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Abstract. A whistleblower is a person who leaks sensitive information
on a prominent individual or organisation engaging in an unlawful or im-
moral activity. Whistleblowing has the potential to mitigate corruption
and fraud by identifying the misuse of capital. In extreme cases whistle-
blowing can also raise awareness about unethical practices to individuals
by highlighting dangerous working conditions. Obtaining and sharing the
sensitive information associated with whistleblowing can carry great risk
to the individual or party revealing the data. In this paper we extend
the notion of timed-release encryption to include a new security prop-
erty which we term implicit authentication, with the goal of making the
practice of whistleblowing safer.
We formally define the new primitive of timed-release encryption with
implicit authentication (TRE-IA), providing rigorous game-base defini-
tions. We then build a practical TRE-IA construction that satisfies the
security requirements of this primitive, using repeated squaring in an
RSA group, and the RSA-OAEP encryption scheme. We formally prove
our construction secure and provide a performance analysis of our imple-
mentation in Python along with recommendations for practical deploy-
ment and integration with an existing whistleblowing tool SecureDrop.

Keywords: time-lock puzzle · timed-release encryption · applied cryp-
tography

1 Introduction

In 2013, Edward Snowden leaked highly classified information from the Na-
tional Security Agency [37, 38]. This information was leaked at great personal
risk. Other recent cases of whistleblowing include the Panama papers [32], the
Paradise papers [9], and the Pandora papers [27]. Leaking information subjected
the whistleblowers to personal danger due to the power and influence of the
organisations whose data was leaked. In the case of the Panama papers, the
whistleblower claimed their ‘life was in danger’ [21].

In this work we construct a cryptographic tool based on timed-release encryp-
tion [17], which can augment existing tools for whistleblowers, such as Secure-
Drop [2]. Our goal is to provide an element of guaranteed delay in the release of
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sensitive information which has potential to make the practice of whistleblowing
safer. We model our solution on the Edward Snowden case, in which all classified
material was destroyed before arriving in Russia, in order ‘To protect himself
from Russian leverage’ [1].

We propose a construction which offers the concept of delay-based encryption
for whistleblowers, to allow them to rely on cryptographic assurances rather
than the trust of a journalist or ombudsman. The technique we introduce allows
sensitive information to be encrypted in such a way that a) there is a predictable
delay between the receipt of the ciphertext encapsulating the leaked information
and the release of the information, and b) there is no way an adversary can forge
a chosen document to insert alongside the genuine documents. This delay will
afford the whistleblower time to destroy all classified material after encapsulating
the material, and hence ensure their safety. In the Snowden case, the delay would
have allowed passage to a safe harbour country without the sensitive information
being decrypted until a specified time.

The core idea of our approach is to have two separate keys, an encryption key
and decryption key, the latter being encoded as the solution to the challenge.
The delay starts once the challenge is distributed. The whistleblower keeps the
encryption key, used to encrypt the leaked information, and encapsulates its
corresponding decryption key with a time-delay, such that it takes at least t
time to recover. We provide the whistleblower with the ability to encrypt and
distribute ciphertexts under the encryption key, without ‘starting the clock’ on
the time-delay. At a time of their choosing, the whistleblower can distribute
the challenge, upon which a sequential computation taking time t will output
the decryption key for the ciphertexts. Due to the asymmetric nature of the
encryption key and decryption key, once the decryption key is recovered, the
whistleblower will still hold the exclusive ability to encrypt more data at a later
date.

We formalise this through the introduction of a security property which we
term implicit authentication, in order to provide the journalist receiving the
leaked information with assurance that an adversarial party cannot encrypt a
document of their choosing under the encryption key.

Paper structure and contributions. In the remainder of this section we de-
tail our methodology in approaching this problem, outlining the security goals we
desire and providing an overview of our construction, before discussing relevant
related work. In Section 2 we formally define the primitive TRE with implicit
authentication (TRE-IA), giving game-based definitions of the required security
properties. In Section 3 we present our construction for a TRE-IA scheme, which
is based upon the BBS-random number generator and RSA-OAEP encryption.
In Section 4 we prove our construction is secure under the definitions given in
Section 2. In Section 5 we provide a Python implementation of our construc-
tion, along with a performance analysis to demonstrate its practicality. We also
provide a practical example of how to use TRE-IA with SecureDrop [2] to show
how our construction would integrate with existing whistleblower tools.
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1.1 Technical Overview

The goal of this work is to explore how a time-delay can be used by vulnerable
parties such as whistleblowers in order to make the distribution of sensitive
material safer. In order to do so, we introduce a novel construction based upon
a clear set of properties, which we can implement in practice and which may
augment existing whistleblower tools. Therefore, we define the following security
goals that we believe may be helpful to a whistleblower based on the real life
cases of the Panama papers leak [21] and the Edward Snowden leak [37, 38].

1. An adjustable time delay : this will allow the whistleblower to destroy all
materials that can be used against them. It also allows the whistleblower to
have a configurable amount of time to reach a place of safety.

2. Maximum flexibility : this will allow the whistleblower to determine when
a) they can encrypt and distribute messages and b) they can ‘start the
clock’ for evaluating the delay. This is achieved through the separation of
the ciphertexts and the challenge. When the challenge is distributed this
starts the clock.

3. Implicit authentication: this ensures that no other entity can generate a
document of their choice to insert into the leak.

Property 1 can be useful for a whistleblower to protect themselves from
the dangers associated with carrying sensitive material. Property 2 allows a
whistleblower to gather various different pieces of evidence over time and encrypt
and distribute this evidence to journalists. The whistleblower can also ensure
that the journalists cannot yet leak the material until a time delay has passed,
thus mitigating risks to the personal safety of the whistleblower. We believe it
is crucial that the whistleblower remains in control of all aspects of the system,
and by giving the whistleblower the freedom to distribute ciphertexts without
‘starting the clock’ on the time delay, we minimise the trust placed in journalists,
and provide the whistleblower with fine-grained control of when the documents
are leaked.

Property 3 ensures that once the decryption key has been derived, it cannot
be used by third parties to obtain the encryption key to encrypt their own
messages. Without this property, it is possible for a third party to choose and
encrypt their own fake material, and claim it is from the whistleblower.

We now describe the methodology of how we designed our construction.
Building our construction. Our base property, 1, can be achieved using var-
ious primitives, most notably time-lock puzzles (TLPs) and timed-release en-
cryption (TRE). We will start our discussion with TLPs.

A time-lock puzzle [36] encrypts a message to the future, in such a way that
once a solver spends a predictable amount of time evaluating the encrypted
message, they obtain the plaintext message. One could think of using the naive
approach of simply encrypting each message as a TLP and passing it to a journal-
ist. This achieves property 1, however it limits the whistleblower to the condition
that they encrypt all materials at once, and allows adversarial parties to imper-
sonate the whistleblower. As we wish for the whistleblower to have a finer control
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of the encryption process we see that the latter method has limitations. For ex-
ample, the whistleblower may wish for multiple messages to be encrypted. This
is a reasonable assumption as the Panama papers exposed over eleven million
leaked documents [32] and the Paradise papers exposed over thirteen million
leaked documents [9]. Using only a basic TLP results in the loss of property 2,
that is, the whistleblower loses the element of maximum flexibility. A more ap-
propriate approach is to use a symmetric key as the solution to a TLP, and then
distribute ciphertexts separately. This gives us a solution which is close to ideal,
as ciphertexts can be distributed to journalists, with guarantees both time delay
and flexibility as to when the whistleblower starts the clock. In other words, we
can achieve properties 1 and 2 using this approach, however we are missing the
implicit authentication property described in 3.

