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Abstract. The bottleneck-complexity (BC) of secure multiparty computation (MPC) protocols is a
measure of the maximum number of bits which are sent and received by any party in protocol. As the
name suggests, the goal of studying BC-efficient protocols is to increase overall efficiency by making
sure that the workload in the protocol is somehow “amortized” by the protocol participants.
Orlandi et al. [ORS22] initiated the study of BC-efficient protocols from simple assumptions in the corre-
lated randomness model and for semi-honest adversaries. In this work, we extend the study of [ORS22]
in two primary directions: (a) to a larger and more general class of functions and (b) to the information-
theoretic setting.
In particular, we offer semi-honest secure protocols for the useful function classes of abelian programs,
‘read-k’ non-abelian programs, and ‘read-k’ generalized formulas.
Our constructions use a novel abstraction, called incremental function secret-sharing (IFSS), that can
be instantiated with unconditional security or from one-way functions (with different efficiency trade-
offs).

1 Introduction

Secure Multi-party Computation (MPC) [Yao86,GMW87,BGW88,CCD88], allows a set of mutually distrust-
ing parties to perform a joint computation of their private inputs in a secure way, which essentially means
that no adversary corrupting a subset of parties can learn more information than the output of the joint
computation (privacy), nor can they affect the correctness of the output (other than by choosing their own
inputs).

The complexity of MPC protocols is most commonly analyzed in terms of three fundamental metrics,
namely communication complexity (that measures the total number of bits communicated in the protocol),
round complexity (number of sequential interactions in the protocol) and computation complexity (that
captures the computational resources parties need to execute the protocol steps). In this paper, we focus on a
more fine-grained, comparitively less-explored metric called bottleneck complexity (BC) which was introduced
by Boyle et al. [BJPY18]. This metric, which can be informally defined as the maximum communication
complexity of any party captures the load-balancing aspect of MPC protocols – for e.g. a protocol where
everyone sends a bit to a central party would have O(n) BC (incurred by the central party, where n denotes
the number of parties) as opposed to a protocol where everyone sends a single bit to its neighbour in a chain-
like fashion, which has O(1) BC. Notably, both these protocols have the same communication complexity
but the communication in the latter is more balanced among the parties as captured by its lower bottleneck
complexity.

The works of [BJPY18,ORS22] focused on designing MPC protocols with bottleneck complexity sublinear
in the number of parties, which is particularly interesting for large-scale settings where n is huge. [BJPY18]
presented a FHE-based compiler that transforms insecure protocols into secure protocols while preserving the
bottleneck complexity. However, FHE is still relatively inefficient, and is only known under a more limited set
of assumptions - roughly, variants of LWE. In light of this, [ORS22] initiated the study of designing protocols
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with low bottleneck complexity in the preprocessing model, under minimal computational assumptions (such
as one-way functions and linearly homomorphic encryption, which can in turn be based on traditional
assumptions such as discrete logarithm and factoring).

In this work, we extend the study of [ORS22] in two primary directions: (a) to a larger and more general
class of functions and (b) to the information-theoretic setting. We additionally consider a more extended
notion of g-BC-efficiency to capture protocols which have BC of poly(g(n), λ), where λ denotes the security
parameter3. More specifically, [ORS22] focused on protocols with O(1)-BC-efficiency (i.e. with poly(λ) BC,
independent of n) and log-BC-efficiency (i.e. with poly(log(n), λ) BC); while we consider a more general notion
of g-BC efficiency, where g is any sublinear function. This allows us to work with a somewhat extended
parameter setting – Consider a function f(x1, ..., xn) where each xi has ` bits, and the (common) output is z
bits. The notions of BC-efficiency become meaningful only if these parameters ` and z are typically small. In
the prior work of [ORS22], these are assumed to be constant or polylogarithmic in n. In this work we extend
our quest to settings where ` and z are sublinear in size (o(n)), as this would still allow for constructions
satisfying the extended notion of BC-efficiency. Moreover, the constructions of [BJPY18,ORS22] have BC
that scales with the security parameter λ (where λ is typically ω(log(n))) in computational settings), which
is avoided by our information-theoretic constructions.

Related Work. The most relevant work to ours is [BJPY18,ORS22] (whose results we discuss above). There
are several works in the MPC literature that focus on optimizing communication complexity, some of which
we mention below. The works of [Cou19,DNPR16,IKM+13] focus on designing communication-efficient proto-
cols in the information-theoretic setting with correlated randomness. Interestingly, the notion of bottleneck
complexity and communication complexity are the same for the two-party setting. The work of [NN01]
presented a compiler that transforms an insecure protocol to secure one while preserving communication
complexity. [DI06,DIK+08,QWW18,ABJ+19] focus on optimizing communication complexity related to the
circuit size.

The constructions of [HIJ+16,HLP11,GMRW13] involve a chain-like interaction pattern (similar to our
constructions). However, these constructions achieve a weaker notion of security (namely, residual security)
as they are restricted to a single chain traversal (unlike our constructions which typically involve multi-
ple traversals over chain). The efficient non-interactive multiparty computation (NIMPC) constructions in
[HIKR18,EOYN21,BGI+14] also achieve this weaker security.

Our goal of minimizing bottleneck complexity is somewhat similar in spirit to the massive parallel compu-
tation model of [FKLS20,FGKS22] which focuses on minimizing the storage and communication of servers.
The works of [BGT13] and [IMO18] design protocols that optimize metrics that are closely related to bot-
tleneck complexity (namely, communication locality and message complexity).

For further related work, we refer to references therein.

1.1 Our Contribution

Our main contribution is constructing BC-efficient protocols in the correlated randomness model for various
interesting function classes. Further, we introduce a new primitive, namely Incremental Function Secret
Sharing (IFSS), which not only serves as a neat abstraction of BC-efficient computation, but also allows us
to cast our constructions in a generalized framework that captures both computational and information-
theoretic variants.

All our constructions are secure against a semi-honest (passive) adversary who can corrupt up to n − 1
among the n parties. Our computational constructions are based on garbling schemes, which rely on one-way
functions. Our information-theoretic constructions (satisfying perfect security) are a BC-friendly extension
of the OTTT (one-time truth-tables) construction from [IKM+13].

We elaborate on our contributions below.

3 For information-theoretic protocols with perfect security where there is no dependency on λ, g-BC efficiency refers
to BC of poly(g(n)).
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New primitive: Incremental Function Secret Sharing (IFSS). In Section 4, we introduce a new
primitive, namely, Incremental Function Secret Sharing (IFSS), which essentially allows a set of parties to
evaluate a hidden function on a joint public input. This tool is a clean abstraction of the core ideas of
BC-efficient evaluation in our constructions.

At a high-level, this primitive can be viewed as a variant of function secret sharing (which additively
shares a function among a set of evaluators, enabling them to compute output shares which can be aggregated
to obtain the output), with the difference that the output shares are aggregated incrementally on a chain,
in a BC-efficient manner. IFSS can be instantiated with garbled circuits or one-time truth tables (OTTT),
enabling us to unify our computational and information-theoretic variants. We believe this primitive to be
of independent interest and a useful building block for BC-efficient protocols.

Abelian Programs. Recall that an abelian program h can be expressed as h(X1, . . . , Xn) = f(
∑n
i=1 Xi)

for some f : G → {0, 1}, where G denotes an abelian group. In Section 5, we use our IFSS primitive
to generalize the approach of [ORS22] that constructs BC-efficient (computational) protocols for abelian
programs. Plugging in the information-theoretic OTTT-based instantiation of IFSS yields an information-
theoretic BC-efficient protocol for abelian programs with BC of O(log |G|). For completeness, we additionally
demonstrate how using the garbled-circuit based instantiation of IFSS results in the computational protocol
of [ORS22].

As an interesting application of BC-efficient abelian programs, we demonstrate how it could be used to
compute the maximum among n values as y = max(X1, X2, . . . , Xn) in a BC-efficient manner. This can be
extended to compute f(max(X1, X2, . . . , Xn)), where f is any arbitrary function.

‘Read-k’ Non-Abelian Programs. Briefly, a non-abelian program extends the notion of an abelian pro-
gram to non-abelian groups. Here, h(x1, . . . , xn) : {D}n → {0, 1} is represented as h(x) = g(π1,xi1 ·. . .·πt,xit ),
where each πj,xij is an element of a group G that depends only on j, xij (where ij ∈ {1, . . . , n}), and
f : G → {0, 1}4. In a read-k program, group elements depending on some xi appear up to k times in the
above representation.

In Section 6, we present a BC-efficient protocol for any function f , that can be represented as a read-k
non-abelian program over a group G. The computational and information-theoretic variants of these con-
structions incur a BC of O(log |G|(λ + k)) and O(k log |G|) respectively and will therefore have sublinear
BC as long as each of the parameters k and log |G| are ‘sufficiently small’. More specifically, we can allow
k log |G| to be of size o(n). Even for e.g., |G| = 2nε , k = O(1) for ε ∈ (0, 1), we obtain sublinear BC.

