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Abstract. The division property introduced by Todo in Crypto 2015 is
one of the most versatile tools in the arsenal of a cryptanalyst which has
given new insights into many ciphers primarily from an algebraic per-
spective. On the other end of the spectrum we have fault attacks which
have evolved into the deadliest of all physical attacks on cryptosystems.
The current work aims to combine these seemingly distant tools to come
up with a new type of fault attack. We show how fault invariants are
formed under special input division multi-sets and are independent of
the fault injection location. It is further shown that the same division
trail can be exploited as a multi-round Zero-Sum distinguisher to reduce
the key-space to practical limits. As a proof of concept division trails of
PRESENT and GIFT are exploited to mount practical key-recovery at-
tacks based on the random nibble fault model. For GIFT-64, we are able
to recover the unique master-key with 30 nibble faults with faults injected
at rounds 21 and 19. For PRESENT-80, DiFA reduces the key-space from
280 to 216 with 15 faults in round 25 while for PRESENT-128, the unique
key is recovered with 30 faults in rounds 25 and 24. This constitutes the
best fault attacks on these ciphers in terms of fault injection rounds. We
also report an interesting property pertaining to fault induced division
trails which shows its inapplicability to attack GIFT-128. Overall, the
usage of division trails in fault based cryptanalysis showcases new possi-
bilities and reiterates the applicability of classical cryptanalytic tools in
physical attacks.

1 Introduction

Symmetric-key cryptosystems have historically benefited from the public
cryptanalysis that adds to the body of results and subsequent improve-
ments in design which imbibe the notion of strength of symmetric ciphers
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which are not provably secure like their asymmetric counterparts. The
black-box cryptanalysis model has thus seen remarkable progress from
the early days of differential and linear attacks to boomerang [45], inte-
gral [17], rebound [31], related-key [6], yoyo [8] and recently the division
property [40,41] based attacks. All these attacks have contributed to the
better understanding of how to design good symmetric ciphers. On the
other hand, if we shift focus to the gray-box model, one could easily argue
that fault analysis which aims to exploit malicious modifications in run-
time execution of a cipher to cryptanalyze it, has received the maximum
success. This is perhaps attributed to the ease with which they can be
realized in real-world scenarios. Since the inception of this kind of anal-
ysis shown by Boneh et al. [11], these attacks have evolved in multiple
directions and have also been combined with other attacks. Differential
Fault Analysis (DFA) has had the most widespread attention from the
community though integral fault analysis (IFA), SFA [23], SIFA [20],
PFA [50] and very recently SEFA [44] have also been shown as worthy
competitors. It can be appreciated that some attacks like DFA and IFA
are in principle application of the classical differential and integral crypt-
analytic strategies in the context of fault injection capability. Thus it is
well-established that classical tools are invaluable aids in devising new
physical attacks. The current work is yet another successful attempt in
this direction.
In this work, we focus on revisiting the well-researched (bit-based) divi-
sion property in the light of fault analysis attacks. Todo proposed division
property as a generalization of the integral property [16] at Eurocrypt
2015 [42] and offered improved integral property for Simon [4], Keccak [5],
and Serpent [7]. This initial version of division property was word-based,
i.e., the propagation of the division property captured information only
at the word level. In FSE 2016, Todo and Morii first introduced the bit-
based division property [43] where the propagation captures information
at the bit level which naturally exploits more information than the word-
based counterpart. Unfortunately, finding bit-based division property of
modern block ciphers is computationally expensive. In this case, auto-
matic tools play a significant role. The main idea is to transform this
search problem into an optimization problem and use an automatic tool
to solve it. In this direction, Xiang et al. first proposed to use Mixed
Integer Linear Programming (MILP) based tool in [48]. This approach
has been used to attack many ciphers in the last few years [37,47,38].
Researchers have also reported other tools such as SAT/SMT based
tools [22,26,24] and Constraint Programming (CP) based tools [39,24]
to find bit-based division property.
Our work focuses on finding fault invariant bit-based division property
using MILP based tool. We would like to emphasize that this work is
not a variation of the integral fault attack. Our research leverages some
exclusive properties of the division property itself like the evolution of di-
vision trails and extends them to devise fault based key-recovery attacks.
In doing so, we first look at the MILP modeling of SBoxes and linear
layers to search for and identify the trails that are relevant to fault anal-
ysis. Here, by relevance we imply the creation of fault-invariants which
are historically known to be vital to fault analysis.
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Our primary targets are lightweight SPN based block cipher with a
bit-permutation for the linear layer. Obvious choice is the International
Lightweight Block Cipher standard PRESENT [10] and NIST Lightweight
Crypography contest finalist GIFT [3]. Our findings show that in case of
PRESENT and GIFT, division trails exist which are invariant with re-
spect to the input division set and hence can be translated to create
fault invariants in intermediate states. In this case the idea stems from
the fact that one could use faults to create the input division set in an
intermediate state there by triggering the division trail whose output di-
vision set constitutes the invariant to be exploited in key-recovery using
classical partial decryption.

1.1 Related Work.

Application of classical cryptanalysis to fault attacks started with the
inception of DFA. Since then, there have been many new types of fault
attacks that have been introduced leveraging properties that are well-
studied in classical cryptanalysis literature. Integral Fault Attack (IFA)
was introduced in [36] and applied on AES [18] which is based on the 3.5
round integral property of AES. Derbez et al. showcased the application
of Meet-in-the-Middle and Impossible Differential strategies to mount
fault attacks on AES [19]. In CHES 2016, Saha et al. introduced the
classical popular idea of internal differential cryptanalysis in the fault
analysis of CAESAR competition [35] candidate PAEQ [9].
Jeong et al. carried out a DFA on PRESENT80 and PRESENT128 by
injecting 2 and 3 faults in 2-byte random fault model which reduces the
key space to 1.7 and 222.3 respectively with a computational complexity
of 232 [27]. In [52], DFA is mounted by injecting a random nibble fault
in the 29-th round which reduces the key space of PRESENT80 and
PRESENT128 to 214.7 and 221.1 respectively. The DFA attack proposed
in [30] injects total 32 random nibble faults in 30th and 31st round of
PRESENT80 to recover the master key uniquely. Bagheri et al. devise a
DFA which uniquely recovers the master key of PRESENT80 by injecting
total 18 random bit faults [2]. A DFA by Wang and Wang injects nibble
faults in the key schedule to recover the master key [46]. Luo et al.
mounted a DFA on GIFT128 by injecting random nibble faults in round
25, 26, 27 and 28 and recovers the master key [30]. Previous fault attacks
on PRESENT and GIFT along with the results presented in this paper
are tabulated in Table 1.

