
Private Polynomial Commitments
and Applications to MPC

Rishabh Bhadauria1, Carmit Hazay1,3, Muthuramakrishnan
Venkitasubramaniam2,3, Wenxuan Wu4, and Yupeng Zhang4

1 Bar Ilan University, Israel
2 Georgetown University, USA

3 Ligero Inc
4 Texas A&M University

Abstract. Polynomial commitment schemes allow a prover to commit
to a polynomial and later reveal the evaluation of the polynomial on
an arbitrary point along with proof of validity. This object is central in
the design of many cryptographic schemes such as zero-knowledge proofs
and verifiable secret sharing. In the standard definition, the polynomial
is known to the prover whereas the evaluation points are not private. In
this paper, we put forward the notion of private polynomial commitments
that capture additional privacy guarantees, where the evaluation points
are hidden from the verifier while the polynomial is hidden from both.
We provide concretely efficient constructions that allow simultaneously
batch the verification of many evaluations with a small additive over-
head. As an application, we design a new concretely efficient multi-party
private set-intersection with malicious security and improved asymptotic
communication and space complexities.
We demonstrate the concrete efficiency of our construction via an imple-
mentation. Our scheme can prove 210 evaluations of a private polynomial
of degree 210 in 157s. The proof size is only 169KB and the verification
time is 11.8s. Moreover, we also implemented the multi-party private
set intersection protocol and scale it to 1000 parties (which has not been
shown before). The total running time for 214 elements per party is 2,410
seconds. While existing protocols offer better computational complexity,
our scheme offers significantly smaller communication and better scala-
bility (in the number of parties) owing to better memory usage.

1 Introduction

A polynomial commitment is a cryptographic building block that allows a prover
to commit to a polynomial, which can later be opened at any evaluation point
with proof that the evaluation is correctly computed. Polynomial commitments,
which serve as an important building block in constructing cryptographic pro-
tocols, were introduced by Kate et al. [49] for the construction of verifiable
secret sharing in the synchronous and asynchronous setting [6]. The scheme

was generalized to multivariate polynomials by Papamanthou et al. [54], and to
zero-knowledge proofs of knowledge by Zhang et al. [72]. In recent years, they
are extensively used to build efficient zero-knowledge proof systems [71, 65, 68,
62, 34, 24], where recent new schemes without a trusted setup were proposed
in [65, 70, 16, 64, 50]. Subsequent works considered batched openings for mul-
tiple evaluations [63] and multiple polynomials [40]. Another application where
polynomial commitments are utilized is “Proof of retrievability” [48, 69]. In this
problem, the server wishes to prove to a verifier that all of the client’s data
is stored correctly. The polynomial commitment allow the prover to prove the
integrity of the data storage. Logarithmic and constant size polynomial commit-
ments are also used in constructing vector commitments [19, 18, 23].

To date, all concretely efficient polynomial commitments require the verifier
to know the evaluation point and the prover to know the polynomial. While such
a notion is sufficient to design succinct zero-knowledge arguments, secure multi-
party computation (MPC) requires additional privacy guarantees. In this paper,
we consider a different setting where the polynomial is unknown to the prover and
is encrypted. Moreover, the evaluation points are committed by the prover and
may not be publicly known to the verifier. This setting is very common in MPC
where both the polynomial and the evaluation points must remain private as
they are defined based on the parties’ inputs. We denote this primitive by private
polynomial commitment and show that it can be used as a building block in many
applications that arise in the secure multi-party setting; see Sections 1.1 and 5.
Our scheme is particularly useful in batch scenarios when there are multiple
evaluation points. In this case, the proof size and verifier’s complexity grow
additively with the number of points.

1.1 Our Contributions

Our contribution is threefold. (1) abstracting the new notion of private polyno-
mial commitments and providing two constructions. (2) demonstrating its appli-
cability for MPC and (3) implementing our commitment schemes and presenting
a new multi-party private set-intersection (MPSI) protocol.

Private Polynomial Commitments Our contribution includes two flavours
of private polynomial commitments with a hidden (encrypted) polynomial; one
where the evaluation points are public and the other where they are private. Our
schemes are built on the recent scheme of an inner product argument [17], which
generalizes the inner product argument from [15] to bilinear groups. Specifically,
we embed the ciphertexts encrypting the coefficients in the base group using an
Additively Homomorphic Encryption (AHE) scheme introduced in [13]. Working
with bilinear maps allow to publicly verify a single multiplication in the exponent
which allows any party to verify the proof. More specifically, for a polynomial of
degree d, the overhead is dominated by O(d) bilinear pairings whereas the proof
size is O(log d) and the verifier time is O(d) exponentiations. Our construction
supports batched evaluations efficiently. To open at m evaluation points, the

2

proof size is O(m+log d) and the verifier time is only O(m+d). The polynomial
is hidden from all parties and only an encrypted form is available to the prover.

Our constructions rely on two different commitment schemes for committing
to the encrypted polynomial (using the pairing-based scheme from [4]) and the
evaluation points (using Pedersen commitment [55]). We further rely on the
Boneh et al. pairing-based encryption scheme [13] to be compatible with our
pairing-based commitment scheme, both of which rely on the Decisional Linear
Assumption (DLIN) and Double Pairing Problem (DPP).

Our commitment scheme uses an inner product argument [15] as a building
block (denoted by BBB-IPA) and is the first polynomial commitment scheme
where the prover does not know the actual polynomial and only has access to its
encryption. The main challenge in constructing this commitment scheme was the
integration of encrypted polynomials into the polynomial commitment scheme.
Secondly, directly constructing a scheme would not provide batching. To ensure
batching and overall small proof size, we reduce the proving of the polynomial
evaluation to multiple inner products. First, we provide a new inner product ar-
gument that allows the prover to verify inner products on encrypted ciphertext
with the evaluation vector. Second, we prove the correct structure of multiple
evaluation vectors by verifying the linear and quadratic constraints. Both our
linear and quadratic tests reduce the multiple constraints on all different eval-
uation vectors to verify a single inner product argument, thereby ensuring the
batching feature is effective. An additional feature is that the proof can be made
non-interactive using Fiat-Shamir.

Applications Private polynomial commitment schemes are useful for private
computations based on polynomials. We list four such applications that can
benefit from the scalability and batching of the evaluations as inherent in our
commitment scheme. Firstly, we use our new private polynomial commitment
as a building block to present a new scalable multi-party PSI protocol that is
secure against malicious adversaries. We also discuss three other applications -
Oblivious Polynomial Evaluation, Verifiable Polynomial Evaluation, and Non-
Interactive two-party PSI; for more details see Section 5.
Scalable multi-party private set-intersection (MPSI). PSI is a funda-
mental problem in secure computation that has been widely studied in the past
decade. In this problem a set of parties P1, . . . , Pn, holding input sets X1, . . . , Xn

of sizes m1, . . . ,mn, respectively, wish to compute X1 ∩X2 ∩ . . .∩Xn. The two-
party setting has been studied extensively and continues to be a hot topic of
research owing to numerous applications such as contact discovery, dating ser-
vices, data mining, recommendation systems, and law enforcement. In a long
line of works, highly efficient two-party protocols have been designed with al-
most linear overhead in the set sizes (see some recent works at [58, 56, 57, 22] and
references therein). Furthermore, Google has recently leveraged this technology
to match login credentials against an encrypted database.

While considerable progress has been made in the two-party setting, very few
works have explored the concrete efficiency of PSI in the multi-party setting and
the existing works have mostly considered only the semi-honest setting. Further-

3

more, current approaches fail to achieve overheads as in the two-party setting
and do not scale well due to communication and space bottlenecks. Multiparty
PSI is a fundamental cryptographic primitive with a richer set of applications
beyond the two-party ones such as distributed intrusion detection, identifying
the most visited sites or watched movies, contact tracing and more.

Our starting point is the work of Freedman et al. [33] who designed a simple
two-party PSI protocol based on polynomials. Roughly speaking, P1 creates a
polynomial Q(·) whose roots correspond to its input data set and sends this poly-
nomial to P2, encrypted under an additively homomorphic encryption scheme.
P2 homomorphically evaluates a “masked” variant of the encrypted polynomial
on its data set. In more detail, for each element x in P2’s input set, P2 generates
fresh randomness r and sends an encryption of r ·Q(x)+x to P1. P1 decrypts and
identifies the elements in the set intersection. Namely, if the decrypted value x
is in P1’s set, then x is extracted from the decryption of the ciphertext. Whereas
if the item x is not in the intersection, with very low probability, there exists an
element z for which r ·Q(z) + z is a false positive.

More recently, Hazay and Venkitasubramaniam [46] extended [33] to the
multi-party setting by reducing the multi-party PSI (MPSI) task among n par-
ties to n instances of two-party PSI. In this work we explore the practicality
of [46] in the malicious setting where up to n − 1 parties can be corrupted. On
a high level, in [46], parties P2, . . . , Pn create a polynomial whose roots cor-
respond to their respective inputs and send their encrypted coefficients to P1.
P1 then aggregates the polynomials and homomorphically evaluates the result-
ing encrypted polynomial on its input set. To make the protocol secure against
malicious adversaries, [46] introduced a simple mechanism for P1 to prove and
the parties to verify that P1 aggregated the polynomials correctly, and relied on
zero-knowledge proofs for the remaining steps.

The protocol presented in [46] implies an overall communication complexity
of O(n2 + n ·mmax + n ·mmin · logmmax) where mmax (resp. mmin) is the size of
the largest (resp. smallest) input set. The threshold key generation incurs a com-
munication cost of O(n2). The central party aggregates the input polynomials
of all the parties and returns the encrypted coefficients of the aggregated poly-
nomial. This yields a communication overhead of O(n ·mmax). The main source
of overhead is due to the zero-knowledge proof applied by the central party for
proving correct evaluation, which implies an overhead of O(n ·mmin · logmmax).
This phase is captured in our protocol by private polynomial commitments.

More precisely, in this work, we introduce a variant of [46] where we rely
on a new abstraction that is based on private polynomial commitments. By
leveraging the efficiency and batching features of our commitment schemes, we
manage to improve the communication and computation complexities of [46]. We
further provide an implementation of our PSI protocol and explore its concrete
efficiency. This is in contrast to [46] which had the potential of being concretely
efficient but did not provide an implementation.

The complexity of our protocol. In addition to our new abstraction, we
further improve the asymptotic complexity of [46] to O(n2+

∑n
i=1 mi+n·(mmin+

4

logmmax)). Introducing private polynomial commitments (PPC) as a building
block, the central party in our protocol does not send the encrypted aggregated
polynomial. Instead, a commitment of encrypted aggregated polynomials is sent
to the parties. This allows us to remove the O(n ·mmax) factor. To further reduce
the communication complexity, we leverage the batching feature of PPC which
allows the central party to prove the correctness of multiple evaluations on the
aggregated polynomial. The proof size, in this case, is O(mmin+logmmax) which
contributes an additive factor of O(n · (mmin +logmmax)) to the communication
complexity of our MPSI protocol. A detailed analysis is provided in Table 3
where the communication complexity is broken according to the central party
overhead and the other parties and is presented for each phase separately.