‘Tree-based’ read-k generalized formulas. In Section 7,we present a BC-efficient protocol for any func-
tion f that can be represented as a ‘tree-like’ formula, which may have multi-input (and output) gates. More
concretely, nodes in this formula are either inputs Xi (which may belong to some finite group, not necessarily
boolean domain), and gates with 2 inputs that output a single output 5. The inputs, intermediate outputs
(which are inputs to other gates) and the output are assumed to be bounded by ` bits (where ` = log |G| in
our constructions). For a formula that is read-k (i.e. each input variable appears at most k times) and has
depth d 6, our computational and information-theoretic variants result in BC of O(k · d · ` · λ) and O(k · d · `)
respectively.

As long as the above parameters of k, d, and ` are ‘sufficiently small’ (i.e. k · d · ` is of size o(n)), the
protocols remain BC-efficient. Even with these restrictions, such formulas are quite expressive. Notably, we
allow for ‘generalized’ gates in terms of the functions they compute – the above restrictions are only with
respect to the size of the inputs and outputs of these gates but the structure of the functions computed
by these gates may be quite complex. For example, consider a generalized formula of depth O(log(n)), and
4 Note that unlike abelian programs, some πxi depending on xi may crucially appear more than once, as the group
G is not commutative.

5 The construction is actually more general, and could allow for ‘generalized gates’ with larger fan-in, but we stick
with 2 for simplicity.

6 Note that for balanced trees, d = log2(k · n), which is sublinear in n.
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k = ` = n0.4, where each gate (having two inputs and an output of length ` = n0.4), evaluates a function
with circuit complexity of Ω(2n0.5). The BC complexity of the protocol above only would be Õ(n0.8) 7 for
our information theoretic implementation.

Lastly, we point out that while our information-theoretic constructions have better BC than the com-
putational variants, the size of the correlated randomness for our information-theoretic constructions grows
exponentially with the number of parties (due to the OTTT approach). However, the BC still remains
sublinear in the number of parties for all our constructions.

In Section 2, we compare the expressiveness of the above function classes of abelian, non-abelian programs
and tree-based formulas.

Open Problems. It remains an open question to determine the complete characterization of functions for
which BC-efficient protocols exist. In fact, since BC-efficient protocols are known to be impossible for general
functions even when no security is required [BJPY18], it would also be interesting to understand which
functions can be computed in the clear with low bottleneck complexity.

1.2 Technical Overview

Our constructions have the following common two-step approach: (1) First, the private inputs are aggregated
in a BC-efficient way to obtain a joint common public input that ‘hides’ the private inputs. (2) Next, we
consider an augmented version of the function f , say f ′ (that may be required to be kept secret) such that
evaluating f ′ on the common public input essentially corresponds to an evaluation of f . The evaluation of
f ′ is carried out via IFSS.

Overview of IFSS. Before describing details of our protocols, we give a high-level overview of the IFSS
primitive. In a nutshell, IFSS allows a set of parties to evaluate a hidden function f on a common public
input x such that nothing beyond f(x) is revealed (as long as one of the evaluators is honest). This evaluation
is done in an incremental manner, where each party computes its ‘share’ and these shares are aggregated over
a chain. In the garbled-circuit based instantiation, these ‘shares’ are additive shares of the label corresponding
to the common input x. Once this label is reconstructed (via aggregation over chain), the garbled circuit
computing f (given as part of the setup) is evaluated to compute the output. This is the crux of BC-efficient
evaluation in the constructions of [ORS22], which satisfy computational security.

For the information-theoretic instantiation, we use an approach based on secret-sharing the truth-table
inspired by the one-time truth table (OTTT) protocol of [IKM+13]. As already noted by [BGI16], this leads
to information-theoretic FSS. We detail the construction and show how it fits the IFSS framework.

In this protocol, parties are given an additive sharing of the (permuted) truth table of the function being
evaluated, as a part of the correlated randomness setup. Roughly speaking, the parties first identify the
relevant entry of the truth table (using their input and correlated randomness) i.e. the one that corresponds
to the correct output. The pointer to this entry can be interpreted as the common input of the IFSS. Now, the
evaluation is nothing but aggregating the additive shares of the relevant entry (determined by this common
input), which can be done in a chain-like fashion to maintain BC-efficiency. This is the main idea of the
information-theoretic instantiation of IFSS.

Next, we describe our constructions. Note that for protocols to be BC-efficient, the interaction involved
in the above outlined common two-step approach must satisfy the following two properties: (a) Each inter-
mediate value that is communicated must be ‘small’. (b) Privacy of the inputs must be maintained.

Abelian Programs. The structure of abelian programs (say h(x1, . . . , xn) = f(
∑n
i=1 xi)) is such that it

naturally supports property (a).
7 Õ ignores logarithmic factors.
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This is because the sum of inputs can be computed incrementally in a chain-like fashion with the property
that the size of the intermediate sums does not blow up. However, to satisfy (b), the protocol of [ORS22]
makes parties aggregate their masked inputs instead (using masks received as part of setup) to compute a
masked sum (say z = y + R, where y denotes the sum of inputs and R denotes the mask). Generalizing
their construction, we view this ‘masked sum’ as the common input, and use IFSS for evaluation. More
specifically, we consider a (private) augmented function f ′R(z) = f(z−R) (with secret R hard-coded), which
first unmasks this masked sum to retrieve the sum y, upon which h is computed. We use IFSS to compute
f ′, yielding computational and information-theoretic BC-efficient protocols (depending on whether the IFSS
is instantiated using the garbling-based or OTTT based approach).

‘Read-k’ Non-Abelian Programs. Similar to abelian programs, non-abelian programs (say, h(x) = f(π1,xi1 ·
. . .·πt,xit )) support property (a) as the input value to f (i.e. π1,xi1 ·. . .·πt,xit ) can be computed incrementally
in a chain-like fashion (where party i1 forwards π1,xi1 to i2 who computes π1,xi1 · π2,xi2 and forwards this
value to i3 and so on) while making sure that the intermediate values remain ‘small’. To maintain property
(b), the aggregation could be done over masked inputs instead. However, unlike the case of abelian groups
(which is commutative), we need to be slightly more careful in case of non-abelian groups (which may be non-
commutative) to ensure that this aggregation of masked inputs happens in a specific order. In our protocol,
the aggregated common input corresponds to

(
rt · . . . (r2 · (r1 · π1,xi1 ) · π2,xi2 ) · . . . · πt,xit

)
; accordingly each

party ij must compute its intermediate value by using its random value as a prefix and πj,xij as a suffix to
the intermediate value received from its neighbour on the chain. Once, parties have computed this common
public input, we use IFSS to compute the augmented function f ′, where f ′ first uses a (secret hard-coded)
prefix r−1

1 · r−1
2 . . . · ·r−1

t to unmask this common input and then compute f .

‘Tree-based’ read-k generalized formulas. Next, consider the case of ‘tree-like’ formulas. Consider one of the
‘generalized gates’ say f(x1, . . . , xm) (whose number of inputs and output size is ‘sufficiently small’ 8 but could
have any arbitrarily complicated structure). Unlike the previous cases, we cannot exploit the structure of
the function to support incremental aggregation (that supports property (a)). Instead, every party involved
in f must compute its masked input (using a random value given as part of the setup) and communicate
it in a chain-like fashion without any incremental computation. These masked inputs are simply appended
(therefore the size of the intermediate values grows in this case) and this set of masked values forms the
aggregated common input. Note that the size of this aggregated common input grows with the number of
inputs to this ‘generalized’ gate, which brings in the need for restricting the size and number of inputs to
these gates to be ‘small’ (i.e. o(n)) for sublinear BC.

Once the common input is determined, we proceed to evaluation. For this, we consider an instance of
IFSS for each ‘generalized’ gate and combine the intermediate outputs in a tree-like fashion. For simplicity,
consider a gate at the first level, computing f(1,2) that takes two leaf nodes (corresponding to inputs x1
and x2) as input. As mentioned previously, the aggregate common input corresponds to z = z1||z2, where
zi = xi + ri for i ∈ [2], where ri are random masks given during setup. An instance of IFSS with hidden
function f ′(1,2) (that has ri values as hard-coded inputs) and single common input z is initiated, that first
unmasks the random values from the set of masked inputs z and then computes the output of f(1,2). This
instance involves only the subset of parties holding one of these inputs x1 or x2 as evaluators, not the set of
all parties. Note that this does not violate security because even if one of the parties contributing an input to
f(1,2) is honest, by IFSS security, the parties will not learn anything except of the output of f(1,2). Otherwise,
if all parties are corrupted, they know all their inputs anyway, so there is nothing to hide. More generally,
the IFSS instance corresponding to a root of a subtree involves only the parties whose input is one of the
leaf nodes of this subtree. This is crucial to maintain BC-efficiency.