1.2 Our Contribution

The current work is the first attempt in exploring the effectiveness of
division trails in mounting fault attacks. The primary contribution is the
identification of fault invariants that develop in the intermediate states
of the ciphers. Once identified the same can be leveraged to build highly
effective distinguishers which are in-turn verified to reduce the sub-keys
guessed in partial decryption. The basic aim is to induce input division
sets in the internal state using fault-injection. For this purpose, we rely
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Table 1: Comparisons of fault attacks on PRESENT and GIFT. Note that, ‘Mul-
tilevel Key Recovery’ refers to the strategy of using the recovered-subkey for
partially decrypting the ciphertexts and recover another subkey by repeating
the similar fault-injection at a different round. In ‘Multi-set Key Recovery’,
multiple sets comprising of correct ciphertext and its corresponding faulty ci-
phertexts are used to filter out the wrong key candidates. DFA, PFA and AFA
refer to differential fault attack, persistent fault attack and algebraic fault attack
respectively. FI stands for fault injection and comma-separated values under the
column ‘FI Round’ refers to the different rounds at which faults are injected
during the ‘Multilevel Key Recovery’.

Primitive
Fault Attack

#Faults
Reduced Key

Space Size

FI

Round
Ref. Remarks

Type Model

GIFT-64
DFA

Random

Nibble Fault
81 1 [32]

Multilevel

Key Recovery
DiFA

Random

Nibble Fault
30* 1 19,21 Sec. 4

PRESENT-80

DFA

2-Byte

Random Fault
2 1.7 28 [27]

Multi-Set

Key Recovery

Random

Nibble Fault

8 214.7 29 [52]

32 1 30, 31 [30]

Multilevel

Key Recovery

Random

Bit Fault

96 1 30, 31
[2]

18 1 28, 29

Nibble

Fault
64 229 [46]

PFA 98 1 [51]

AFA 1 230 [49]

DiFA
Random

Nibble Fault
15† 216 25 Sec. 5

Multilevel

Key Recovery

PRESENT-128
DFA

2-Byte

Random Fault
3 222.3 28 [27]

Multi-Set

Key Recovery

Random

Nibble Fault
16 221.1 29 [52]

DiFA
Random

Nibble Fault
30* 1 24,25 Sec. 5

Multilevel

Key Recovery

*Expected #faults using CCP is 100. †Expected #faults using CCP is 50

on the random nibble fault model which is aligned with 4-bit SBox based
substitution layer of PRESENT and GIFT. The input division set requires
all the possible nibble faults to be induced in the same SBox. This is
similar to the requirement of IFA and is well-studied in contemporary
literature as a feasible and realistic fault model. In terms of hardware
capability of the fault injection mechanism this translates to the ability
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to induce faults at the same location. Recent advances in optical fault
injection has made this an easily achievable feat [14,21,15]. We further
also capitalize on the Coupon Collector Problem (CCP), to make this
even more aligned to the random nibble faults on a random but fixed
SBox for the desired division set to be created. Though this increases
the fault count, it helps leverage the random nibble faults to satisfy the
constraints of the input division set. Figure 1 summarizes the approach.
It is worth mentioning that the current work gives the best profile in
terms of fault injection round and constitutes the best results considering
the level of penetration of fault inside the cipher.

Fault  
Injection  

Point
Fault 

Invariant

Partial Decryption

Fig. 1: Fault Invariant Division Trails. MILP based trail search helps find the
positions {Si

x(j), · · · , Si
x(l)} which remain invariant to the position of the fault

injection point (i.e. the SBox) Si
x(j)

While the first contribution constitutes the application of division prop-
erty in fault analysis, the second contribution is related to finding fault
invariant division trails which is done through Mixed Integer Linear Pro-
gramming (MILP) based automated tools. These tools have garnered
a lot of interest in the symmetric crypto community since Mouha et
al. [33] showcased its effectiveness in automating trail search. Table 3
summarizes the findings of this automated trail search which help to find
the balance bit positions that constitute the fault invariant as shown in
Figure 1. One of the interesting observations that we made was that
the balance bit positions were independent of the position of the SBox
where the input division set was induced using nibble faults. Finally, we
have fault induced zero-sum distinguishers which can be verified to re-
cover key bits via partial decryption. In case of GIFT, we also show how
we can actually form multi-round zero-sum distinguishers exploiting the
quotient-remainder groups that form an integral part of the linear layer
of GIFT. Consolidating all the findings, we introduce DiFA or Division
property based Fault Analysis which adds to the body of results that
exploit classical cryptanalysis techniques in physical attacks.
Finally, we also stumble upon an interesting property due to which DiFA
becomes inapplicable on GIFT-128. Our in-depth analysis shows that
though faults invariants develop in the intermediate state, they become
practically useless since the zero-sum distinguisher that is formed has a
structure where ciphertext parts occur in even numbers and hence all
key-guesses trivially pass the zero-sum filter. This phenomenon is due
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to low diffusion of the division trail of GIFT-128 and is unavoidable in
the context of DiFA. Interestingly, this equips GIFT-128 with implicit
protection against the kind of fault analysis introduced in this work.
Details of this are furnished Section 6.

Organization of the paper In section 2, we define the notation for the
paper as well as provide a short introduction of the division property
technique and zero-sum distinguisher. We also discuss an overview of
various fault models and the targeted ciphers, GIFT and PRESENT in
section 2. Then, in section 3, we introduce DiFA as our main contribution.
section 4 and section 5 discuss the applicability of DiFA on GIFT and
PRESENT, respectively. We also discuss inaplicability of DiFA on GIFT-
128 in section 6. Finally, we conclude the paper in section 7.

2 Preliminaries and Background

2.1 Notations

In this section, we introduce the notations that we use to illustrate the
properties exploited to mount the fault attacks described later. The size
of a set X is denoted as |X|. We use bold lowercase letters to represent
vectors in a binary field. For any n-bit vector x ∈ Fn

2 , its i-th coordinate
is denoted by xi, thus we have x = (xn−1, ..., x0). We represent the binary
vector with all elements being 0 as 0. The Hamming weight of x ∈ Fn

2 is
wt(x) =

∑n−1
i=0 xi.

For any two vectors u,x ∈ Fn
2 , we define the bit product as xu =∏n−1

i=0 xi
ui . We will often refer to xu as a monomial. For any two vector

k,k′ ∈ Fn
2 , we define k ⪰ k′ if ki ≥ k′

i for all i = 0, 1, ..., n− 1. Note that
if two n-bit vectors u,v, if u ⪰ v, then the monomial xv divides xu or
in other words xu contains xv.

For any bit-vector, a, we often call the bit positions with value 1 as the
active bit positions. Let Y ⊆ Fn

2 be a multi-set of vectors. A coordinate
position 0 ≤ i < n is called a balanced position if

⊕
y∈Y yi = 0.

The Algebraic Normal Form (ANF) of a function f : Fn
2 → F2 can be

defined as f(x) =
⊕

u∈Fn2
af
ux

u and the degree of a function f : Fn
2 → F2

is d if d is the degree of the largest monomial in the ANF of f , i.e.,
d = max

u∈Fn2 ,a
f
u ̸=0

wt(u).