Our approach to fixing this problem is to require that the encryption key
and decryption key are different, and more importantly, that one cannot derive
the encryption key from the decryption key. If this is the case, a whistleblower
can encapsulate the decryption key of a public-key encryption scheme, whilst
keeping the encryption key secret.

As a starting point, we use TRE as defined by Chvojka et al., who show that
one can generically construct TRE from a TLP and a public encryption scheme
[17]. However, Chvojka et al.’s approach to constructing TRE does not give us
the desired property of a secret encryption key, nor does it necessarily imply
that it is impossible to derive the encryption key from the decryption key.

Therefore, to achieve these goals simultaneously we propose a variant of
timed-release encryption, which we term TRE with implicit authentication (TRE-
IA) and instantiate this with a construction based upon the BBS-CSPRNG ran-
dom number generator [11], and the RSA-OAEP encryption scheme [8].

1.2 Related Work

Time, delay, and encryption There are several primitives in the literature
that have considered the component of time and delay in the context of en-
cryption. Time-lock puzzles (TLPs) and the associated Timed-Release Crypto
schemes, first proposed by Rivest et al. in [36], encrypt a message to the future.
TLPs create a puzzle π from which a message m can be decrypted after time
t. Timed-Release Crypto is closely related to TRE-IA in that it achieves a very
similar functionality. However, there are differences between the two primitives:
In essence, TRE-IA uses distinct (asymmetric) keys for encryption and decryp-
tion, as opposed to one symmetric key. In both primitives decryption keys are
recovered after the delay, in order to decrypt the ciphertext. However, in TRE-
IA only the decryption key is recovered. This leads to a different functionality:
the whistleblower has control over what information is leaked (i.e., encrypted)
as the sole holder of the encryption key.

Previous literature also discusses timed-release encryption (TRE) in two main
forms. The classical definition of a TRE scheme is to use a third-party time-
server to release messages after a given amount of time [29, 16]. The most recent
paper by Chvojka et al. defines TRE as a combination of a time-lock puzzle and
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public-key encryption [17]. This is in order to introduce the notion of a sequential
TRE scheme, with the goal of building a public sequential-squaring service which
acts as the time server. This allows many parties to time-lock messages, whilst
only one party performs the lengthy computation. Conceptually, the classical
definition of timed-release encryption differs from the Chvojka et al. scheme
because the former relies on a trusted time-server. For the remainder of this
work, when we write TRE we will be referring to the method of Chvojka et al.

The main difference between TRE and TRE-IA is the former requires en-
cryption to be public rather than only a prerogative of the whistleblower: In
TRE-IA the encryption key cannot be derived by the solver even when the de-
cryption key is recovered. In a TRE-IA scheme assurance is provided through
the property of implicit authentication that only the whistleblower can encrypt
to the classic notion of a public key in a standard PKE scheme.

In the delay-based cryptography literature there are also Verifiable Delay
Functions (VDFs), first proposed by Boneh et al. [12] and a new, closely related
primitive called Delay Encryption (DE) [14], derived from VDFs. VDFs require
a prover to compute a slow sequential computation of length t, also known as a
challenge, and then efficiently prove to a verifier that they have done so. VDFs
do not generate a ciphertext, or indeed have any method for encrypting data,
and so are clearly distinct from TRE.

In DE, the concept of a session is introduced. A session consists of a session
ID, which any party may encrypt a message to, and an extraction key. Any party
may extract the session key, which allows for decryption of all messages encrypted
to the session ID, and this extraction takes t time to run. This primitive is distinct
from TRE-IA, in that DE allows anyone to encrypt to the session ID, compared
to just the whistleblower being in control of encryption in TRE-IA.

Signcryption A cryptographic primitive offering a similar property to im-
plicit authentication (IA) is Signcryption [41–43]. IA provides the receiving party
with assurance that the encrypted documents were sent by the whistleblower.
The IA property states that only the holder of the private encryption key can
generate a legitimate ciphertext that can be correctly decrypted to a chosen mes-
sage. In a similar fashion the concept of Signcryption was introduced to provide
a single computation that would simultaneously provide the authenticity from
a digital signature scheme (DSS), and the confidentiality from a public-key en-
cryption (PKE) scheme. However, Signcryption does not consider the property
of delay which is crucial to our TRE-IA scheme.

Tools for whistleblowers A variety of tools exist which can provide protec-
tion to whistleblowers. The Tor [4] browser can be used to navigate the Internet
anonymously, PGP [44] keys and encrypted email services can support the se-
cure communication between a whistleblower and the investigative journalist,
as well as end-to-end encrypted messaging services such as Signal [3]. Closely
aligned to our intended end-goal is the SecureDrop [2] submission system, which
enables whistleblowers to securely deliver documents containing leaked informa-
tion. The novelty of our proposed solution in this space is the introduction of a
delay, which provides, when combined with encryption, a time ‘bubble’ within
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which the whistleblower can reach safety. Indeed, we see TRE-IA as an addi-
tion to a whistleblower’s toolbox featuring the property of a time-lock delay. In
this context, we recognise that no tool is perfect and solutions which guaran-
tee the safety of the whistleblower should be grounded in reality. Our proposed
scheme represents a first, technological step towards introducing delay as a form
of protection to whistleblowers. Accordingly, to provide an example of integrat-
ing with existing whistleblowing tooling, in Section 5.2 we show how the TRE-IA
construction can be augmented to work with the SecureDrop tool.

We conclude this section by noting that the whistleblower use case is an
illustrative example of how and why TRE-IA could be useful. We envisage TRE-
IA being useful in further applications where a delay and the ability to control
the release of sensitive information could help users in at risk situations.

2 Timed-Release Encryption with Implicit Authentication

We now provide the definition and properties of TRE-IA, which can be seen
as an extension of the TRE primitive as defined by Chovjka et al. [17]. We
deviate from the security model of Chvojka et al. in the following way: (i) to
fit in with our model of the encryptor alone knowing the encryption key, we
require that the encryptor runs setup, (ii) we introduce the new notion of implicit
authentication. We provide an intuition of this security property, along with a
detailed description of the game in the following section.

In the definition and security games that follow, E is the encryptor, D is the
decryptor, A is the PPT adversary,←R represents a probabilistic algorithm, and
← represents a deterministic algorithm.

Definition of TRE-IA. A TRE-IA scheme consists of the following algo-
rithms: (TRE.Setup,TRE.Gen,TRE.Enc,TRE.Solve,TRE.Dec), defined as follows.

– pp, td ←R TRE.Setup(1λ). TRE.Setup is an algorithm run by E that takes
as input security parameter 1λ and outputs the public parameter pp and
trapdoor td. E must keep td private. The parameter pp can be given to D
after TRE.Setup completes. TRE.Setup runs in time poly(λ).

– e, d, C, t←R TRE.Gen(pp, td, t). TRE.Gen is an algorithm run by E that takes
as input the public parameter pp, the trapdoor td, and time parameter t
and computes an encryption key e, decryption key d, and a public challenge
C. The term t indicates the number of sequential steps required to evaluate
C to recover the decryption key d when the trapdoor td is not known. The
parameter t can be given to D after TRE.Gen completes. However, care must
be taken when the challenge C is given to the decryptor D. E must only
provide challenge C when they wish to ‘start the clock’ on recovering the
decryption key d. TRE.Gen runs in time poly(λ).

