The SMR lit-

erature primarily considers three network settings: synchronous,

partially synchronous, and asynchronous. In a synchronous net-

work it is assumed that all messages are delivered within some fixed

(known) time ∆ after they are sent. This allows tolerating up to

t < n/2 malicious parties. In practice, however, it is often difficult

to guarantee complete synchrony. This has motivated the design

of partially synchronous [7, 9, 10, 25] and asynchronous [15, 19? ?
, 20] protocols, which can tolerate only t < n/3 corrupted parties.

In the partially synchronous setting, the network is initially asyn-

chronous but is guaranteed to become fully synchronous after some

unknown (but finite) global stabilization time (GST). This assump-

tion allows for highly efficient deterministic protocols by relying on
a leader who is responsible for driving the protocol’s progress. For

example, after the GST such protocols can confirm blocks within

three rounds of communication if the leader is not faulty [10]. More-

over, in that case the latency and throughput of such protocols can

be strictly superior to those of synchronous protocols, as they run

in time depending on the actual network latency δ rather than the

(often pessimistic) worst-case synchrony parameter ∆. However,
before the GST or when the leader is malicious, these protocols need

to invoke a relatively expensive leader-rotation sub-protocol. In

those cases, partially synchronous protocols may perform repeated

leader rotations during which no progress is made.

In the asynchronous setting, messages may be delayed for ar-

bitrarily long periods of time, with the only guarantee being that

they are eventually delivered. Any secure asynchronous proto-

col must be randomized. This, unfortunately, represents a major

bottleneck: indeed, compared to their (deterministic) partially syn-

chronous counterparts, state-of-the-art asynchronous protocols

usually require far more rounds to output a block (e.g., > 10 rounds

in expectation [2, 15]). This results not only in high latency, but

also poor throughput since parties do not start processing the next

block until the previous block has been confirmed.

Achieving the best of both. Ideally, an SMR protocol would be

secure even under worst-case conditions, while having good per-

formance under good conditions. With this goal in mind, Kursawe

https://doi.org/10.1145/3576915.3623191


and Shoup initiated a line of work on so-called hybrid (or opti-
mistic) protocols [17, 23]. Such protocols have a deterministic “fast

path” that makes progress quickly when conditions are favorable

(e.g., when the leader is honest and the network is fast), as in par-

tially synchronous protocols, as well as a fallback “slow path” that

guarantees liveness when conditions are not favorable, as in asyn-

chronous protocols. By alternating between these paths, hybrid

protocols can achieve high efficiency as well as strong security. The

technique was later studied by Aublin et al. [4], who introduced

a generic framework for constructing hybrid protocols; and Pass

and Shi [21], who further refined and popularized the hybrid tech-

nique in their Thunderella protocol. In the last few years, hybrid

protocols have continued to receive intense interest in both the

asynchronous [13, 19] and synchronous [1, 3, 21] settings.

One drawback of existing hybrid protocols in the asynchronous

setting is that their performance suffers when they fall back fre-

quently to the slow path. In particular, most hybrid protocols first

attempt to run a fast path, and fall back to a slow path only after

some generous time-out period (as otherwise the protocol might fall

back unnecessarily). Thus, even the best hybrid protocols [13, 19]

are significantly less efficient than purely asynchronous protocols

under worst-case network conditions. This unsatisfactory state

of affairs raises a natural question: Are there asynchronous hybrid
protocols whose performance is comparable to the best partially syn-
chronous protocols when conditions are favorable, and to the best
asynchronous protocols when conditions are unfavorable?

DAG-based protocols. Recent DAG-based protocols [11, 14, 16]

partially answer this question, as they maintain stable through-

put and latency even as network conditions fluctuate. DAG-based

protocols proceed in steps, during each of which all n parties pro-

pose O(n) blocks in parallel (a layer), and every proposal points

back to multiple blocks in a previous layer. An advantage with

this approach is that they decouple liveness of the protocol from

transaction broadcast which allows them to commit many blocks

at once when they recover from an intermittent liveness loss. A

problem with these DAG-based approaches, however, is that they

require Ω(n3) total communication per layer, which means they

induce high network congestion when the number of parties grows

large. Furthermore, due to the need to store n blocks per layer—in

addition to all the pointers to blocks in previous layers—thememory

footprint for parties running DAG-based protocols is Ω(n2).

1.1 Our Contribution: Abraxas
Addressing the above, we propose a compiler called Abraxas1 that
provides a generic way of using any SMR protocol Πfast as the fast

path along with any asynchronous SMR protocol Πslow as the slow

path. Abraxas is secure (under arbitrary network conditions) as long

as Πslow is secure; it has performance comparable to Πfast when

network conditions are favorable, and performance comparable to

Πslow when conditions are unfavorable. Importantly, Abraxas main-

tains stable throughput even when it switches between its fast and

slow paths as network conditions change. In contrast, the through-

put of prior hybrid protocols in that case would fall below what the

slow path could ensure on its own because those protocols alternate

1
Abraxas is a mythical figure often depicted on charms and amulets as a hybrid of

multiple creatures.

between the slow and fast paths. Instead, we design Abraxas so that

the slow path is always running in the background, even while the

protocol is utilizing the fast path, and even during leader rotation.

(For this reason, Abraxas does not fit into the general framework of

Aublin et al. [4].) Thus, Abraxas continues to make progress even

while switching between the paths. This, in particular, complicates

a proof of consistency, since parties may have inconsistent views

about what was output on the fast path when the protocol falls

back to the slow path. Thus, the main technical challenge of our

construction is to maintain consistency between the two paths in

this situation. We refer to Section 1.2 for further details of how we

accomplish that.

Although the DAG-based Bullshark protocol [14] also achieves

good performance under both favorable and unfavorable network

conditions, it suffers from the drawback of requiring Ω(n3) commu-

nication per layer of n committed blocks (as mentioned above). In

contrast, instantiating Abraxas with state-of-the-art components

(see below) gives a protocol that uses only O(n2) communication

per committed block. Although the communication complexity per
block is asymptotically the same for both approaches, the former ap-

proach will lead to network congestion more quickly as n increases,

resulting in roughly the same throughput but with significantly

higher bandwidth requirements in order to maintain equivalent

latency. Additionally, Bullshark requires Ω(n2) memory usage per

party (as in all DAG-based protocols), whereas Abraxas
∗
only re-

quires O(n) memory (since votes in our protocol can be stored as

aggregated certificates).

Evaluation. We evaluate Abraxas
∗
, an instantiation of Abraxas

using current state-of-the-art sub-protocols for Πfast and Πslow
(namely, Jolteon [13] and 2-chain VABA [13], respectively). Table 1

compares the theoretical performance of Abraxas
∗
with the state-

of-the-art hybrid protocols Bolt-Dumbo [19] and Ditto [13], as

well as Bullshark [14], a leading DAG-based protocol. Focusing on

the latency, we see that in good conditions (i.e., a synchronous

network with a good leader) Abraxas
∗
performs as well as Ditto

and Bolt-Dumbo, whereas in bad network conditions Abraxas
∗

performs as well as Ditto and significantly better than Bolt-Dumbo.

We stress, however, that these two extremes do not tell the whole

story; a key advantage of Abraxas
∗
is that it performs well even

when conditions repeatedly switch between good and bad (something

we refer to as throughput stable in Table 1), as justified by the

experiments we describe next. (For completeness, we note that the

DAG-based Bullshark protocol is also throughput stable, but incurs

cubic communication complexity as discussed earlier.)

Specifically, our experiments show that Abraxas
∗
matches or

outperforms Ditto [13], a state-of-the-art hybrid protocol for the

asynchronous setting. We evaluate performance when the leader

crashes 0%, 5%, 10%, 20%, and 100% of the time. Different leader-

failure rates simulate the effect of different network conditions,

since the effect of a failed leader is the same as the effect of a

good leader with a poor network connection. Thus, a 0% leader-

failure rate corresponds to a stable, fast network with a responsive

leader, which is ideal for partially synchronous protocols and the

fast path of hybrid protocols. At the other extreme, a 100% leader-

failure rate causes hybrid protocols to rely entirely on the slow

path, and emulates a slow network with a DDoS’d leader, where
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Table 1: Comparison with state-of-the art hybrid and DAG-based protocols. We call a protocol throughput stable if its through-
put remains good under all network conditions.

Protocol Communication Communication Latency (Expected) latency Throughput

(fast network) (slow network) (fast network) (slow network) stable?