However, this approach would result in parties learning the output of f(1,2) which may not necessarily
be leaked by the output of f . Therefore, instead of computing the original f(1,2), we compute the modified
function f ′(1,2) that ‘masks’ the output of f(1,2) with a random mask r(1,2) chosen during setup. We ensure
correctness of computation by defining the functions at the levels above accordingly – for instance, consider
8 More specifically, these parameters are bounded by ` such that k · d · ` is of size o(n).
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another function f(3,4) at level 1 (with its similarly defined f ′(3,4) that ‘masks’ the output of f(3,4) with
random mask r(3,4)). Suppose the ‘tree-like’ formula had a function f(1,4) at level 2 that is supposed to
take as input y(1,2) and y(3,4) (respectively the outputs of f(1,2) and f(3,4)). We now define f ′(1,4) as the
function with hard-coded masks r(1,2),r(3,4) and r(1,4) that receives instead masked inputs (y(1,2) + r(1,2)) and
(y(3,4) + r(3,4)), unmasks them, evaluates f(1,4), and finally masks the output with r(1,4) (unless this node
corresponds to the root). The evaluations are done level-by-level in an upward fashion until the function
corresponding to the root of the tree is computed. This demonstrates how the outputs of various instances
of IFSS computations are combined; completing the high-level description of this construction.

Lastly, we point that in our constructions, the common input used in the IFSS could be dictated by
the adversary and still ‘unknown’ to the honest party when the evaluation of IFSS begins. For e.g. consider
the case of abelian programs, where the common input is the sum of masked inputs and computed over a
forward-pass of the chain. Suppose the adversary corrupts a set of parties at the end of the chain and the
evaluation of IFSS is executed over the subsequent backward pass of the chain. In such a case, this common
input is in some sense still ‘uncommitted’ (as the adversary can consider various versions of the common
input and try to recompute the IFSS incremental evaluations in her head). Even though the adversary is
passive, she can try to learn more information by trying to obtain multiple evaluations of IFSS corresponding
to different common inputs (referred to as a residual function attack); which would breach security 9. Security
of IFSS does not help in this case as it holds only if all evaluators agree on the common input. However, our
constructions ensure that the common input gets ‘committed’ as soon as the backward pass reaches the first
honest evaluator. The incremental computation by this honest evaluator would ‘fix’ the common input (in a
way that it is not possible to recompute evaluations on other common inputs any further), which creates the
effect of ‘fixing’ the corrupt evaluators’ inputs. We refer to respective technical sections for further details.

2 Comparison of the function classes

In this section, we discuss what kind of functions are captured by the function classes considered in this
work.

Abelian versus Non-Abelian Programs. We observe that indeed non-abelian programs appear to be more
expressive than abelian programs within our BC constraints. As a nice simple example, fix the regular
language L accepted by a ‘permutation’ DFA (deterministic finite automaton) that has {0, 1} as the set of
input symbols, {q0, q1, q2} as the set of states (with q0 as the start state and q2 as the accepting state) and
δ as the transition function specified by δ(qi, 1) = qi+1 mod 3, δ(q0, 0) = q1, δ(q1, 0) = q0, δ(q2, 0) = q2.

Consider a function h(x1, . . . , xm) (where each xj is a bit, where j ∈ {1, . . . ,m}) that outputs 1 if x ∈ L,
and 0 otherwise. Assume each xj is assigned to some party and each party is assigned at most k = o(n)
bits at fixed (not necessarily consecutive) positions. To evaluate this function, one can devise a simple non-
abelian program h(x1, . . . , xm) = f(π1,xi1 · . . . ·πt,xit ), where all πt,xt ’s are in the group S3 (where S3 denotes
a permutation group, whose elements are permutations of a set M = {1, 2, 3}, and the group operation is
the composition of permutations), and for each t, πt,0 = (1, 2)(3) and πt,1 = (1, 2, 3) 10. The function f(π)
outputs 1 if and only if π(1) = 3 11. Note that this non-abelian program is over a ‘small’ group. However, it
is not clear how to devise an abelian program that works with ‘small’ groups of similar size for this function.

We point that it is always the case that a function h : Dm → {0, 1} can be expressed as an abelian
program that works over the group Zm|D| – Each party Pi simply computes xi~ei, where ~ei is the i’th vector

9 Note that even if the IFSS computes a ‘masked’ output (like in the case of a non-root gate in the construction for
tree-like formulas), this would still violate security as the adversary could learn additional information about private
inputs of honest parties involved in this gate just by comparing these multiple masked outputs corresponding to
different common inputs.

10 We use the cycle notation to express permutations. E.g. π = (12)(3) denotes the permutation where π(1) =
2, π(2) = 1 and π(3) = 3 as (1, 2) denotes the cyclic permutation and 3 is left unchanged.

11 For e.g. consider the x = x1, . . . , x6 = 001011, where each Pi (i ∈ {1, 2, 3}) holds xi and xi+3. One can check that
x ∈ L and g(π1,0 · π2,0 · π3,1 · π4,0 · π5,1 · π6,1) = 1.
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in the standard basis, which can be aggregated to compute the sum, denoting the entire input. The problem
is that this group is too large, and it is not clear (to us) how to do much better with abelian programs for
the above DFA example.

Non-Abelian Programs versus ‘Tree’-based Formulas. In terms of feasibility (within the o(n) domain), the
formula-based construction is more expressive, within our BC constrains. This holds since we can simulate
a non-abelian program involving k · n terms via a (nearly) balanced tree of depth d = log(k) + log(n),
using associativity of multiplication in the group. So, a read-k program would result in a read-k formula.
Plugging in our constructions using the two approaches would result in their BC being very close, with only
polylogarithmic overhead for the formula-based construction.

Next, we discuss whether there also exists a transformation in the other direction i.e. from formula to
non-abelian programs. Given a generalized read-k formula, it is not always clear how to devise a (non)-abelian
program with small overhead as above. In particular, the generic transformation due to Barrington [Bar86]
transforming a formula into a BP results in a BP of length in quadratic in formula size, and constant width,
which is already Ω(n2) for non-trivial formulas (with size at least n), and is prohibitively expensive for BC.
In fact, the resulting BP is already a permutation BP, but this does not help us, due to the large k (size of
formula Ω(n2) implies that k must be Ω(n)). Despite the fact that non-abelian programs allow computing
an arbitrarily complicated function f after a sequence of compositions on non-abelian group elements (where
the sequence can be visualized as a permutation BP), it is not clear how this would help in the above
transformation.

Next, we observe that the formula-based solution works for branching programs 12 (BP’s). This is because
the formulas with the ‘generalized gates’ can support arbitrary transformations induced by inputs between
the BP layers, which can be composed due to associativity of the function. As long as the width and parameter
k of a ‘k-read BP’ is ‘small’, the formula-based approach would be BC-efficient.

The above raises a question regarding if non-abelian programs support BPs. We observe that they would
support a special kind of BPs, namely, permutation BPs 13. In such a program of width w, the transition from
root forward can be viewed as a composition of permutations in Sw, which defines a non-abelian program.
The output is then determined based on whether the composed permutation maps 1 to an accept node (where
the first and last transition are adapted to be permutations in a natural way). If w = n, the resulting group
elements are too large for sublinear BC (even when transferring a single element). If all permutations actually
fall in a subgroup of Sw, we could work in that subgroup and hope to obtain efficiency. Notably, non-abelian
programs would not support general branching BP, as it may not be possible to map the transformations
between layers in a general BP to a group structure (as it may not have an inverse or identity element). Lastly,
we point that permutation BPs are somewhat restricted, and moving from (regular) BP to a permutation
BP may have large costs in terms of w.

The above discussion argues that formulas are generally more expressive. However, there are still situ-
ations where using the non-abelian program approach is more useful. For instance, consider functions for
which the resulting BC for the non-abelian program based protocol is constant (as in the permutation DFA
example above). In such a case, moving from the non-abelian program construction to the formula-based
construction, incurs a super-constant overhead. In particular, a O(k · d)/O(k) = log(n) overhead for the
information-theoretic construction is incurred. So, the former construction would still be preferred if one
wishes to achieve the ‘ideal’ best possible notion of BC-efficiency, namely constant BC.

12 A directed acyclic graph in which the nodes are labeled by input variables and every nonterminal node has two
outgoing edges, labeled by 0 and 1

13 In a nutshell, these are layered branching programs, where every level’s transitions, for each input value xi = b
constitute a permutation πi,b [Bar85]. Another difference between it and standard BP’s is the way acceptance
is defined. There is no root and accept/reject nodes, but rather a single resulting composed permutations, and
acceptance/rejection is defined by belonging to one of two sets of output permutations, partitioning Sw. The width
of such a program is the number of nodes, w, in each layer except for the first and last ones.
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3 Preliminaries

Notation. The cryptographic security parameter will be denoted by λ. The n parties {P1, . . . , Pn} are
pair-wise connected by secure and authentic channels, where n is polynomially bounded. We operate with
semi-honest security and assume that any adversary can passively corrupt up to n− 1 parties.