Comparison with recent work. Three recent works that design PSI proto-
cols with malicious security are [9, 36, 41]. Similarly to our work, these works
also achieve linear communication complexity in the number of parties by re-
lying on a star topology. The main advantage of these protocols is that they
rely on oblivious transfer (OT), oblivious linear evaluation (OLE) (used in [41])
and symmetric-key primitives for which we have very efficient instantiations. In
comparison to previous work [9, 36, 41], our protocol achieves the best commu-
nication and space complexities. Specifically, our communication complexity is
dominated by the term O(n2κ + nmκ) where the gain compared to previous
work is due to an aggregation of the encrypted input polynomials and the small
batched proof size. We compare the communication complexity in Table 1. In
the typical parameter regime, the computational security parameter κ is greater
than the statistical parameter λ satisfying the inequality λ+logm < κ where m
is the input set size. Applying this inequality to the asymptotic communication
complexity of [36] yields communication complexity that matches ours.

Most MPSI protocols (including ours) are designed for a star topology, where
a central party aggregates the other parties’ messages and therefore requires
larger space. In prior works, the space complexity of the central party is inflated
with a factor that depends both on the input and the number of parties, whereas
our space complexity only grows with O(mκ). The space complexity of the other,
“non-central” parties, is independent of the number of parties. We compare the
space complexity in Table 2

Our paper realizes a standard MPSI functionality where a single party (typ-
ically the central party) receives the output, but can be extended to guarantee
security even when all parties receive the output. Both [41] and our protocol
achieve this standard security whereas the works of [9, 36] provide a weaker se-
curity guarantee that allows the party that first receives the output (if controlled
by the adversary) to unnoticeably remove certain elements from the output when
broadcasting it to all parties. Note that these protocols can achieve full security,
but this will require applying general-purpose zero-knowledge proofs.

On the other hand, the computational cost of [9, 36, 41] grows with Ω(mnκ)
field multiplications, while the dominating cost of our computation is O(m2)
exponentiations. This can be further reduced into O(m logm

log logm) using hashing.
While for a small number of parties, our protocol is slower, the total running

5

P1 Pi Total
[9] O(nmκ2 + nmκ logmκ) O(mκ2 +mκ logmκ) O(nmκ2 + nmκ logmκ)

[36] O(nκ+ nm(κ+ λ+ logm)) O(nκ+m(κ+ λ+ logm)) O(n2κ+ nm(κ+ λ+ logm))

[41] O(nmκ+ nλκ logm) O((n+m)κ+ λκ logm) O(n2κ+ nmκ+ nλκ logm)

Theorem 2 O(nmκ) O((n+m)κ) O(n2κ+ nmκ)

Table 1: The communication complexity analysis of MPSI in bits where κ is the
computational security parameter, λ is the statistical security parameter, n is
the number of parties, m is an upper bound on the inputs set sizes and P1 is the
central party.

time essentially remains the same when the number of parties increases. For
instance, our experiments show that our scheme takes 9,141 seconds for 1000
parties and 216 elements per party. Prior works cannot run at this scale.

We highlight some applications which require PSI for a large number of
parties and large input sizes: (1) Cache-sharing [53] involves multiple network
providers who wish to cache common elements with high access frequency in a
shared cache and require privacy of their local cache. (2) Another application is to
generate statistics over the Tor network. Prior literature e.g., [27, 66] has relied
on MPC, secure aggregation and differential privacy to generate statistics on
Tor servers in a privacy-preserving manner. Large-scale MPSI can be useful here
where common features need to be extracted among the relay servers without
compromising the users’ privacy. (3) Hospitals and healthcare providers can
collaborate to analyze common features between databases which include a large
number of medical records. (4) Finally, MPSI can be applied for contact tracing.
A large group of patients can execute an MPSI protocol to find common locations
they have been to without leaking each individual’s travel history. The result can
help the actions of testing or quarantine in these areas.

P1 Pi

[9] O(nmκ2 +mκ logmκ) O(mκ2)

[36] O(nmκ+m(κ+ λ+ logm)) O(m(κ+ λ+ logm))

[41] O(nmκ) O(mκ)

Theorem 2 O(mκ) O(mκ)

Table 2: The space complexity analysis of MPSI in bits where κ is the compu-
tational security parameter, n is the number of parties, m is an upper bound on
the inputs set sizes and P1 is the central party.

Private polynomial commitments are also useful for reusable non-interactive
two-party PSI. Non-interactive secure computation introduced in [47], considers
a “receiver” that publicly broadcasts a single message and any “sender” can in-
teract in a two-party secure computation protocol with the receiver by sending
a single message to the receiver. The receiver only needs to broadcast once and

6

any number of interactions with the receiver can be performed. Specializing the
setting to PSI, our protocol enables non-interactive PSI which can be applied to
dating services, ride-share matching, and contact tracing. While such a protocol
may introduce high computational cost compared to existing works e.g., [60], its
communication cost is competitive as it benefits from our batching feature, which
is extremely useful in a client-server setting; see more details in Section 5.3.

Oblivious polynomial evaluation. The oblivious polynomial evaluation (OPE)
functionality is an important functionality in the field of secure two-party com-
putation. It considers a setting where party P2 holds a d-degree polynomial Q(·)
and party P1 holds an element t, and the goal is that P1 obtains Q(t) and nothing
else while P2 learns nothing. OPE has proven to be a useful building block and
can be used to solve numerous cryptographic problems; e.g., secure equality of
strings, set-intersection, approximation of a Taylor series, RSA key generation,
oblivious keyword search, set membership, blacklisting anonymous users, data
entanglement and more [33, 32, 52, 8, 43, 38].

In this work, we consider a distributed variant of OPE, where the input
polynomial is additively secret-shared amongst the parties, and the goal of the
parties is to evaluate (in the exponent) the aggregated polynomial privately and
correctly. The scenario where the polynomial is distributed naturally arises in
settings where the data cannot be stored on a single memory device due to
privacy considerations. Secret-sharing sensitive data protects it against leakage
attacks and eliminates the risk of breaching the stored memory. In some cases,
the data is distributed to avoid a single point of failure and to ensure continuous
access to the data.

Private polynomial commitments are useful in this context and enable secure
evaluation of the combined polynomial in the presence of n − 1 malicious cor-
ruptions, similar to our PSI protocol. The incoming communication complexity
of P1 is linear in the size of shares, whereas the outgoing communication only
grows logarithmically in the polynomial degree plus P1’s input size (and hence
sublinear in d). The bulk of the computational overhead is attributed to P1,
which evaluates the aggregated polynomial on its input. An interesting feature
of our protocol is its usage for multi-point evaluations. Here P1 evaluates Q(·) on
multiple points t1, t2, . . . where the accumulated overhead per evaluation point
for ensuring malicious security vanishes away due to our batching property.

Verifiable polynomial evaluations. In this setting, computationally weak
devices (or clients) wish to outsource their computation and data to an untrusted
server in the cloud. The ultimate goal in this setting is to design efficient protocols
that minimize the computational overhead of the clients and instead rely on the
extended resources of the server. Of course, the amount of work invested by the
client for verifying the correctness of the computation is substantially smaller
than running the computation by itself. Another ambitious challenge of verifiable
computation is to minimize the communication from the cloud.

The problem of delegating a single polynomial was studied by Benabbas et al.
[10], who introduced a new cryptographic primitive of algebraic PRFs, which en-
ables the generation of short authentication message to verify the server’s reply.

7

Followup works [29, 7, 20, 21] improved different aspects of [10]. Nevertheless, all
prior constructions considered a setting where a single client communicates with
the server. Extending these solutions to the multi-client setting is not immediate
(even in the non-private setting) since the server needs to aggregate the shares of
the polynomials and provide proof for validating the aggregation, which is highly
non-trivial. We observe that polynomial commitment schemes directly imply a
verifiable evaluation of distributed polynomials where correctness is established
via the proof provided by the server.

When considering verifiable computation, one can consider a setting where
the function is either public or private. Verifiable computation with function
privacy is often harder to achieve. We note that our construction follows even
if the polynomials are encrypted while the evaluation points are given in the
clear. This can capture scenarios where the polynomial represents a database
with secret payloads yet the queries are not private.

Implementation Details To validate the concrete efficiency of our construc-
tion, we implemented our private polynomial commitment scheme and multi-
party PSI protocol. Our implementation of the private polynomial commitment
scheme demonstrates the advantage of batch opening. For a polynomial of de-
gree 216, the proof size is 18.6KB and the verifier time is 53.7s to open one
evaluation, while they are only 6.1MB and 757s for 216 evaluations respectively,
which are significantly better than repeating the single opening 216 times. Our
multi-party PSI protocol with malicious security can scale to 1000 parties with
216 elements per party. The majority of the time is spent on the computa-
tion of the proofs of our private polynomial commitment, which can be fur-
ther accelerated through multi-threading and hashing. The communication and
the memory usage of our protocol is an order of magnitude better than ex-
isting schemes, and thus our protocol performs better for a large number of
parties and networks with limited bandwidth; see Section 6 for further details.
We plan to open-source our implementation and the source code is available at
https://anonymous.4open.science/r/PCOM-CCF4.

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by κ. We say that a function µ : N → N
is negligible if for every positive polynomial p(·) and all sufficiently large κ it
holds that µ(κ) < 1

p(κ) . We use the abbreviation PPT to denote probabilistic
polynomial time. We further denote by a ← A the random sampling of a from
a distribution A, by [d] the set of elements (1, . . . , d) and by [0, d] the set of
elements (0, . . . , d).

We now specify the definition of computationally indistinguishable.

Definition 1 (Computational Indistinguishability) Let X = {X(a, κ)}a∈{0,1}∗,κ∈N
and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution ensembles. We say that X and

8

https://anonymous.4open.science/r/PCOM-CCF4

Y are computationally indistinguishable, denoted X ≈ Y , if for every PPT ma-
chine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently
large κ: ∣∣Pr[D(X(a, κ), 1κ) = 1]− Pr[D(Y (a, κ), 1κ) = 1]

∣∣ < 1

p(κ)
.

We denote A[i] as ith element in vector A. We denote A[: d′] as a vector
consisting of only the first d′ elements of vector A while A[d′ :] denotes all the
elements in A starting from index d′. For two vectors A and B, we define the
point-wise product as A ⊙ B. For a given vector A and a value x, B = Ax is
defined as point-wise exponentiation where Bi = Ax

i for all each index i ∈ [|B|].
We denote ⟨A,B⟩ for the inner product between two vectors A and B.