Bolt-Dumbo [19] O(nB) O(nB + n3κ)) 5 28 No

Ditto [13] O(nB) O(n2B) 5 10.5 No

Bullshark [14] O(n3 + n2B) O(n3 + n2B) 2 6 Yes

Abraxas
∗ O(n2B) O(n2B) 5 10.5 Yes

Notes: Communication is the number of bits needed to commit a block, where κ is a computational security parameter and B = Ω(κ) is the blocksize; note that Bullshark commits n
blocks at a time. Latency is measured in rounds; the latencies of Ditto and Abraxas

∗
are amortized (i.e., we display the expected rounds to commit k blocks divided by k for k → ∞).

Both Bolt-Dumbo and Abraxas
∗
are generic frameworks and so can be instantiated with various paths to achieve different communication complexities and latencies.
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Figure 1: Throughput under varying probabilities of leader
failure for n = 32 parties.

asynchronous protocols are better. The remaining cases correspond

to a fluctuating network that forces continual switching between

the fast and slow paths.

Figure 1 (cf. Section 6) summarizes the results of one set of exper-

iments comparing the throughput of Abraxas
∗
and Ditto (instanti-

ated with the same sub-protocols as Abraxas
∗
) at each protocol’s

saturation point. Although the throughputs of Abraxas
∗
and Ditto

are comparable at the two extremes, it is evident that Abraxas
∗

performs much better under a moderate failure rate, i.e., whenever

there is any switching (even if it is relatively infrequent) between

good and bad network conditions. The latency of Abraxas
∗
is also

significantly better than that of Ditto in those cases; we refer to

Section 6 for further details.

Figure 1 also includes results for VABA, a leading asynchronous

protocol that always runs on a “slow path” and does not take advan-

tage of a fast network. It is interesting to note that the throughput

of VABA is comparable to—though still generally worse than—that

of Abraxas
∗
, except at the 100% failure rate that an asynchronous

protocol is designed for. But precisely because VABA always runs

a “slow path,” the latency of VABA is roughly 3× worse than that

of Abraxas
∗
when run in a fast network (see Section 6).

1.2 Overview of Abraxas
Abraxas incorporates two sub-protocols Πfast and Πslow that run

on what we call the fast path and slow path, respectively, and

that each maintain their own chain Cfast and Cslow. (These chains

are only maintained internally by the parties; Abraxas itself also

maintains a main chain with the blocks that the parties actually

output.) Πfast outputs blocks quickly (i.e., has low latency) in a

synchronous network; however, it may fail to make any progress in

an asynchronous network (andmay remain permanently stuck even

if the network later becomes synchronous). Πslow has worse latency

but guarantees liveness even in a fully asynchronous network.

At a high level, our protocol works as follows. Like many hybrid

protocols, Abraxas has a steady state and a recovery state; however,

unlike most hybrid protocols, in Abraxas the slow path is run at

all times (even during the steady state). During the steady state,

the fast path drives consensus, and the slow path is used only to

detect problems with the fast path. Informally, if the fast path is

unable to “keep ahead” of the slow path, then the fast path is no

longer working as it should, and parties switch to the recovery

state. Defining a useful notion of “keeping ahead” turns out to be a

key technical challenge; we explore this point in greater detail in

Section 3.

During the recovery state, parties stop running the fast path

altogether, and use the slow path to drive consensus. Informally, in

the recovery state parties use Cslow to agree on how many blocks

of the (now defunct) fast chain should be output on the main chain.

The main challenge is ensuring that the agreed-upon number of

blocks is high enough to include any blocks output by an hon-

est party during the steady state. (This is a common challenge in

hybrid protocols; the Bolt-Dumbo Transformer [19], for example,

overcomes this challenge using a specialized subprotocol called

tcv-BA.) Once parties have agreed on which (if any) blocks from

Cfast they should output on the main chain, they additionally take

advantage of any extra progress the slow chain may have made

in the meantime by placing all outstanding transactions (up to a

certain index) in a fresh block, and outputting that block on the

main chain. At that point, the parties return to the steady state and

begin generating a fresh instance of Cfast.

Compared to other hybrid protocols instantiated with the same

sub-protocols, Abraxas achieves higher throughput because it al-

ways runs the slow path in the background, instead of only running

the slow path once a problem is detected. Thus, the work invested
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in building the slow chain pays off each time the protocol completes

a recovery phase.

2 MODEL AND DEFINITIONS
In our setting, protocols are run among a fixed set of n parties,

up to t of which may be adaptively corrupted.2 Corrupted parties

are controlled by an adversary, who may cause them to deviate

arbitrarily from the protocol. Parties who are not corrupted are

called honest. Throughout, we assume n ≥ 3t + 1. We consider an

asynchronous setting, in which an adversary is allowed to delay

messages for arbitrary lengths of time (subject to the restriction

that messages sent by honest parties must eventually be delivered).

We are primarily interested in state machine replication (SMR)

protocols. At a high level, such protocols allow parties (also called

nodes or replicas) to agree on a growing chain of objects called

blocks. Each block contains an ordered list of input values called

transactions. Transactions are generated and added to a local buffer

via some external mechanism whose details are unimportant for

our purposes; we denote the local buffer belonging to Pi by bufi .
Each party’s local chain is modeled as a write-once array of

blocks (denoted C). We say that Pi outputs (or commits) block k
when Pi writes to C[k]. For convenience, we assume each entry of

C is initialized to the special value ⊥ at the start of the protocol,

so that C[k] = ⊥ iff Pi has not yet output block k . Furthermore,

we assume a party outputs block k only after outputting blocks

1, . . . ,k−1. Most existing blockchain protocols naturally satisfy this

requirement, and in any case, one can enforce it by buffering out-

of-order blocks until all earlier blocks have been output, at the cost

of potentially increasing latency. Lastly, we assume a party deletes

a transaction from its buffer once it observes that transaction in

some block in its chain.

Different definitions of SMR exist in the literature; for concrete-

ness, we use the following definition of SMR adapted from Blum et

al. [6]:

Definition 2.1 (State Machine Replication). Let Π be a protocol

executed by parties P1, . . . , Pn who are provided with transactions

as input and each locally maintain a chain C as described above.

• Completeness: Π is complete if for all k ≥ 1, every honest

party eventually outputs block k .
• Consistency: Π is consistent if for all honest parties Pi , Pj ,
whenever Ci [k] ,⊥, Cj [k] ,⊥ then Ci [k] = Cj [k].

• Liveness: Π is live if for any transaction tx that is in all hon-

est parties’ buffers, every honest party eventually outputs a

block containing tx.

If Π is complete, consistent, and live in the presence of up to t
corrupted parties, then Π is t-secure.

We write C[: k] as shorthand for C[1], . . . , C[k]. The length of a

chain, denoted by len(C), is equal to the largest index k such that

C[k] ,⊥.

2.1 Cryptographic Primitives
We let κ denote a cryptographic security parameter. We assume a

collision-resistant hash function H with output of length O(κ).

2
As long as the cryptographic primitives and subprotocols are adaptively secure, so is

Abraxas.

A k-out-of-n (non-interactive) threshold signature scheme con-

sists of algorithms for key generation, signing, verification, and

combination. We assume that prior to the protocol, a trusted dealer

performs setup for the scheme, generating a public key pk , secret
keys sk1, . . . , skn , and public verification keys pk1, . . . ,pkn . Each
party Pi receives ski , pk , and (pk1, . . . ,pkn ). Party Pi can use its

secret key ski to create a signature share σi on a message m. A

signature share from party Pj on a messagem can be verified using

the corresponding verification key pkj ; a signature share is valid
if the verification algorithm succeeds and invalid otherwise. A set

of k valid signature shares on a messagem can be combined into

a signature σ , which can be verified using the public key pk . We

assume that signature shares and signatures have length O(κ).
We follow the standard convention for this line of work and as-

sume that signature shares and signatures are perfectly unforgeable.
This means that it is not possible to produce a signature share on

a messagem that verifies under pki unless Pi explicitly generates

such a share (or is corrupted); similarly, an adversary who corrupts

t parties cannot generate a signature on a messagem that verifies

under pk unless k − t honest parties generate signature shares for
that message.

3 ABRAXAS
Abraxas synthesizes the output of two arbitrary SMR protocolsΠfast
and Πslow running as a “fast path” and “slow path,” respectively.

Security of Abraxas as an asynchronous SMR protocol relies only

on security of Πslow in the same sense (and for the same number of

corruptions), and requires no assumptions about Πfast. The most

interesting instantiations of Abraxas, however, are where Πfast
also ensures consistency (though not necessarily completeness or

liveness) in an asynchronous network.

Overview of the protocol. Parties in Abraxas proceed in a se-

quence of eras, where in each era a party begins in the steady state
(corresponding to the fast path) and switches to the recovery state
(corresponding to the slow path) if a problem is detected; see Algo-

rithms 1–4.