We evaluate functions f : X → Y from a function class F . We will often assume that X and Y are groups
endowed with an operation. We consider both abelian and non-abelian groups.

3.1 Security Model

We prove the security of our protocols based on the standard real/ideal world paradigm. Essentially, the
security of a protocol is analyzed by comparing what an adversary can do in the real execution of the
protocol to what it can do in an ideal execution, that is considered secure by definition (in the presence
of an incorruptible trusted party). In an ideal execution, each party sends its input to the trusted party
over a perfectly secure channel, the trusted party computes the function based on these inputs and sends
to each party its respective output. Informally, a protocol is secure if whatever an adversary can do in the
real protocol (where no trusted party exists) can be done in the above described ideal computation. In this
work, the adversary is assumed to be passive (alternately, referred to as being semi-honest) – the corrupt
parties must follow the protocol specifications. However, the adversary attempts to learn private information
by observing the view of the passively corrupt parties. We refer to [Can00] for further details regarding the
security model.

In more detail, let Π be a protocol and F be a functionality. Let I denote the set of parties that are
corrupt (of size at most n−1). The “ideal” world execution involves parties {P1, . . . , Pn}, an ideal adversary
S who controls the parties in I. The “real” world execution involves the PPT parties {P1, . . . , Pn}, and a
real world adversary A who corrupts the parties in I passively. The view of a party in the real world is
defined to be its random tape, together with all messages received during the execution of the protocol. In
the ideal world, the simulator S is given as input nothing but the corrupt parties’ inputs sent to the trusted
party and the outputs they receive from the trusted party. If S is able to ‘simulate’ the real-world view with
just this information, intuitively, security must hold. This is formalized below.

We define the following distributions of random variables.

REALΠ(1λ, I;x1, . . . , xn) : suppose Π is run with security parameter λ where each party Pi runs the
protocol honestly using private input xi. Let Vi denote the view of party Pi at the end of the protocol
execution and let yi denote the output of Pi. Output

(
{Vi}i∈I , (y1, . . . , yn)

)
.

IDEALF,S(1λ, I;x1, . . . , xn) : Let (y1, . . . , yn)← F(x1, . . . , xn). Output
(
S(I, {xi, yi}i∈I), (y1, . . . , yn)

)
A protocol is secure against passive adversaries if the corrupted parties in the real world have views that

are indistinguishable from their views in the ideal world.

Definition 1. A protocol Π securely realizes F if there exists a PPT ideal world adversary S, such that for
every subset of corrupt parties I and all inputs x1, . . . , xn, the following two distributions are computationally
indistinguishable:

REALΠ(1λ, I;x1, . . . , xn) c
≈ IDEALF,S(1λ, I;x1, . . . , xn)

3.2 Definitions

Definition 2 (Bottleneck Complexity of a Protocol). Let CCi(Π) denote the expected number of bits
sent or received by Pi in an execution of Π, with worst case inputs. The bottleneck complexity of an n-party
protocol Π is defined as BC(Π) = maxi∈[n] CCi.

We use the formal definition of [BJPY18] for bottleneck complexity. Informally, the bottleneck complexity
of a protocol is the maximum communication complexity required by any party in the protocol execution.
We consider a protocol Π to be BC-efficient if the BC is sublinear in the number of total parties.
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Definition 3 (Abelian Programs). Let G be an abelian group, S1, . . . , Sn be subsets of G, and HGS1,...,Sn
be

the set of functions h : S1×· · ·×Sn → {0, 1} of the form h(x1, . . . , xn) = f(Σn
i=1xi), for some f : G→ {0, 1}.

We call such functions h abelian programs.

Definition 4 (Non-Abelian Programs). Let (G, ·) be a non-abelian group, x1, . . . , xn be inputs from
domain D, and HGD be the set of functions h : {D}n → {0, 1} of the form h(x1, . . . , xn) = f(π1,xi1 ·. . .·πt,xit ),
where each πj,xij is an element of a group G that depends only on j, xij (where ij ∈ {1, . . . , n}) for some
f : G→ {0, 1}. We call such functions h non-abelian programs.

3.3 Primitives

Garbled Circuits. A garbling scheme, introduced by Yao [Yao82] and formalized by Bellare et al. [BHR12],
enables a party to “encrypt” or “garble” a circuit in such a way that it can be evaluated on inputs — given
tokens or “labels” corresponding to those inputs — without revealing what the inputs are.

Definition 5 (Garbling Scheme). A projective garbling scheme is a tuple of efficient algorithms GC =
(garble, eval) defined as follows.

garble(1λ, C)→ (GC,K): The garbling algorithm garble takes as input the security parameter λ and
a boolean circuit C : {0, 1}` → {0, 1}m, and outputs a garbled circuit GC and ` pairs of garbled labels
K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ). For simplicity we assume that for every i ∈ [`] and b ∈ {0, 1} it holds that

Kb
` ∈ {0, 1}λ.

eval(GC,K1, . . . ,K`)→ y: The evaluation algorithm eval takes as input the garbled circuit GC and `
garbled labels K1, . . . ,K`, and outputs a value y ∈ {0, 1}m.

We require the following properties of a projective garbling scheme:

Correctness. We say GC satisfies correctness if for any boolean circuit C : {0, 1}` → {0, 1}m and x =
(x1, . . . , x`) it holds that

Pr[eval(GC,K[x]) 6= C(x)] = negl(λ),

where (GC,K)← garble(1λ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
` ), and K[x] = (Kx1

1 , . . . ,Kx`
` ).

Next, we formally define the security notions we require for a garbling scheme. When garbled circuits
are used in such a way that decoding information is used separately, obliviousness requires that a garbled
circuit together with a set of labels reveals nothing about the input the labels correspond to, and privacy
requires that the additional knowledge of the decoding information reveals only the appropriate output. In
our work, we do not consider decoding information separately (but rather, consider it to be included in the
garbled circuit), so we do not need obliviousness.

Privacy. Informally, privacy requires that a garbled circuit together with a set of labels reveal nothing
about the input the labels correspond to (beyond the appropriate output and the side-information). For our
constructions, we assume the side-information to be the topology of the circuit, denoted as θ(C).

More formally, we say that GC satisfies privacy if there exists a simulator simGC such that for every PPT
adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:
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Adversary A Challenger C

C : {0, 1}` → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−B
x = (x1, . . . , x`) ∈ {0, 1}`

−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}
if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
` ))← garble(1λ, C)

Ki = K
xi
i

for i ∈ [`]
if b = 1:

(GC, K1, . . . , K`)← simGC(1λ, θ(C), C(x))
GC,K1, . . . ,K`

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

4 Incremental Function Secret-Sharing

We begin by defining incremental function secret-sharing (IFSS), which allows a set of parties to evaluate a
hidden function on a joint input. Diverging from the original definition of function secret sharing [BGI16],
IFSS requires shares to be aggregated incrementally on a chain, in a BC-efficient communication pattern. IFSS
can be instantiated with garbled circuits or one-time truth tables and can be used in BC-efficient protocols
for particular function classes.

Definition 6 (Incremental Function Secret-Sharing). An n-party incremental function secret-sharing
(IFSS) scheme for a function class F is a pair of PPT algorithms (Gen, Eval) with the following syntax:

– Gen(1λ, f): On input security parameter 1λ and function description f ∈ F , Gen outputs keys (k1, . . . , kn);
– Eval(i, ki, x, yi+1): On input party index i, a key ki, input string x, and the output of the next party yi+1,

the algorithm Eval outputs a value yi;

We require the following:

Correctness: For all (f : X → Y) ∈ F , x ∈ X we require:

Eval(1, k1, x, Eval(2, k2, x, . . . , Eval(n, kn, x,⊥))) = f(x)

except with negligible probability.
Privacy: Let H be the set of honest parties. Then if ~k ← Gen(1λ, f), we define ~k−H to be ~k where
we replace, for all i ∈ H, ki with ⊥. We also define EvalH(~k, x) to compute, for i = n, . . . , 1, yi =
Eval(i, ki, x, yi+1) (with yn+1 = ⊥), and then output yi for all i ∈ H.
We say that an IFSS satisfies privacy if, there exists a PPT simulator Sim such that for all f ∈ F ,H ⊂
[n], x ∈ X :

{k−H, EvalH(~k, x) : ~k ← Gen(1λ, f)}λ,f,x, and {Sim(1λ,H, x, f(x))}λ,f,x

are (unconditionally or computationally) indistinguishable.
Bottleneck Complexity: We define the bottleneck complexity BC of an IFSS for F as the expected
size of the largest yi, for all i ∈ [n], f ∈ F , x ∈ X .