In this paper, the notation Rℓ is used to represent the ℓ-th round function
of an iterative cipher consisting of r rounds, where ℓ takes values from 0
to r−1. The input state and round key of Rℓ are denoted by Sℓ and Kℓ,
respectively. The focus of the current work is on the ciphers PRESENT
and GIFT, both of which have 4-bit SBox-es and are represented based
on nibbles. Specifically, the i-th nibble of Sℓ is denoted by N ℓ

i , and the
j-th bit of this nibble is denoted by N ℓ

i,j . In terms of endianness, the
right most nibble is considered as the 0-th nibble.
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2.2 Zero-sum distinguishers and Division Property

The bit-product of the output bits of a symmetric cryptographic scheme
can be considered as a polynomial over F2, denoted as

f(kn−1, ..., k0, xm−1, ..., x0),

where k0, ..., kn−1 are the secret variables and x0, ..., xm−1 are the public
variables, usually plaintext bits. Zero-sum distinguishers [1,12,13] distin-
guish a cryptographic Boolean function from a random function based
on the XOR-sum of this polynomial representation. The attacker aims to
find a subset of public variables I ⊂ {x0, ..., xm−1}. The central concept
is to create a set of inputs ν by considering all possible combinations
for the variables in I, while the remaining bits have fixed values. Thus,
the input set forms an affine vector space ν of dimension |I|. Therefore,
the resulting output sets are the |I|-th derivative of the corresponding
Boolean function with respect to ν. This approach was first suggested as
the higher-order differential attack [28,29].
Consider the monomial xu, where ui = 1 if xi ∈ I and ui = 0 otherwise.
If we can prove that no monomial in the Algebraic Normal Form (ANF)
of the Boolean function f contains the monomial xu, then for any fixed
value of k, the following holds:⊕

x∈ν

f(k,x) = 0

A random function should not possess such a property and consequently
this gives us a distinguisher. The time and data complexity of the dis-
tinguisher is 2|I|, and the memory complexity is negligible. Consider the
following example.

Example 1. Let us consider a Boolean function f(k2, k1, k0, x2, x1, x0) =
k1x1 + k2x2x0 + k0x0. If we take I = {x0, x1} and construct the corre-
sponding set ν, then for any value of k0, k1, k2 and x2 we have⊕

x∈ν

f(k,x) = 0.

Whereas, if we take I = {x0, x2}, we cannot guarantee such property.

However, finding algebraic properties, such as the polynomial expressions
of the output bits of a real-life cipher, is usually very difficult due to
computational complexity. The bit-based division property provides a
systematic way to determine whether a particular monomial is contained
in some monomial of the polynomial representation corresponding to the
bit-product function of the output bits. Let us recall the definition of the
bit-based division property.

Definition 1. (Bit-based Division Property. [43]) A multi-set X ⊆ Fn
2

is said to have the division property Dn
K for some set of m-dimensional

vectors K if for all u ∈ Fn
2 , if it fulfills the following conditions:

⊕
x∈X

xu =

{
unknown, if there is k ∈ K s.t. u ⪰ k

0 otherwise
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Propagation of Division Property The bit-based division prop-
erty can help us to determine if a particular monomial is contained in
some monomial (the “unknown” case) or not (the “zero” case) in the
polynomial representation of the bit-product function of the output bits.
Suppose that we have two n-bit functions f and g such that y = f(x)
and z = g(y) = g◦f(x). The division property captures that if all mono-

mials of the bit-product yw appearing in zw
′
do not involve a monomial

xu, then zw
′
does not either. Therefore, we can study how the division

property propagates through basic operations of a cipher, such as SBox,
a linear function, or even a round function. We are interested in how the
division property can propagate through these functions. If the input set
with division property D{kn

0 } propagates to the output set with division
property D{kn

1 } through some function, we call (k0,k1) a valid division
trail. In other words, if (k0,k1) is a valid division trail through the func-
tion f and y = f(x), then at least one monomial in the ANF of yk1

contains xk0 . A formal definition of a division trail was given in [48], and
we recall the definition here.

Definition 2. Let fr denote the round function of an r round iterative
primitive. Suppose the initial division property is Dn

k0
and after (i −

1)-round propagation, the division property is Dn
Ki
. Then we have the

following chain of division property propagations:

{k0} := K0
f0−→ K1

f1−→ K2
f2−→ · · ·

Moreover, for any vector ki ∈ Ki (i ≥ 1), there must exist a vector
ki−1 ∈ Ki−1 such that ki−1 can propagate to ki by division property
propagation rules. For (k0,k1, · · · ,kr−1), if ki−1 can propagate to ki for
all i ∈ {1, 2, · · · , r}, we call (k0,k1, · · · ,kr) an r-round division trail.

Our main goal is to find valid division trails through a given function,
and we aim to automate this task. To achieve this, a Mixed Integer Lin-
ear Programming (MILP) approach was proposed by the authors in [48].
The approach models the valid division trails of a function with linear
inequalities so that only the valid trails satisfy the system. In this pa-
per, we focus on two lightweight ciphers: PRESENT and GIFT. Both of
these ciphers are designed based on the SPN structure, which consists
of a substitution layer with parallel applications of SBox, followed by a
bit-permutation layer. Together, these form the round function of the
ciphers. We provide a brief introduction to modeling a SBox, and for
more information on MILP modeling, please refer to [48].
A division trail may suggest some balanced position based on the output
division properties. After obtaining a set of balanced positions for an
input division property k, we can distinguish the cipher E from a random
function. To achieve this, we construct an output set Y from a set X of
plaintexts, where Y = {y = E(x) | x ∈ X}. The set X is an affine
subspace, constructed based on the input division property k. For each
vector x = (x0, · · · , xn−1) ∈ X, if the i-th coordinate of k is 1, then xi

can take any possible value from {0, 1}, and if the i-th coordinate of k
is 0, then xi is set to a fixed constant ci ∈ {0, 1}. As the size of the set
X is 2wt(k), the data complexity is 2wt(k).
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Modeling SBox Xiang et al. [48] proposed a method to accurately
compute the propagation of bit-based division property through an SBox.
The process is recalled in Algorithm 2 given in Appendix B. This algo-
rithm takes an input division property vector k = (k0, k1, · · · , kn−1) and
computes all possible bit-product functions of the output bits. It then
checks if the monomial corresponding to the input property is contained
in any of the bit-product functions. For instance, if some monomial in
the polynomial representation of the bit-product function yv contains
xk then (k,v) is included in the set of output division property. The
algorithm outputs a set of vectors Kk such that the output multi-set has
division property Dn

Kk
.

MILP Modeling of Substitution Permutation Network Here
we will discuss the modeling of division property propagation rules for
SPN constructions where the permutation layer only consists of bit per-
mutation. It should be noted that both the ciphers PRESENT and GIFT
fall into this category. We consider an r-round SPN with a state size of
n. To model such a construction in MILP, we define the MILP variables
ai−1 and ai to denote the input and output property of the SBox layer for
i = 1, 2, ..., r. Each ai is of the form ai

n−1 · · · ai
0, where ai

j ∈ {0, 1}. Then,
ai is rotated according to the bit-permutation, and we obtain another set
of variables, bi. Note that as this is only a permutation of variables, we
do not need to introduce new variables for bi. Instead, we can just con-
nect ai and bi according to the bit-permutation. The propagation chain
is depicted as follows, where we have omitted the last bit-permutation.

a0 SBox−−−→ a1 rotation−−−−−→ b1
SBox−−−→ a2 rotation−−−−−→ · · · br−1 SBox−−−→ ar.