– c ←R TRE.Enc(m, e, pp). TRE.Enc is an algorithm run by E that takes as
input a message m, encryption key e, and public parameter pp and outputs
ciphertext c. The ciphertext c can be given to D after TRE.Enc completes.
TRE.Enc runs in time poly(λ).
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– d ← TRE.Solve(pp, C, t). TRE.Solve is an algorithm run by D that takes as
input the parameters pp, C, t and outputs the decryption key d. TRE.Solve
requires t sequential steps to recover d with a run time of (t)poly(λ).

– {m′,⊥} ← TRE.Dec(c, d, pp). TRE.Dec is an algorithm run by D that takes
as input the ciphertext c, decryption key d, and public parameter pp and
outputs plaintext m′ or error ⊥. TRE.Dec runs in time poly(λ).

A TRE-IA scheme must satisfy the properties of correctness, security, and
implicit authentication.

Correctness Intuitively, a TRE-IA scheme is correct if any encrypted mes-
sage can be decrypted successfully to the original plaintext using the corre-
sponding decryption key with overwhelming probability. Namely, in the context
of TRE-IA, the legitimate decryption key when input into TRE.Dec will recover
the original message input into TRE.Enc. This is made precise in the Correctness
game.

Correctness Game
1 E outputs the public parameter and trapdoor: pp, td ←R TRE.Setup(1λ).
2 E outputs an encryption key, decryption key, challenge, and time parameter:

e, d, C, t ←R TRE.Gen(pp, td, t).
3 E computes the ciphertext on message m: c ←R TRE.Enc(m, e, pp).
4 D recovers the decryption key: d← TRE.Solve(pp, C, t).
5 D decrypts the ciphertext: m′ ← TRE.Dec(c, d, pp).

A TRE-IA scheme is correct if m = m′ with probability 1− negl(λ).

Security In TRE-IA, similarly to the TRE definition presented by Chvokja
et al. [17], security is defined as an indistinguishability game as follows:

Security Game
1 E outputs the public parameter and trapdoor pp, td ←R TRE.Setup(1λ).
2 E outputs an encryption key, decryption key, challenge, and time parameter:

e, d, C, t ←R TRE.Gen(pp, td, t).
3 A selects two messages of the same length (m0,m1) for E .
4 E uniformly selects b ∈ {0, 1}, and encrypts mb as c ←R TRE.Enc(mb, e, pp).
5 A runs a preprocessing algorithm A0 on the public parameter and the

ciphertext, and stores st ← A0(pp, c).
6 E sends C, t to A.
7 A runs a PPT algorithm A1 which outputs b′ ← A1(st, C, t), where A1 must

run in fewer than t sequential steps.
A TRE-IA scheme is secure if b = b′ with probability 1

2
+ negl(λ).

Let an adversary A chooses two messages of the same length m0 and m1. E
chooses one of these messages at random, which it encrypts and sends to A. A
then gets polynomial time to preprocess upon this ciphertext before receiving the
challenge C. A must then make a guess before t sequential steps are computed.
The scheme is secure if no PPT adversary A can gain an advantage in guessing
which message was chosen by E . This is made precise in the Security game.
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Implicit Authentication Game
1 E outputs a key pair e, d, the public parameters pp, a trapdoor td, and a

challenge C: pp, td ←R TRE.Setup(1λ), e, d, C, t ←R TRE.Gen(pp, td, t).
2 E sends the public parameter pp to the adversary A.
3 A returns a target message m∗ to E .
4 E sends A the challenge C, time parameter t, and the decryption key d.
5 A is also given access to the encryption oracle OEnc, which takes as input a

message m′ 6= m∗, and returns c′ ← TRE.Enc(m′, e, pp) if the message is
valid, and ⊥ otherwise.

6 A returns a ciphertext c to E .
7 A wins the game if m∗ ← TRE.Dec(c, d, pp).

A TRE-IA scheme has implicit authentication if A wins the game with
probability no greater than negl(λ).

Implicit authentication is the new property we introduce in TRE, which
ensures that an adversary is unable to forge a ciphertext for a message of their
choice, hence providing an implicit guarantee that ciphertexts are authentic.
In the context of our application, this property ensures that a malicious party
cannot insert a document of their choice into the leak provided by a genuine
whistleblower.

The idea of modelling security against a ciphertext forgery is inspired by the
notions of plaintext integrity and ciphertext integrity [7, 10] in the symmetric
encryption setting. More specifically, plaintext integrity states that it should be
infeasible to produce a ciphertext decrypting to any message which the sender
has not encrypted, and ciphertext integrity requires that it be infeasible to pro-
duce a ciphertext not previously produced by the sender, regardless of whether
or not the underlying plaintext is ‘new’ [7].

However, these existing notions do not directly map to the asymmetric-key
setting, and TRE in particular, since the adversary, after time t, has access to the
secret decryption key. This represents a challenge because it allows the adver-
sary to select elements from the ciphertext space with non-negligible probability,
and decrypt them to obtain a plaintext, and present this as a forgery. Whilst
any message obtained this way will be not necessarily be ‘meaningful’, this ap-
proach makes a simple analogue of either ciphertext authenticity or plaintext
authenticity difficult.

To overcome this, we took the approach of modelling our implicit authenti-
cation game as an encryption analogue of selective forgery [26, 30], a property
used in digital signature schemes where an adversary first commits to a target
message m∗ and is later challenged to forge a signature for this target message.
The key difference in our implicit authentication game is that the adversary
is instead asked to output an encryption of the target message, rather than a
digital signature.

At a high-level, the TRE-IA game proceeds as follows. The adversary is first
asked to output a message m∗ that they wish to encrypt. The adversary is
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then given the decryption key, and access to an encryption oracle. Finally, the
adversary is asked to output a ciphertext c to the challenger. The adversary wins
the game if c decrypts to the message m∗. We make this precise in the Implicit
Authentication game.

3 Construction of a TRE-IA scheme

In this section we provide the implementation details of a concrete TRE with
implicit authentication. The TLP element of our TRE-IA is derived from the
construction of the Blum Blum Shub CSPRNG [11], and as such we name it the
BBS-TRE. Our TRE-IA construction also uses the RSA-OAEP PKE scheme.

Recall that implicit authentication states that without access to the encryp-
tion key an adversary should not be able to forge a ciphertext for a message
of their choice. When RSA is used in practice it is standard procedure to use
e = 65537 as the public encryption exponent [6]. This does not allow for im-
plicit authentication, as an adversary can guess this. Using any ‘standard’ fixed
encryption key, or a key from a fixed small set will allow an adversary to guess
this key, and hence encrypt a message as a ciphertext with more than negligible
probability. As such, we design our construction to choose e at random, to en-
sure that we obtain the implicit authentication property whilst still conforming
to the NIST SP-800-56B standard for random public exponent key pair genera-
tion [6], Section 6.3.2. Using the BBS-CSPRNG provides an elegant solution to
integrating random keys in a TRE-IA setup, as seen in [28].

Next, we provide the notation required for our BBS-TRE. In the pseudo
code of our algorithms := indicates assignment, = indicates equality, 6= indicates
inequality, () indicates a tuple, and // denotes a comment. The function prime(j)
outputs a random j-bit Gaussian prime. The function U(a, b) uniformly selects
an integer that is between a, b ∈ Z, where a < b and a, b are inclusive. Also, the
symbol ∧ indicates logical conjunction (and).