Algorithm 1:Main protocol wrapper

1 throughout:
2 whenever a transaction tx is input to bufmain, input tx

to buffast and bufslow;
3 whenever a block B is output to Cmain, delete each

tx ∈ B from buffast and bufslow;
4 define main:
5 set ℓ∗ := 0, e := 1;

6 begin running Πslow (which writes to Cslow);

7 steadyState();

In the steady state (cf. Algorithms 2 and 3), a fresh instance of

Πfast is used to drive consensus. We denote the instance associated

with era e by Πe
fast and the chain it maintains by Ce

fast, omitting

the superscript when e is irrelevant or clear from context. If a

party detects a problem and falls back to the recovery state (cf.

Algorithms 4 and 5), it terminates Πe
fast and relies on Πslow to
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drive consensus. (The same instance of Πslow is run throughout

the protocol, and parties continue to run Πslow even while in the

steady state.) Once a party decides that the original problem has

been resolved, it advances to the next era.

Each party maintains local buffers buffast and bufslow for the

fast path and slow path, respectively. When a party receives a

transaction tx in its (real) buffer bufmain, it places tx in both buffast
and bufslow. As will be discussed further below, parties will also

add additional, “symbolic” transactions to bufslow.

Votes and certificates. Special messages called votes and certifi-
cates play a central role in the protocol. In general, a vote is asso-

ciated with a unique era, index, and block, and is signed by the

party who creates the vote using an (n − t)-out-of-n threshold sig-

nature scheme. Any n − t votes (of the same type, for the same data)

can be used to form a certificate. In the steady state, confirmation
votes/certificates are used to acknowledge new blocks on the fast

chain. In the recovery state, recovery votes/certificates are used to

agree on what progress (if any) the fast chain made during the

steady state. The format of these votes/certificates is as follows:

• A confirmation vote cv contains an era e , an index k , a fast-
chain block B, and a partial signature σi on h := H (B) by the
party who created the vote.

• A confirmation certificate cc contains an era e , index k , hash
digest h, and a full signature σ on h.

• A recovery vote rv contains an era e , index k , a confirmation

certificate cc associated with e and k , and a partial signature

σi on cc.
• A recovery certificate rc contains an era e , index k , a con-
firmation certificate cc associated with e and k , and a full

signature σ on cc.

We use standard notation for values in votes and certificates, e.g.,

cc.idx denotes the index of confirmation certificate cc. We say a

vote and/or certificate is for (e,k) if it contains era e and index k .
Certificates provide a form of what is sometimes called external

validity for Πfast. Typically, a protocol has external validity if it

is possible for non-participants (such as clients) to verify the le-

gitimacy of each block in the chain. In Abraxas, these certificates

are used by the participants themselves to verify the legitimacy

of a Πfast block, even if their instance of Πfast has become stuck.

(In the interest of generality, we do not assume Πfast is externally

valid; however, when Πfast is externally valid, the compiler can be

simplified slightly as an optimization.)

We remark that using hash digests to reduce communication

introduces a minor subtlety: an honest party who receives a con-

firmation certificate, recovery vote, or recovery certificate cannot

derive the corresponding block from the associated digest. However,

the digest is guaranteed to correspond to a real block, because hon-

est parties will only send confirmation votes if they have seen the

corresponding block B. Moreover, all honest parties will eventually

receive B, because there must be some honest party who originally

sent a confirmation vote for B.
To simplify the protocol description, we implicitly assume that

parties ignore any votes/certificates with invalid or missing signa-

tures (or signature shares); thus, whenever we say a party receives

a vote/certificate, it is implied that the vote/certificate in question

has a valid partial or full signature, as appropriate. An honest party

who receives n − t votes (by different parties) on the same data is

assumed to automatically transform them into a certificate. Thus,

we usually do not distinguish between sets of n − t votes (with valid
partial signatures) on the same data and certificates with a single

full signature, and we often use the term “certificate” to refer to

either object. (E.g., “receiving a certificate” means either receiving

n − t votes for the same data or receiving a certificate directly.)

When a party obtains a confirmation certificate or a recovery

certificate, it adds that certificate to bufslow as a special “symbolic”

transaction.
3
This allows parties to share a consistent view of

whether the protocol is running “quickly,” as will be discussed

further below. Throughout, when we say a party sees a certificate
we mean it either received that certificate directly from another

party or it observed that certificate as a symbolic transaction in a

block of Cslow.

Resolving blocks. A central idea in Abraxas is to detect failure of

the fast path so that parties can fall back to the slow path. Informally,

we determine that the fast path has failed if it is not “keeping ahead”

of the slow chain. In otherwords, the fast chain should be outputting

new transactions and forming certificates quickly relative to the

speed of the slow path. By inputting certificates for fast chain blocks

to the slow chain, we create a global timestamp for the time those

transactions were confirmed. If these timestamps start to run late

(or don’t appear at all), then there is a problem with the fast chain.

A slow chain block Cslow[ℓ] is considered resolved once every

transaction in the block has had its confirmation certificates appear

on the slow chain within the next λ blocks, i.e., by block ℓ + λ,
where λ should be tuned to the block rate of both chains. The

intuition behind this rule is as follows. If the fast path is working as

expected (and λ was set appropriately), then it should take at most

λ slow chain blocks to 1) confirm all of these transactions on the

fast path, i.e., to produce a confirmation certificate for them 2) have

all of these certificates become part of one of these λ slow chain

blocks. Thus, if a block on the slow chain remains unresolved, then

parties agree that something has gone wrong on the fast path and

collectively decide to fall back to the slow path.

The rules for resolving a block are described in detail below. In

our code, we use Procedure ssTryResolve in Algorithm 2 to find the

index of the most recent block that cannot be resolved. P considers

a block Cslow[ℓ] ready to be resolved if len(Cslow) ≥ ℓ + λ and if

for every confirmation certificate cc for the current era that P sees

in Cslow[: ℓ + λ], P has received a confirmation vote cv such that

H (cv.block) = cv.hash. (Thus, P knows a block corresponding to

every confirmation certificate in Cslow[: ℓ+λ].) If Cslow[ℓ] is ready to
be resolved, then it is resolved if for every transaction tx ∈ Cslow[ℓ]

the following are contained in Cslow[: ℓ + λ]:

• A confirmation certificate cc (for the current era) correspond-
ing to a block B that contains tx.

• For all k ≤ cc.idx, a confirmation certificate cck for the

current era and index k .

3
In the interest of generality we do not assume the slow path differentiates between

symbolic transactions and real transactions; in practice, however, one might optimize

the slow path to prioritize symbolic transactions in order to recover more quickly after

falling back.
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Algorithm 2: Steady state helper functions

8 define ssTryResolve(ℓ):
9 if Cslow[ℓ] is not ready to be resolved then
10 return (ℓ, false);
11 else
12 if Cslow[ℓ] can be resolved then
13 return ssTryResolve(ℓ + 1);
14 else
15 return (ℓ + 1, true);

16 define ssTryVote():
17 Let k∗ ≤ len(Ce

fast) be maximal s.t. for all k < k∗, Pi has

seen cck for (e,k);

18 for k = kcvoted + 1, . . . ,k∗ do
19 multicast a confirmation vote for (e,k, Ce

fast[k]);

20 kcvoted := k∗;

21 define ssTryOutput():
22 Let k∗ be maximal s.t. for all k ≤ k∗, Pi has seen

cvk , cck for (e,k);

23 if k∗ − 1 ≥ kout + 1 then
24 for k = kout + 1, . . . ,k∗ − 1 do
25 find cvk , cck for (e,k) s.t.

H (cvk .block) = cck .hash;
26 output Cmain[k

offset + k] := cvk .block;
27 kout := k∗ − 1;

In this case, ssTryResolve(ℓ) returns (ℓ + 1, true). Note that if fur-
ther blocks beyond block ℓ can be resolved, ssTryResolve(ℓ) re-
cursively calls itself to find the most recent one that can be re-

solved. Otherwise, we say Cslow[ℓ] cannot be resolved. In this case,

ssTryResolve(ℓ) returns (ℓ, false). Each party alsomaintains a global

variable ℓ∗ indicating the lowest-indexed block on Cslow that is not

(yet) resolved.

The fast path.We now describe the steady state of our protocol.

(Our simplified description omits some technical details; refer to

Algorithms 3 and 2 for full details.) Upon entering the steady state

when a new era e begins, a party invokes a fresh instance of Cfast.

It executes the code specified in Algorithm 3, which invokes the

helper functions in Algorithm 2 at appropriate events. We begin by

explaining Procedure ssTryOutput (Algorithm 2). Roughly speak-

ing, when a party outputs the kth block to Cfast, it will attempt to

write it to Cmain once it has written all previous fast chain blocks

it has output this era to the main chain (i.e., up and including block

k − 1).