4.1 Instantiating IFSS

We show two instantiations of IFSS, one based on one-way functions and one with unconditional security.
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With Unconditional Security. IFSS can be implemented with information theoretic security using an approach
similar to the OTTT protocol [IKM+13] (as observed in [BGI16]). The construction is as follows: Gen(1λ, f)
chooses random vectors T1, . . . , Tn whose dimensionality is |Xf |, the size of the input domain of f , such
that for all possible inputs x ∈ Xf ,

∑
i Ti[x] = f(x). Gen then outputs ki = Ti. The evaluation algorithm

Eval(i, ki, x, yi+1) outputs yi = Ti[x] + yi+1 (for yi+1 6= ⊥ and yi = Ti[x] otherwise).
The protocol satisfies correctness since by construction y1 =

∑
i Ti[x] = f(x). It also satisfies uncondi-

tional privacy: The simulator Sim(1λ,H, x, f(x)) samples k−H = {Ti}i6∈H as a set of uniform random strings
of length |Xf |, and random {zi}i∈H from Yf . Then it simulates the outputs of the Eval function as follows:
it sets y1 = f(x), and yi+1 = yi − ((i ∈ H) ? zi : Ti[x]) 14 for all i < n, and finally outputs (k−H, {yi}i∈H).
Indistinguishability follows since in the simulation, like in the real protocol, the corrupt parties receive uni-
formly random ki, and the yi values are uniformly distributed under the constraint that y1 is the result of
the computation.

Note that since the constructions leaks X ,Y, we assume that for all f ∈ F Xf = X ,Yf = Y. For this IFSS,
BC = O(log |Y|). (Note that the size of the keys can be exponential in the input size, namely O(log |Y| · |X |),
like the original OTTT protocol).

From One-Way Functions. IFSS can be implemented from garbled circuits (which in turn can be implemented
from one-way functions) by abstracting the “Phase 2” step of the protocol for abelian programs presented
in [ORS22]. The construction is as follows: the algorithm Gen(1λ, f) runs (GC,K) ← garble(1λ, f). Then
it picks uniformly random {Ki}i∈[n] under the constraint that

∑
i Ki = K. Finally it outputs ki = Ki for

all 1 6= i ∈ [n] and k1 = (GC,K1). The evaluation algorithm Eval(i, ki, x, yi+1), for all i 6= 1, selects the
shares of the encoding information of ki = Ki that correspond to x i.e., Ki[x] = ((Ki)x1

1 , . . . , (Ki)x`` ) where
` = dlog |X |e, and finally outputs yi = Ki[x] + yi+1 (for yi+1 6= ⊥ and yi = Ki[x] otherwise).

For i = 1 the Eval algorithm follows the instructions above to produce y1, and finally outputs eval(GC, y1).
The protocol satisfies correctness since by construction y1 =

∑
i Ki[x] = K(x), and by correctness of the

garbling scheme eval(GC,K[x]) = f(x) except with negligible probability.
It also satisfies computational privacy: The simulator Sim(1λ,H, x, f(x)) runs the simulator for the garbled

circuits (GC,Y) ← simGC(1λ, θ(F), f(x)), where Y is the set of ` labels that make the simulated garbled
circuit GC output f(x). The simulator then picks {Ki}i 6∈H, a set of uniform random strings of the same
length as K, and random strings {zi}i∈H of the same length as K[x]. Then it simulates the outputs of the
Eval function as follows: it sets y1 = Y and yi+1 = yi − ((i ∈ H) ? zi : Ki[x]) for all i < n, and finally
outputs (k−H, {yi}i∈H).

An adversary A that can distinguish between the real and simulated distribution can easily be used to
break the privacy property of the underlying garbling scheme. The reduction B queries the GC challenger
C on input f, x and receives (GC,Y) in return. It then picks random Ki for all i 6∈ [n] and computes the
yi as the simulator described above. The resulting distribution corresponds to the real protocol execution if
the GC challenger sampled b = 0, or the simulated one if b = 1, therefore the reduction B wins in the GC
privacy game with the same advantage as the IFSS adversary A distingushes between the real and simulated
view.

Note that privacy of the GC scheme leaks some information θ(f) about the function f , therefore we
assume for simplicity that for all f ∈ F , θ(f) = θ(F). However, given an upper bound of the size of f ∈ F
it is possible to remove this requirement using universal circuits, albeit with an efficiency loss, and this is
reflected in the Lemma below. For the GC based IFSS, BC = O(λ · log |X |). Note that the size of the keys
is polynomial in the input size for this instantiation, namely O(λ · (log |X | + |f |)) for the first party and
O(λ · log |X |) for the others.

The discussion in this subsection can be summarized in the following:

Lemma 1. Let F be a class of functions f : X → Y, λ the security parameter. Then for all n:

– It is possible to implement IFSS for F with BC = O(log |Y|) with unconditional security.
– If one-way functions exist, it is possible to implement IFSS for F with BC = O(λ · log |X |) .

14 Here, a ? b : c is used to denote the folllowing – if a holds, then b; else c.
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In particular, the BC complexity in both cases is independent of n. Note however that the size of the
correlated randomness in the variant with unconditional security is exponential in the input size.

Using IFSS in the compiler of [BJPY18]. The work of [BJPY18] presents a compiler that transforms an
insecure protocol to secure protocol while preserving BC. The compiler is based on the tool of ‘incremental
FHE’, which is similar to FHE except that its ‘joint’ public key and decryption of ciphertext can be computed
by incrementally combining shares provided by different parties. The main idea of the compiler is to execute
the insecure protocol under the hood of (incremental) FHE to compute the encryption of the output (say
ciphertext ct). Next, the parties combine their partial decryptions (computed locally by each party using its
share of secret key) corresponding to ct in an incremental manner to reconstruct the final decrypted output.

We analyze whether this compiler can be viewed in terms of the common two-step approach of our
constructions (elaborated in the technical overview, where the first step is to compute a ‘masked’ aggregate
common input and the second step is to use IFSS to evaluate a hidden function on this input). Recall that
in our constructions, the first step involves masking the inputs using random values from setup (and either
aggregating them by incremental computation or concatenating them) and the second step involves using
IFSS to carry out the unmasking and compute the relevant function. On the other hand, in the above compiler,
the first step uses FHE to compute the encryption of output ct directly. We observe that considering ct to
be the common joint input, now IFSS can in fact be used to carry out the ‘decryption’ function of FHE. In
some more detail, IFSS could be used to evaluate the ‘hidden’ function which has the secret decryption keys
hardcoded and computes the decryption of the ciphertext ct. The above approach would result in making
the compiler rely on correlated randomness, but would allow to instantiate it using any (non-incremental)
FHE scheme. This shows that IFSS can serve as a general useful building block in BC-efficient constructions.

5 Low BC-complexity for Abelian Programs from IFSS

In this section, we generalize the results of [ORS22] using the IFSS primitive defined above. Doing so allows
us to achieve an information-theoretic BC-efficient protocol for abelian programs.

Note that we can’t use IFSS directly in MPC protocols for two reasons: first, all parties in IFSS would
need to know all the inputs ~X. This could be fixed by introducing a mask ~R, reveal ~X + ~R to all parties,
and then modify the function so that it removes the mask securely inside the IFSS. The second issue is that
revealing (even a potentially masked) ~X to all parties would lead to high BC since O(| ~X|) = O(n).

Recall that an abelian program h can be expressed as h( ~X) = f(
∑n
i=1 Xi) for some f : G→ {0, 1}, where

G denotes an abelian group. We observe that the specific function class of abelian programs has a special
structure that allows us to view it as a single-input function rather than an n-input function h. Exploiting
this observation, we fix the above problems as follows: first, the trusted dealer picks a (single) random R ∈ G,
defines the function f ′R(Z) = f(Z − R), and then gives all parties Pi an additive share ri of R, which they
can use to mask their inputs, and an IFSS key ki for the function f ′R.

In the protocol, the parties securely compute a masked sum of their inputs (say Z = X + R, where
R denotes the mask and X denotes the sum of inputs) in a BC-efficient way over a chain (similar to the
protocol of [ORS22]). The parties mask their inputs Xi with ri as Zi = Xi+ri, add it to

∑i−1
j=1 Zj , which they

received from the previous party Pi−1, and send the result to Pi+1. The last party in the chain then can recover
Z = X +R, and begins the second phase where each party Pi sends Z together with yi = Eval(i, ki, Z, yi+1)
to Pi−1, so that P1 can finally retrieve f ′R(Z) = f(Z −R) = f(X). Intuitively, security follows from the use
of the masks and privacy of IFSS which hides which function (and therefore mask) was used. The BC of the
protocol is inherited from the IFSS plus the size of elements in G, both independent of n.

Figure 5.1: Πabl

Private input. Each party Pi has input Xi ∈ G from group G.
Output. y = f(

∑n
i=1 Xi), where the output is a single bit.

Correlated Randomness Setup. The setup involves the following:
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1. For each i ∈ [n], sample ri ∈ G, such that
∑n
i=1 ri = R.

2. Define the function f ′R(Z) that computes f(Z−R) on the input Z. Use an IFSS scheme to compute
(k1, . . . , kn)← Gen(1λ, f ′R).