2.2 Hardness Assumptions

Let G be a group generation algorithm, which outputs (p,G,G1, e, g) given 1κ,
where G,G1 are the descriptions of groups of prime order p, e is a bilinear
mapping (see below) and g is a generator of G.

Definition 2 (DLIN) We say that the decisional linear problem (DLIN) is
hard relative to G, if for any PPT distinguisher D there exists a negligible func-
tion negl such that

(p,G,G1, e, g, g
x, gy, gxr, gys, gr+s) ≈c

(p,G,G1, e, g, g
x, gy, gxr, gys, gd),

where (p,G,G1, e, g) ← G(1κ) and x, y, r, s, d ← Zp where d is the degree of the
polynomial.

Definition 3 (Bilinear pairing) Let G1, G2 and GT be multiplicative cyclic
groups of prime order p and let g, v be a generator of G1 and G2 repsectively.
A map e : G1×G2 → GT is a bilinear map for G1 and G2 if it has the following
properties: (1) Bi-linearity: ∀w ∈ G1, g ∈ G2, ∀a, b ∈ Zp, e(wa, gb) = e(w, g)ab.
(2) Non-degeneracy: e(w, g) generates GT .

We assume that the D-linear assumption holds in G1.

Definition 4 (DPP) We say that the double pairing problem (DPP) is hard
relative to G1,G2, if for any PPT adversary A there exists a negligible function
negl such that

Pr
[
(wr, wt)← G1; (r, t)← A(S,wr, wt) | (r, t) ∈ G2 ×G2

∧ e(wr, r) · e(wt, t) = 1
]
≤ negl

where S = (G1,G2,Gt, p, e, w, g)← G(1κ)

9

2.3 Public Key Encryption Schemes (PKE)

We specify first the definitions of public key encryption and IND-CPA.

Definition 5 (Public Key Encryption Scheme) A Public-Key Encryption
Scheme is a tuple for four algorithms (KeyGen, Enc, Dec, Rerand) :

– (PK,SK)← KeyGen(1κ): inputs security parameter κ and outputs public key
PK and secret key SK.

– ca ← EncPK(a; r): inputs a message a, randomness r and public key PK and
outputs a ciphertext ca.

– a ← DecSK(ca) : inputs a cipertext ca, a and secret key SK and outputs a
plaintext message a.

– c′a ← RerandPK(ca; r) : inputs a ciphertext ca, randomness r and public key
PK and outputs a ciphertext c′a which encrypts the same message but by
homomorphically adding randomness r to ciphertext ca.

For a public key encryption scheme Π = (KeyGen, Enc, Dec, Rerand) and a
non-uniform adversary A = (A1,A2), we consider the following IND-CPA game:

(PK, SK)← KeyGen(1κ).

(m0,m1, history)← A1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b← {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by AΠ,A(κ) the probability that A wins the IND-CPA game.

Definition 6 (IND-CPA) A public key encryption scheme Π = (KeyGen,Enc,Dec,Rerand)
has indistinguishable encryptions under chosen plaintext attacks (IND-CPA), if
for every non-uniform adversary A = (A1,A2) there exists a negligible function
negl such that AΠ,A(κ) ≤ 1

2 + negl(κ).

Additionally, we introduce another algorithm Eval which inputs an encrypted
polynomial and an evaluation point and outputs a ciphertext which represents
the encrypted evaluation.

Additively Homomorphic PKE A public key encryption scheme is addi-
tively homomorphic if given two ciphertexts c1 = EncPK(m1; r1) and c2 =
EncPK(m2; r2) it is possible to efficiently compute EncPK(m1 + m2; r) with in-
dependent r, and without the knowledge of the secret key. Clearly, this assumes
that the plaintext message space is a group; we actually assume that both the
plaintext and ciphertext spaces are groups (with respective group operations +
or ·).

10

The [13] PKE In this paper, we utilize the additive variant of [13] PKE (de-
noted by BBS) which is similar to the additive variant of El-Gamal encryption
[35]. The public key is a tuple PK = (G, p, g, h, u, v) and the corresponding se-
cret key SK = (x, y, z) s.t. ux = g, vy = g, h = gz. To encrypt a message m ∈ G
we choose r, s← Zp and let the ciphertext be BBS.EncPK(m, (r, s)) = (a, b, c) =
(ur, vs, gr+s · hm). To decrypt a ciphertext (a, b, c) ∈ G3 we first compute hm =
BBS.DecSK((a, b, c)) = c/axby and then finding m by running an exhaustive
search. This variant is only applicable for small plaintext domains, which is the
case in our work. We also require a rerandomization algorithm Rerand which in-
puts a ciphertext and randomness and outputs a new ciphertext with the same
plaintext but new randomness (a′, b′, c′) = BBS.RerandPK((a, b, c); (r

′, s′)). The
homomorphic scheme is IND-CPA secure assuming the hardness of the DLIN
assumption.
Threshold version. In this version, the parties first agree on a group G of
order p and a generator g. Then each party Pi picks xi, yi, zi ∈ Zp and sends
ui = gxi , vi = gyi , hi = gzi it to all other parties. Finally, the parties com-
pute u =

∏n
i=1 ui, v =

∏n
i=1 vi and h =

∏n
i=1 hi. Clearly the secret key

(x, y, z) = (
∑n

i=1 xi,
∑n

i=1 yi,
∑n

i=1 zi) is shared amongst the parties. In order
to ensure correct behaviour, the parties must prove knowledge of their secret
key (xi, yi, zi) by running a zero-knowledge proof on it. To ensure simulation-
based security, each party must commit to its share first and decommit this
commitment only after the commit phase is completed. Note that the simulator
can enforce the public key outcome by rewinding the corrupted parties after
seeing their decommitment information. Furthermore, the threshold decryption
can be made non-interactive by posting a decryption share and proof of consis-
tency. For using the encryption scheme in the protocol, we also use two more
algorithms Rerand and Eval. Rerand is the algorithm used to rerandomize the
ciphertext while Eval is added to evaluate a polynomial encrypted using an en-
cryption scheme at an evaluation point.

The BBS threshold encryption scheme is a tuple of protocols (πKeyGen, πDecZero)
and a tuple of three algorithm (Enc,Rerand,Eval):

– πKeyGen is an interactive protocol among parties P1 . . . , Pn where each party Pi

receives an output (PK, SKi) where PK is the public key used for encryption
and SKi is the share of the secret key given to SKi which will be used in
threshold decryption.

– cm ← EncPK(m; (r, s)): inputs a message m, randomness r, s and public key
PK and outputs a ciphertext cm.

– c′ ← RerandPK(c; (r, s)): inputs a ciphertext c, randomness (r, s) and public
key PK and outputs a re-randomized ciphertext c′.

– cy ← EvalPK(,C, t; (r, s)): inputs the encrypted polynomial C in form of a
vector of ciphertext represented the encrypted coefficient of the polynomial,
randomness (r, s), an evaluation point t and public key PK and outputs cy
which is encrypted evaluation.

– πDecZero is an interactive protocol among parties P1, . . . , Pn where a party
inputs a ciphertext c. Additionally, all the parties input their share of secret

11

key (SKi) as an input. The protocol outputs 1 if c encrypts a 0-message and
0 otherwise.

Protocol πKeyGen:

- Parties first agree on a group G of order p and two generator u, v.
- Each party Pi randomly chooses xi, yi ∈ F such that uxi = vyi . Pi also

computes gi = uxi .
- Pi broadcast: Each party Pi sends gi and πDL with inputs ((G, u, gi), xi) to

prove knowledge of xi.
- Each party Pi randomly chooses zi ∈ F and computes g =

∏n
i=1 gi, hi = gzi .

- Pi broadcast: Each party Pi sends hi and πDL with inputs ((G, g, hi), zi) to
prove knowledge of xi.

- Each party Pi computes h =
∏n

i=1 hi.
- Upon verifying the zero-knowledge proof received, each party Pi outputs

PK = (G, p, g, h, u, v) and SKi = (xi, yi, zi).

Algorithm EncPK(m, (r, s)): Output cm = (ur, vs, gr+shm).

Algorithm RerandPK(c, (r, s)): Split (c1, c2, c3) = c and output c′ = (c1 ·
ur, c2 · vs, c3 · gr+s).

Algorithm EvalPK(C, t; (r, s)): Split C = {c0, c1, . . . cd} and compute cy =∏d
i=0 ci

ti . Next, split (x, y, z) = cy and output c′ = (x · ur, y · vs, z · gr+s).

Protocol πDecZero:

- Pi broadcast: Each party Pi rerandomizes the ciphertext c as ci. Pi sends ci
along with proof πeq showing the message encrypted in c and ci is same.

- Each party compute c∗ =
∏n

i=1 ci.
- Pi broadcast: Set (d, e, f) = c∗. Each party Pi sends d′ = dxi and e′ = eyi .

To ensure consistency with their secret key, πpow is used to show that the
exponent is same in d′, uxi as well as e′, vyi .

- Each party verifies if f
d′·e′ = 1. Output 1 if true else outputs 0.

2.4 Commitment Schemes

A commitment scheme is a cryptographic primitive that allows a commitment
to commit to a message by sending a commitment which reveals nothing about
the message while later can be opened to a specific message.

Definition 7 (Commitment Scheme) A commitment scheme is a tuple of
three algorithm (Setup,KeyGen,Commit) and defined as follows:

– params ← Setup(1κ): Inputs security parameter κ and outputs parameters
params.

– ck← KeyGen(params): Inputs parameter params and outputs commitment
key ck.

12

– com← Commitck(m; r): Inputs commitment key ck, message m and random-
ness r and outputs commitment com.

A commitment scheme satisfies these security properties:

– Binding: For all PPT adversaries A, there exists a negligible function ϵ(·)
such that:

Pr
[
params← Setup(1κ);

ck← KeyGen(params);

(m0, r0,m1, r1)← A(1κ, params; rA);

com0 = Commitck(m0; r0)

com1 = Commitck(m1; r1)

com0 = com1 ∧m0 ̸= m1

]
≤ ϵ(κ)

– Hiding: For all PPT adversaries A = (A1,A2), there exists a negligible func-
tion ϵ(·) such that:

Pr
[
params← Setup(1κ);

ck← KeyGen(params);

(m0,m1, r)← A1(1
κ, params; rA);

b←R {0, 1}
com = Commitck(mb)

b̃← A2(com, r)

b = b̃
]
≤ 1/2 + ϵ(κ)

For our polynomial commitment protocol, we require two instances of com-
mitment. One commitment scheme is used for committing to the encrypted poly-
nomials while the other is used for committing the evaluation point. We require
an additional property for one of the commitments (commitment used for en-
crypted polynomials). The commitment needs to be a randomized variant of
doubly homomorphic as defined in [17].

Definition 8 (Doubly Homomorphic Commitment Scheme) A Commit-
ment scheme (Setup,KeyGen,Commit) is randomized doubly homomorphic if:

– Commitck(m; r) + Commitck(m
′; r′) = Commitck(m+m′; r + r′).

