A note on “a lightweight mutual authentication and key agreement protocol for remote surgery application in Tactile Internet environment”

Zhengjun Cao¹, Lihua Liu²

Abstract. We show that the key agreement scheme [Comput. Commun., 2021(170):1–18] is insecure against impersonation attacks, because there is a trivial equality which results in the loss of data confidentiality.

Keywords: Mutual authentication, Key agreement, Impersonation attack, Data confidentiality

1 Introduction

Recently, Kamil and Ogundoyin [1] have presented a mutual authentication and key agreement scheme for Tactile Internet-assisted remote surgery application, in which there are four entities: a fully trusted entity (TA), devices (Robots) installed in the theater operation room of the hospital, a node (Gateway) which acts as an intermediary between a remote surgeon and a robot, and a registered and authorized medical practitioner (Surgeon or User) who conducts surgical operation from a remote location using some robotic arms placed in the theater room where the patient is positioned. The TA is responsible for initialization. Surgeons and robots register with TA via secure communication channels, respectively. Then Surgeon and Robot will mutually authenticate with each other by using key agreement through public channel. The scheme only involves lightweight operations, such as hashing, string concatenation, and bit-wise XOR. Though the scheme is interesting, we find it flawed.

2 Review of the scheme

Let \(h : \{0,1\} \rightarrow \mathbb{Z}_q^* \) be a hash function, where \(q \) is a big prime. The bit-wise XOR operation is denoted by \(\oplus \), and the concatenation operation is denoted by \(\| \). \(\Delta T \) represents the allowable network transmission delay.

The scheme consists of seven phases: Gateway and Robotic Arm Registration, User Registration, User Login, Authentication and Key Agreement, Password Updating, Dynamic Robotic Arm Addition, and Revocation. The related phases can be described as follows (see Table 1).

¹Department of Mathematics, Shanghai University, Shanghai, 200444, China
²Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China.
Email: liulh@shmtu.edu.cn
Table 1: The Kamil-Ogundoyin key agreement scheme

<table>
<thead>
<tr>
<th>Gateway G_i</th>
<th>Gateway registration</th>
<th>TA</th>
</tr>
</thead>
</table>
| $\{R,D,D_1,D_2\}$ | secure channel | Pick a unique identity R,D_1, R,D_2 as the identity of G_i.
| r_i | | a secret $s \in \mathbb{Z}_q^*$ to compute $D_i = h(s, R,D_1, R,D_2)$. |
| | | Store $\{R,D,D_1,D_2\}$ in G_i’s memory. |

<table>
<thead>
<tr>
<th>Robot RM_j</th>
<th>Robot registration</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>${R,D}$</td>
<td></td>
<td>Pick R,D_j as RM_j’s identity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compute $D_j = h(s, R,D_1, R,D_2)$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Store ${R,D_j}$ in RM_j’s memory.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surgeon S_k</th>
<th>Surgeon registration</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\alpha, \beta, A_1, A_2}$</td>
<td></td>
<td>Pick a nonce C, compute $\alpha = h(C, D_1) \oplus h(D_1, HPW_k)$, $\beta = C \oplus h(R,D_1)$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Store ${\alpha, \beta}$ in a mobile device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surgeon S_k: ${\alpha, \beta, A_1, A_2}$</th>
<th>Gateway G_i: ${R,D_1, R,D_2, D_3}$</th>
<th>Robot RM_j: ${R,D_j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login & authentication & key agreement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input identity R,D_1, password PW_k.

- Compute $B_k = A_1 \oplus h(PW_k, R,D_1)$, $D_k = h(R,D_1, B_k)$, $HPW_k = h(PW_k, B_k)$.
- Check $A_2 = h(B_k, HPW_k, D_k)$.
- If so, the device picks nonce R, time stamp TS_1, to compute $A_3 = \alpha \oplus h(D_k, HPW_k)$, $A_4 = \beta \oplus TS_1$, $A_5 = h(R_k, A_3, TS_1)$, $A_6 = (R_k || A_5) \oplus A_3$.
- Check $A_3 = h(R_k, A_3, TS_1)$.

- Pick nonce R, time stamp TS_2, compute $A_8 = h(R,D_1, D_j, C, R_j, R_k, TS_2)$.
- $A_7 = C \oplus h(R,D_1, D_j, R_j, R_k, TS_2)$, $A_9 = D_j \oplus (R_k || R_k || TS_2)$. Check $TR_1 - TS_1 < \triangle T$. Compute $C = A_4 \oplus h(R,D_1, D_i) \oplus TS_1$, $A_3 = h(C, D_i)$, $R_k || A_5 = A_6 \oplus A_3$.
- Check $A_4 = h(R,D_1, D_i, TS_1)$.

- Compute $R_k || R_k || TS_2 = A_{11} \oplus R_i$.
- Check $TR_2 - TS_2 < \triangle T$. Compute $C = A_7 \oplus h(R,D_1, D_j, C, R_j, R_k, TS_2)$.
- Check $A_8 = h(R,D_1, D_j, C, R_j, R_k, TS_2)$.