3. Output (ri, ki) to Pi for each i ∈ [n].
The Protocol. The following steps are run in the online phase:
Phase 1 (Round 1 to Round n). (Input Masking) In round i, Pi does the following:
– If i = 1, let Vi = ri +Xi.
– If i 6= 1, let Vi−1 denote the message received from Pi−1 during the previous round. Compute
Vi ← Vi−1 +Xi + ri.

– If i < n, send Vi to Pi+1.
– If i = n, set Z = Vn.

Phase 2 (Round n+ 1 to Round 2n) (IFSS Evaluation) Each Pi does the following in sequence,
starting from i = n to 1:
– If i = n, set yi = Eval(i, ki, Z,⊥).
– If i 6= n, parse the message received from Pi+1 in the previous round as (Z, yi+1). Compute
yi = Eval(i, ki, Z, yi+1).

– If i 6= 1 Send (Z, yi) to Pi−1.
Output Computation. P1 sets the output y = y1.
Phase 3 (Round 2n+ 1 to 3n) (Output Transfer) For i starting from 1 to n, each Pi does the
following in sequence:

- If i 6= 1, let y denote the output received from Pi−1 in previous round.
- If i 6= n, send y to Pi+1.
- Output y.

Theorem 1. Protocol Πabl securely computes the abelian program h against a semi-honest adversary cor-
rupting upto n− 1 parties. The BC of Πabl is O(log |G|) and O(λ log |G|) for the information-theoretic and
the computational variant respectively.

Proof. Let I and H = P\I denote the set of indices corresponding to corrupt and honest parties respectively.
Since we are running a protocol on a chain, it is useful to be able to talk about corrupt parties who receive
messages from honest parties, and we therefore define IL (resp. IR) to be the sets of all i ∈ I such that
i− 1 ∈ H (resp. i+ 1 ∈ H).

To prove security, we define a simulator S that simulates the real-world view of the corrupt parties. Recall
that S is given (I, {xi}i∈I , y).

Setup simulation. Run ({ki}i∈I , {yi}i∈H) ← simIFSS(1λ,H, Z ′, y), where simIFSS denotes the simulator of
the IFSS scheme’s Gen and Eval functionality for a function class F computing f ′R(Z) = f(Z−R) (note that
the function class is independent of the value R in the function). Z ′ is chosen uniformly at random from the
elements of G.

Additionally, for each i ∈ I, sample ri uniformly in G, and include (ki, ri) in the view of Pi.

Phase 1 Simulation. We need to simulate Vi−1 for all i ∈ IL. We do so by choosing uniformly random Vi−1
from G for all such i ∈ IL, except the largest one, which we denote by ĩ, which we simulate by computing
Vĩ−1 = Z ′ −

∑
j≥ĩ(Xj + rj) (In other words we define the message sent by the honest party with the largest

index, to be consistent with the Z ′ which was chosen when simulating the IFSS, the input of the corrupt
parties and their shares of R which were already defined during setup).

Phase 2 Simulation. We include in the view of all Pi with i ∈ IR the tuple (Z ′, yi+1), where yi+1 was received
from the IFSS simulator.
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Phase 3 Simulation. We include in the view of all Pi with i ∈ IL the result y.
Below, we argue that the views of corrupt parties in the real and ideal world are indistinguishable via a

series of intermediate hybrids:

– Hyb0 : Same as the real-world execution.
– Hyb1 : Same as Hyb0, except that the values ki for all i ∈ I and all yi+1 for i ∈ IR are computed using

the IFSS simulator on input (H, Z, f(x)).
This is in contrast to the previous hybrid, where the true IFSS evaluation is used instead of a simulator,
changing the ki of corrupt parties and yi of honest parties. Indistinguishability follows from the privacy
of IFSS.

– Hyb2 : Same as Hyb1, except that R is not used anymore to define the ri : i ∈ I, which are instead just
chosen at random from G. Since the ri of the honest parties are not part of the view the two distributions
are identically distributed.

– Hyb3 : Same as Hyb2, except that a random Z ′ is input to the IFSS simulator, and Vi : i ∈ I are simulated
as decribed in “Phase 1 Simulation”. This is in contrast to the previous hybrid, where Z is computed
from the Vi values, and Vi are computed based on the parties’ inputs. Since the ri of the honest parties
are not part of the view the two distributions are identically distributed. Note that in this hybrid we do
not use the inputs of the honest parties anymore.

Since Hyb3 corresponds to the simulated execution and each pair of consecutive hybrids are indistinguish-
able, this completes the proof that the views of corrupt parties in the real and ideal worlds are indistinguish-
able.

BC-Analysis. We note that in Phase 1 and 3, the maximum communication complexity incurred by a party
is log |G|. In Phase 2, a party incurs the BC of the IFSS instance (in addition to |Z| = log |G|), which is O(1)
for the information-theoretic instantiation and O(λ log |G|) for the computational instantiation. We can thus
conclude that the resulting BC of the information-theoretic protocol for abelian programs is O(log |G|). The
computational variant (which is the same as the construction in [ORS22]) has a BC of O(λ log |G|).

5.1 BC-efficient MPC for maximum

We introduce several protocols, which directly use Πabl as a subprotocol in a BC-efficient way.
The first protocol finds the maximum among the set of private inputs. Consider a set of parties {P1, . . . , Pn}

where each party Pi holds an element Xi ∈ [S]. Following is a protocol to compute y = max(X1, X2, . . . , Xn).
We use the Πabl protocol from Figure 5.1 as a subprotocol and run this subprotocol S times, once for each
possible value of the maximum. (A more efficient version is discussed later). Each abelian program outputs
1 if at least one party’s input is greater than that possible maximum value. The maximum is therefore the
largest element for which the execution of Πabl outputs 1.

More specifically, each abelian program fixes one possible output value from the set and takes a single-bit
input from each party. Before each run of the protocol, the parties evaluate a function locally with input bit
0 if their input is less than the value corresponding to that abelian program and 1 otherwise. The abelian
program takes the sum of these bit inputs, and outputs 1 if the sum is nonzero. We can consider the abelian
group Zn+1 (integers modulo (n + 1)) for this purpose. Therefore, each abelian program associated with a
value less than or equal to the maximum of the set outputs 1. Note that each subprotocol being run essentially
evaluates the OR function between all parties’ single-bit inputs. To fit an abelian program structure, each
program adds the parties’ input bits and compares the sum to 0. Other BC-efficient specialized protocols for
evaluating OR could also be used here, such as the one proposed originally as a warm-up by [ORS22]. The
formal description of this max protocol appears in Figure 5.2.
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Figure 5.2: Πmax

Private input. Each party Pi has input Xi from set [S].
Setup. Run the setup phase of Πabl.
Output. y = max(X1, X2, . . . , Xn)
The Protocol. The following steps are run in the online phase of the protocol:
– At the beginning of the protocol, each party i computes xji = Xi ≥ j for j = 1, 2, . . . , S.
– Then run the online phase of Πabl with inputs (xj1, x

j
2, . . . , x

j
n) and a function that checks if the

sum of inputs is greater than 0 and outputs 1 if so, [S] times in parallel for j ∈ [S], receiving
outputs Y = y1, y2, . . . , yS.

– Output max(X1, X2, . . . , XS) = argmaxi(yi ∈ Y : yi = 1).

Correctness. For correctness, notice that the final output of the protocol is the largest value (say j) for which
Πabl returns 1, implying that there exists at least one party with a value equal to j and no party with a
value greater than j. Therefore j is the maximum.

Privacy. Privacy of the protocol follows from the security of Πabl and the fact that the intermediate outputs
Y = y1, y2, . . . , yS can be efficiently simulated given the final output y, since Y is a vector of bits such that
yi = 1 if i ≤ y.

BC-Analysis. Each run of Πabl has BC of O(λ logn) for the GC implementation and O(logn) for the OTTT
implementation. Since Πabl is run S times, the total BC of the protocol is O(λS logn) or O(S logn).

Alternatively to running protocol Πabl S times in parallel, we could also use a binary search approach
and run the protocol. In that case, we would run Πabl with j = S/2. If the result is 1, run the protocol with
j = 3S/4. If the result is 0, run the protocol with j = S/4, narrowing the options for the true maximum
by half each time. This requires Πabl to be run log S times, resulting in a BC of O(λ log2 S) or O(log2 S).
Since this protocol using binary search does not allow the runs of Πabl to be done in parallel, the number
of rounds necessary for this protocol is log S times greater; this results in a round complexity of 3n for the
parallelized approach and 3n log S for the binary search approach.