– Commitckm(m; r) + Commitck′m(m; r′)
= Commit(ckm+ck′m)(m; r + r′).

where ckr, ck
′
r are parts of the commitment key associated with randomness

and ckm, ck′m are parts of the commitment key associated with the message com-
mitted while ck is a commitment key. m and m′ are messages while r, r′ are the
randomness used.

13

The Pedersen Commitment Scheme. The Pedersen commitment scheme
(denoted by Ped) [55] is defined as follows:

– (G, p)← Ped.Setup(1κ): Outputs G with order p.
– ck = (g0, . . . , gd−1, h) ← Ped.KeyGen(G, p, d): Outputs the commitment key

ck. Here d is the number of group elements to be committed.
– comm = Ped.Commitck(m, r) = hr

∏d−1
i=0 gmi : Outputs the commitment of

message m where m = (m0, . . . ,md−1).

The Pedersen commitment scheme is computationally binding under the dis-
crete logarithm assumption, i.e., any two different openings of the same com-
mitment are reduced to computing logg h. Finally, it is perfectly hiding since a
commitment is uniformly distributed in G. The scheme is additively homomor-
phic.

The Commitment Scheme in [4] . The pairing based commitment in [4]
(denoted by AFG) is defined as follows:

– (G1,G2,Gt, p, e, w, g) ← AFG.Setup(1κ): Outputs G1, G2 and Gt of order p
with w and g being generators for G1 and G2 while e is the bilinear map.

– ck = (wr, w0, w2, . . . , wd−1) ← AFG.KeyGen(G1, G2, Gt, p, e, w, g, d) : Out-
puts the commitment key ck. Here d is the number of group elements to be
committed.

– comm = AFG.Commitck(m, r) = e(wr, r)
∏d−1

i=0 e(wi,mi): Outputs the com-
mitment of message m where m = (m0, . . . ,md−1).

The above commitment scheme is perfectly hiding since a commitment is
uniformly distributed in G. The scheme is also computationally binding under
the double pairing assumptions stated in Definition 4.

Forking Lemma Consider a public-coin interactive protocol with r rounds.
We define (n1, . . . , nr)-tree of accepting transcripts for this interactive protocol
as follows. The tree is of depth r where the root is labelled with the statement
and each node in depth i has ni children, where each child is associated with the
ith challenge. Each edge from parent to child node is associated with a message
sent from the prover to the verifier. Each root-to-leaf path corresponds to an
accepting transcript. Thus, the tree represents

∏r
i=1 ni different transcripts.

Lemma 1. Forking Lemma [14] Let (C,R) be an r-round public coin interactive
protocol. Let X be a witness extraction algorithm that succeeds with probability
1− negl(κ) for some negligible function negl(κ) in extracting a witness from an
(n1, . . . , nr)-tree of accepting transcripts in probabilistic polynomial time. As-
sume that

∏r
i=1 ni is bounded above by a polynomial in the security parameter

κ. Then (C,R) has witness-extended emulation.

We utilize the forking lemma to reduce the witness-extended emulation prop-
erty of our polynomial commitment schemes to the existence of a PPT extractor,
which given (n1, . . . , nr)-tree of accepting transcripts can extract the witness of
the polynomial commitment scheme.

14

2.5 Zero-Knowledge Proofs

Our PSI protocol employs three types of ZK proofs. The following proof πDL

is required for proving consistency in our maliciously secure threshold decryp-
tion protocol. Namely, πDL is employed for demonstrating the knowledge of
a solution x to a discrete logarithm problem [61]. Formally stating, RDL =
{((G, g, h), x) | h = gx} .

πEXP is a ZK proof of knowledge for demonstrating the knowledge with
respect to an additively homomorphic commitment scheme. This protocol is used
in our multi-party PSI protocol for two different purposes. Firstly, P1 broadcasts
its input by sending the commitment of its input and proving knowledge of it.
Secondly, it is also used by all other parties while they broadcast a ciphertext
generated by evaluating their input polynomial on a common random point to
demonstrate the knowledge of plaintext of the ciphertext. As P1 uses Pedersen
commitment to commit to its input, we realize πEXP using a standard Σ-protocol
for the following relation: REXP = {((G, g, h, h′), (m, r)) | h′ = gmhr} .

The proof πpow is a ZK proof for demonstrating the equality of exponent.
This is used for generating the public key for the threshold encryption scheme.
We realize πpow using a standard Σ−protocol for the following relation: Rpow =
{((G, g, h, c1, c2), (m)) | c1 = gm ∧ c2 = hm} .

Additionally, πCOIN is a coin tossing protocol which is executed in the PSI
protocol in order to sample a random group element for verifying the correctness
of aggregation. Its overhead is O(n2) for n parties.

2.6 Inner Product Argument [15]

The inner product argument allows a party to provide proof for correct inner
product evaluation. More formally, given two vectors a and b (where the vectors
can be hidden or known), proves that the inner product is equal to a known (or
committed) value c.

[14] introduces an inner product argument with logarithmic proof size which
is improved by [15] which relies on Discrete Log (DL) assumption. The vari-
ant of the protocol used in our construction requires both vectors and inner
products to be private. Therefore, the prover provides commitments to the two
vectors and the inner product. The inner product argument utilizes masking to
achieve honest-verifier zero-knowledge in addition to completeness and witness
extended emulation [15] (Section 4). The prover recursively reduces verifying
the inner product of two large vectors into verifying the inner product of small
vectors. In the last iteration, This utilizes the doubly homomorphic property of
the underlying commitments wherein the commitments used are homomorphic
in both key-space and message-space. In Figure 1, we present the inner product
argument using our notations and is denoted by BBB-IPA.

3 Private Polynomial Commitment Schemes

In this section, we introduce a new polynomial commitment scheme with privacy
features. Loosely speaking, such a protocol is carried out between a committer C

15

Inner Product Argument (BBB-IPA)

Private Inputs: C : A ∈ Zd+1
p , B ∈ Zd+1

p , c ∈ Zp.
Public Inputs: ck1, ck2, ck3, comA, comB , comc.
Protocol:

1. C and R compute the combined commitment com = comA · comB · comc.

For round rnd = 1 to log d− 1:

2. Set d′ = (d + 1)/2. C sets AL = A[: d′], AR = A[d′ :], BL = F [: d′] and BR =
F [d′ :] while both C and R sets ck1L = ck1[: d

′], ck1R = ck1[d
′ :], ck2L = ck2[: d

′],
and ck2R = ck2[d

′ :].
3. C generates intermediate cross-commitments:

comAL = Commitck1R(AL, rAL). comAR = Commitck1L(AR, rAR)
comBL = Commitck2R(BL, rBL), comBR = Ped.Commitck2L(BR, rBR),

where rAL , rAR , rBL , rBR ∈ Zp.
4. C→ R: C generates L and R and sends L,R to C:

cl = ⟨AR, BL⟩, cr = ⟨AL, BR⟩,
L = comAR · comBL · Commitck3(cl), R = comAL · comBR · Commitck3(cr).

5. R→ C: R sends a random challenge x ∈ Zp.
6. C sets A′ = AL + x · AR B′ = BL + x−1 · BR while C and R both locally

compute the new keys ck′1 = ck1L⊙ckx
−1

1R and ck′2 = ck2L⊙ckx2R where ⊙ denotes
element-wise multiplication of two vectors.

7. R computes the new commitment com′ = Lx · com ·Rx−1

.
8. C and R will update A = A′, B = B′, com = com′, and cki = ck′i∀i ∈ [2].

In round log d:

9. In the last round,C opens com to A′, B′ and c′ and R accepts if c′ = ⟨A′, B′⟩.
10. If all checks pass, R outputs b = 1 else output b = 0.

Fig. 1: Inner Product Argument (BBB-IPA)

and a receiver R where C commits to an encrypted polynomial C, denoted by a
sequence of ciphertexts C = (c0, c1, . . . , cd) where ci is a ciphertext that encrypts
the ith coefficient of the underlying plaintext polynomial. In these schemes, upon
committing to the encrypted polynomial, C sends C to R and later evaluates it
at an evaluation point t. Following that, C proves that a ciphertext cy is a correct
evaluation of the encrypted polynomial at some private evaluation point t.

3.1 Security Definitions

We continue with the security definition of our new polynomial commitments.

Definition 9 (Private Polynomial Commitments with Hidden Evaluation Points)

16

Let E = (KeyGen,Enc,Dec,Eval,Rerand) be an AHE scheme with groups M and
C.Let PK be the public key of the underlying AHE scheme and generated by
E.KeyGen. A private commitment scheme PCOM w.r.t E is a tuple of algorithms
(Setup,Commit,CommitPt) and a protocol (C,R) defined as follows:

– pp ← Setup(1κ, d): takes an input κ, d where κ is the security parameter and
d is the degree of the polynomial, and outputs public parameters pp.

– comC ← Commit(pp,C; rC): takes as input a public parameters pp, a vector of
ciphertexts (representing an encrypted polynomial) C = (c0, c1, . . . , cd) where
ci ∈ C for all i and randomness rC, and outputs a commitment comC.

– comT ← CommitPt(pp, t, d; rT) : takes as input public parameters pp, an eval-
uation point t, a randomness rT and d is the degree of the polynomial and
outputs a commitment comT .

– (C,R) is a public-coin interactive protocol between C and R. Both C and R
have common inputs, public parameters pp, a public-key PK for the under-
lying AHE scheme, a commitment comC, another commitment comT and an
evaluation ciphertext cy,∈ C. C additionally receives as input an encrypted
polynomial C, an evaluation point t and randomness rC, rcy , rt. At the end
of the protocol execution, R either outputs accept or reject. We denote by(
C(C, t, rC, rcy , rT),R

)
(pp,PK, ck, comC, comT , cy) the random variable rep-

resenting an execution and given an instance of the execution e, we denote
by view1(e) (resp. view2(e)) the view of the C (resp., R) and out1(e) (resp.,
out2(e)) the output of C (resp., R).