Algorithm 4: Square and Multiply Binary Fast Modular Exponen-
tiation Algorithm [18].

input : (a, b,N), // a, b, n ∈ N, ab mod N
1 d := 1
2 B := bin(b) // b in binary
3 for j ∈ B do
4 d := d2 mod N
5 if j = 1 then
6 d := da mod N
7 end
8 end

output: d
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A notable selection of delay-based cryptographic schemes such as time-lock
puzzles, verifiable delay functions, delay encryption, and timed-release encryp-
tion rely on the Rivest Shamir Wagner (RSW) time-lock assumption [13, 29, 33,
36, 39]. Like other RSW-based delay-based cryptographic schemes our BBS-TRE
also relies on the RSW time-lock assumption.

Definition 1. RSW time-lock assumption:
Let N = pq be an RSA modulus and uniformly select x0 ∈ Z∗N . If adver-
sary A does not know the factorisation or group order of N then calculating
xt ≡ x2

t

0 mod N is a non-parallelisable calculation that will require t sequential
modular exponentiations calculated with Algorithm 4 Square and Multiply [36].

Our BBS-TRE is summarised as follows:

pp := (N, k0, k1, G,H), td := φ(N) ←R TRE.Setup(1λ)
e := d−1 mod φ(N), d := x

2t−1 mod φ(N)
0 mod N,

C := (x0, xt), t ←R TRE.Gen(pp, td, t)
c ←R TRE.Enc(m, e, pp)

d :=
√
xt ← TRE.Solve(pp, C, t)

{m,⊥} ← TRE.Dec(c, d, pp)

In our BBS-TRE TRE.Setup outputs the public parameters N, k0, k1, G,H.
The first parameter is the RSA modulus N which is a Blum integer. A Blum in-
teger is the product of two Gaussian primes i.e. N = pq, where p ≡ q ≡ 3 mod 4
[11]. The modulus being a Blum integer is key requirement for the correct-
ness of our scheme. The parameters k0, k1, G,H are the RSA-OAEP parameters
which can be seen in detail in Algorithm 7. TRE.Setup also outputs the trapdoor
φ(N) := (p− 1)(q − 1) and keeps this parameter private.

Next, the TRE.Gen algorithm outputs the encryption and decryption keys,
the challenge (x0, xt) and the time parameter t. In the challenge (x0, xt) the
term x0 is a randomly sampled quadratic residue of N , denoted x0 ∈ QRN . The
decryption key d is calculated with the trapdoor using Algorithm 4 with the
parameters (x0, 2

t−1 mod φ(N), N). If gcd(d, φ(N)) = 1, then in the challenge
(x0, xt), the term xt is set to d2 mod N and the encryption key e is set to d−1 mod
φ(N). Next the TRE.Enc algorithm inputs a message m and the encryption key
e and the public encryption parameters pp to output the ciphertext c using the
RSA-OEAP PKE scheme. This scheme deviates from a traditional RSA-OAEP
PKE scheme as the encryption key e remains private to ensure the property of
implicit authentication.

Next, the TRE.Solve algorithm sequentially calculates the decryption key
d using Algorithm 4 with the parameters (x0, 2

t−1, N). The RSW time-lock
assumption tells us that finding the term d will require t− 1 sequential modular
exponentiations to calculate if the trapdoor φ(N) is not known. Finally, the
TRE.Dec algorithm takes as input the ciphertext c and the decryption key d and
the public parameters pp, and outputs either the message m or an error ⊥ using
the RSA-OEAP PKE scheme. We now provide the full details of our BBS-TRE
algorithms.
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1) V runs pp, td ←R Setup(1λ) to generate the public parameter and trap-
door, as seen on Algorithm 5. The function prime(j) on lines 4 and 5 randomly
generates j bit primes p ≡ q ≡ 3 mod 4. That is, p←R prime(j). This guarantees
that N , which is calculated on line 7, is a Blum integer. Next, the trapdoor is set
to φ(N) := (p − 1)(q − 1). Next it runs the function params(1k) which outputs
the parameters for the RSA-OAEP PKE scheme. The parameters k0, k1 are inte-
gers fixed by RSA-OEAP, and the parameters G,H are cryptographically secure
hashing functions. The public parameter is set to pp := (N, k0, k1, G,H). The
public parameter can be released to D after TRE.Setup is run, but the trapdoor
must remain private. TRE.Setup outputs pp, td.

Algorithm 5: E runs TRE.Setup on security parameter 1λ to output
public parameter pp and trapdoor td.

input : 1λ

1 p := 0
2 q := 0
3 while p 6= q do
4 p := prime(λ

2
)

5 q := prime(λ
2
)

6 end
7 N := pq
8 φ(N) := (p− 1)(q − 1)

9 k0, k1, G,H ← params(1λ)
output: pp := (N, k0, k1, G,H), td := φ(N)

2) E runs e, d, C, t ←R TRE.Gen(pp, td, t) to generate the encryption and de-
cryption keys and the challenge, as seen on Algorithm 6. First, TRE.Gen sets
the variable gcd to 0. Next, TRE.Gen enters a while loop to generate an appro-
priate encryption and decryption exponent e, d for RSA-OAEP. This is done by
first uniformly selecting x ∈ Z∗N and computing x0 ≡ x2 mod N . Then TRE.Gen

evaluates d ≡ x
2t−1 mod φ(N)
0 mod N . The decryption key d is calculated using

Algorithm 4 with the parameters (x0, 2
t−1 mod φ(N), N). Note that E is able

to reduce the exponent 2t−1 mod φ(N) using the trapdoor. The while loop runs
until the decryption key d computed on line 6 is coprime to φ(N). That is, until
gcd := gcd(d, φ(N)) = 1. Once this is found the while loop exits and the term
xt := d2 mod N is calculated and the encryption key e is calculated using the ex-
tended Euclidean Algorithm. In Theorem 1 we prove that the while loop will ter-
minate. Furthermore, we prove that in expectation the number of iterations the
while loop will require to generate a challenge such that gcd := gcd(d, φ(N)) = 1

is π
2

3 ≈ 3.3. This finding and the associated proof is a key contribution of our con-
crete TRE-IA construction. Finally, the challenge C is set to the tuple (x0, xt).
TRE.Gen then outputs the encryption and decryption keys e, d and the challenge
and time parameter C, t. The challenge that D must solve to recover the decryp-
tion key is: for seed x0, find d such that d ≡ √xt mod N . The encryption key e
must remain private, and C and t must only be released to D once E would like
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the decryption key d to be extracted under the RSW time-lock assumption by
using the TRE.Solve algorithm.