Once the MILP model is prepared (carried out once per cryptosystem),
we set the values of a0 to the selected input division property (active
bit positions). Once the initial input division property is provided to the
MILP solver, the choice of the output division property depends on when
we want to terminate the search, i.e., when we obtain a set without an
integral property. This is outlined in the following proposition.

Proposition 1. ([48]) Let X be a multi-set with bit-based division prop-
erty Dn

K, then X does not have integral property iff K contains all vectors
of weight 1.

According to Proposition 1, if all the unit vectors are contained in Kr,
we can terminate the search. On the other hand, if the i-th unit vector
is not in Kr, then the i-th bit is balanced based on the definition of
the bit-based division property. Therefore, we obtain a comprehensive
MILP model that can be solved using the freely available tools such as
Gurobi [25]. An interested reader can refer [48] for further details of the
constraints, variables and objective function used in the MILP model.

2.3 Fault Attacks

A Fault Attack is an attack to break the cryptosystem by exploiting its
hardware design. A successful fault attack consists of two things Fault
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Injection and Fault Propagation. Fault injection depends upon the hard-
ware and the fault model. Fault propagation depends upon the property
and the design structure of the cipher. Fault attacks are most useful
in a practical scenario. If an attacker gets access to the device, he can
manipulate the device and get the hidden information from there.

Fault Model The Fault Model shows the type and nature of a fault.
Depending upon the impact of the fault, a fault model can be of bit
level, or nibble model or, byte level. Also, it can be categorized by seeing
whether its distribution is uniform or random. The attack we present
here falls under the random nibble level fault model. After choosing the
nibble randomly we give faults to generate some ciphertexts and try to
recover the key from there.

Fault Model Location

Chosen 
(Bit/Byte Level)

Chosen 
(Variable Level)

Independent 
(In some stage of

execution)

Distribution

Uniform

Random
Impact

Stuck-at

Bit

Nibble

Byte

Diagonal

Fig. 2: Fault Model

Differential Fault Attack (DFA) Differential Fault Attack is one of
the basic fault attack techniques to recover the original key of the ci-
pher using the fault attack and the classical differential cryptanalysis
technique. Here the attacker takes a message and computes its corre-
sponding ciphertext through the oracle. Then he takes the same message
and injects a particular difference in the bit, nibble, or byte location at
some round r. The difference then propagates through the cipher and the
attacker receives a ciphertext as an output at the end. This ciphertext
differs from the original one as the fault is injected in some intermediate
round r at the propagation of the original plaintext. The newly generated
ciphertext is called the faulty ciphertext. Now the difference between the
original and faulty ciphertext C and C′ can be viewed as if the differ-
ence propagates through the n − r rounds of the cipher and generates
the outputs at last. From these two ciphertexts, C and C′ the attacker
can try to recover the original key of the cipher by using the classical
differential cryptanalysis technique.

Integral Fault Attack (IFA) In an Integral Fault Attack the attacker
tries to recover the key by combining the classical integral cryptanalysis
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technique with the fault attack. Here initially the attacker generates
the ciphertext of the original message. Then he gives faults to generate
the All property in a particular bit, nibble or, byte position. Depending
upon the impact of the fault attack the number of faults can vary. As
an example to generate the All property in a byte the attacker has to
give 28 many faults whereas for nibble he has to give 24 many faults.
Depending upon the given faults in a particular intermediate round,
he gets some ciphertexts Ci, for i ∈ N as the output. The generated
ciphertexts can be viewed as a propagation of the All property from the
intermediate round r. From the original and the faulty ciphertexts C and
C′

i’s, attacker tries to recover the key of the cipher. An important aspect
of IFA is the fault-induced input set creation which essentially means
getting the All property at an intermediate state of the cipher. While in
the known fault model this is easily captured, the random fault model
needs a special treatment. To explain this we borrow a very well-known
result from combinatorics.

Definition 3 (Coupon Collector Problem - CCP [34]). Given a
set of n coupons, the collector draws randomly l(1 ≤ l ≤ n) many coupons
at each trial with replacement. Then the expected number of trials nec-
essary to collect at least one of each coupon of the n coupons is given as
below.

E(X) = nHn, (1)

where Hn =
∑n

i=1 1/i is the n-th Harmonic number, and for large n, this
equals with log(n) +O(1).

In the context of IFA, the coupons map to distinct faults required to
cover the All property. This generally implies that to create the requisite
set, the attacker needs to induce a higher number of faults than the
cardinality of the set and the expected number is given by Equation 1 as
per CCP. In the current work we use CCP to capture expected number
of faults under random nibble fault model as shown in Table 1 and 4.

2.4 PRESENT [10]

PRESENT is an ultra-lightweight SPN structured cipher with 31 rounds.
Both the versions of PRESENT consist of a 64-bit state size (i.e. sixteen 4-
bit words) and a key size of 80 or 128 depending upon its two variants 80
or 128 respectively. Each round of this cipher contains the addRound-
Key, SBox, and permutation layer operations. The key schedule takes
the whole 80/128-bit key depending upon the version and generates the
round keys of size 64 by bit rotation, applying SBox and adding round
counter at each round. The round key XORs with the state at the ini-
tial phase of each round. Then the non-linear SBox layer applies to the
state. PRESENT uses 4-bit SBox (given in Table 2) and the SBox applied
to each 16 words of the state. The state bits are then permuted among
themselves through the permutation layer and go as the input bits in the
next round. After the 31st round, the final key K32 is XOR-ed with the
state and returns as the ciphertext of the cipher.



12 Kundu et al.

Primitive SBox

PRESENT c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

GIFT 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Table 2: PRESENT and GIFT SBox

2.5 GIFT [3]

GIFT family is designed to reduce the hardware area even more than
PRESENT without compromising its security. GIFT is also an SPN struc-
tured block cipher with two versions 64 and 128. Both the ciphers use
128-bit key but the state size and the number of rounds differs depending
upon the versions. GIFT-64 consists of 28 rounds with a 64-bit state size
and GIFT-128 has 40 rounds with a state size of 128-bit. Each round of
the cipher contains SubCells, Bit Permutation, Addition of round keys,
and Addition of Round Constants. Initially, the cipher takes the master
key of 128 bits and generates 32 or 64-bit round keys for each round for
GIFT-64 and GIFT-128 respectively. In each round, at first the 4 bit to
4 bit SBox (given in Table 2) is applied on the state bits. The bits are
then permuted through the permutation layer and after that, the round
keys and round constants are XOR-ed. For GIFT-64 the round keys are
XOR-ed with the 0th and 1st bit whereas for GIFT-128 the round keys
are XOR-ed with the 1st and 2nd bit of each nibble. The 6-bit round
constants are XOR-ed at some specific positions with the states for both
the versions and after 28 rounds or 40 rounds depending upon GIFT-64
or GIFT-128 it returns the ciphertext as output.

3 DiFA: Division Property Based Fault Analysis

This section presents our main contribution DiFA, which establishes the
prospect of exploiting the bit-based division property in the context of
fault attacks. In the subsequent sections, we apply this contribution to
GIFT-64 and PRESENT-80/128. As previously stated, the fault model
used is the random nibble fault. To create the input division set in a way
that closely approximates a practical set-up, we leverage the Coupon
Collector Principle to estimate the expected number of faults. Next we
furnish the details of DiFA which proceeds in three steps.