We require the following security properties to be satisfied:

Completeness: For any vector of ciphertexts C = (c0, c1, . . . , cd) generated
using PK← E.KeyGen(1κ) and an evaluation point t, we have that:

Pr
[
pp← PCOM.Setup(1κ, d);

comC ← PCOM.Commit(pp,C; rC);

comT ← PCOM.CommitPt(pp, t, d; rT);

cy = Eval(PK,C, t; rcy) :

out2(C(C, t, rC, rcy , rT),R)

(pp,PK, comC, comT , cy) = 1
]
= 1

Binding: For all PPT adversaries A, there exists a negligible function ϵ(·) such
that:

17

Pr
[
pp← PCOM.Setup(1κ, d);

PK← E.KeyGen(1κ);

(C0, rC0
,C1, rC1

, t0, rT0
, t1, rT1

)← A(1κ, n, pp,PK; rA);

comC0
= PCOM.Commit(pp,C0; rC0

)

comC1
= PCOM.Commit(pp,C1; rC1

)

comT0
= PCOM.CommitPt(pp, t0, d; rT0

)

comT1
= PCOM.CommitPt(pp, t1, d; rT1

)

(comC0
= comC1

∧C0 ̸= C1)

∨ (comT0
= comT1

∧ t0 ̸= t1)
]
≤ ϵ(κ)

Witness-Extended Emulation: For all PPT adversaries A, there exists an
expected polynomial time emulator E and negligible function ϵ(·) such that:

Pr
[
pp← PCOM.Setup(1κ, d);

PK← E.KeyGen(1κ);

(comC, comT , cy)← A(1κ, n, pp,PK; rA);

e← (A(rA),R)(pp,PK, comC, comT , cy);

(C, t, rC, rcy , rT)← EA(pp,PK,comC,comT ,cy ;rA)

(pp,PK, comC, comT , cy, e) :

(out2(e) = 1)⇒
(comC = PCOM.Commit(pp,C; rC)

∧ comT = PCOM.CommitPt(pp, t, d; rT)

∧ cy = EvalPK(C, t; rcy))
]
≥ 1− ϵ(κ)

Honest Verifier Privacy: There exists a tuple of expected PPT algorithms S,
given any vector of coefficient of polynomial (p0, . . . , pd) and an evaluation
point t, such that the following distributions are indistinguishable:

–

pp← PCOM.Setup(1κ, d);
PK← E.KeyGen(1κ);

C← (c0, . . . , cd) = (EncPK(p0; r0), . . . ,EncPK(pd; rd)) :
comC ← PCOM.Commit(pp,C; rC);

comT ← PCOM.CommitPt(pp, t, d; rt);
cy ← EvalPK(C, t; rcy);

e← (C(C, t, rC, rcy , rT , rA),R)
(pp,PK, comC, comT , cy) :

view2(e)

–

pp← PCOM.Setup(1κ, d);
PK← E.KeyGen(1κ);
S(pp,PK, d; rS)

18

3.2 Our Protocols

In this section, we present the construction of our private polynomial commit-
ment. Our construction is based on the additive homomorphic encryption (AHE)
scheme from [13] and the inner-pairing product argument from [17]. As a warm-
up, we start by considering a single point where the idea is that the evaluation
of a polynomial f(x) =

∑d
i=0 aix

i at point t can be viewed as the inner prod-
uct between the coefficients vector (a0, a1, . . . , ad) and the evaluation vector
T = (1, t, t2, . . . , td). Therefore, given the ciphertexts encrypting the coefficients
and the commitments of the evaluation vector T , the committer proves in Phase
1 that the polynomial evaluation on the ciphertext is indeed the inner product
between the two vectors using the techniques in [17]. Next, it remains to show
that the committed evaluation vector is well-formed, i.e., it is indeed the powers
of the evaluation point t. To prove this property, denoting the i-th element in
a vector T as T [i], it suffices to show that (1) the 0-th element T [0] is 1; (2)
T [i + 1] = T [i] · T [1] for i = 0, . . . , d − 1. These two conditions can further be
translated into two types of constraints: linear constraints and quadratic con-
straints. The first condition is equivalent to the inner product between T and a
public vector (1, 0, . . . , 0) is 1. For the second condition, we define three selector
matrices A,B,C ∈ Fd×(d+1) such that

X = A× T = (T [0], T [1], . . . , T [d− 1]),

Y = B × T = (T [1], T [1], . . . , T [1]),

Z = C × T = (T [1], T [2], . . . , T [d]). (1)

Finally, the committer proves that X ⊙ Y = Z, where ⊙ denotes the Hadamard
(element-wise) product. It is not hard to see that T is the correct evaluation
vector if and only if it satisfies these constraints.

We use standard techniques such as [15] to reduce the linear constraints and
the quadratic constraints to inner product arguments in Phases 2 and 3. Note
that the protocols in these two phases are independent of the ciphertexts encrypt-
ing the coefficients. The formal protocol of our private polynomial commitment
is presented in Figure 2. This protocol uses the encryption scheme from [13],
the pairing-based commitment from [4] and the Pedersen commitment [55] (see
Appendix 2) as building blocks. The protocol also involves private inner product
argument, linear constraints test and quadratic constraints test, as described
above in the three phases. We present these protocols later in Figures 4, 5 and 6
together with our scheme for multiple evaluations.
Multiple Evaluations. The major advantage of our construction is that it sup-
ports batched evaluations on multiple points efficiently, where the proof size and
the receiver’s time do not increase by much compared to a single evaluation. We
describe our scheme for multiple evaluations in Figures 3. The differences from
the single evaluation variant are highlighted in purple. In particular, in Phase
1 (Steps 1 and 2 in Figure 3), C and R check the inner products between the
coefficient vector in the ciphertext and all the evaluation vectors in the com-
mitments using a single private inner product argument protocol via a random

19

Setup(1κ, d): Generate the public parameters of the bilinear map and the com-
mitment scheme Ped and AFG. (G1,G2,Gt, p, e, w, g) ← G(1κ), ck1 =
(wr, w0, . . . , wd), a, b)← AFG.KeyGen(S, 3d+ 8).
ck2 = (vr, v0, . . . , vd) ← Ped.KeyGen(1κ, d + 2), ck3 ← Ped.KeyGen(1κ, 2),
ck4 = (xr, x0, . . . , xd)← Ped.KeyGen(1κ, d+ 2).
Output pp = (ck1, ck2, ck3, ck4, a, b).

Commit(pp,C, rC): Given the ciphertext of the coefficients C = (c0, . . . , cd), out-
put AFG.Commitck1(C, grC) = e(grC , wr) ·

∏d
i=0 e(ci, wi), where rC ∈ Zp.

CommitPt(pp, t, rT , d): Given an evaluation point t, generate T = (1, t, . . . , td) and
output Ped.Commitck2(T, rT) where rT ∈ Zp.

Protocol Πpriv(C(C, rC, t, rT),R)(pp, comC, comT , cy):

1. C and R execute Private inner Product Argument specified in (Figures
4) with common input pp, comC, comT , cy and C, T as private inputs to C.

2. C → R: Let A,B,C be public selector matrices defined in Equation 1. C
computes X = A× T = (1, t, . . . , td−1), Y = B × T = (t, . . . , t), Z = C × T =
(t, . . . , td). C commits to X,Y, Z by comX = Ped.Commitck2(X, rX), comY =
Ped.Commitck2(Y, rY), comZ = Ped.Commitck2(Z, rZ), where rX , rY , rZ ∈ Zp.
C sends comX , comY , comZ to R.

3. C ↔ R : C and R execute Linear Constraints Test specified in Figure 5
with common input comT , comX and T,X as private inputs to C. Repeat the
same for Y and Z. Let D be public selector matrix defined as D × T = [1], C
and R execute Linear Constraints Test specified in Figure 5 with common
input comT , D and T as private inputs to C.

4. C↔ R : C and R execute Quadratic Constraint Test specified in Figure 6
with common input comX , comY , comZ and X,Y, Z as private inputs to C.

5. R outputs 1 if all checks pass.

Fig. 2: Private Polynomial Commitments (Single Evaluation).

linear combination. In Phase 2 (Step 4 in Figure 3), the product between a se-
lector matrix (i.e., A,B or C) and all the evaluation vectors can be reduced to a
single inner product via two random linear combinations, as shown in Figure 5.
In Phase 3 (Step 5 in Figure 3), the protocol of the quadratic constraint test is
more complicated. We are not able to reduce the Hadamard product of matrices
X⊙Y = Z to a single inner product. Instead, we reduce the Hadamard product
to the sum of m inner products via a random linear combination in Step 1 of
Figure 6. Then we propose a protocol (Step 3 of Figure 6) to prove the sum of the
inner products with a proof size of only O(log d). The protocol is an extension
of the scheme for the Hadamard product in [15] in a non-black-box way.

20

Protocol Πbatched
priv (C(C, rC, {ti}i∈[m], {rTi}i∈[m]),R)(pp, comC, {comTi}i∈[m],

{cyi}i∈[m]):

1. R→ C : R sends S = (s1, s2, · · · , sm) ∈ Zm
p .

2. C↔ R : Let F =
∑m

i=1 si · Ti , comF =
∏m

i=1 com
si
Ti

and cy =
∏m

i=1 c
si
yi .

C and R execute Private inner Product Argument specified in (Figures 4)
with common input pp, comC, comF , cy and C, F as private inputs to C

3. C → R: Let A,B,C be public selector matrices defined in Equation 1. C
computes Xi = (1, ti, . . . , t

d−1
i), Yi = (ti, . . . , ti) and Zi = (ti, . . . , t

d
i). Let

T ∈ Z(d+1)×m
p be the matrix with the i-th column as Ti. C commits to

each column of X,Y, Z, namely, comXi = Ped.Commitck2(Xi, rXi), comYi =
Ped.Commitck2(Yi, rYi), comZi = Ped.Commitck2(Zi, rZi) where rXi , rYi , rZi ∈
Zp and sends {comXi , comYi , comZi}i∈[m] to the R.

4. C ↔ R : C and R execute Linear Constraints Test specified in Figure 5
with common input pp, {comTi}i∈[m], {comXi}i∈[m] and T,X as private inputs
to C. Repeat the same for Y and Z. Let D be public selector matrix defined as
D×T = [1]m, C and R execute Linear Constraints Test specified in Figure 5
with common input comT , D and T as private inputs to C.

5. C ↔ R : C and R execute Quadratic Constraint Test specified in Figure
6 with common input pp, {comXi}i∈[m], {comYi}i∈[m], {comZi}i∈[m] and X,Y, Z
as private inputs to C.

6. R outputs 1 if all checks pass.

Fig. 3: Batched proof for Private Polynomial Commitments.

Theorem 1. Protocol PCOM (Figure 3) is a private polynomial commitment
scheme as in Definition 9, under the Decisional Linear (DLIN) and the Double
Pairing Problem (DPP) hardness assumptions (see Section 2.2).

Proof Sketch: To show PCOM is a private polynomial commitment scheme
(Definition 9), we show that the protocol satisfies completeness, binding, witness-
extended emulation and honest verifier privacy.

Completeness: In the private inner product argument test, there are two phases
- the masking phase and the inner product phase. In the end, R accepts if the
combined commitment of the private polynomial, evaluation vector and evalua-
tion ciphertext is decommitted correctly. This essentially follows from showing
that the commitment of the private polynomial, the commitment of the evalua-
tion vector and the evaluation ciphertext are updated correctly in each round.
The rest of the protocol involving the linear constraint test, quadratic test and
the BBB-IPA follow essentially observing that the corresponding constraints are
satisfied.