To prevent parties from committing different blocks at the same

position, a party outputs a new block only upon seeing a confirma-

tion certificate for this block. Thus, parties attempt to gather such

certificates by multicasting
4
a confirmation vote (with index k) for

each new block k that is output on Cfast. To do so, parties use a

second Procedure, ssTryVote (Algorithm 2). As in ssTryOutput, a

4
Multicasting means sending a message to all other parties; we use this term to

distinguish from (Byzantine/reliable) broadcast.

party only casts a confirmation vote for a new block once it has

confirmed all previous blocks and if it hasn’t sent a vote for index

k before.

Whenever a party sees a confirmation certificate cc, it multi-

casts cc and adds cc to bufslow. It then attempts to confirm and

output as many blocks as possible to Cmain (as “regular blocks”) for

which it has seen a contiguous sequence of confirmation certificates.

(This is achieved by again calling ssTryVote and ssTryOutput). Note
that a party Pi may output a block B to Cmain regardless of whether

B was output on Pi ’s fast path or was received as part of a confir-

mation certificate.

In summary, what the above achieves is the following: whenever

a party outputs the kth block to Cmain, then it can be sure that

all other parties eventually receive the information necessary to

confirm all blocks up to and including block k . In addition, we can

guarantee a set of t + 1 honest parties have already confirmed block

k and thus have also confirmed and output all previous blocks up

to and including block k − 1. These properties of our compiler are

crucially exploited in case the parties need to fall back.

To implement these steps, a party keeps track of the following

global variables which are set at the beginning of each new era (i.e.,

upon reentering the steady state).

• koffset is set to the length of Cmain at the start of each era, and

is used to determine the correct position for new fast-chain

blocks on the main chain. (This is necessary because each

era spawns a new instance of Cfast).

• kout is set to 0 at the start of each era and is incremented

upon outputting a block to the main chain during the steady

state.

• kcvoted keeps track of the indices for which a confirmation

vote has been sent, to prevent sending votes multiple times

for the same block. krvoted plays the same role for recovery

votes.

Falling back.When a party outputs a block on Cslow, or receives

a confirmation vote, it checks whether additional blocks on Cslow
can be resolved; it transitions to the slow path if it sees that a block

cannot be resolved.

As explained above, the intuition for this rule is that in the

optimistic case, blocks are regularly output on Cfast. Hence, as

parties are able to quickly form confirmation certificates on those

blocks, this allows those blocks to be quickly output to Cmain. On

the other hand, if confirmation certificates are appearing more

slowly (or not at all), the parties will switch to the recovery state.

When entering the recovery state, a party P stops Cfast and mul-

ticasts a recovery vote for the highest index kcvote it has confirmed

(Again, this simplified description omits some technical details

in the interest of simplicity; refer to Algorithms 4 and Procedure

rsInitialize in Figure 5 for full details.) Whenever P receives a con-

firmation certificate cc, it multicasts a recovery vote for the highest

index k∗ such that it has already received confirmation certificates

for all previous indices and has cast recovery votes for them. (See

Procedure rsTryVote.) Whenever P receives a recovery certificate,

P multicasts it and adds it to bufslow. Finally, P waits to see the first

recovery certificate rc for the current era appear on Cslow. Once

that happens, P waits until it has caught up to rc, namely, until

6



Algorithm 3: Steady state

28 define steadyState():
29 on entering this state:
30 switch := false;
31 koffset := len(Cmain), k

cvoted
:= 0, kout := 0;

32 begin running Πe
fast (which writes to Ce

fast);

33 ssTryVote();
34 ssTryOutput();
35 (ℓ∗, switch) := ssTryResolve(ℓ∗);
36 on outputting a new block to Ce

fast:
37 ssTryVote();
38 on outputting a new block to Cslow or receiving a

confirmation vote cv with cv.era = e:
39 (ℓ∗, switch) := ssTryResolve(ℓ∗);
40 on receiving a confirmation certificate cc with cc.era = e:
41 if cc is the first confirmation certificate received for

(e, cc.idx) then
42 multicast cc and add cc to bufslow;
43 ssTryVote();
44 ssTryOutput();
45 (ℓ∗, switch) := ssTryResolve(ℓ∗);
46 on setting switch to true:
47 recoveryState();

P receives, for all k ≤ rc.idx, a confirmation certificate (and cor-

responding confirmation vote) for the current era and index k . P
attempts to catch up by calling Procedure rsTryRecover whenever
it receives new certificates of either type.

Once P has caught up, it outputs on Cmain the corresponding

block—which we also call a “regular block”—for each of those con-

firmation certificates. To maintain liveness, P also outputs an ad-

ditional
5
“cleanup block” containing all the other transactions in

Cslow that have not yet appeared on Cmain; then P switches back to

the steady state. Our careful design ensures that if a party outputs

a block k in the steady state, all parties eventually catch up to k and

agree on this index. As discussed above, this is because parties will

eventually receive all the necessary confirmation certificates/votes

and at least t + 1 honest parties have already confirmed block k
previously. Thus, all parties will eventually send a recovery vote

for index k and it is impossible to form a recovery certificate for

any index lower than k .

4 SECURITY
Abraxas achieves the same security as Πslow. Formally:

Theorem 4.1. Let t < n/3. If Πslow is a t-secure SMR protocol in
an asynchronous network, then so is Abraxas.

In this section, we give an overview of the main ideas of the

proof of Theorem 4.1. (Formal proofs can be found in Appendix A.)

The proof proceeds in three parts, for consistency (Theorem A.5),

completeness (Theorem A.12), and liveness (Theorem A.13).

5
As described, the protocol allows blocks to contain arbitrarily many transactions;

one can modify the protocol to use fixed-size blocks by deterministically mapping a

large block to a sequence of smaller blocks.

Algorithm 4: Recovery state

48 define recoveryState():
49 on entering this state:
50 switch := false;
51 rsInitialize();
52 rsTryVote();
53 (ℓ∗, switch) := rsTryRecover(ℓ∗);
54 on outputting a new block to Cslow or receiving a

confirmation vote cv with cv.era = e:
55 (ℓ∗, switch) := rsTryRecover(ℓ∗);
56 on seeing a confirmation certificate cc s.t. cc.era = e:
57 if cc is the first conf. certificate seen for

(e,k) = (e, cc.idx) then
58 multicast cc;
59 rsTryVote();
60 (ℓ∗, switch) := rsTryRecover(ℓ∗);
61 on seeing a recovery certificate rc s.t. rc.era = e:
62 if rc is the first recovery certificate seen for

(e,k) = (e, rc.idx) then
63 multicast rc and add rc to bufslow;
64 on setting switch to true:
65 e := e + 1;

66 steadyState();

For the proof of consistency, the main challenge is in the analysis

of the recovery state. Within the steady state of some era, consis-

tency follows straightforwardly from the fact that confirmation

certificates for a given era and index are unique (even if the under-

lying fast chain protocol is not consistent!). However, parties may

enter the recovery state having output different numbers of blocks.

Thus, the crux of the proof is showing that all honest parties finish

the recovery state having “caught up” to the party who was farthest

ahead.

The proofs of completeness and liveness rely on two main ideas,

which are developed over a series of lemmas. Informally, we first

need to prove that given enough time, some honest party will

eventually make progress (e.g., enter a new state, resolve an index

ℓ, etc.) towards outputting new blocks. Then, we show that if some
honest party makes progress, then all honest parties will eventually
make progress.

Notably, Abraxas does not rely on any properties of Πfast for

security. In principle, Abraxas would still be secure even ifΠfast was

instantiated with a bad protocol that always outputs inconsistent

values, or never outputs anything. In other words, a bad choice of

Πfast can’t break Abraxas’s security. Of course, the choice of Πfast
does affect throughput and latency—this point is explored in detail

through our experimental evaluation (see Section 6).

5 EFFICIENCY
Let L denote a (fixed) block size, and let CCf (L) and CCs (L) denote
the per-block communication complexity of Πfast and Πslow for

block size L, respectively. Similarly, let RCf and RCs denote the per-
block round complexity of Πfast and Πslow, respectively. As before,

7



Algorithm 5: Recovery state helper functions

67 define rsInitialize():
68 terminate Πe

fast;

69 Let k∗ be maximal s.t. for all k ≤ k∗, Pi has seen cc with
(cc.era = e) ∧ (cc.idx = k∗);

70 find cc s.t. (cc.era = e) ∧ (cc.idx = k∗); then multicast a

recovery vote for (e,k∗, cc.hash);
71 krvoted := k∗;

72 define rsTryVote():
73 let k∗ be maximal s.t. for all k ≤ k∗, Pi has seen cc with

(cc.era = e) ∧ (cc.idx = k);
74 for k = krvoted, . . . ,k∗ do
75 find cc among seen certificates s.t.