Algorithm 6: E runs TRE.Gen on public parameter, trapdoor, and
time parameter pp, td, t to create the encryption and decryption ex-
ponents and the challenge e, d, C, t.

input : pp, φ(N), t // t ∈ N
1 gcd := 0
2 while gcd 6= 1 do
3 x := U(2, 2

λ
2 ) // x ∈ Z∗N

4 x0 := x2 mod N

5 d := x
2t−1 mod φ(N)
0 mod N

6 gcd := gcd(d, φ(N))

7 end
8 xt := d2 mod N
9 e := d−1 mod φ(N) // EEA

10 C := (x0, xt)
output: e, d, C, t

3) E runs c←R TRE.Enc(m, e, pp) to output ciphertext c, as seen on Algorithm
7. TRE.Enc is the encryption algorithm of the RSA-OAEP PKE scheme. Each
step of the algorithm is described on the comments of each line. The final step
is to output the ciphertext c. In a TRE scheme the ciphertext c can be released
to the decryptor independently of the challenge and time parameter output by
TRE.Gen.
Algorithm 7: E runs TRE.Enc on (m, e, pp) to output ciphertext c.

input : m, e, pp
// pp := (N, k0, k1, G,H)

1 m′ := m || 0k1 // Zero pad to n− k0 bits
2 r := rand(k0) // Random k0 bit number
3 X := m′ ⊕Gn−k0(r) // Hash r to length n− k0
4 Y := r ⊕Hk0(X) // Hash X to length k0
5 m′′ := X || Y // Create message object
6 c := m′′

e
mod N // RSA encrypt

output: c

4) D runs d ← TRE.Solve(pp, C, t) to evaluate the challenge and output the
decryption key as seen on Algorithm 8. First TRE.Solve calculates the term

√
xt

by entering the parameters (x0, 2t−1, N) into Algorithm 4. By the RSW time-lock
assumption it will take t−1 sequential steps to calculate d because the trapdoor
is not known by the decryptor D. Next, TRE.Solve checks if

√
xt

2 mod N = xt is
true. If the condition is true, then d is set to

√
xt and output and the algorithm

terminates.
5) D runs {m,⊥} ← TRE.Dec(c, d, pp) to output the plaintext message m or

⊥, as seen on Algorithm 9. TRE.Dec is the decryption algorithm of the RSA-
OEAP PKE scheme. Each step of the algorithm is described on the comments of
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each line. The final step is to output the message m or ⊥. By the correctness of
the RSA-OAEP PKE scheme, if the parameter d extracted by TRE.Solve under
the RSW time-lock assumption has the property ed ≡ 1 mod φ(N) (line 9 of
TRE.Gen), then the message m will be recovered. Else, TRE.Dec will output ⊥.

Algorithm 8: D runs TRE.Solve to evaluate pp, C, t and output the
decryption key d.

input : pp, C, t
// pp := (N, k0, k1, G,H), C := (x0, xt)

1
√
xt := x2

t−1

0 mod N

2 if
√
xt

2 mod N = xt then
3 d :=

√
xt

4 end
output: d

We have presented a concrete construction for a TRE-IA based on a RSW
TLP and the RSA-OAEP PKE scheme. We have done this by setting up an
RSA modulus which is a Blum integer, generating a TLP challenge and a PKE
key-pair, then time-locking the decryption key using the TLP. We then inte-
grated our encryption and decryption exponents (the PKE-style key pair) into
the RSA-OAEP scheme for the encryption of a message and the decryption of the
ciphertext respectively. In the next sections we review the formal security analy-
sis of our scheme and then give a performance analysis of a real implementation
of our scheme.

Algorithm 9: D runs TRE.Dec on (c, d, pp) to recover message m or
output ⊥.

input : c, d, pp
// pp := (N, k0, k1, G,H)

1 m′′ := cd mod N

2 X :=
⌊
m′′2−k0

⌋
// Extract X

3 Y := m′′ mod 2k0 // Extract Y
4 r := Y ⊕Hk0(X) // Recover r
5 m′ := X ⊕Gn−k0(r) // Recover padded message
6 m := m′2−k1 // Remove padding

output: {m,⊥}

4 Security Analysis

In this section we provide the security analysis of our concrete BBS-TRE scheme.
First we prove that our BBS-TRE is correct and secure. We then prove that our
scheme holds the property of implicit authentication.

We first provide proof of the correctness of our scheme. The outline of our
proof will be as follows: first we will prove that TRE.Gen will terminate and
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generate a suitable RSW time-lock puzzle challenge, second we will prove that
TRE.Solve will correctly output the decryption key d, third we will prove that
the decryption key d is unique because N is a Blum integer, and finally we will
prove that the decryption key will correctly return the original message m when
it is used to decrypt the ciphertext c generated with the encryption exponent e.

First we must prove that the while loop in TRE.Gen will terminate and gen-
erate a suitable challenge and decryption key.

Theorem 1. The while loop in TRE.Gen will in expectation take π2

3 trials to
generate a suitable challenge and decryption key d.

Proof. The probability of two randomly selected integers being coprime is 6
π2

[24], Theorem 33. The Blum integer N = pq generated with TRE.Setup is ran-
domly selected using the Miller Rabin Monte Carlo algorithm [31]. Next, the
φ(N) is calculated as (p− 1)(q − 1). Therefore, φ(N) is always even. Each iter-
ation of the while loop in TRE.Gen is a Bernoulli trial. In our Bernoulli trial N
and hence φ(N) are randomly selected and the integer d on line 5 of TRE.Gen
is also randomly selected. We model d as a random integer as it is an output of
the BBS CSPRNG. In each trial, if gcd(d, φ(N)) = 1 the outcome is a success,
otherwise if gcd(d, φ(N)) 6= 1 then the outcome is a failure. Therefore, in each
trial, the probability of selecting two random integers which are coprime when
one integer is even is 6

2π2 = 3
π2 .

Finally, the probability distribution of the number of Bernoulli trials re-
quired until one success is achieved forms a Geometric distribution G ∼ Geo( 3

π2 ).
Therefore, in expectation, the number of Bernoulli trials required until a suit-
able challenge and decryption key d is selected such that gcd(d, φ(N)) = 1 is
E(G) = π2

3 ≈ 3.3 trials.3

Second we must prove that the TRE.Solve algorithm correctly calculates the
decryption key d. To prove this we must show that the Square and Multiply
algorithm correctly calculates any term correctly in a BBS sequence. We first
provide a brief summary of the BBS CSPRNG and subsequently a security
analysis of our BBS-TRE for each of the required properties. The BBS CSPRNG
[11] starts by selecting x ∈ Z∗N and calculates the seed value x0 ≡ x2 mod N . To
produce a string of t bits, the least significant bit is extracted from each term
xi ≡ x2i−1 mod N for i ∈ (1, . . . , t). The equivalent representation of the first t
terms of the sequence can be seen in Table 1.

Theorem 2. Algorithm 4 Square and Multiply correctly calculates the xi term
of the BBS CSPRNG.

Proof. The input to calculate the term xi of the BBS CSPRNG takes as input
(x0, 2

i, N), where x0 is the seed term, and N is a Blum integer. Consider the
base case when i := 1. The algorithm proceeds as follows: d is set to 1 and the
3 Numerical analysis also indicated that over thousands of trials, independent of the
size of φ(N), the average number of iterations the while loop must run until a suitable
challenge was found was 3.3.
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Table 1. The first t terms of the BBS CSPRNG. The first row identifies which
i ∈ (1, . . . , t) is being calculated. The second, third, and fourth rows are equivalent
representations of the same term, i.e. in the penultimate column, for i := t − 1, the
terms xt−1, x2t−2, and x2

t−1

are equivalent.

i 0 seed 1 2 . . . t− 2 t− 1 t

xi x0 x1 x2 . . . xt−2 xt−1 xt
x2i−1 x0 x20 x21 . . . x2t−3 x2t−2 x2t−1

x2
i

0 x0 x2
1

0 x2
2

0 . . . x2
t−2

0 x2
t−1

0 x2
t

0

exponent b := 21 is set to the binary string B = 10. Next, the algorithm enters
the for loop on the first iteration. On the first iteration j is the first digit of
B, which is 1. Next d := 1 is squared to output 1. Then the first conditional
if statement is met as j = 1, therefore d := 1 · x0 = x0 mod N , and the first
iteration of the loop is done. On the second iteration j is the second digit of
B, which is 0. Next, as d was set to x0 on the first iteration d is now set to
x20 mod N on the second iteration. The first conditional if statement is not met,
and the loop terminates as the final digit of B was processed. The algorithm
then returns d := x1 ≡ x20 ≡ x2

1

0 mod N , as required. Therefore, the base case is
true.