21

Private inner Product Argument

Private Inputs: C : C = (c0, . . . , cd) ∈ Gd+1
E , F = (f0, . . . , fd) ∈ Zd+1

p .
Public Inputs: pp = (ck1, ck2, ck3, a, b,PK), comC, comF , cy.

1. Masking Phase:
(a) C → R: C generates a random encrypted polynomial E = (e0, . . . , ed) ∈

Gd+1
E where ei = EvalPK(ri) and ri ∈ Zp. A random vector M =

(M0, . . . ,Md) ∈ Zd+1
p is also sampled and generates commitment comE =

AFG.Commitck1(E, rE) and comM = Ped.Commitck2(M, rM) where rE, rM ∈
Zp.
C also computes: cl = ⟨E, F ⟩, cr = ⟨C,M⟩, cm = ⟨E,M⟩ and sends
comE, comM , cl, cr, cm to R.

(b) R→ C: R sends a random challenge x ∈ Zp.
(c) Both parties set com′ where: com = comC · e(comF , a) · e(cy, b), com′ =

com · comx
E · e(comM , a)x

−1

· e(cxl · cm · cx
−1

r , b), and C sets C′ = C ⊙ Ex

and F ′ = F + x−1 ·M where ⊙ denotes element-wise multiplication of two
vectors.

(d) Both parties update com = com′, C = C′, F = F ′.
2. Inner Product Phase:

For round rnd = 1 to log d− 1:
(a) Set d′ = (d + 1)/2. C sets CL = C[: d′], CR = C[d′ :], FL = F [: d′] and

FR = F [d′ :] while both C and R sets ck1L = ck1[: d′], ck1R = ck1[d
′ :],

ck2L = ck2[: d
′], and ck2R = ck2[d

′ :].
(b) C generates intermediate cross-commitments:

comCL = AFG.Commitck1R(CL, rCL), comCR = AFG.Commitck1L(CR, rCR),
comFL = Ped.Commitck2R(FL, rFL), comFR = Ped.Commitck2L(FR, rFR),
where rCL , rCR , rFL , rFR ∈ Zp.

(c) C→ R: C generated L and R: cl = ⟨CR, FL⟩, cr = ⟨CL, FR⟩
L = comCR · e(comFL , a) · e(cl, b), R = comCL · e(comFR , a) · e(cr, b), where
a, b ∈ pp and sends L,R to C.

(d) R→ C: R sends a random challenge x ∈ Zp.
(e) C sets C′ = CL⊙Cx

R and F ′ = FL +x−1 ·FR where ⊙ denotes element-wise
multiplication of two vectors while C and R both locally compute the new
keys ck′1 = ck1L ⊙ ckx

−1

1R and ck′2 = ck2L ⊙ ckx2R
(f) R computes new commitment com′ = Lx · com ·Rx−1

(g) C and R will update C = C′, F = F ′, com = com′, and cki = ck′i∀i ∈ [2]
In round log d:
(h) In the last round,C opens com to C′, F ′ and c′y and R accepts if cy = ⟨C′, F ⟩.
(i) If all checks pass, R outputs b = 1 else output b = 0.

Fig. 4: Private Inner Product Argument.

Binding: To argue the binding property of PCOM, it can be trivially reduced
to the binding property of the Ped and AFG commitment scheme.
Witness-Extended Emulation: To argue witness-extended emulation of
PCOM, as shown in [15], it is enough to show that given (n1, . . . , nr)-tree of

22

Linear constraint Test (Prove A× T = X)

– Private Inputs: C has private inputs: X ∈ Zd×m
p , T ∈ Zd+1×m

p .
– Public Inputs: pp = (ck1, ck2, ck3, a, b,PK), {comTi}i∈[m], {comXi}i∈[m] where

comTi , comXi ∈ G1.
1. R → C: R sends random vectors S ∈ Zd

p and U ∈ Zm
p . Let SA = S × A,

TU = T × U , XU = X × U . We observe that if A × T = X then for any
S ∈ Zd

p and U ∈ Zm
p we have:

S ×A× T × U = S ×X × U, i.e, ⟨SA, TU ⟩ − ⟨S,XU ⟩ = 0.

2. C → R : C computes two cross terms inner product l and r and sends
their respective commitments coml, comr to R: l = ⟨SA,−XU ⟩, r = ⟨S, TU ⟩,
coml = Ped.Commitck3(l, rl), comr = Ped.Commitck3(r, rr), where rl, rr ∈ Zp.

3. R→ C: R sends a random challenge x ∈ Zp.
4. R ↔ C: C computes L = SA + x−1 · S and R = TU − x · XU . C and

R both compute comL = Ped.Commitck4(SA + x−1 · S; 0) and comR =∏m
i=1 com

U [i−1]
Ti

· comU [i−1]·x
Xi

.C and R execute BBB-IPA (Figure 1) on com-

mon inputs is ck4, ck2, ck3, comL, comR, com
x
l · comx−1

r and private inputs of
C are , L,R, x · l + x−1 · r.

5. If all checks pass, R outputs b = 1 else output b = 0.
– A special case is when D × T = X where X is a known vector of dimensions

1×m. The above test can be simplified where R sends a random vector U ∈ Zm
p

and the check is reduced from D × T = X to ⟨D,TU ⟩ = d where TU = T × U
and d =

∑m−1
i=0 U [i]. C and R compute comD = Ped.Commitck4(D, 0), comTU =∏m

i=1 com
U [i−1]
Ti

,comd = Ped.Commit(d, 0) .C and R execute BBB-IPA (Figure 1)
on common inputs is ck4, ck2, ck3, comD, comTU , comd and private inputs of C are
D,TU , d . If all checks pass, R outputs b = 1 else output b = 0.

Fig. 5: Linear Constraint Test.

accepting transcripts, there exist a PPT extractor X which extracts the witness
for PCOM. To construct X , we first construct a witness-extraction algorithm
X1 that succeeds in extracting the witness of Private Inner Product Argument
given (n1, . . . , nr)-tree of accepting transcripts. Using the rewinding property of
the extractor and choosing different randomness in each rewinding, the extrac-
tor X1 can extract the witness. Here, the witness is the encrypted polynomial,
evaluation vector, encrypted evaluation and the randomness used to generate
the commitments. Next X extracts the evaluation vector from Linear Test and
Quadratic test to verify if the evaluation used in all three tests is the same. We
use the witness-extended emulation extractor of BBB-IPA as a subprotocol in
extracting the evaluation vector from the Linear and Quadratic tests.
Honest Verifier Privacy: To show honest verifier privacy, we construct a
simulator S. Indistinguishability of the simulation essentially follows from se-
mantic security of the underlying encryption scheme, hiding of the commitment

23

Quadratic Constraint Test (Prove X ⊙ Y = Z)

Private Inputs: C : X,Y, Z ∈ Zd×m
p .

Public Inputs: pp = (ck1, ck2, ck3, ck4, a, b,PK), {comXi}i∈[m], {comYi}i∈[m],
{comZi}i∈[m] where comXi , comYi , comZi ∈ G1.

1. R → C: R sends a random vector S ∈ Zm
p and a random value w. Now if

X ⊙ Y = Z, then
∑

i∈m wi(⟨Xi, Yi ⊙ S⟩ − ⟨Zi, S⟩) = 0.
2. Let Li = wi ·Xi, Li+m = wi · Zi, Ri = Yi ⊙ S,Ri+m = −S

C and R compute a new key ck5 where ck5[j] = ck
S[j]−1

2 [j] for all j ∈ [0, d]

and compute the commitments as follows: comLi = comwi

Xi
, comLi+m = comwi

Zi
,

comRi = comYi , comRi+m = Ped.Commitck5(−S)
3. C sets d = 0 while R sets comd = 1. Also set m′ = 2m.

For round 1 to logm:
(a) C → R: Set m’ = m’/2. C computes two cross terms inner product l =∑m′

i=1⟨Li, Ri+m′⟩ and r =
∑m′

i=1⟨Li+m′ , Ri⟩ and sends a Ped commitment of
these two (coml and comr) to R.
where rl, rr ∈ Zp.

(b) R→ C : R sends a random challenge x ∈ Zp.
(c) C computes {L′

i = Li + x−1 · Li+m}i∈[m′] and {R′
i = Ri + x ·Ri+m}i∈[m′]

while R updates the commitments comL′
i
= comLi · comx−1

Li+m
and comR′

i
=

comRi · comx
Ri+m

.
(d) C computes d′ = d+ x · l+ x−1 · r while R computes comd′ = comd · comx

l ·
comx−1

r .
(e) C updates Li = L′

i, Ri = R′
i, d = d′ while R updates comd = comd′ .

In round logm+ 1:
(f) C sets L = L1 and R = R1 while R sets comL = comL1 and comR =

comR1 C and R execute BBB-IPA (Figure 1) on instance with common
input ck2, ck5, ck3, comL, comR, comd and L,R, d as private inputs of C.

Fig. 6: Quadratic Constraint Test.

scheme, honest-verifier zero-knowledge property of the underlying BBB-IPA and
standard masking techniques.

We provide the full proof in Appendix A.1.

Complexity.The communication complexity of our polynomial commitments is
O(log d) for a single evaluation and O(m + log d) for m points where d is the
degree of the polynomial. Their round complexity is O(logm+ log d) rounds.

The computational complexity of the committer is O(m · d) modular expo-
nentiations and O(d) bilinear pairings, while the complexity of the receiver is
O(m+d) exponentiations. The space complexity of our private polynomial com-
mitment scheme is O(m+d) for the committer as it needs to store the encrypted
polynomial and the evaluation points. The space complexity of the receiver is
O(m) (resp. O(m+log d)) in the interactive (resp. non-interactive setting). This

24

difference is because, in the non-interactive setting, the entire proof is stored for
validation.

3.3 Other variants of the Private Polynomial Commitment

Non-interactive proofs and public verifiability via Fiat-Shamir trans-
form. As the proof systems for the single and batched setting of private polyno-
mial commitment schemes are public-coin (i.e. R only sends random coins during
the interaction of the protocol), it can be transformed to a non-interactive proof
system via the Fiat-Shamir transform [28]. Furthermore, these proofs will be
publicly-verifiable.
Private polynomial commitment with public evaluation points. In the
private polynomial commitment protocols from Figures 2 and 3, the evaluation
points are known only to the committer and are committed to the receiver. It
is not hard to change the protocols to support public evaluation points known
both to the committer and the receiver. A naive approach is to execute Phase 1
only. As the receiver knows the evaluation points, it can compute the well-formed
evaluation vectors on its own without the checks in Phases 2 and 3. However,
in the batched variant in Figure 3, the complexity of the receiver would become
O(dm), as computing the commitments of the evaluation vectors takes O(dm)
time. Instead, to maintain the same complexity, the committer and the receiver
still execute all three phases of the protocol. In Phase 2, the receiver computes the
commitment of Y on its own. As Yi = (ti, ti, . . . , ti), computing the commitments
of all Yis only takes O(d+m) time.