- Pick nonce R, time stamp TS_3, compute $K_1 = h(R_i, R_k, R_j)$.
- $A_{10} = h(R_i, R_j, K_1, R,D_1, D_j, TS_2)$, $A_{11} = R_i \oplus (R_j || TS_2)$.

- Compute $K_2 = h(R_i, R_k, R_j)$, $A_{12} = h(K_2, R_i, R_j, A_8, TS_4)$.
- Compute $R_k || R_k || TS_4 = A_{13} \oplus R_k$.
- Check $TR_3 - TS_3 < \triangle T$. Compute $A_{13} = (R_k || R_k || TS_4) \oplus R_k$.

- Compute $K_3 = h(R_i, R_j, R_k)$.
- Compute $K_4 = h(R_i, R_j, A_6, TS_4)$.

- Check $A_{12} = h(K_3, R_i, R_j, A_6, TS_4)$.

2
3 Impersonating a robot

In the discussed model, the communications between any two entities are done over an open channel and the endpoint parties such as robots and surgeons are considered as untrustworthy. It claims that (see §3.2, [1]): The adversary \(A \) can physically capture a robotic arm and extract all the secret credentials stored in its memory. \(A \) can also clone the captured robot and replace it with a malicious one.

However, if the robot \(RM_j \) is compromised and \(RID_j, D_j \) are extracted, then \(A \) can directly impersonate \(RM_j \) to cheat the surgeon \(S_k \). In fact, the following computations

\[
R_i || R_k || TS_2 = A_9 \oplus D_j
\]
\[
C = A_7 \oplus h(RID_j, D_j, R_i, R_k, TS_2)
\]
\[
A_8 = h(RID_j, D_j, C, R_i, TS_2)
\]
\[
A_{10} = h(R_i, R_j, K_1, RID_j, D_j, TS_3)
\]

invoke \(RID_j \) and \(D_j \) in a very simple way, not relying on any exquisite logical relationship. Besides, in the registration phase the TA’s master secret key \(s \) is superficially invoked to compute

\[
D_j = h(s, RID_TA, RID_j)
\]

instead of being bound to other parameters. The designing bug results in the impersonation attack. To thwart this attack, the identity \(RID_j \) cannot be stored in \(RM_j \)’s memory so as to prevent an adversary from extracting it.

4 Impersonating a surgeon

As we know, the Boolean logic operation XOR is widely used in cryptography which compares two input bits and generates one output bit. When the operator is performed on two strings, they must be of a same bit-length. Otherwise, the shorter string should be stretched by padding some 0s to its left side. In this case, the partial string corresponding to the padding bits is eventually exposed to the adversary.

In the discussed scheme,

\[
\alpha = h(C, D_i) \oplus h(D_k, HPW_k)
\]
\[
A_3 = \alpha \oplus h(D_k, HPW_k)
\]
\[
A_5 = h(R_k, A_3, TS_1)
\]

\(A_3 \) and \(A_5 \) have a same bit-length, which equals to that of any output of hash function \(h \). Therefore, \(A_6 = (R_K || A_5) \oplus A_3 \) is a trivial equality. Naturally,

\[
A_6 = R_K || (A_5 \oplus A_3)
\]

results in the loss of data confidentiality, in which the nonce \(R_K \) is directly exposed.

By the captured \(\{A_4, A_5, A_6, TS_1\} \), an adversary \(A \) can first parse \(A_6 \) to recover \(R_K \) and \(A_5 \oplus A_3 \).
Then retrieve

\[A_3 = (A_5 \oplus A_3) \oplus A_5 \] (2)

Notice that \(A_3 = H(C, D_i) \) is unchanged in different sessions launched by the surgeon.

With the retrieved \(A_3 \), the adversary can impersonate the surgeon to cheat the gateway \(G_i \) and the robot \(RM_j \). To do so, the adversary \(A \) picks a nonce \(R'_k \) to compute

\[
A'_4 = A_4 \oplus TS_1 \oplus TS'_1 = \beta \oplus TS'_1 \\
A'_5 = h(R'_k, A_3, TS'_1), \ A'_6 = (R'_k \| A'_5) \oplus A_3
\]

where \(TS'_1 \) is a new time stamp. Then send the message \(\{ A'_4, A'_5, A'_6, TS'_1 \} \) to the gateway \(G_i \). Clearly, the new message can pass the unique verification

\[A'_5 = h(R'_k, A_3, TS'_1) \] (3)

performed by \(G_i \) in the first stage.

By the way, the transformations

\[
A_9 = D_j \oplus (R_i \| R_k \| TS_2) \hspace{1cm} (4) \\
A_{13} = (R_i \| R_j \| TS_4) \oplus R_K \hspace{1cm} (5)
\]

are insufficient to mask the substrings \(R_i \| R_k \) and \(R_i \| R_j \), respectively, depending on the effective bit-length of time stamps \(TS_2 \) and \(TS_4 \).

5 Conclusion

In this note, we show that the Kamil-Ogundoyin key agreement scheme is flawed because it is not explicitly organized. The findings in this note could be helpful for the future work on designing such key agreement schemes.

References