By the inductive hypothesis we claim that for any i := k, the loop invariant
of Algorithm 4 returns the term x2

k

0 mod N after k iterations. Therefore after
k iterations, where b was set to 2k+1, Algorithm 4 will have d := x2

k

0 mod N ,
and j will be the final digit of B := 10 . . . 0. For any k, the variable B will be
a binary string starting with the digit 1 followed by a trail of k digits equal to
0. This means after the first iteration of the for loop all remaining j ∈ B will
be 0. Thus, at the k+ 1 iteration of the for loop d will be set to x2k mod N , and
by definition x2k ≡ xk+1 ≡ x2

k+1

0 mod N . Finally, Algorithm 4 will terminate at
the k + 1 iteration as the final digit of B was processed, and the algorithm will
return d := x2

k+1

0 mod N .

Lemma 1. The TRE.Solve algorithm in the BBS-TRE correctly outputs the de-
cryption key d := xt−1.

Proof. Suppose encryptor E honestly generates a random public parameter, chal-
lenge and time parameter pp := (N, k0, k1, G,H), (C := (x0, xt), t) and presents
these to an honest D. Next, suppose D selects the legitimate evaluation algo-
rithm TRE.Solve to evaluate (C, t). The TRE.Solve algorithm will calculate the
decryption key d by entering the following parameters (x0, 2t−1, N) into the Al-
gorithm 4, which will output d := x0

2t−1

= xt−1 mod N . TRE.Solve will correctly
output the BBS term xt−1 with overwhelming probability due to the correctness
of Algorithm 4 noted in Theorem 2. Therefore, the TRE.Solve algorithm will
correctly output d := xt−1.

Next we must prove that the decryption key d := xt−1 =
√
xt mod N output

by TRE.Solve is unique. First we must recall that d by definition of being a



16 Angelique Loe, Liam Medley, Christian O’Connell, and Elizabeth A. Quaglia

term in a BBS CSPRNG sequence is a quadratic residue of the modulus N and
provide a brief definition.

Definition 2. Quadratic residues. Let N = pq, where p, q are λ bit primes.
If r ≡ x2 mod N , for some x ∈ Z∗N , we say that r is a quadratic residue of N .
This is denoted as r ∈ QRN .

Therefore, we must prove that the solution d to the follow equation is unique:

d :=
√
xt mod N (1)

This challenge arises because the Chinese Remainder Theorem isomorphism
indicates that when N = pq, where p, q are distinct odd primes, that Equation
1 has four distinct solutions [25]. That is, ±a ≡ ±b ≡ √xt mod N , where a 6= b.

Theorem 3. If N = pq is a Blum integer, then the decryption key d in our
BBS-TRE extracted by TRE.Solve is unique.

Proof. If N = pq is a Blum integer with p ≡ q ≡ 3 mod 4, then N ≡ 1 mod 4.
By the Chinese Remainder Theorem isomorphism every r ∈ QRN has four
distinct square roots ±a and ±b. As N is a Blum integer, by the law of quadratic
reciprocity JN (a) = JN (−a) and JN (b) = JN (−b), where JN is the Jacobi
symbol. It must be the case that a2 ≡ b2 mod N , which implies (a− b)(a+ b) ≡
0 mod N , which implies (a − b) | N and (a + b) | N . That is, without loss of
generality (a−b) = kp and (a+b) = `q, where k, ` ∈ N. Therefore, Jp(a) = Jp(b)
and Jq(a) = Jq(−b). As p ≡ 3 mod 4, the law of quadratic reciprocity tells
us Jp(−1) = −1, we have Jq(a)Jp(−1) = Jq(−b)Jp(−1). This implies that
JN (−a) = JN (b) or written another way JN (a) 6= JN (b).

Without loss of generality, eliminate the two roots with JN equal to −1, say
JN (b) = JN (−b) = −1. This leaves JN (a) = JN (−a) = 1. It is the case that
only one of −a or a has Jp = Jq = 1 as p ≡ 3 mod 4. Therefore, it is this one
that is the only quadratic residue modulo N [11].

Returning to our BBS-TRE, by Lemma 1 the term d := xt−1 mod N is cor-
rectly calculated by TRE.Solve and by definition it is a term in a BBS sequence.
Therefore, d is a quadratic residue of the modulus N. Therefore, d is the only
one of the four distinct square roots of xt that is a quadratic residue of N .

For the final element of the correctness proof of our BBS-TRE construction
we must prove that the decryption key d will correctly recover the message in
an RSA-OAEP scheme.

Corollary 1. The BBS-TRE is correct.

Proof. By Theorem 1 we know that TRE.Gen will terminate and output a suit-
able RSW TLP challenge (C, t). By Theorem 2 and Lemma 1 we know that the
decryption key d will be recovered by TRE.Solve. By Theorem 3 we know that
the decryption key d against the modulus N is unique. From the Fermat-Euler
Theorem [22] we know that the decryption key d calculated on line 5 of TRE.Gen
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is the same as the decryption key recovered by TRE.Solve on line 1. From the
correctness of the Extended Euclidean Algorithm [25] we know that e calculated
on line 9 of TRE.Gen is the multiplicative inverse of d. Finally, from the correct-
ness of the RSA-OEAP scheme [8] we know that TRE.Dec will correctly recover
the message m using decryption key d from the ciphertext c output by TRE.Enc
using encryption key e with overwhelming probability.

Next we prove the security of our scheme. To prove the security of our scheme
a set of arguments will need to be addressed. The outline of our proof will be as
follows: First we prove that finding a square root mod N when N is an RSA
modulus is equivalent to factoring N . Second we prove that given the public
parameters and the RSW challenge an adversary cannot derive the decryption
key d in less than t sequential steps. Finally we prove that if E selects one of
two equal length messages to encrypt using TRE.Enc and outputs ciphertext c,
then the only way an adversary can guess with greater than 1

2 + negl(λ) prob-
ability which message was encrypted is to honestly run TRE.Solve and recover
the decryption key d.

Theorem 4. Let N = pq, where p and q are λ bit primes. Then given any
r ∈ QRN , finding x such that x2 ≡ r mod N is equivalent to factoring N .

Proof. Proof can be found in the paper by Rabin [34].

The next part of our proof of the security property is to show that the
adversary cannot recover the decryption key in less than t sequential steps. If
the adversary can recover d in less than t sequential steps then they can output b′
equal to b with probability greater than 1

2+negl(λ) by decrypting the ciphertext.
Our proof is split into two parts: i) when A attempts to compute d in less than t
sequential steps, and ii) when A attempts to recover

√
xt mod N using a method

that does not use C, t. Therefore, our next step is to prove that the only way d
can be recovered without knowing the factors (or trapdoor) of N is to honestly
evaluate the challenge in t sequential steps.

Theorem 5. Our BBS-TRE requires t sequential steps to recover the decryption
key d.