(cc.era = e) ∧ (cc.idx = k);
76 multicast a recovery vote for (e,k, cc.hash);
77 krvoted := k∗;

78 define rsTryRecover(ℓ):
79 if len(Cslow) < ℓ then
80 return (ℓ, false);
81 else
82 if ̸ ∃ rc ∈ Cslow[ℓ] s.t. rc.era = e then
83 return rsTryRecover(ℓ + 1);
84 else
85 let rc be the first recovery certificate for era e in

Cslow[ℓ];

86 if Pi has caught up to rc then
87 rsOutput(rc.idx, ℓ);
88 return (ℓ + 1, true);
89 else
90 return (ℓ, false)

91 define rsOutput(idx, ℓ):
92 for k = kout + 1, . . . , idx do
93 find valid cv, cc for (e,k) s.t. H (cv.block) = cc.hash;
94 set Cmain[k

offset + k] := cv.block;
95 B∗ := Cslow[: ℓ] \ Cmain[: k

offset + idx];
96 output Cmain[k

offset + idx + 1] := B∗;

κ denotes a computational security parameter; we assume partial

signatures, full signatures, and hashes to all have length O(κ).
Recall that a confirmation vote consists of an era e , index k ,

threshold signature σi , and block B. Thus, the length of a confir-

mation vote is O(κ + L). Confirmation certificates are length O(κ),
because they carry a full signature and a hash of a block. Recovery

votes and recovery certificates are both length O(κ).

Optimistic case. The case in which the protocol remains in the

steady state without falling back is called the optimistic case. In

the optimistic case, each party runs Πfast and Πslow in parallel, and

multicasts one confirmation vote and one confirmation certificate

for each new fast chain block. One block is added to the main chain

for each block output by the fast chain.

The communication cost per block output by the main chain

in the optimistic case can be expressed as a function of several

variables, including the amortized communication complexity of

the fast and slow chains and the overhead incurred by the compiler.

Putting these pieces together, the communication cost of a single

main chain block in the steady state isO(CCf (L)+CCs (L) ·ρ+κ+L),
where ρ represents the number of slow chain blocks output per fast

chain block. In principle a network adversary can influence ρ—even
in the steady state—by selectively delaying fast chain messages;

however, in benign conditions, ρ is the ratio of the two chains’ round
complexities, i.e., ρ = (RCs/RCf ). For example, using Jolteon as the

fast path and 2-chain VABA as the slow path, ρ = 5/(21/2) = 10/21.

The throughput (i.e., transactions per unit time) in the optimistic

case is equal to the throughput of the fast chain.

Worst case. It is challenging to precisely characterize the worst-

case performance in a fully black-box way; below, we examine

performance at a high level.

In worst case conditions, the fast chain stalls and fails to keep up

with the slow chain, and parties will fall back to the recovery state

after λ slow chain blocks. (There is a period in which the protocol

is in “limbo,” i.e., network conditions are no longer good but parties

have not yet fallen back. During this period, the communication

complexity of a deterministic synchronous or partially synchronous

protocol may be arbitrarily high. For example, if parties’ clocks can

run at arbitrary rates, then a party running a timeout-based protocol

may send an arbitrarily large number of messages in the time it

takes for the slow chain to output λ blocks.)

While in the recovery state, each party will multicast confirma-

tion certificates, recovery votes, and recovery certificates. Using

Lemma A.9, the number of distinct indices for which honest parties

send confirmation certificates (and hence the number of recovery

votes and recovery certificates) is bounded by (maxi ∈H {kouti }+1)−

(mini ∈H {kouti }). (A majority of honest parties will not send this

many votes or certificates. At least t + 1 honest parties must enter

the recovery state with kouti ≥ khigh−1, and therefore those parties

(1) already sent certificates up tokhigh−1 and (2) will not send recov-

ery votes for values lower than khigh − 1.) The last cost associated

with the recovery state is the per-block communication complexity

of the slow chain multiplied by the number of slow chain blocks

until the first recovery certificate is output. A recovery certificate

will be received by all honest parties within 2 asynchronous rounds

of falling back (one for all parties to receive confirmation certifi-

cates, one for all parties to vote). If the underlying slow chain has

a mechanism for assigning certain transactions a higher priority,

the recovery certificate can be output within an additional RCs
rounds. If it does not have such a mechanism, liveness of the slow

chain still ensures that the recovery certificate will eventually be

output, but the time until it is output may depend on the volume of

transactions already in the system.

The throughput in the recovery state is slightly lower than the

throughput of the slow path on its own, owing to the overhead

incurred by storing certificates on the slow chain. In other words,

if the slow path has a throughput of x Tx/s, the compiler’s actual

throughput (literal transactions per second) is x −O(κ) Tx/s, since

8



O(κ) bits are taken up by symbolic transactions. Reducing this

overhead to O(1) bits is an interesting open question.

6 IMPLEMENTATION AND EVALUATION
In this section, we evaluate a version of Abraxas in which Πfast
and Πslow are instantiated using the state-of-the-art Jolteon and

(2-chain) VABA protocols, respectively. We refer to the resulting

protocol as Abraxas
∗
. Our results show that the performance of

Abraxas
∗
matches or exceeds that of Ditto, a state-of-the-art hybrid

protocol, in terms of both throughput and latency (except in the

case of exceedingly poor network conditions). Compared to VABA,

a leading protocol for the purely asynchronous setting, Abraxas
∗

has much better latency when the network is fast. We conclude that

Abraxas
∗
offers high performance under good network conditions,

while remaining more performant than the best existing hybrid

protocol under bad network conditions.

6.1 Implementation
We implement Abraxas

∗
in Rust,

6
building on the implementations

of Jolteon and VABA by Gelashvili et al. [13]. The lookback param-

eter λ in Abraxas
∗
is fixed to 20 blocks. (That parameter was set to

heuristically optimize performance of Abraxas
∗
in our experiments.)

An implementation of Abraxas
∗
strictly following the description

in Section 3 would run independent executions of Jolteon each time

the fast path is restarted. Instead, we optimize things by making

sure to rotate the leader (in a round-robin fashion) each time a

new instance of Jolteon is invoked. That way, if the fast path was

abandoned because the leader was faulty, the restarted fast path

will use a new leader. As another optimization, Abraxas
∗
directly

uses the signed and certified blocks already generated by Jolteon

protocol as confirmation certificates rather than computing them

independently (which would be redundant). Our Abraxas wrapper

requires about 850 additional lines of code on top of the code for

Jolteon and VABA. We use tokio
7
for asynchronous networking,

ed25519-dalek
8
for elliptic-curve signatures, threshold_crypto

9
for

coin tossing, and rocksdb
10

for persistent data structures.

In our experiments we run various SMR protocols among a fixed

set of n nodes, each of which receives transactions from an external

client at a predefined fixed rate. We have nodes commit to 512-

bit hashes of the transactions, rather than the transactions them-

selves. All our experiments were conducted using Amazon EC2,

with each node run on an independent m5.8xlarge instance. Nodes

were spread uniformly across 8 regions: N. Virginia (us-east-1), Ohio

(us-east-2), N. California (us-west-1), Oregon (us-west-2), Stock-

holm (eu-north-1), Frankfurt (eu-central-1), Tokyo (ap-northeast-1),

and Sydney (ap-southeast-2). Each instance had 32 vCPUs sup-

ported by 16 processors, and all cores sustained a Turbo CPU clock

speed of up to 2.5GHz. The instances all had 128GBmemory and ran

Ubuntu 20.04 LTS, and were connected to a network with 10 Gbps

bandwidth.

6
Code is available to reviewers upon request, and will eventually be released as open

source.

7
https://tokio.rs/

8
https://github.com/dalek-cryptography/ed25519-dalek

9
https://docs.rs/threshold_crypto/0.4.0/threshold_crypto/

10
https://rocksdb.org/

6.2 Evaluation
We compare Abraxas

∗
to two existing protocols: 2-chain VABA,

the sub-protocol used to implement the slow path in Abraxas
∗
,

and Ditto [13], a hybrid protocol that also combines Jolteon and

2-chain VABA. Throughout, we fix the timeout parameter for Ditto

at 10 seconds.
11

When the network is synchronous and the leader

is non-faulty, Ditto uses 5 rounds to commit a block. In contrast,

2-chain VABA (which also serves as the slow path in both Ditto

and Abraxas
∗
) commits blocks every 10.5 rounds in expectation.

We perform experiments to evaluate Abraxas
∗
relative to the

other protocols in three different scenarios:

(1) Non-faulty leader (0%). Here the better choice is a partially
synchronous protocol like Jolteon, and our aim is to under-

stand how much worse (if at all) Abraxas
∗
performs.

(2) Always-crashed leader (100%). This mimics both the effect

of corrupted leaders as well as honest leaders in an asynchro-

nous network where their messages are always delayed (e.g.,

if leaders are continually DDoS-ed by an adversary). In this

case, an asynchronous protocol like 2-chain VABA would

be the better choice, and we again want to understand how

much worse Abraxas
∗
performs.