Search For Input Division Set Invariant Division Trails
The input division set is an affine subspace ν that, when induced in the
input, leads to a specific division trail. For example, in a b-bit block
cipher with an s-bit SBox, the input division set would consist of the
input bits corresponding to a particular SBox. When the input division
set is induced, these bits will take all values ∈ {0, 1}s, while the remaining
bits will take a fixed value ∈ {0, 1}b−s. The size of the overall plaintext set
is therefore 2s. The chosen SBox is called the active SBox. By the virtue
of the bit-based division property introduced by Todo [43], the division
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Table 3: Here bb denotes Balanced bit (excluding the last p−layer) and Inv.
denotes Fault Invariant

Primitive round #sets #bb bb position Inv.

PRESENT-80/128
4 1 64 {0, · · · , 63} ✓
5 1 4 {0, 4, 8, 12} ✓

GIFT-64
4 1 64 {0, · · · , 63} ✓

5 2 16, 17
∪15
j=0{4j} ✓

∪15
j=0{4j} ∪ {53} ✗

GIFT-128
4 1 128 {0, ..., 128} ✓
5 2 80 section A ✓

set propagates through various layers of the cipher, generating division
trails (see Definition 2). The output division set corresponding to the
trail indicates bit positions that are balanced and therefore admit a zero-
sum. This zero-sum forms the distinguisher. Our primary observation is
that there exist output-division sets that are invariant with respect to the
position of the active SBox chosen for the input division set. To identify
these sets, we reuse the MILP models developed by Zhang et al. [48] for
GIFT and PRESENT and made slight modifications. We then performed
an automated search and results are furnished in Table 3. The left part
of Figure 3 summarizes the formation of division trails. The next step is
to adapt this property to FA.

Formation of Fault Induced Intermediate Division Set The
property discussed above inspired us to apply it to fault analysis. This
property allows us to inject random faults in a fixed but unknown SBox
and induce the input set, thereby generating division trails that result
in fault invariants in terms of the output division set. These fault invari-
ants help us recover the key using the zero-sum distinguisher. Faults are
therefore useful for inducing division trails in the intermediate state.

Consider a (n+p)-round cipher, in which we aim to identify the division
property at the output of n rounds. Suppose that, the fault injection is
required at the input of (n − r)-th round to find a division trail for r
rounds. In such cases, the cipher needs to be replayed on a fixed plaintext
for 2s times (assuming s× s SBox), with a random nibble fault injected
in a fixed but unknown SBox every time (except for one fault-free run).
The replay count increases when the Coupon Collector Principle is used
to exhaust all values of the input set. This process is depicted in the
right half of Figure 3.

Key-Recovery Leveraging Fault Invariants In the end, we uti-
lize a fault-invariant zero-sum distinguisher to recover the round keys
for the last p rounds after n rounds. Our approach involves guessing the
round keys in a specific manner that takes advantage of the linear layers
of both GIFT and PRESENT (described in the subsequent subsections).
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Chosen Plaintexts - Induced Input Division Set
Fault- Induced Input Division Set

Single Chosen Plaintext Under Replay

Fig. 3: Fault induced extension of the zero-sum distinguisher exploiting the bit-
based division property

We then decrypt the ciphertext through p rounds to identify the zero-
sum. This process is illustrated in Figure 1. Notably, the zero-sum distin-
guisher might be exploitable in multiple rounds, as we demonstrate for
both GIFT and PRESENT. Finally, we employ the Onion-Peeling Strat-
egy as the last phase of the key-recovery process, which is needed based
on the size of the reduced key-space.

The Onion-Peeling Strategy The strategy is essentially employed when
one fault-induced division set is unable to reduce the key-space to practi-
cal limits and when recovering one round key is not-enough to invert the
key-schedule. In such cases, the attack is repeated with an additional
fault-induced division set at a preceding round. The round where the
fault needs to be induced in the second iteration is based on the strategy
used in the first iteration. For example, for an n-round cipher if we are
exploiting a r-round division trail and the zero-sum across two-rounds,
then the first iteration will induce faults in round (n − r − 2) while the
second iteration in round (n− r− 4). For a one round zero-sum exploit,
the rounds will be (n−r−1) and (n−r−2) for first and second iterations
respectively.

The next sections will delve into the cipher-specific details on how to uti-
lize the division property in key-recovery attacks for GIFT and PRESENT.
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4 Mounting DiFA on GIFT64

To apply DiFA to GIFT64, we utilize the 4 and 5-round division properties
to recover the round keys of the last two rounds, which demonstrates the
ability to leverage multi-round zero-sum distinguishers. It is important
to note that this is achievable due to the specific design of the linear
layer in GIFT. The basic idea is to make a guess of the last two round
keys and partially decrypt the set of ciphertexts to verify the balanced
property. The attack is carried out in two steps, making use of the bal-
anced bits obtained from the 4 and 5-round division properties for the
active nibble of the input division set, as detailed in Table 3. We first
guess the last round keys to partially decrypt a set of ciphertexts and
filter the keys based on the 5-round division property. Subsequently, we
guess the penultimate round keys and decrypt one more round to verify
the 4-round division property for all the key suggestions obtained from
the last round.
Exploiting Quotient-Remainder (QR) group structures The bit-
permutation layer of GIFT’s round function has an interesting prop-
erty called the quotient-remainder or QR group structure, as defined
by Banik et al. [3]. This structure directly benefits our attack by en-
abling us to exploit the multi-round zero-sum distinguisher. According
to this structure, the bit-permutation layer maps the output bits of 4
SBox-es from a quotient group to the input bits of 4 SBox-es in the cor-
responding remainder group. Specifically, the q-th quotient group con-
tains the p-th SBox if p = 4q+ r, and the r-th remainder group contains
the p-th SBox if p = 4q + r. For instance, in the i-th round, the nib-
bles {N i

0, N
i
1, N

i
2, N

i
3} form the 0-th quotient group, while the nibbles

{N i+1
0 , N i+1

4 , N i+1
8 , N i+1

12 } form the corresponding remainder group for
the next round. Consequently, the SBox-es of two consecutive rounds
can be grouped together, forming a super SBox. This property allows us
to recover the round keys partially (independently for each QR group)
for two rounds, rather than guessing the full round keys at once. This
significantly improves the time complexity of the attack and enables us
to reduce the key-space using only one fault-induced division set. In the
following, we provide a detailed description of the attacks and their com-
plexity analysis.
Key Recovery Attack The GIFT-64 cipher is composed of 28 rounds,
with Ri representing the i-th round function for i ∈ {0, 1, ..., 27}. The
objective is to recover the last two round keys, K27 and K26. This is
achieved by constructing an input division property at the input of R22.
To do so, a random nibble N22

i is selected for i ∈ {0, · · · , 15} and 15
faults are injected to activate the nibble N22

i . As per the CCP (refer to
Definition 3), the attacker would need to inject 50 random nibble faults
in some fixed but unknown nibble to obtain these distinct 15 faults. If the
i-th nibble is active at R22, the resulting input division property takes
the form:

a22 = (0, 0, 0, 0, ..., 1, 1, 1, 1, 0, 0, 0, 0, ...., 0, 0, 0, 0)

where the four consecutive 1’s are positioned at 4i, 4i + 1, 4i + 2, and
4i+3 for some i ∈ {0, ..., 15}. From this input property, we get balanced
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bits after the SBox layer of R25 and R26 from the 4-round and 5-round
division properties, respectively. The positions of the balanced bits can
be found in Table 3. This step of the attack allows for the recovery of the
last round key K27. The attack is carried out independently for each QR
group (as shown in Figure 4). Furthermore, if only R27 is considered, each
SBox in the remainder group can be addressed separately, leading to a
reduction in time complexity. The following discussion refers to Figure 4,
which illustrates the key-recovery attack for the 0-th QR group. The
balanced bits are highlighted in red.
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Fig. 4: Key recovery phase of DiFA on GIFT-64