Proof. Suppose E honestly generates a random public parameter pp and gener-
ates the encryption key, decryption key, challenge, and time parameter e, d, C, t.
Next A selects two messages of the same length m0 and m1 for E to encrypt. E
uniformly selects b ∈ {0, 1} and encrypts mb. A produces a PPT algorithm A0

which pre-processes pp and c and outputs a state st ← A0(pp, c). E sends the
challenge and time parameter to A. A produces a PPT algorithm A1 to output
b′ ← A1(st, C, t).

We start by proving part i), that computing d reduces to the RSW time-lock
assumption. First we recall from Lemma 1 that TRE.Solve correctly outputs
the decryption key d in t sequential steps, and we know from Theorem 3 that
the decryption key d is unique. Next we note that the pre-processing is carried
out before the A is given the challenge and time parameter C, t. Therefore, the
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probability that A can compute d in less than t steps is negligible. Specifically,
if TRE.Solve is honestly run, then d is calculated using Algorithm 4 with input
(x0, 2

t−1, N). Therefore, by the RSW time-lock assumption, calculating d with
Algorithm 4 requires t− 1 sequential steps.

Next, suppose A selects PPT algorithm A<t to evaluate d in less than t− 1
sequential steps. However, using such an algorithm A<t contradicts the RSW
time-lock assumption.

What remains is to show that giving A the challenge and time parameter
C := (x0, xt), t does not allow them to take square roots mod N faster than
sequential squaring. To see this, note that by construction x0 and xt are the
seed term and tth term in a BBS CSPRNG sequence [11]. Under the Generalised
BBS assumption [13], knowledge of these terms does not allow finding d =

√
xt

faster than sequential squaring unless x2
λ(λ(N))

0 mod N is calculated efficiently,
where λ(N) is the Carmichael function [15]. Finding x2

λ(λ(N))

0 efficiently is an
open problem given by Theorem 9 of Blum et al. [11, 19, 23].

Next, we prove part ii). Observe that finding d =
√
xt mod N i.e. taking

square roots mod N without challenge and time parameter C, t reduces to the
open problem of integer factorisation, Theorem 4. Therefore, as N is an RSA
modulus we assume it cannot be factored by any PPT algorithm with more than
negligible probability. Therefore, the only way a PPT algorithm could recover
the unique decryption key d when the factorisation (or trapdoor) of N is not
known is to honestly run TRE.Solve

Theorem 5 proves that the adversary cannot recover d in less than t sequential
steps to win the Security game. Therefore, to conclude our proof of the security
property we must demonstrate that the adversary cannot guess b in less than t
sequential steps without knowledge of the decryption key.

Theorem 6. Our BBS-TRE scheme is secure.

Proof. We first assume for a contradiction that a PPT adversary A can win the
Security game with a non-negligible advantage.

Let IND-CPARSA be the standard IND-CPA game for RSA-OAEP [8]. We
now recall the well-known result that RSA with OAEP padding is IND-CPA
secure under the RSA assumption [20]. We will show that any adversary who
can break the Security game can also break the RSA assumption.

When choosing the two messages in the Security game the adversary A has
the same available information as they do in the IND-CPARSA game. We now
analyse the difference between the two games when A receives the challenge and
makes a guess. In the Security game, A is provided with an additional piece of
information, the challenge C, but A is bounded by computational time t.

If an adversary wins the Security game with a non-negligible advantage with-
out evaluating the challenge using algorithm A0, then they can also break the
IND-CPARSA game with the same algorithm, as C is not provided to A0.

Next, given the challenge C, t and the state st the sequentiality property of
Theorem 5 proves that if an adversary gains a non-negligible advantage by eval-
uating the challenge in time less than t with A1 then they are contradicting the
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RSW-time lock assumption. Therefore, for the adversary to gain a non-negligible
advantage in the Security game, they must break either the RSW time-lock as-
sumption, or the IND-CPARSA security game, and hence the RSA assumption.
The adversary will therefore guess the correct message with probability at most
1
2 + negl(λ), and hence our TRE-IA scheme is secure according to the Security
Game presented in Section 2.

We now prove that our scheme has the property of implicit authentication

Theorem 7. Our TRE scheme provides the implicit authentication property.

Proof. Suppose that the encryptor runs the TRE.Setup and TRE.Gen algo-
rithms. LetA receive the RSAmodulusN and the OAEP parameters (k0, k1, G,H),
and let m∗ be the target message it outputs.

Now let A receive the challenge C, the time parameter t, the decryption key
d and have access to the encryption oracle Oenc.

In our construction d is chosen at random on lines 3 - 5 of TRE.Gen. As we
are working in Z∗N there is only one multiplicative inverse of d, which is the
encryption key e calculated on line 9 of TRE.Gen. To derive e from d requires
knowledge of φ(N), as e := d−1 mod φ(N). In order to learn φ(N), the adversary
would need to factor the RSA modulus N , which is a well-known hard problem
[34, 35]. Therefore, unless the adversary can factor N , they cannot guess e with
more than negligible probability. Therefore with overwhelming probability the
adversary will not learn the trapdoor φ(N), and hence will not be able to derive
e from d.

Using the encryption oracle Oenc A can obtain polynomially many cipher-
texts.

Recall from [8] that RSA-OAEP has ciphertext indistinguishability under
chosen-plaintext attack, which guarantees indistinguishability between encryp-
tions of messages. This property guarantees in particular that the adversary has
no advantage in identifying a ciphertext that will allow them to win the IA game.

The adversary can choose random elements from the ciphertext space, and
decrypt them using the decryption key d. However, without knowledge of the
encryption key, any such ciphertext will decrypt to a random element of the
message space.

As the size of the ciphertext space is exponential (explicitly it is the mag-
nitude of Z∗N ), and the adversary runs a PPT algorithm, there is a negligible
chance of correctly guessing a ciphertext which decrypts to the target message
m∗. Therefore the adversary will not win the implicit authentication game with
greater than negligible probability.

5 Performance and Integration with SecureDrop

In this section we present an evaluation of how our TRE-IA scheme performs
and provide a sample of how it can integrate with SecureDrop. We evaluate the
run times of the algorithms executed by the encryptor (who is the whistleblower)
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and those executed by the decryptor. Our analysis compares the dispersion of
run times of TRE-IA algorithms in our construction when different parameters
are used for the modulus size. Based on the results of our analysis we present a
number of recommendations for TRE implementations.

5.1 Performance Analysis

Our test setup consists of a virtual machine running on an Intel i7-6700K 4 GHz
CPU and 24 GB of RAM. The guest OS is Ubuntu 18.04 running Python 3.8.10.
The Crypto library 2.6.1 is used to generate random Blum integers. The code
can be found in https://github.com/nxd0main/TRE-IA.

Our performance analysis consists of running six different trials. Each trial
tests how different parameters impact the encryptor and decryptor algorithms
run times on our TRE-IA scheme implementation. Trial 1 is tested against a
2048 bit modulus, with the time parameter t set to 10 million. Trial 1 is run
200 times. Each time Trial 1 is executed we record the individual run times of
the TRE.Setup, TRE.Gen, TRE.Enc, TRE.Solve, and TRE.Dec algorithms. Trial
2, 3, 4, 5 and 6 are similar to Trial 1 except they are tested against a 2560, 3072,
3584, 4096, and 4608 bit modulus, respectively. Table 2 summarises the trial
parameters and a number of key descriptive statistics based on our analysis.