(3) Leader crashes randomly (10–20%). This represents an

intermediate point between the other two scenarios that

should be best handled by an optimistic protocol. As crashes

happen more often, however, any hybrid protocol (including

Abraxas
∗
) would repeatedly switch between the fast and slow

paths and so this allows us to evaluate the overhead of such

switching.

Our key performance metrics are the throughput and the end-to-

end latency. Throughput is computed as the average number of

transactions committed per second. Latency is the average time

to commit a transaction, measured from the time a transaction is

submitted by the client to all nodes until the time at which all nodes

have committed the transaction. (The averages are taken over the

duration of the experiment). Thus, the latency also includes the

transaction queueing delay when the client submits a large number

of transactions.

Figures 2–3 show our experimental results. Each experiment was

run for approximately 3 minutes and was repeated 3 times; each

data point in the graphs is the average of those trials with error

bars representing one standard deviation.

Latency/throughput profiles.We first evaluate performance of

the different protocols as a function of the system “load,” i.e., the

number of transactions injected by the client per unit time. That

is, in each experiment we have the client send a fixed number of

transactions per second, and we measure the obtained throughput

and latency for a particular protocol. Regardless of the protocol

being evaluated, we first observe an increase in throughput without

any change in the latency as the load on the system increases. At

some point, however, the system becomes “saturated” and as the

load increases further the throughput remains the same while the

latency increases due to an increase in the transaction queueing

time. This saturation point differs for each protocol.

11
Note that Ditto internally implements an exponential back-off that increases the

timeout parameter as fallbacks occur.

9

https://tokio.rs/
https://github.com/dalek-cryptography/ed25519-dalek
https://docs.rs/threshold_crypto/0.4.0/threshold_crypto/
https://rocksdb.org/
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Figure 2: Latency/throughput profiles, n = 32.

In Figure 2 we show the results of these experiments for n = 32

in different settings.
12

We observe:

• In the 0% setting (Figure 2a) the maximum throughputs at-

tained by Ditto and our protocol are similar since both are

essentially running Jolteon on the fast path. 2-chain VABA,

on the other hand, requires a larger number of rounds to

commit in expectation and consequently has poorer through-

put.

• In the 100% setting (Figure 2d), both Ditto and our protocol

eventually end up using 2-chain VABA on the slow path.

Thus, after taking into account the time to switch to the slow

path, the maximum throughputs of both protocols are similar

but slightly worse than that of 2-chain VABA itself. Ditto has

slightly better latency than Abraxas
∗
here since Abraxas

∗

continues to run the fast path even in this scenario. Ditto, on

the other hand, uses an exponential back-off strategy that

quickly confines it to the slow path entirely.
13

• In the intermediate settings (Figures 2b–2c), the maximum

throughput of our protocol is much better than that of Ditto

and slightly better than that of VABA. Ditto spends a con-

siderable amount of time switching between paths, during

which no progress is made, whereas Abraxas
∗
continually

runs the slow path protocol in the background, thus not

worsening throughput too much.

On the other hand, the latency of our protocol is higher

than that of VABA. This is expected since while Abraxas
∗

does continue to create block certificates, those blocks are

committed only when the protocol switches back to the

steady state. In contrast, VABA commits blocks every fixed

number of rounds (in expectation).

In the remaining experiments, each protocol’s performance is

measured at its saturation point, i.e., at the point where throughput

is maximized but latency has not yet deteriorated.

Throughput over time. Figure 3 compares the number of transac-

tions committed by the different protocols over time, still for n = 32.

First note again that, in all cases, Abraxas
∗
has throughput that

12
Instead of plotting latency and throughput vs. load, we plot latency vs. throughput.

Note that, as just described, each plot begins with throughput increasing while latency

remains roughly unchanged, and then at some point the latency increases while the

throughput remains the same or even decreases slightly.

13
It might be interesting to compare the performance of these protocols under varying

timeout strategies (in Ditto) and lookback parameters λ (in Abraxas
∗
). We leave such

experiments for future work.

is roughly on par with the throughout of VABA and is at least as

high as—and sometimes much higher than—the throughput of Ditto.

Moreover, if we focus on the slopes of the plots over time, we see

that Abraxas
∗
commits transactions at a fairly constant rate even

under the least favorable conditions. This is in contrast to Ditto,

which (in the 20% and 100% settings) has long periods during which
no transactions are committed due to repeated switching between

paths.

Throughput vs. number of parties. Finally, in Figure 4 we com-

pare the throughputs of the different protocols for different numbers

of parties n ∈ {16, 32, 64}. As expected, the throughput for each of

the three protocols drops as the system size increases. We observe

again that the throughput of Abraxas
∗
is on par with, or better

than, the throughput of the other two protocols; this is especially

noticeable in the intermediate ranges.
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A SECURITY PROOFS
Whenwe say a party sees a certificatewemean it either received that

certificate directly from another party, or observed that certificate

in a block of Cslow.

Lemma A.1. If honest parties see confirmation certificates cc, cc′

with (cc.era, cc.idx) = (cc′.era, cc′.idx) then cc.hash = cc′.hash.

Proof. Let (e,k) = (cc.era, cc.idx). Existence of cc implies that

n − t parties sent confirmation votes for era e , index k , and digest

cc.hash; similarly, n − t parties sent confirmation votes for era e ,
index k , and digest cc.hash′. Since honest parties send at most one

confirmation vote per era and index, and t < n/3, we must have

cc.hash = cc′.hash. (By collision-resistance of H , this also implies

that the certificates are for the same underlying block.) □

Lemma A.2. Suppose an honest party Pi enters the recovery state
in some era, and let ℓi denote the value of ℓ∗ held by Pi at the time
it enters the recovery state. Then no other honest party ever holds
ℓ∗ > ℓi in the steady state of that era.

Moreover, if two honest parties call rsOutput in era e , they do so
using the same input (and so hold the same value of ℓ∗ when entering
the steady state of the next era).

Proof. We prove the lemma assuming the honest parties hold

the same value of ℓ∗ at the beginning of the era. Since that is true

at the beginning of the protocol, the lemma follows inductively.
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Let ℓ1 be the common value of ℓ∗ held by the honest parties at

the beginning of the era. An honest party who enters the recovery

state does so while holding ℓ∗ equal to the minimal value ℓ2 > ℓ1
such that Cslow[ℓ2 − 1] cannot be resolved. Consistency of Πslow
and collision-resistance ofH imply that honest parties agree on this

determination, and hence no honest party can ever hold ℓ∗ > ℓ2
while in the steady state.

An honest party who calls rsOutput from the recovery state does

so while holding ℓ∗ equal to the minimal value ℓ3 ≥ ℓ2 for which

Cslow[ℓ3] contains a recovery certificate for the current era. Thus,

consistency of Cslow implies that any two honest parties who call

rsOutput agree on the index ℓ3 as well as the first such recovery

certificate rc, and so call rsOutput on the same inputs. □

Lemma A.3. If some honest party P ever outputs a regular block
for index k and era e during the steady state and there is a recovery
certificate for index k ′ and era e , then k ′ ≥ k .

Proof. We restrict attention to era e for the rest of the proof.
Suppose that an honest party P outputs a regular block for index

k . By the protocol description, P must have previously received a

confirmation certificate for index k + 1. Thus, at least t + 1 honest
parties sent confirmation votes for index k + 1.

Any honest party who sent a confirmation vote for index k + 1
must have received certificates for all indices up to and including

k during the steady state. Thus, each of those parties would set

krvoted to some value k∗ ≥ k upon switching to the recovery state.

Because honest parties send recovery votes for strictly increasing

indices, this implies that there are at least t + 1 honest parties who
will never send a recovery vote for any index k ′ < k , and so there

cannot exist a recovery certificate for k ′ < k . □

Let Be
i denote the sequence of blocks output on Cmain by Pi in

era e at some point in the protocol. (If Pi has not started running

era e , or has started running era e but has not yet output any blocks,
then Be

i is the empty sequence.)

Lemma A.4. Consider the chains Cmain, C
′
main output by honest

Pi , Pj (possibly with i = j) at arbitrary (possibly different) times
during the protocol. Then for all eras e , the following hold: (1) one
of Be

i ,B
e
j is a prefix of the other (this includes the case Be

i = Be
j );

(2) if both Pi and Pj had completed era e at the time they held their
respective chains, then Be

i = Be
j .

Proof. Fix an era e . If neither party had started running era e
at the time they held Cmain, C

′
main, then the claim is trivially true;

likewise, if Pi had started running era e but not Pj (or vice versa),
then the claim is trivially true. Thus, consider the case where both Pi
and Pj began running era e sometime before they held Cmain, C

′
main.