From Table 3, it can be observed that the 0-th output bit of each SBox
is balanced at R26. Due to the bit-permutation layer, these balanced
bits go to the 0-th input bit of each SBox at R27. To utilize this zero-
sum distinguisher, we first select four SBox-es from a specific remainder
group. Next, we partially decrypt four nibbles of the 16 ciphertexts (15
faulty and one fault-free ciphertext) through the bit-permutation layer
and the four SBox-es mentioned above. This one-round decryption is
carried out independently for each SBox. Note that only two key bits are
XOR-ed at each nibble of the state. Thus, we need to guess 2-bit keys for
each SBox inversion. For each possible 2-bit key, we decrypt the 4 bits
of ciphertext and check for zero-sum at the 0-th bit of each nibble. This
step yields a reduced key-space for the 8 bits guessed in total.

For each decrypted ciphertext from the first step, we proceed to the
second step of the attack, which involves decryption through one more
round. Based on Table 3, we observe that all the output bits of each SBox
are balanced at R25, implying that all the input bits at R26 are balanced
as well. We can leverage this zero-sum distinguisher by guessing another
8 bits of the key. Then, for each key guess, we decrypt through 4 SBox-es
in the quotient group (corresponding to the remainder group used in the
first step) and check for zero-sum at the 4 input bits of each SBox. Once
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again, it is not necessary to guess the 8 key bits corresponding to the
quotient group all at once. Instead, we can decrypt each SBox separately
by only guessing the 2 key bits that affect it.
We repeat this whole process independently for the other quotient-remainder
groups. The attack procedure is summarized in Algorithm 1.

Results The results of extensive software simulations indicate that
using a single fault-induced division set at round 21, it is possible to
uniquely recover the last two round keys of GIFT-64. However, according
to the GIFT-64 key-schedule, all four last round keys are needed to recover
the master key. Therefore, we utilize the onion peeling strategy to exploit
the second fault-induced division set in round (21 − 2) = 19. By doing
so, we can use two sets (equivalent to 30 faults) to uniquely recover the
master key of GIFT-64. Following the CCP (refer to Definition 3), this
corresponds to approximately 100 random nibble faults.
Complexity of the attack: The attack is executed by employing the
onion peeling strategy, which requires two fault-induced division sets. For
each division set, a total of 16 plaintext-ciphertext pairs are required (15
fault-induced and one original). Therefore, the overall data complexity
is 2× 24 = 25 encryption queries.
For each of the 16 ciphertexts in a set, we decrypt two rounds indepen-
dently for each QR group, rather than decrypting the whole 64-bit ci-
phertext. This significantly reduces the time complexity and can be done
in parallel for each QR group. In the first step of the attack, we make a
guess of a 2-bit key for each SBox in a remainder group and decrypt 4
SBox-es in that group. Thus, we need to perform 4× 22 SBox inversions
for each ciphertext. This gives us a complexity of 16×(4×22) = 28 SBox
inversions for each remainder group. We then use a 1-bit zero-sum for
each SBox to filter the 2-bit key. The expected number of keys that pass
through this filter is 2 for each SBox. For each of these keys, we proceed
with the second step of the attack.
In the second step of the attack, we focus on the corresponding quotient
group and decrypt each SBox of the quotient group separately by guess-
ing the corresponding 2-bit key. Thus, we need to perform 16×24×(4×22)
SBox inversions for the corresponding quotient group. Therefore, the
complexity of the first two steps of the attack is 28 + 212 ≈ 212 SBox
inversions for each QR group. Taking all of these into account, the over-
all complexity of the final two round key-recovery amounts to 214 SBox
inversions, with each of the four groups being worked on separately. The
attack is summarized in Table 4.

5 Mounting DiFA on PRESENT-80/128

In this section, we discuss key recovery attacks on PRESENT-80. We
want to emphasize that all the attacks we discuss in this section can
also be extended to PRESENT-128, as the difference between the two
constructions is only in the size of the master-key.
We exploit the propagation of the division property for 4 rounds for the
cipher. We discuss one attack on PRESENT-80 in this section to recover
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Algorithm 1 KeyRecoveryGIFT-64

Input: A list of ciphertexts Lc

Output: A list of keys Lk

1: Initialize four empty lists Li
k for i ∈ {0, 1, 2, 3} ▷ for each QR group

2: for i = 0 to 16 do
3: Lc[i] = P−1(Lc[i]) ▷ Invert through bit-permutation layer

4: Prepare four lists Li
c for i ∈ {0, 1, 2, 3} of 16 bit values from Lc according to

QR groups
5: for i = 0 to 3 do ▷ for each QR group
6: Initialize tables Tj for j = 0, 1, 2, 3 to store 2-bit key
7: and corresponding list of sixteen 4-bit decrypted bits.
8: for s = 0 to 3 do ▷ for each SBox in the i-th remainder group
9: for k ∈ {00, 01, 10, 11} do

10: S = 0 M = ϕ
11: for c ∈ Li

c do
12: m = SBox−1(c[s]⊕ k)
13: S = S ⊕m
14: M = M∪ {m}
15: if S & 0x1= 0x0 then Ts = Ts ∪ {(k,M)}
16: Construct a table T 27 to store 8-bit key
17: and corresponding list of sixteen 16-bit decrypted bits
18:

19: Construct a table T 26 to store 8-bit key
20: of 27-th round and 8-bit key of 26-th round
21: for s = 0 to 3 do ▷ for each SBox in the i-th quotient group
22: for (k27,M27) in T 27 do
23: Flag = False
24: for k ∈ {00, 01, 10, 11} do
25: S = 0
26: for m ∈ M27 do
27: S = S ⊕ SBox−1(m[s]⊕ ks)

28: if S&0xF=0x0 then
29: T 26[k27][s] = k
30: Flag = True
31: Break
32: if Flag = False then
33: Remove (k27,M27) from T 27

34: construct k26 and k27 from T 26

35: Li
k = Li

k ∪ {k27||k26}
36: Construct full round keys for R26 and R27 from L0

k,L1
k,L2

k,L3
k and store in

to Lk

37: return Lk
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the last round key using the 4-round division property. Another attack
that recovers the partial round keys of the last as well as the second last
round using both 4 and 5-round properties simultaneously is discussed in
the Appendix C. The basic idea of the attack is similar to the one used in
GIFT, as discussed in the previous section. We guess the last round key
and partially decrypt a set of ciphertexts to check the balanced property.
Next, we explain more about our attacks and show how we can use the
faults along with division property to recover the key of the last round.
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Fig. 5: Round-Key recovery verifying balancedness at the end of Round 28. Here,
the key-bits corresponding to every sbox is guessed and reduced separately