In our application for multi-party private set intersection (MPSI), we will rely
on the non-interactive proof variant of our private polynomial commitment both
with hidden and public points. Precisely, we will have a polynomial committed
once and then incorporate proofs of evaluations on both types of points.
Multivariate polynomial commitment. Our protocols can also be general-
ized to support multivariate polynomials. The evaluation of a multivariate poly-
nomial can also be viewed as the inner product between the coefficient vector
and the evaluation vector computed by all monomials of the evaluation point.
Therefore, Phase 1 of the protocols in Figure 2 and 3 remains the same. In
Phases 2 and 3, we instead check the form of the evaluation vectors of the mul-
tivariate polynomial. These can be reduced to linear and quadratic constraints
with different A,B,C matrices. The techniques to batch multiple evaluations in
Figures 3, 6 and 5 remain the same.

4 Scalable Multi-Party PSI

Our first application is a new scalable PSI protocol that follows the blueprint of
[46]. This protocol is carried out in a star topology network with P1 being the
central party. In this work, we show that the actions of P1 can be captured by
the abstraction of a private polynomial commitment.

25

We broadly split our protocol description into four main phases. In the first
phase (Key Generation), the parties jointly generate a public key without dis-
closing their corresponding secret key shares, as well as the public parameters
for the two polynomial commitments. The second phase (Commitment Phase)
is executed by the central party P1 that broadcasts commitments of its input
together with a proof of knowledge. In the third phase (Aggregation), all parties
(except P1) send it an encrypted polynomial whose roots correspond to their
inputs. P1 combines these polynomials for each party and provides a commit-
ment of the encrypted aggregated polynomial while proving the correctness of
aggregation. The last phase (Intersection) concludes the protocol by extracting
the intersection, where P1 evaluates the aggregated polynomial on its input and
provides proof of correct evaluation. Once the proof is validated, the parties
decrypt each evaluation to get the intersection.

Our polynomial commitments will be useful in [46] for two purposes; proving
the correctness of aggregation by evaluating on a public point and proving the
correctness of evaluations on P1’s input finally to reveal the intersection.

We use the following primitives in our construction:

– A threshold additively homomorphic encryption scheme with protocols (ΠGEN
and ΠDecZero) to respectively sample a public key together with the secret key
shares, and a protocol to determine if a target ciphertext decrypts to 0. We
instantiate our scheme with the BBS encryption scheme (Section 2.3) which
relies on the DLIN assumption (Definition 2).

– Our polynomial commitment scheme PCOM, (that is compatible with the
threshold encryption scheme), and is instantiated with non-interactive pub-
licly verifiable proofs of evaluation of hidden points (in the batched setting)
and public points (in the single instance setting). We respectively denote
the committer and receiver algorithms for the corresponding (non-interactive)
proof systems by (PCOM.Cbatch

hid ,PCOM.Rbatch
hid) and (PCOM.Cpub,PCOM.Rpub).

To construct PCOM, we require two commitment schemes: Pederson Commit-
ment scheme (Section 2.4) which relies on the DL assumption and the AFG
Commitment scheme (Section 2.4) that is based on bilinear pairing and relies
on the DPP assumption (Definition 4).

– An n-party protocol ΠCOIN to sample random coins.
– A simulation extractable non-interactive publicly verifiable proof system ΠEXP

to prove knowledge of exponent. We instantiate this with the non-interactive
variant of the classic protocol due to [61] via the Fiat-Shamir transform. We
denote the prover and verifier algorithms by (DL.Ppub,DL.Vpub).

The protocol is split into two parts and presented in Figures 7 and 8. The first
three phases of the protocol: Key Generation, Commitment Phase and Aggre-
gation are covered in Figure 7 whereas the Intersection is contained in Figure 8.

Theorem 2. The protocol πMPSI described in Figure 7 and Figure 8 securely
realizes FMPSI (described in Figure 9) in the presence of malicious adversaries
and dishonest majority under Decisional Linear (DLIN) and Double Pairing
Problem (DPP) hardness assumptions.

26

Protocol πMPSI with Malicious Security (Part 1)

Input: Party Pi is given a set Xi = {x1
i , . . . , x

mi
i } of size mi for all i ∈ [n]. All parties

are given a security parameter 1κ and a description of a group G.
The protocol:

1. Key Generation. The parties mutually generate a public key PK and the cor-
responding secret key shares (SK1, . . . , SKn) by running πGEN. P1 also runs the
setup for the polynomial commitment scheme by running PCOM.Setup(1κ,mmax).

2. Commitment phase. P1 creates commitments to its inputs {comT1 , . . . , comTn}
where comTi = PCOM.CommitPt(pp, xi

1, rTi ,mmax) and rTi ∈ Zp is randomly cho-
sen and generates a proof using DL.P proving knowledge of the committed message
and broadcasts the commitment and proof to all parties.

3. Aggregation
(a) For all i ∈ [2, n], party Pi computes the coefficients of a polynomial Ai(·) =

(ai
0, . . . , a

i
mi

) of degree mi, with roots set to the mi elements of Xi. In addition,
Pi chooses a random element λi ← G and computes the product λi ·ai

j for every
coefficient within Ai. Pi sends P1 the sets of ciphertexts Ci =

(
ci0, . . . , c

i
mi

)
,

encrypting the coefficients of λi ·Ai(·).
(b) Upon receiving the ciphertexts from all parties, party P1 combines the follow-

ing ciphertexts

c0 =
∏n

i=2
ci0, . . . , cmmax =

∏n

i=2
cimmax

where mmax = max(m2, . . . ,mn). Note that P1 generates the ciphertexts by
encrypting the coefficients of the combined polynomial A(·) = λ2 ·A2(·)+ · · ·+
λn·An(·). P1 then generates and broadcasts comC which is a commitment of the
encrypted polynomial C(·) = (c0, . . . , cmmax) using PCOM.Commit(pp,C, rC)
where rC is generated randomly.

(c) Next, the parties verify whether the polynomials aggregation was done cor-
rectly. Specifically, the parties first agree on a random element u from the
appropriate plaintext domain using the coin tossing protocol πCOIN (Section
2.5). P1 broadcasts the encrypted evaluation λ̃ = Eval(PK,C, u) along with a
proof of correct evaluation by using PCOM.Cpub on public inputs pp, comC , u, λ̃
and private inputs C, rC.

(d) Then, each party broadcasts the ciphertext λ̃i = Eval(PK,Ci, u), together with
a ZK proof of knowledge generated using DL.P for proving the knowledge of
the plaintext. If all the proofs are verified correctly, then the parties check that
λ̃−

∏n
i=2 λ̃i encodes a 0-message using πDecZero.

Fig. 7: Multi-party PSI protocol (Part 1).

Proof sketch: We split the analysis into two cases based on whether the set of
corrupted parties includes the central party P1 or not. Consider an adversary A
that corrupts a set of parties that includes P1. We define a simulator S and prove
that the real and simulated executions are computationally indistinguishable.
The indistinguishability between the real and simulated execution is reduced
to the privacy property of the encryption scheme, the hiding property of the

27

Protocol πMPSI with Malicious Security (Part 2)

The protocol (continued):

4. Intersection.
(a) If the above verification is completed correctly, P1 evaluates the aggregated

polynomial that is encrypted within ciphertexts C =
(
c1, . . . , cmmax

)
, on its in-

put elements {xj
1}

m1
j=1, and proves consistency with the commitment comC. P1

forwards the encrypted evaluations cy = Eval(PK,C, t) along with a proof gen-
erated using PCOM.Cbatch

hid on public inputs pp, comC, {comTi}i∈[m], {cyi}i∈[m1]

and private inputs C, rC, X1, {rTi}i∈[m1]

(b) All parties verify the evaluations and then decrypt the evaluations using pro-
tocol πDecZero to reveal the intersection.

Fig. 8: Multi-party PSI protocol (Part 2).

Functionality FMPSI

FMPSI communicates with parties P1, . . . , Pn with input sets X1, . . . , Xn and an
adversary A controlling a subset of parties.

1. Upon receiving a message (input, Pi, Xi) from party Pi, store the set Xi. Once
all inputs i ∈ [n] are received, set X = ∩n

i=1Xi and send (input) to A.
2. Upon receiving (deliver) from A, output (output, X) to P1. If received (abort)

from A, output ⊥ to P1.

Fig. 9: Multi-party PSI Functionality.

commitment schemes, and the privacy property of the polynomial commitment.
In the first case, the central party P1 is corrupted, and the input of P1 can
be extracted from P1’s input commitment in the commit phase. The input of
other corrupted parties can be extracted by rewinding the aggregation phase.
This is achieved by extracting d+1 evaluation points of every corrupted party’s
polynomial as shown in [46]. In the second case, the simulation is the same as
the previous case with the exception that it does not need to extract P1’s input.

The complete proof is provided in Section A.2.

Complexity. The communication complexity of our protocol is linear in the in-
put sizes and the number of parties, where the smallest input size can be given to
P1. Naively, the communication complexity of our protocol is O(n2+

∑n
i=1 mi+

n ·mmin · logmmax) when the polynomial commitment is separately used for each
evaluation point. The batching feature of our scheme reduces the communica-
tion cost of our protocol to O(n2 +

∑n
i=1 mi + n · (mmin + logmmax)). For the

central party P1, the communication cost is O(n(mmin+logmmax). P1 generates
a batched evalution proof of size O(mmin + logm). The dominating cost for P1

is sending the evaluation proof to all other parties. For all other parties, the

28

P1 Pi Total
KeyGen O(n) O(n) O(n2)

Commit O(n ·mmin) — O(n ·mmin)

Aggregate O(n · logmmax) O(mi + n) O(n2 +
∑n

i=2 mi+
n · logmmax)

Intersection O(n · (mmin + logmmax)) O(mmin) O(n · (mmin + logmmax))

MPSI O(n · (mmin + logmmax)) O(n+mmin +mi) O(n2 +
∑n

i=1 mi+
n · (mmin + logmmax))

Table 3: MPSI Communication Complexity.

communication cost is O(n + mmin + mi) where O(n) is sent during the Key
Generation phase as well as verifying the aggregation. Additionally, the com-
munication cost in sending the encrypted polynomial to P1 and generating the
intersection is O(mi) and O(mmin) respectively. We provide a detailed analysis
in Table 3, providing the communication complexity of the parties individually
as well as together along every phase of the MPSI protocol. The round com-
plexity of our protocol is dominated by the round complexity of the underlying
polynomial commitments. In the random oracle model, the round complexity is
4.