We prove the lemma assuming Pi , Pj hold the same value of

koffset at the beginning of era e; the lemma implies, in that case,

that it continues to hold at the beginning of the next era. Since

Pi , Pj hold the same value of koffset at the beginning of the protocol,
the lemma follows inductively.

The subchain Be
i produced by an honest party Pi consists of

0 or more regular blocks followed by up to 1 cleanup block, with

the cleanup block being added if/when they complete era e . Fix
subchainsBe

i ,B
e
j and assume towards a contradiction thatBe

i [k] ,

Be
j [k] for some k . Assume (as the inductive hypothesis) that the

lemma holds for all e ′ < e , and w.l.o.g. let k be the lowest index s.t.

Be
i [k] , Be

j [k]. There are three possible cases:

(1) Suppose both blocks are regular blocks. By the protocol de-

scription, if an honest party output a regular blockBe
i [k] = B

(equivalently, Cmain[k
offset + k] = B), then that block corre-

sponds to a confirmation certificate it received for era e and
index k . Because we assumed parties agree on the value of

koffset, this implies that Pi and Pj received confirmation cer-

tificates for the same (e,k) but different blocks. However,
this violates Lemma A.1.

(2) Suppose one block is a regular block and the other is a

cleanup block. W.l.o.g., let Be
j [k] be the cleanup block. Con-

sider two subcases:

(a) Suppose Be
i [k] was output via ssTryOutput. This contra-

dicts Lemma A.3, because the fact that Be
j [k] is a cleanup

block means that Pj must have received a recovery cer-

tificate for index k − 1 (cf. Algorithm 5, line 96), whereas

Lemma A.3 states that no recovery certificates can exist

for any k ′ < k .
(b) Suppose the regular block Be

i [k] was output via the for
loop in rsOutput. Because the loop ranges over values

from kout to idx, Pi must have called rsOutput on some

value of idx s.t. k ≤ idx. By the same token, Pj must have

called rsOutput on a value of idx such that k = idx + 1.

However, by Lemma A.2, we know that both parties call

rsOutput on the same arguments. This yields k ≤ idx <
idx + 1 = k , which is a contradiction.

(3) Suppose both blocks are cleanup blocks. Recall from the

protocol description that the contents of the cleanup block

are computed deterministically from Cslow, Cmain, and the

arguments passed to rsOutput. Hence, if Be
i [k] , Be

j [k],

then either consistency of Cslow failed, Lemma A.2 was vio-

lated, or this is not actually the first index where Pi and Pj
disagree; thus we reach a contradiction.

Together these show that for all k ≤ min{len(Be
i ), len(B

e
j )} we

have Be
i [k] = Be

j [k], completing the proof of the first claim.

For the second claim, suppose both Pi and Pj have completed

era e . If the subchains are the same length, the second claim follows

immediately from the first; it remains to prove that the subchains

must be the same length. Suppose towards a contradiction that this

is not true. W.l.o.g., let Pi ’s subchain be the shorter one. Since both

subchains have exactly one cleanup block, and that cleanup block is

at the end, there must be some position k where Pj ’s subchain has a

regular block and Pi ’s subchain has a cleanup block. As we argued

in Case 3 above, this is not possible, so we reach a contradiction.

This completes the proof of the second claim. □

Theorem A.5. Abraxas satisfies consistency.

Proof. Consider some honest parties Pi and Pj with respective

chains Cmain and C
′
main at arbitrary (possibly different) times during

the protocol, and let e, e ′ be the era associatedwith the highest block

of Cmain, C
′
main respectively.W.l.o.g., let e ≥ e ′. Because koffset is set

to the length of Cmain at the start of each era, Cmain = B1

i | | . . . | |B
e
i

and C′
main = B1

j | | . . . | |B
e ′
j (where | | denotes concatenation). Thus,
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Lemma A.4 implies C′
main is a prefix of Cmain, and so consistency

is immediate. □

We now turn to proving liveness and completeness.

Lemma A.6. For any era e and index k :

• If an honest party sees a confirmation certificate for (e,k), then
for all k ′ ≤ k , all honest parties eventually see a confirmation
certificate cc and a confirmation vote cv s.t. (cc.era, cc.idx) =
(cv.era, cv.idx) = (e,k ′) and H (cv.block) = cc.hash.

• If an honest party sees a recovery certificate for (e,k), then
for all k ′ ≤ k all honest parties eventually see confirmation
certificates for (e,k ′).

Proof. For part (1), suppose an honest party sees confirmation

certificate cck for index k . It it directly received cck , then it would

have multicast it, and so all honest parties eventually receive cck .
Otherwise it observed cck in Cslow and so (by consistency and com-

pleteness of Cslow) all honest parties eventually observe it in Cslow
as well. Furthermore, at least one honest party must have sent a

confirmation vote for index k . That party must have received a

confirmation certificate for all indices k ′ < k , and multicasts any

confirmation certificate it receives; thus, every honest party will

eventually receive a confirmation certificate for all indices k ′ < k
as well. For each k ′ ≤ k , the existence of a confirmation certificate

cck ′ for index k
′
implies that at least one honest party sent a con-

firmation vote for a block Bk ′ with H (Bk ′) = cck ′ .hash, and so all

honest parties eventually receive such a vote.

For the proof of the second claim, suppose an honest party sees

a recovery certificate for index k . Then at least n − 2t > 0 honest

parties sent recovery votes for index k , and any such party must

have received a confirmation certificate for index k , and so part (2)

follows from part (1). □

Lemma A.7. Let ℓ be an arbitrary index.

(1) Pi eventually resolves ℓ (i.e., eventually Pi sets ℓ∗i to a value
higher than ℓ).

(2) If honest parties Pi , Pj are in states φi , φ j , respectively, imme-
diately after resolving ℓ, then φi = φ j .

Proof. For the first claim, we will start by showing that if Pi
sets ℓ∗i = ℓ, then Pi eventually resolves ℓ. Suppose Pi sets ℓ

∗
i = ℓ

at some time during the protocol. While ℓ is not resolved, Pi will
continually call ssTryResolve or rsTryRecover (at a minimum, one

of these is called whenever eventually a new block is output to

Cslow, and liveness of Cslow ensures that this happens infinitely

many times over the course of the protocol).

While Pi continues calling ssTryResolve, completeness of Cslow
implies that eventually len(Cslow) ≥ ℓ+λ. Furthermore, by LemmaA.6,

eventually Pi receives confirmation votes matching each confirma-

tion certificate in Cslow[ℓ + λ]. Once these conditions are satisfied,
the innermost if/else block will be run and ℓ will resolve.

The case where Pi calls rsTryRecover proceeds similarly. By

completeness of Cslow, eventually len(Cslow) ≥ ℓ. If Cslow[ℓ] is the
first block to contain a recovery certificate rc for era e , then by

Lemma A.6, Pi eventually receives confirmation certificates and

matching confirmation votes for all k ≤ rc.idx, at which point ℓ

resolves and Pi enters the steady state of the next era. Otherwise,

Cslow[: ℓ] does not contain any recovery certificates for era e , and
ℓ resolves immediately.

Since ℓ∗i is initially set to 1 at the start of the protocol, the first

claim follows by induction.

For the second claim, assume Pi and Pj are in the same stateφ im-

mediately before resolving ℓ∗ = ℓ. Letφ = (e, ss). In order to resolve
ℓ, both parties must have len(Cslow) > ℓ+λ, and must have received

confirmation certificates for all proofs in Cslow[ℓ+λ]. By consistency
of Cslow and uniqueness of confirmation certificates (Lemma A.1),

Pi and Pj must take the same branch, and so their states after re-

solving ℓ will be the same. Similarly, suppose φ = (e, rec) for some

e . In this case, both parties must have len(Cslow) ≥ ℓ, and therefore
agree on whether Cslow[ℓ] contains the first recovery certificate.

As before, this ensures they will (eventually) take the same branch,

and so their states after resolving ℓ will be the same.

Since all honest parties begin the protocol in the same state, the

second claim follows by induction. □

Lemma A.8. If some honest party Pi switches to state (e, st) at
some point during an execution, then every honest party switches to
(e, st) at some point during that execution.

Proof. Suppose Pi switches to state (e, st) upon resolving some

index ℓ. The first part of Lemma A.7 implies that all honest parties

eventually resolve ℓ, and the second part implies that after doing

so they must also switch to (e, st). □

Lemma A.9. During any era e , if no honest party receives a confir-
mation certificate for index k prior to calling recoveryState(e), then
no honest party sends a recovery vote for an index k ′ ≥ k + 1.