Function of Maximum. Next, we present a BC-efficient MPC protocol to compute a function g of the
maximum of elements from [S]. Since we are computing a function of the maximum, we cannot leak the
maximum itself; therefore, we do not run S copies of Πabl in parallel, but a single one. The idea is the
following: like in the previous protocol, each party Pi converts their input Xi ∈ [S] into a bit-vector ~xi of
size S, such that the first Xi entries are 1 and the remaining ones are 0. Then, use a single instance of Πabl
computing the function:

fmax(~x1, . . . , ~xn) = g

argmaxj

zj =

∑
i∈[n]

~xi[j]

 : zj > 0


Figure 5.3: Πf(max)

Private input. Each party Pi has input Xi from [S].
Output. y = f(max(X1, X2, . . . , Xn))
Correlated Randomness Setup. Run the setup for Πabl for the function fmax defined above.
The Protocol. Each party Pi defines a vector ~xi such that ~xi[j] = 1 if Xi ≥ j or 0 otherwise. Then
the parties run the online phase of the Πabl protocol for the function fmax.

The idea is to compute the sum of the bit vectors (i.e. the sum of the ~xi’s, where the sum is computed
over the abelian group Zn+1 for each bit position), then identify the maximum bit position (among 1 to S)
to compute the maximum, upon which the function g can now be computed. Correctness and privacy follow
easily from the properties of Πabl.
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BC-Analysis. The BC of Πf(max) is simply the BC of the abelian protocol instance used which is O(λS logn)
for the GC implementation and O(S logn) for the OTTT implementation.

6 BC-efficient MPC for product of Non-Abelian Group elements

We build on protocol Πabl for abelian programs (which can be expressed as a function on sum of inputs)
to design BC-efficient MPC protocol for non-abelian programs (which can be expressed as a function of a
non-abelian product 15). To offer an example, permutation branching programs can be evaluated with this
approach. The main difference between abelian and non-abelian programs is that for non-abelian programs,
the operations on the input values and masking values must be done in a specific order (determined by
the input sequence forming the non-abelian product). This order can easily be taken into account during
computation, masking, and unmasking, by computing a product, where party Pi with input Xi can receive
ri such that

∏
i∈[n] ri = R and a masked result is computed along a chain as rn ·

(
rn−1 · · · · · (r2 · (r1 ·

X1) · X2) · . . . Xn−1
)
· Xn = R · X1 · X2 · . . . Xn−1 · Xn. The inverse R−1 can be used to unmask, as

R−1 ·R ·X1 ·X2 · . . . Xn−1 ·Xn.
Furthermore, we consider read-k non-abelian programs. Unlike the case of abelian programs, if a party’s

input appears twice in the non-abelian product, this cannot be locally combined by this party (as the input
might appear in non-consecutive positions and the non-abelian group need not be commutative). In our
protocol, we define a sequence of parties, each of whom have a single input from some domain. We define a
mapping from a party’s input value to an element of a non-abelian group, which can be chosen dependent
on the position in the input sequence. This dependency allows different group elements to be chosen for a
single input value at different positions in the non-abelian program.

More formally, consider a group (G, ·) and a set of parties {P1, . . . , Pn} where each party Pi holds an
input from some domain Xi ∈ D. Following is a protocol to compute y = f(π1,Xi1 ·π2,Xi2 · . . . ·πt,Xit ), based
on an order of Xi values fixed for the function to yield Xi1 , . . . , Xit and a mapping from an index α ∈ [t]
and input X to group element πα,X .

Figure 6.1: Πnonabl

Private input. Each party Pj for j ∈ [n] has input Xj ∈ D from some domain D, and there exists
a public sequence of indices i1, . . . , it with iα ∈ [n] for all α ∈ [t]. There also exists a public input
mapping that outputs a group element πα,x, given an index α ∈ [t] and an input x ∈ D.
Output. y = f(π1,Xi1 · π2,Xi2 · . . . · πt,Xit )
Correlated Randomness Setup. The setup involves the following:
1. For each α ∈ [t], sample rα ∈ G, such that

∏t
α=1 rα = R.

2. Define the function f ′R(Z) that computes f(R−1 · Z) on the input Z. Use an IFSS scheme to
compute (k1, . . . , kn)← Gen(1λ, f ′R).

3. Output ki to Pi for each i ∈ [n] and rα to Piα for each α ∈ [t].
The Protocol. The following steps are run in the online phase:
Phase 1 (Round 1 to Round t). (Input Masking) In round α, Piα does the following:
– If α = 1, let Vα = rα · πα,Xiα .
– If α 6= 1, let Vα−1 denote the message received from Piα−1 during the previous round. Compute
Vα ← rα · Vα−1 · πα,Xiα .

– If α < t, send Vα to Piα+1 .
– If α = t, set Z = Vt.

Phase 2 (Round t+ 1 to Round n+ t) (IFSS Evaluation) Each Pi does the following in sequence,
starting from i = n to 1:
– If i = n, set yi = Eval(i, ki, Z,⊥).

15 Note that the group operation need not be multiplication specifically. We use ‘product’ as a general term to refer
to the value obtained by applying the group operation on a sequence of non-abelian group elements.
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– If i 6= n, parse the message received from Pi+1 in the previous round as (Z, yi+1). Compute
yi = Eval(i, ki, Z, yi+1).

– If i 6= 1 Send (Z, yi) to Pi−1.
Output Computation. P1 sets the output y = y1.
Phase 3 (Round t+ n+ 1 to t+ 2n) (Output Transfer) For i starting from 1 to n, each Pi does
the following in sequence:

- If i 6= 1, let y denote the output received from Pi−1 in previous round.
- If i 6= n, send y to Pi−1.
- Output y.

Correctness. For correctness, note that Z computed by Pit at the end of Phase 1 is Vt = rt ·
(
rt−1 · . . . · (r2 ·

(r1 · π1,Xi1 ) · π2,Xi2 ) · . . . πt−1,Xit−1

)
· πt,Xit = (rt · rt−1 · . . . · r2 · r1) · (π1,Xi1 · π2,Xi2 · . . . πt−1,Xit−1

· πt,Xit ) =
R · π1,Xi1 · π2,Xi2 · . . . πt−1,Xit−1

· πt,Xit . The IFSS then evaluates f(R−1 · Z) = f(R−1 · R · π1,Xi1 · π2,Xi2 ·
. . . πt−1,Xit−1

· πt,Xit ) = f(π1,Xi1 · π2,Xi2 · . . . πt−1,Xit−1
· πt,Xit ).

Privacy. Intuitively, security of Πnonabl follows from the security of IFSS (that ensures that R remains hidden)
and the fact that the values communicated in Phase 1 are indistinguishable from random elements of the
group (due to masking with uniformly random elements of the group). The formal security proof of Πnonabl
is almost identical to the security proof for abelian programs (Thm 1).

BC-Analysis. We analyze the maximum communication complexity incurred by any party in the protocol.
In Phase 1, a party may incur communication complexity of at most O(k log |G|) (as a party’s input may
appear at most k times). The BC analysis of phase 2 and 3 is the same as for abelian programs which totals
upto O(λ log |G|) for GC-based IFSS and O(log |G|) for the OTTT-based IFSS. We can thus conclude that
the overall BC of the protocol is O(log |G|(k + λ)) for the computational variant and O(k log |G|) for the
information-theoretic variant.

The discussion above therefore leads to the following:

Theorem 2. Protocol Πnonabl securely computes the non-abelian program f against a semi-honest adversary
corrupting upto n− 1 parties. The BC of Πnonabl is O(k log |G|) and O(log |G|(k + λ)) for the information-
theoretic and the computational variant respectively.

7 BC-efficient MPC for tree-structured circuits

In this section, we build on the ideas of our generalized protocol for abelian programs in Figure 5.1 to
formulate BC-efficient protocols for additional classes of functions.

We present a protocol that using IFSS allows to evaluate, in a BC-efficient way, functions that can
be expressed as a tree of sub-functions, each taking inputs only from a subset of parties. This can be
visualized as a tree with the leaves representing inputs and the non-leaf nodes representing functions. More
specifically, the root of a sub-tree would represent the sub-function involving the values in the sub-tree.
For our construction to be BC efficient, we require that each sub-function involves at most o(n) inputs 16.
Further, the resulting tree depth d = logm(n) must also be sublinear in n. As a concrete example, the
function g = F

(
f1(x1

1, . . . , x
1
m), . . . , fB(xB

1 , . . . , x
B
m)
)
, can be expressed as 2-level tree with m =

√
n, where the

fi’s denote the sub-functions at level 1 and F denotes the function (represented by the root) that aggregates
the outputs of these sub-functions.

The main idea is that the subset of parties involved in computation of a single sub-function first interact
among themselves to compute the outputs of this sub-function, which are later aggregated to compute the
16 However, if there is a BC-efficient protocol independent of the number of inputs (such as our protocol for abelian

programs) that can be used to compute the sub-function, then our construction does not require the number of
inputs to this sub-function to be sublinear in n.
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final output. In order to ‘hide’ the outputs of these sub-functions (since they may not necessarily be leaked
by the output), the sub-functions are tweaked to compute a ‘masked’ output instead, using a mask chosen by
the setup. When multiple ‘masked’ outputs are taken as inputs to another sub-function (at a higher-level of
the tree), the sub-function is further tweaked to first unmasks these values and then compute the function.