5.1 Last Round Key Recovery

The PRESENT cipher consists of 31 rounds, with Ri denoting the i-
th round function. The goal of our attack is to recover the last round
key K30 by exploiting the 4-round division property. To achieve this,
we inject 15 faults to generate the input division property at a random
but fixed nibble at the input R26. The CCP shows that generating these
distinct 15 faults requires injecting 50 random nibble faults in some fixed
but unknown nibble. This results in the following input division property:

a26 = (0, 0, 0, 0, ..., 1, 1, 1, 1, 0, 0, 0, 0, ...., 0, 0, 0, 0)

The four consecutive 1’s are placed at 4i, 4i + 1, 4i + 2, 4i + 3 if the
i-th nibble is active at R26 for some i ∈ {0, ..., 15}. Using this input
property, we observe that all bits are balanced after the SBox layer of
R29 (see Table 3). Therefore, all input bits to R30 are also balanced, and
we can exploit this zero-sum property to recover K30.
To reduce the time complexity of the attack, we recover each nibble of
the key independently. For each possible 4-bit key, we decrypt the 4 bits
of the 16 ciphertexts (including 15 faulty and the original ciphertexts)
and verify the zero-sum at 4 bits. The algorithmic details are provided
in Algorithm 3 in Appendix C.1.

Results Based on experiments using software simulations, we found
that by inducing one division set fault at round 25, the last round key of
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PRESENT-80/128 can be recovered. However, the attack differs between
PRESENT-80 and PRESENT-128. In the case of PRESENT-80, the re-
duced key-space is 216 after the last round key is recovered, which makes
the attack practical and therefore it ends there. However, in the case
of PRESENT-128, the reduced key-space is 264, and hence, we require
the onion peeling technique. The second fault-induced division set is lo-
cated at round 24 which helps to recover the penultimate round key,
and from the key-schedule, the master key can be obtained. As a re-
sult, for PRESENT-80 and PRESENT-128, 15 and 30 faults are required,
respectively, leading to reduced key-spaces of 216 and one, respectively.
Complexity of the attack: The attack for recovering the master key
follows the onion peeling technique, which requires two phases and for
each phase, a total of 16 plaintext-ciphertext pairs are required (15 fault-
induced and one original). Therefore, the overall data complexity is 2×
24 = 25 encryption queries. Instead of decrypting the entire ciphertext,
we decrypt each nibble independently. In the first step of the attack, we
guess a 4-bit key for each nibble. Then, we decrypt one SBox layer for
each guessed key. Thus, for one nibble, we require 16 SBox inversions
and 16 XOR operations of 4 bits. As a result, the complexity for the
whole attack is 16× 16 = 28 SBox inversions and 16 XOR operations of
the entire state, which is equivalent to 24 rounds of decryption. Table 4
provides a summary of the attacks.

Table 4: Summary of our work on PRESENT-80/128 and GIFT-64; Here F : faults,
FCCP : Expected Faults using Coupon Collector Problem , FI: Fault Injection

Primitive
#F

(n)

#FCCP

(n.H(n))

FI Round Reduced

Keyspace

Complexities

1st

Iteration

2nd

Iteration
Data Time* Memory†

PRESENT-80 15 50 25 na 216 24 28
neg.

PRESENT-128 30 100 25 24
1

25 29

GIFT-64 30 100 21 19 25 215 212

*unit of time is SBox inversion. †unit of memory is state size.

6 On The Inapplicability of DiFA on GIFT-128

Here we discuss the division properties that we have observed for the 4
and 5 rounds of GIFT-128. GIFT-128 is composed of 40 rounds, where
Ri denotes the i-th round function for i ∈ {0, 1, ..., 39}. To construct the
input division property at the input of R34, we randomly choose a nibble
N34

i for i ∈ {0, ..., 15} and inject 15 faults to activate the nibble N34
i .

Similar to the attack of GIFT-64, we have the following input division
property:

a34 = (0, 0, 0, 0, ..., 1, 1, 1, 1, 0, 0, 0, 0, ...., 0, 0, 0, 0),
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where the four consecutive 1’s are placed at 4i, 4i+1, 4i+2, 4i+3 if the
i-th nibble is active at R34. From this input property, we obtain balanced
bits after the SBox layer of R37 and R38 from the 4-round and 5-round
division property, respectively. The positions of the balanced bits are
given in Table 3.
For GIFT-128, we have observed that the indices of the balanced bits after
5 rounds form two sets A and B, depending on the location of the active
nibble. If the active nibble at the input of R34 belongs to {N34

0 , ..., N34
15 },

we obtain the set A, and for nibble in {N34
16 , ..., N

34
31 }, we obtain the set

B. The sets A and B are listed in Appendix A. To obtain a fault-invariant
property, we take the intersection of the two sets A and B, resulting in
the following:
– A∩B = {0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33,

36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72,
73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105,
108, 109, 112, 113, 116, 117, 120, 121, 124, 125}.

The indices that belong to A∩B are balanced after 5 rounds, regardless
of the active nibble number at the input of R34. Therefore, this property
is fault-invariant. Additionally, we observe that from A∩B, the first and
second input bits of each SBox-es at R39 are balanced.
To use this zero-sum distinguisher, we can use a similar method as in the
attack of GIFT-64. However, we observe that the zero-sum based filter
does not work for GIFT-128. Our investigations in this direction lead to
some non-trivial results for GIFT-128, which we discuss here.
Even-nibble property We have observed that during the encryption of
24 plaintexts using the single nibble fault model in the first 6 rounds of
GIFT-128 (excluding the last linear layer), most of the nibbles exhibit
values in even numbers. We refer to this phenomenon as the even-nibble
property.

Definition 4 (Even-nibble). Let C be a set of ciphertexts generated by
the 6-rounds of GIFT-128 (excluding the last linear layer). A nibble Ni for
some i ∈ {0, ..., 31} is said to exhibit the even-nibble property according
to C if all the values for Ni occur an even number of times.

For instance, if the values in the 0-th nibble follow the pattern given
in Table 5 for some set of ciphertexts of size C, then we can say that the
0-th nibble exhibits the even-nibble property. If such an event occurs,
then we have ⊕c∈CS

−1(c ⊕ k) = 0 for any choice of key, implying that
all keys trivially pass through the zero-sum filter.

Values 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

Occurence 0 0 0 0 0 6 0 2 8 0 0 0 0 0 0 0

Table 5: Example of Even-nibble

Experimental Verification We have conducted experiments to verify
our claim regarding the even-nibble property in GIFT-128. Specifically, we
have used a set of 216 plaintexts and counted the number of nibbles that
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exhibit this property. Our results show that, on average, more than 92%
of the SBox-es satisfy the even-nibble property. Furthermore, we have
observed that for all the SBox-es exhibiting the even-nibble property, all
4 key guesses trivially pass through the zero-sum filter.