Proof. Fix an era e and an index k , and assume no honest

party receives a confirmation certificate for index k prior to call-

ing recoveryState(e). If no honest party ever calls recoveryState(e)
then the claim is trivially true, so suppose that some honest party

calls recoveryState(e). For each such party Pi , let k
high

i denote the

index carried by Pi ’s initial recovery vote, and let k
high = maxk

high

i .

Since we have assumed none of these parties has received a confir-

mation certificate for k upon calling recoveryState(e), we see that
khigh < k .

Now, suppose towards a contradiction that some honest party

sends a recovery vote for k ′ ≥ k + 1. That party must have received

a confirmation certificate for k ′. This would imply that at least t + 1
honest parties sent confirmation votes for k ′ during the steady state.
Each of those parties must have previously received a confirmation

certificate for all k ′′ ≤ k ′ − 1 during the steady state, so their initial

recovery vote would have been for a value k
high

i ≥ k ′ − 1; this

implies k
high

i ≥ k ′ − 1 ≥ k > khigh, a contradiction. □

Lemma A.10. If all honest parties call recoveryState(e) (for the
same e), then eventually some honest party calls steadyState(e + 1).

Proof. Suppose each honest party eventually enters state (e, rec).
By Lemma A.7, there is some index ℓ such that every honest party

switches to state (e, rec) upon resolving ℓ.

LetT0 be the time when the last honest party enters state (e, rec).
If any honest party has already entered state (e + 1, ss) by time T0,
the claim follows from Lemma A.8. Otherwise, all honest parties
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are still in state (e, rec) at time T0, and moreover each honest party

has already sent at least one recovery vote. For each honest party

Pi , let k
high

i be the index carried by Pi ’s first recovery vote, and let

khigh = maxi ∈H k
high

i . At least one honest partymust have received

confirmation certificates for all k ≤ khigh, and so by Lemma A.6 all

honest parties eventually receive these certificates.

As before, if any honest party has left the recovery state prior

to receiving all of these certificates we are done; so, suppose each

honest party Pi is still in the recovery state when it receives these

certificates. There are three possibilities: (1) Pi sends a recovery

vote for khigh, (2) Pi previously sent a recovery vote for khigh, or

(3) Pi previously sent a recovery vote for some k > khigh (without

ever sending a recovery vote for khigh). If either (1) or (2) holds for
at least 2t+1 honest parties we are done, because some honest party

will eventually form a recovery certificate and forward it to all other

parties, at which point liveness of Cslow and Lemma A.6 ensure that

eventually some honest party sees that recovery certificate output

on the slow chain and receives all the necessary confirmation votes

and certificates to proceed to the steady state of era e + 1.
Conversely, if there are fewer than 2t+1 honest parties for which

(1) or (2) holds, then there is some honest party for which (3) holds,

i.e., who has never voted for khigh but has voted for some k > khigh.
Call this party Pj . The definition of khigh and Lemma A.9 imply that

k is at most khigh + 1, so combining these inequalities, k must be

exactly khigh + 1. Pj must have received a confirmation certificate

for khigh + 1, so by Lemma A.6, all honest parties eventually receive

this certificate. If any honest party has already left the recovery

phase upon receiving this certificate, we are done. Otherwise, for

each honest Pi , one of the following is true when Pi receives the

certificate: (1) Pi recovery votes for khigh + 1, or (2) Pj has already

recovery voted for khigh + 1. (As noted above, it is not possible for

Pj to have voted for a higher value.) By the same argument used

in the previous case, liveness of Cslow and Lemma A.6 ensure that

some honest party enters era e + 1. □

Lemma A.11. If there exists an era e such that no honest Pi enters
era e during this execution, and transactions continue to be input to the
system, then there exists an era e∗ < e such that ∀k , all honest parties
eventually receive a confirmation certificate cc such that cc.idx = k
and cc.era = e∗.

Proof. Suppose there is an era e such that no honest party

Pi ever enters era e during this execution. Let e∗ < e be the

highest era any honest party enters during this execution. By

Lemma A.8, all honest parties eventually enter state (e∗, ss). Fur-
thermore, Lemma A.10 implies that no honest party ever enters

state (e∗, rec). This means that there is some global time after which

all honest parties have entered state (e∗, ss) and will remain there

forever.

Fix an index k∗. We will show that all honest parties eventually

receive a confirmation certificate cc such that cc.era = e∗ and

cc.idx = k∗.
Case 1: k∗ = 1. Let T0 be a point in the execution after each

honest party enters era e∗. Choose a transaction tx that was created
after time T0 and input to all honest parties. By liveness of Cslow,

this transaction is eventually output in some block Cslow[ℓ]. Fur-

thermore, by completeness of Cslow, eventually each honest party

outputs all blocks up to and including Cslow[ℓ + λ]. Since we have
assumed that all honest parties remain in this era forever, Cslow[ℓ]

must be resolved, and in particular there must be a confirmation

certificate cc ∈ Cslow that corresponds to a fast-chain block B con-

taining tx. By Lemma A.6, all honest parties eventually receive this

confirmation certificate.

Case 2: k∗ > 1. LetT0 be a point in the execution after some hon-

est party has received a confirmation certificate for k∗−1. Choose a

transaction tx that was created after timeT0 and input to all honest
parties. By liveness of Cslow, this transaction is eventually output

in some block Cslow[ℓ]. Furthermore, by completeness of Cslow,

eventually each honest party outputs all blocks up to and including

Cslow[ℓ + λ]. Since we have assumed that all honest parties remain

in this era forever, Cslow[ℓ]must be resolved. This implies that there

is a confirmation certificate in the chain prefix Cslow[: ℓ + λ] that
corresponds to a fast chain block B containing tx. Let k ′ = cc.idx. If
k ′ < k∗, then clearly B cannot contain tx, since tx was created at a

point when certificates for each k ′ ≤ k∗ − 1 already existed, and by

Lemma A.1, there is at most one confirmation certificate per index.

Therefore, k ′ ≥ k∗. Using Lemma A.6, we conclude that all honest

parties eventually receive a confirmation certificate for k∗. □

Theorem A.12. The protocol is complete, i.e., for all k , any honest
Pi eventually outputs Cmain[k].

Proof. If Pi enters era k + 1, it must have exited the recovery

phase for all eras k ′ < k + 1. This implies that Pi has output at
least k cleanup blocks to Cmain, and therefore has output a block at

index k .
If Pi never enters era k + 1, let e

∗
be the highest era that some

honest party enters during execution of the protocol. By LemmaA.8,

eventually all honest parties enter era e∗ (including Pi ), and so

e∗ < k + 1. Furthermore, by Lemma A.10, the honest parties remain

there for an infinitely long period of time. Let koffset be the length

of Cmain at the time Pi enters era e
∗
. If k ≤ koffset, we are done,

so assume koffset > k . By Lemma A.11, Pi eventually receives

confirmation certificates for all k ′ ≤ k − koffset. At that point, if

there are any blocks Ce∗
fast[k

′] for k ′ ≤ k − koffset that Pi has not
already output to Cmain, Pi will do so now via ssTryOutput, and
we are done. □

Theorem A.13. The protocol is live, i.e., if tx is added to each
honest party’s buffer, then eventually tx will be output to the main
chain of every honest party.

Proof. Suppose a transaction tx has been added to each hon-

est party’s buffer by some global time T0. It suffices to show that

some honest party eventually removes tx from their buffer, because

then consistency and completeness imply that all honest parties

eventually do the same.

Consider a time T1 ≥ T0 such that no honest party has yet

removed tx from their buffer. (If no such T1 exists, some honest

party has already removed tx from their buffer, and we are done.)

By liveness of Cslow, some honest party Pi will eventually output tx
in some block B = Cslow[ℓ]. Furthermore, by completeness of Cslow,

eventually Pi will have output all blocks in the prefix Cslow[: ℓ + λ].

14



By Lemma A.7, Pi eventually resolves ℓ. We consider two cases.

For the first subcase, suppose Pi resolves ℓ during the recovery

state of some era e . By Lemma A.10 and A.8, Pi eventually switches
to the steady state of era e + 1. Before it leaves the recovery state,

it appends one or more cleanup blocks to the main chain. At this

point, if tx was not already output to Cmain, it will be included in a

cleanup block.

For the second case, suppose Pi resolves ℓ during the steady state
of some era e . There are two subcases. If Pi remains in the steady

state upon resolving ℓ, then Cslow[ℓ] must have been resolved. In

particular, Pi must have received confirmation certificates for a con-

tiguous prefix of Ce
fast, up to and including some block containing tx.

This means that when Pi called ssTryOutput just prior to calling

ssTryResolve, either Pi had already output tx to the main chain, or

it does so then. For the second subcase, suppose Pi switches to the

recovery state as a result of resolving Cslow[ℓ]. As in the first case,

Pi will eventually recover and so every transaction in Cslow[ℓ] will

be output in a cleanup block (if it was not output already). □
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