We observe that the above approach for an m-ary tree of depth d = logm n would result in BC of
Ω(m logm n) Note that this term m · logm n incurs the least communication when m = 2. Since choosing
m = 2 results in better BC-efficiency, we focus only on binary trees in our formal protocol specification.

For ease of exposition, we use a slightly different naming convention and let the n parties be P0, . . . , Pn−1,
with n = 2d, and we consider a function f(x0, . . . , xn−1) that can be decomposed with a binary tree of binary
functions as explained below. Note that this can be easily generalized to the k-read setting by letting each
party “control” k different inputs of the functions, but doing in the protocol description below would introduce
unnecessarily cumbersome notation.

We start by introducing some useful notation to explain our protocol: We label the leaves of the binary tree
with the bitstrings corresponding to the indices of the parties i.e., 0d, 0d−11, . . . , 1d, and we assign the input
of each party to its corresponding leaf. (We will use integers and strings representing them interchangeably
in the protocol description i.e., P0 = P0d , P1 = P0d−11, . . .). The internal nodes of the tree correspond to the
functions into which f can be decomposed. To label the internal nodes/functions, we introduce the wildchar
∗, and we label the n/2 parents of the leaf nodes as 0d−1∗, 0d−21∗, . . . , 1d−1∗, assigning one function to each
such node. We continue introducing an extra wildchar ∗ every time we climb a layer of the tree until we
reach the root that gets labeled as ∗d, corresponding to the function f∗d . For simplicity, we assume that all
the inputs and the outputs of all the functions in the tree are elements of the same group G.

We also introduce some notation to deal with strings with wildchars: We say a string s ∈ {0, 1, ∗}d is
valid if the wildchar ∗ is only followed by other ∗ wildchars (e.g., 0∗ is valid while ∗0 is not). Then, given a
valid string s, we denote by s|b the (valid) string s where the first wildchar ∗ is replaced by the bit b. Finally,
given a valid string s we define [s] ⊆ {0, 1}d to be the set of all strings that can be obtained when replacing
the wildchars ∗ in s with bits.

We can now conveniently describe how to decompose the function f(x1, . . . , xn): for all valid strings
s ∈ {0, 1, ∗}d (starting with the parents of the leaves) we compute xs = fs(xs|0, xs|1), and finally we let the
output be f(x1, . . . , xn) = f∗d(x∗d−10, x∗d−11) = x∗d . In other words, we begin by pairing the leaf inputs
two-by-two, then combine the results of these computations two-by-two climbing the tree until we reach the
root.

We now need to address two issues in order to evaluate such functions securely and in a BC-efficient way.
First, we need to make sure that no intermediate values are leaked. This can be solved by assigning a mask
rs|b on each edge of the tree, such that the child function fs|b will mask its output with rs|b, and its parent
function will de-mask the inputs before evaluating the function. That is, instead of evaluating fs(xs|0, xs|1)
we will evaluate using an IFSS scheme

f ′s(zs|0, zs|1) = fs(zs|0 − rs|0, zs|1 − rs|1) + rs

(where the root has no mask i.e., r∗d = 0). Second, to make sure that the overall protocol is BC-efficient,
we will only let the parties Pi with i ∈ [s] participate in the secure evaluation of f ′s. Intuitively, this is fine
since if all parties i ∈ [s] are corrupt then they would already be able to compute all inputs and outputs in
the subtree of the function fs, thus it does not matter if those masks leak due to the fact that all parties
involved in those IFSS computations are corrupt.

We are now ready for the formal description of the protocol. For convenience, we enhance the notation
of the IFSS generation algorithm Gen to include an extra parameter S ⊆ [n], which indicates which subset
of parties should receive keys i.e., running (k0, . . . , kn−1) ← Gen(1λ, S, f) returns |S| IFSS keys ki for i ∈ S
and sets ki = ⊥ for i 6∈ S.
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Figure 7.1: Πtree

Private input. There are n = 2d parties. Each party Pi, with i = 0, . . . , n − 1 has input xi. We
assume all inputs are from some goup G.
Correlated Randomness Setup.
1. For each valid string s ∈ {0, 1, ∗}d choose a uniform random mask rs from G, except for r∗d which

is set to 0.
2. For each valid string s ∈ {0, 1, ∗}d \ {0, 1}d (e.g., for all nodes except the leaves) run the IFSS

setup
(ks0, . . . , ksn−1)← Gen(1λ, [s], f ′s)

(remember that ksi = ⊥ for all i 6∈ [s]) where f ′s is defined as

f ′s(zs|0, zs|1) = fs(zs|0 − rs|0, zs|1 − rs|1) + rs

Finally, send to each party Pi their mask ri and the keys ksi for all s such that i ∈ [s].
The Protocol. The following steps are run in the online phase of the protocol:
1. Transferring Masked Inputs for Leaf Nodes.

Each Pi sets zi = xi + ri and sends it to their “sibling” party i.e., if i = s|b send zi to Ps|(1−b).
2. Climbing the Tree.

For all valid strings s ∈ {0, 1, ∗}d \ {0, 1}d (e.g., for all intermediate nodes, starting with the
parents of the leaves):
(a) Evaluating the IFSS.

Let all parties Pi with i ∈ [s] run the IFSS evaluation on inputs zs|0, zs|1 e.g., starting from
the party with the highest index i ∈ [s] and going backwards run:

ysi = Eval(i, ksi , (zs|0, zs|1), ysi+1)

(where as usual ysj = ⊥ if j is “out of bounds”).
(b) Transfering Masked Outputs.

Let ι be the smallest index in [s]. Let all parties Pi with i ∈ [s] learn the output zs = ysι . E.g.,
all parties in [s], starting from Pι, send zs to the next party in [s].

(c) Transfering Masked Inputs for Subtrees. Each Pi with i ∈ [s] sends zs to one party in the
“sibling” sub-tree i.e., if i = s|b1, . . . , bh (with h representing the height we have reached in
the tree), then Pi sends zs to Pj with j = i = s|(1− b1), . . . , bh.

Correctness. Thanks to the correctness of the IFSS scheme the output of each node in the tree is computed
correctly, meaning that the input masks are removed by f ′s before evaluating fs and adding the output mask.
Finally, since the mask of the root r∗∗ is 0, the output of the final computation z∗∗ is equal to f(x0, . . . , xn−1).

BC-Analysis. First, we note that to transfer the masked inputs, a party sends messages of size at most
O(log |G|). Next, consider evaluation of a specific sub-function. Here, transferring masked outputs would
require a party to send messages of size at most O(log |G|) along a chain. Next, the steps using IFSS incur
communication of size at most O(λ log |G|) for GC-based instantiation and O(log |G|) for the OTTT-based
instantiation. Since the above occurs for each level and there are log(n) levels, we can conclude that the
overall BC of the protocol is O(λ · log |G| · log(n)) for the computational variant and O(log |G| · log(n)) for
the information-theoretic variant. The above discussion assumes balanced trees. If this is not the case, more
generally, for depth d, the BC is O(λ · log |G| · d) for the computational variant and O(log |G| · d) for the
information-theoretic variant.

For a read-k tree-like structure (where a party’s input could correspond to at most k leaves), the number of
leaves is at most kn and the depth for a balanced tree is log(kn). This results in BC of O(k ·λ·log |G|·log(kn))
for the computational variant and O(k · log |G| · log(kn)) for the information-theoretic variant.
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Privacy. Proving privacy of the tree-based construction requires building a simulator that can simulate the
view of an adversary corrupting up to n− 1 parties in the protocol. This can be done following the blueprint
of the simulator of the protocol Πabl. That is, the simulator receives as input the output of the computation
y as well as the inputs of the malicious parties. The simulator will pick random values for all edges on the
tree and simulate the setup phase by running the simulator of the IFSS on those random inputs/outputs.
Then, the simulator will provide masks to the adversary which are consistent with these random inputs.

In the online phase, the simulator will simulate the transfer of masked inputs of leaf nodes using the
random values already chosen during setup. Then, the simulator includes in the view of the corrupted
parties the values ysi provided by the IFSS simulator. Indistinguishability between the real protocol and the
simulated execution can be argued by replacing, one by one, each real execution of IFSS with a simulated
one. Indistinguishability in this first series of hybrids follows from the privacy guarantees of IFSS. In the next
series of hybrids, we replace the masked inputs/outputs learned by the adversary in the protocol execution
with uniformly random values from G. Since in this hybrid the masks of the honest parties are not used
anymore (as the IFSS is simulated), this new series of hybrids are all unconditionally indistinguishable from
their previous one. As the final hybrid of this series corresponds to the simulator, this concludes the argument.

The discussion above therefore leads to the following:

Theorem 3. Protocol Πtree securely computes the aggregated function f against a semi-honest adversary
corrupting upto n − 1. The BC of Πtree is O(k · log |G| · log(kn)) and O(k · λ · log |G| · log(kn)) for the
information-theoretic and computational variant respectively.
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