7 Conclusion and Open Problems

In this work, the first fault attack based on the bit-based division prop-
erty - DiFA is proposed on bit-oriented SPN ciphers. The idea of inducing
fault based input division sets is exploited to admit division trails in the
intermediate state of a cipher to devise zero-sum distinguishers using
balanced bit position in the output division set. Primary observation ex-
ploited is the formation of fault invariants which are independent of the
nibble fault injection position thereby facilitating a fault-injection en-
abled adversary. MILP based search models are developed and executed
to search for fault invariants. Key-recovery strategies devised here exploit
multi-round zero-sum distinguishers leveraging the linear layer structures
like quotient-remainder groups. Simulation models allow DiFA to be ap-
plied on GIFT-64 which leads to unique key-recovery with 30 faults (two
fault induced division sets one at Round-21 and subsequently another at
Round-19). For PRESENT-80, DiFA reduces the key-space to 16 bits with
15 faults (one fault induced division set at the Round-25). We also report
an interesting result that makes GIFT-128 DiFA-resistant and investigate
the event that allows this while also supporting this with empirical data.
We believe that primary cause for this is linked to the cipher design and
warrants further investigation. In terms of fault inject round penetration,
this work breaks all previous records and hence gives the best attacks
in that context. To conclude, DiFA adds a new tool in the arsenal of
cryptanalysts for physical attacks and is expected to be applicable on a
large class of ciphers.
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A Results on GIFT-128

The balanced bits from 5-round property is given below. Using a random
nibble fault we get a total 80 balanced bits after 5 rounds. However the
balanced bits are divided into two sets. If the active nibble belongs to
{N0, ..., N15} we get the following balanced bits
– A = 0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 28, 29,

32, 33, 34, 36, 37, 38, 40, 41, 44, 45, 48, 49, 50, 52, 53, 54, 56, 57,
60, 61, 64, 65, 66, 68, 69, 70, 72, 73, 76, 77, 80, 81, 82, 84, 85, 86,
88, 89, 92, 93, 96, 97, 98, 100, 101, 102, 104, 105, 108, 109, 112, 113,
114, 116, 117, 118, 120, 121, 124, 125.

If the active nibble belongs to {N16, ..., N31} we get the following bal-
anced bits
– B = 0, 1, 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, 20, 21, 24, 25, 26, 28, 29,

30, 32, 33, 36, 37, 40, 41, 42, 44, 45, 46, 48, 49, 52, 53, 56, 57, 58,
60, 61, 62, 64, 65, 68, 69, 72, 73, 74, 76, 77, 78, 80, 81, 84, 85, 88,
89, 90, 92, 93, 94, 96, 97, 100, 101, 104, 105, 106, 108, 109, 110, 112,
113, 116, 117, 120, 121, 122, 124, 125, 126.

While the intersection of these two sets contains the following 64 balanced
bits
– A∩B = {0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33,

36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72,
73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105,
108, 109, 112, 113, 116, 117, 120, 121, 124, 125 }.

Thus we have 64 balanced bits after 5 round in fault invariant setting,
i.e., any random active nibble at the input results to 64 output bits.
Moreover, input of each sbox in the 6-th round contains two balanced
bits, namely the first and second input bit.

B Sbox Division Trail Algorithm

C PRESENT Partial Subkeys Recovery of the
Last Two Rounds

Here we discuss partial recovery of the last two round keys. To recover
the partial subkeys of the last two rounds we use our random nibble fault
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Algorithm 2 SboxDivisionTrail (k = (k0, k1, · · · , kn−1) [48]

1: Sk = {a|a ⪰ k}
2: F(X) = {πa(x)|a ∈ Sk}
3: K = ϕ
4: for u ∈ Fn

2 do
5: if πu(x) ∩ F (X) ̸= ϕ then
6: Flag = True
7: R = ϕ
8: for v ∈ K do
9: if v ⪰ u then

10: Flag = False
11: else if u ⪰ v then
12: R = R ∪ {v}
13: if Flag = True then
14: K = K \R
15: K = K ∪ {u}

return K

distinguisher for 4 and 5 rounds. For this we construct an active nibble at
the input of R25 by injecting 15 faults. From Table 3, we can observe that
all the 64 bits at R28 and the first 4 bits of R29 become balanced. Now
take all possible key values of the nibbles N30

j for j ∈ {0, 4, 8, 12} and
partially decrypt the corresponding nibbles of the ciphertext. Due to the
propagation of the division property, we get balanced bits at N29

0 (from
Table 3). We take the xorsum of the partially decrypted ciphertexts and
check for which key nibble values the xorsum at N29

0 becomes 0. We
take those as possible key choice for the nibbles {0, 4, 8, 12} in R30 and
proceed in the next step. Upto this point we get 212 key choices for the
nibbles as we have 4 bit filters at R29. In the next step we take all the
key values of the nibbles N29

j for j ∈ {0, · · · , 3} and partially decrypt
one more round. In the output of R28 we check whether the xorsum of
the decrypted ciphertexts becomes 0 or not. As 16 bits at R28 becomes
balanced hence the key choices of the nibbles N30

j for j ∈ {0, 4, 8, 12}
and N29

j for j ∈ {0, · · · , 3} reduces to 212. Thus total 20 bit subkey of
the last two rounds can be recovered using this attack. The algorithm for
the last round key recovery of this attack is given in Appendix C.1 while
the pictorial view of the full attack is given in Figure 6 (red-colored bits
are the balanced bits).

Complexity of the attack: The data complexity for this case is 216

as we have used 16 plaintext-ciphertext pairs to recover the partial sub-
keys. In this case also instead of decrypting the whole ciphertext at
once we paritally decrypt the 0-th QR group i.e. the nibbles N30

j for
j ∈ {0, 4, 8, 12} in the last round and N29

j for j ∈ {0, 1, 2, 3} in the sec-
ond last. In the last round we have 16 bit keys and 4 bit filters for this
QR group. Hence the number of keys that passes through the filter is
212. For each of the key in the last round we take all possible values in
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Fig. 6: Partial key recovery attack on PRESENT

the second last round and check the zero-sum. Hence the complexity for
this group is 212×216 = 228 sbox inversions and the number of keys that
passes through the filer is 212 for 0-th QR group.

C.1 Last Round Key Recovery of PRESENT

Algorithm 3 RoundKeyRecoveryPRESENT

Input: A list of ciphertexts Lc

Output: A list of keys Lk

1: Initialize 16 empty lists Li
k for i ∈ {0, · · · , 15} ▷ for each nibble

2: Prepare sixteen lists Li
c for i ∈ {0, · · · , 15} of 4 bit values from Lc

3: for i = 0 to 15 do ▷ for each nibble
4: for k30 = 0 to 15 do
5: S = 0
6: for c ∈ Li

c do
7: S = S ⊕ (R30)−1(c, k30)

8: if S & 0xf= 0x0 then ▷ check the input bits of each nibble
9: Li

k = Li
k ∪ {k30}

10: Construct full round key for R30 from Li
k for i ∈ {0, · · · , 15} and store in to

Lk

11: return Lk
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