Table 2. Performance analysis trial parameters and descriptive statistics for TRE
scheme run time tests. µ∗E , µE , σE , and cE are the aggregated encryptor algorithms
run time mean without the TRE.Setup algorithm, run time mean with the TRE.Setup
algorithm standard deviation, and coefficient of variance, respectively. µD, σD, cD,
and βD are the aggregated decryptor algorithms run time mean, standard deviation,
coefficient of variance, and excess kurtosis, respectively.

Trial Modulus [b] runs t ` µ∗E [s] µE [s] σE [s] cE µD [s] σD [s] cD βD
1 2048 200 1107 50 1.14 1.33 0.13 0.095 121.08 2.01 0.017 −0.18
2 2560 200 1107 50 2.13 4.74 1.71 0.360 166.37 2.27 0.014 0.12

3 3072 200 1107 50 3.57 4.07 0.33 0.081 221.41 2.25 0.010 −0.36
4 3584 200 1107 50 5.54 12.08 4.56 0.378 284.07 2.93 0.010 0.15

5 4096 200 1107 50 8.13 9.41 0.85 0.090 354.77 3.41 0.010 1.33

6 4608 200 1107 50 11.31 25.02 8.38 0.335 432.73 4.08 0.009 4.98

Encryptor Analysis. We first provide an analysis of the distribution of the
aggregated run time of the algorithms run by the encryptor E . For each of the
200 iterations of the six trials in Table 2, the aggregated mean run time of the
encryptor algorithms is noted under column µE [s]. This column is the sum of the
individual run times for TRE.Setup, TRE.Gen, and TRE.Enc algorithms. In the
column noted µ∗E [s], the aggregated mean run time of the encryptor algorithms
without TRE.Setup is recorded to illustrate the overhead of this algorithm.
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Decryptor algorithms

Fig. 1. Histogram with EDF for our BBS-TRE scheme Decryptor TRE.Solve and
TRE.Dec algorithm run times. Heavy tailed distributions with high excess kurtosis
can be seen on the 4096 bit and on the 4608 bit trial data. These trials show the prob-
ability of outliers is higher than a normal distribution. This can give a decryptor an
inconsistent run time when extracting the decryption key and decrypting the cipher-
text. If the selection of time parameter t is chosen to provide a specific time for the
decryption of data for maximum impact, using parameters with a high probability of
outlier run times is undesirable.

Table 2 also shows the standard deviation σE [s], and the coefficient of vari-
ance cE for each trial. cE allows us to normalise the dispersion of the run times
around the mean for the different trials [5]. We see that the coefficient of vari-
ance is smaller for the 2048, 3072, and 4096 bit modulus indicating a tigher run
time around the mean. Tigher dispersion is ideal to give a more consistent ex-
perience. As the encryptor may be under duress, knowledge of run times for
operation would be essential.

Recommendations: Based on the analysis of encryptor algorithm perfor-
mance, we recommend choosing the 2048 bit and 3072 bit modulus sizes to
ensure fast and consistent run times demonstrated by their low mean run times
and low coefficients of variance respectively.

Decryptor Analysis. Next, we provide analysis of the distribution of the
aggregated run times of the algorithms run by the decryptor D. The aggregated
decryptor algorithm run time equals the sum of the TRE.Solve and TRE.Dec
algorithms. The mean µD, standard deviation σD, coefficient of variation cD,
and excess kurtosis βD for each trial can be seen in Table 2. The coefficient
of variation remains consistently low between all trials in Table 2. This is ideal
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Fig. 2. SecureDrop integration with TRE-IA.

because having a low coefficient of variance for the decryptor algorithms indicates
a tighter dispersion around the mean. By this measure, the decryptor algorithm
run times appear to be consistent.

We also measure the dispersion properties of the decryptor run times using
the excess kurtosis, denoted βD. Excess kurtosis provides information about the
weight of the tails of a distribution [40]. Excess kurtosis also provides an indicator
of the probability of outliers in the distribution. Therefore, lower excess kurtosis
is ideal to provide assurance of consistent run times.

Figure 1 plots the histograms of the decryptor run times for each of the
six trial types in Table 2. Each histogram also plots an empirical distribution
function (EDF). Figure 1 shows us that the 2048 and 3072 bit BBS-TRE distri-
butions show the lowest probability of outlier run times and that the 4096 bit
and 4608 bit distributions show the highest probability of outlier run times.

The presence of heavy tailed distributions in our trials was unanticipated
as the virtual machine resources and test parameters remained consistent. Hav-
ing heavy tailed distributions with a high probability of outliers for decryptor
algorithm run times when the same computational resource is provided is un-
desirable. For example, a decryptor extracting and decrypting the ciphertext on
a 4608 bit construction would know from performance analysis that there is a
1 in 25 chance that they could take far longer than the expected mean time to
extract the time-locked decryption key and decrypt the ciphertext.

Consider a concrete example extrapolated from the final histogram in Figure
1 for the 4608 bit modulus. If E selected the parameter t such that the expected
extraction and decryption time was 7 days (168 hours), then a decryptor may
take 8 hours longer than the expected run time to recover the plaintext.

Recommendations: Based on the analysis of decryptor algorithm perfor-
mance, we recommend using the 2048 and 3072 bit sizes which demonstrate the
lowest probability of outlier run times.
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5.2 Using TRE-IA with SecureDrop

Our TRE-IA construction could augment an existing whistleblowing tool known
as SecureDrop by adding the property of guaranteed delay with implicit authen-
tication. SecureDrop is ‘an open source whistleblower submission system that
can securely access documents from anonymous sources’ [2].

In Figure 2 the left hand box is the ‘Encryptor’ tab for the Whistleblower.
The Setup Challenge button will run the TRE.Setup and TRE.Gen algorithms
and allow the time parameter to be selected. Next there is dialogue box to se-
curely save the encryption key e to maintain the property of IA. The dialogue
box ‘Encrypt file’ will select the files that are required to be time-release en-
crypted by TRE.Enc. The whistleblower can then upload the public parameters
and ciphertext at a time of their choosing, which is denoted by dashed-line A.
The final button will upload the challenge to SecureDrop denoted by dashed-line
B.

The right hand box is the ‘Decryptor’ tab for the receiving party. The de-
cryptor can download and save the ciphertext as soon as it becomes available
on SecureDrop denoted by dashed-line C. They will not be able to decrypt the
ciphertext until the challenge becomes available and is downloaded, which is
denoted by dashed-line D. Once the challenge is received the ‘Extract Decryp-
tion Key’ button will run TRE.Solve to recover d. Finally, the ‘Decrypt file’ will
take the ciphertext, public parameters, and decryption key and run TRE.Dec to
recover the original leaked file.

6 Conclusion

In this paper we introduced a variant of a delay-based primitive known as timed-
release encryption with implicit authentication (TRE-IA). Implicit authentica-
tion is formally introduced with a game-based definition and we provide a con-
crete implementation with this property. Our implementation of a TRE-IA which
we name the BBS-TRE uses the BBS CSPRNG and RSA-OAEP PKE as the
building blocks. Our construction is implemented in Python and a performance
evaluation against six common modulus sizes was provided. Our performance
analysis allowed us to observe how the modulus size affected the run time con-
sistency of the whistleblower and decryptor algorithms. Therefore, we were able
to provide concrete recommendations for parameter selection for practical im-
plementations of our TRE scheme. We also provided an example of how our
TRE-IA scheme could be used in conjunction with the existing whistleblowing
tool SecureDrop.
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