Computationally, the dominating part of the protocol is evaluating the ag-
gregated polynomial and executing the private polynomial commitment from
Section 3. The complexity of our protocol is O(mmax · mmin) exponentiations.
We further reduce the polynomial degrees and the overall workload using hash-
ing techniques; see below for more details. The space complexity of our protocol
in the interactive setting is O(mmax) for P1 and O(mi) for every other party
Pi, while in the non-interactive setting the complexity is O(mmax) for P1 and
O(mi + logmmax) for party Pi. We note that the space complexity of P1 is in-
dependent of the number of parties. In particular, the polynomials received by
the parties can be aggregated on-the-fly and do not require any extra space.
Regarding the polynomial commitments, the non-interactive variant requires Pi

to store the entire proof in the memory which increases the space complexity by
an additive factor of O(logmmax).
Hashing. A notable optimization in PSI protocols is using simple hashing
to map the input into smaller sets (buckets) and running a different instance
per bucket. In our context, this enables us to reduce the workload of P1 from
quadratic to quasilinear. The idea behind simple hashing lies in splitting the
input set into bins where based on a hash function, each element is assigned to
a bin. Next, the parties sort their input into bins and run an MPSI protocol
separately on each bin. Splitting the input into bins reduces the size of the de-
gree of the polynomials and improves the computation cost of the parties for the
computationally heavy tasks of polynomials interpolations and evaluations.

Simple hashing can be directly used in the malicious setting where each bin
induces a separated polynomial. Note that the adversary can only attempt to put
an item in the wrong bin but this item can be ignored by the simulator. Let h be

29

a hash function, mmax be the maximum number of items in an input set, B be the
number of bins and M is the maximum of items in a bin. It is known that if a hash
function maps mmax items into B bins and mmax ≥ B logB then with very high

probability, M = mmax
B +

√
mmax logB

B [59, 67]. Setting B = mmax log logmmax
logmmax

and

applying the Chernoff bound implies that M = O(logmmax
log logmmax

) with negligible
error in mmax. Simple hashing can be used to reduce the number of exponentia-
tions, thereby reducing the computational cost. Namely, for each bin, the number
of required exponentiations is O(M2) and the overall number of exponentiations
will be O(BM2). Substituting the values of B and M using the above analysis
will result in O(mmax

logm
log logm) exponentiations. We refer to Section 6 for more

details regarding the concrete improvement.
The hashing techniques are not useful for improving [9] as they cannot be

broken into small instances. While the improvement for [36] will potentially be
smaller since its computational complexity is quasilinear in the input size.

5 Other Applications

In this section, we consider a list of distributed tasks in different settings, whose
realization can make use of private polynomial commitments. All applications
can benefit from the batching of our scheme while achieving malicious security.

5.1 Oblivious Polynomial Evaluation

Following the discussion from Section 1, in this work, we consider a distributed
variant of the oblivious polynomial evaluation functionality denoted by DOPE,
where the polynomial Qi(·) is linearly shared amongst a set of n − 1 parties.
More formally, we define the DOPE functionality as follows. The input of party
Pi for i ∈ [2, n] is a polynomial Qi(·) of degree at most d whereas the input of
P1 is an element t, and the goal is that P1 learns

∑
i∈[2,n] Qi(t).

P1 comm Pi comm Total comm P1 comp Pi comp
[45] O(n(dκ) + nλ) O(dλκ) O((n+ λ)dκ) O(ndλ) O(dλ)

[43] O(nκ log d) O(dκ) O(ndκ) O(nd) O(d)

Our Work O(nκ log d) O(dκ) O(ndκ) O(d) O(d)

Table 4: Comparison between different DOPE protocols where comm refers to
the communication complexity and comp refers to the computational complex-
ity (stated as the number of exponentiations), κ is the computational security
parameter, λ is the statistical security parameter, n is the number of parties and
d is the degree of the polynomial.

We can realize our DOPE functionality (in Figure 10)in the presence of n−1
malicious corruptions based on our polynomial commitment scheme following

30

Functionality FDOPE

FDOPE communicates with parties P2, . . . , Pn with input polynomial
Q2(·), . . . , Qn(·), party P1 with input point t and an adversary A controlling
the subset of parties.

1. Upon receiving a message (input, Pi, Qi) from party Pi for i ∈ [2, n], store the
polynomial Qi and send a message (input) to A.

2. Upon receiving a message (input, P1, t) from party P1, store the value t and send
a message (input) to A.

3. Upon receiving a message (deliver) from A, set x =
∑n

i=2 Qi(t) and output
(output, x) to P1. If received the message (abort) from A, output ⊥ to P1.

Fig. 10: DOPE Functionality.

the blueprint of our PSI protocol. Namely, the parties send their encrypted
coefficients to P1 that aggregates the ciphertexts and evaluates Q(·) on its input
t. P1 further attaches proofs of correct aggregation and evaluation. Finally, the
parties run a distributed decryption protocol for P1 to learn Q(t). Note that,
while in PSI the inputs of the parties are extracted from the polynomials’ roots,
where the inputs are the polynomial’s shares that form Q(·).

Our scheme is further flexible regarding the level of threshold introduced by
the underlying secret sharing scheme. In particular, one may use any threshold
linear secret sharing for splitting the polynomial into shares (rather than simple
additive sharing), where the threshold parameter can be smaller than n− 1. We
also have a simple aggregation mechanism which allows the DOPE to be reduced
to a single OPE execution where n− 1 parties play the role of P2.

Two prior OPE constructions with malicious security [45, 43] can be extended
to the distributed setting, where each party Pi for i ∈ [2, n] carries out an indi-
vidual OPE with P1. Compared to previous work; see Table 4, our construction
achieves better computational complexity for the central party P1 due to the fact
that the aggregation mechanism allows P1 to combine the polynomials cheaply
and then run the protocol with almost the same cost as running a two-party in-
stance of OPE. The overall communication complexity of our protocol is similar
to [43] and is better than [45].

Finally, we note that we can further extend our protocol to support multi-
variate polynomials to cover a broader class of functionalities.

5.2 Verifiable Polynomial Evaluations

In this setting, we focus on verifying the evaluations of a polynomial Q(·), lin-
early shared across a set of n − 1 clients, that are aggregated and stored by
a cloud server. Specifically, a set of clients outsource their shares of a d-degree
polynomial (potentially in the clear), to an untrusted server while storing a short
state. The server stores the aggregated polynomials and prepares proof for this

31

computation. Next, whenever the clients provide an input x, the server com-
putes Q(x) and a short proof that allows the clients to verify this computation
in sub-linear time in d. We require the verification process to be public. Finally,
the client’s output Q(x).

Employing our polynomial commitment by the server, the clients can non-
interactively verify the proofs it provides. Furthermore, our solution supports
the feature that the polynomial may also be kept private since the shares can
be stored on the server while encrypted, where only the evaluation points are
public. In more detail, each party Pi sends the server its polynomial share Qi(·).
The server aggregates the shares and computes a proof of correct aggregation
(that can be made non-interactive by using the random oracle to choose the
random evaluated point for this test). Upon receiving an input x, the parties
forward it to the server that computes (the encryption of) Q(x) together with
a proof of correctness. Our protocol is secure in the presence of n− 2 corrupted
clients, and a colluding server. Note that the degree of Q(·) may be huge, yet
uploading it is a one-time phase whose complexity amortizes away over multiple
evaluation points. Moreover, the proofs of correct evaluations can be batched.

Related modelling is multi-clients verifiable computation where a set of clients
wish to compute some function f on their joint inputs while non-interactively
communicating only with the server over a sequence of evaluations [25, 42, 11].
Such constructions have only been demonstrated in a setting where the clients
and the server do not collude [42]. Our protocol achieves full security but requires
an additional round of communication at the end due to decryption.

Verifiable polynomial evaluations on encrypted data. The second appli-
cation in this area is verifiable computation on encrypted data. The notion was
proposed by Gennaro et al. in [37] and follow-up works [39, 30, 31, 12] proposed
constructions for computations such as linear functions and polynomial evalu-
ations. These schemes provide both privacy of the outsourced data to the un-
trusted server and the integrity of the results computed by the server. However,
these constructions rely on fully or somewhat homomorphic encryptions based
on lattice and zero-knowledge proofs over polynomial rings, thus their overhead
is high and they have not been realized in practice. Also, these protocols cannot
be directly extended to multi-clients.

Our scheme yields a more efficient verifiable computation on encrypted data
for polynomial evaluations. The prover’s computation only involves operations
on bilinear maps, making it one step closer to being practical. In the amortized
setting, the verifier’s time is faster than evaluating the polynomial locally for
multiple evaluations. In particular, to compute m evaluations on a degree-d
polynomial, the proof size is O(m+ log d) and the verifier’s time is O(d+m).

Our model requires a setup phase for the clients prior to communicating with
the server. This setup phase is independent of the input and is only carried out
once, regardless of the number of polynomial evaluations computed later. The
clients store a short state upon concluding this phase, which is later used to
extract Q(x). In our protocol, the parties run the key generation protocol for

32

the underlying threshold encryption scheme, store the secret key share, and use
it to partially decrypt the ciphertext returned from the server.

5.3 Non-interactive Two-party PSI (NISI)

Ishai et al. [47] introduced the Non-interactive Secure computation (NISC) model
where a Receiver first posts an “encryption” of its input publicly and then a
Sender can compute a function over the encrypted input along with its input and
obtain an “encryption” of the output that the Receiver can decrypt. The classic
Yao’s garbled circuit-based two-party protocol in the semi-honest setting when
combined with a 2-round OT is an example of such a protocol. Several works have
explored the feasibility and concrete efficiency of such protocols in the malicious
Boolean setting [47, 5, 51, 44, 3]. Private polynomial commitments can be used
directly to implement a non-interactive secure private set-intersection protocol
by relying on a variant of the [33] protocol. Such a scheme will additionally have
the feature of reusability where the receiver only needs to post its encrypted input
once and any number of senders can transmit the result of the set intersection to
the receiver. An important application of reusable NISI is applicable is contact
discovery in messaging services such as Signal and Telegram.

Concretely to PSI in the malicious setting, Cristofaro et al. [26] design a two-
round PSI protocol with linear communication complexity. More recently, the
work by Rosulek and Trieu [60] showed how to obtain a 2-round PSI by relying
on a variant of the Diffie-Hellman Key Agreement and an ideal permutation
oracle. This work has highly competitive communication and computation costs
for small set sizes (between 27 and 216 elements). We provide a comparison of
the communication costs in Table 5. We can see that our work is competitive in
communication because the proofs are succinct in the batch setting. Additionally,
we rely on more standard assumptions. Even though our computation costs are
higher our protocol could be useful in a client-server setting where the receiver is
a lightweight client device and the sender is the server with significantly bigger
computational resources. We further point out that the reported computational
costs could be improved by further parallelizing our implementation. We leave
this as future work to explore.

6 Implementation

We implemented our encrypted polynomial commitment scheme and the multi-
party PSI scheme, and we present the experimental results in this section.

n 28 216 220

[26] 62.74 (KB) 13.33 (MB) 213 (MB)
[60] 16.38 (KB) 4.19 (MB) 67.11 (MB)

Here (est.) 49.7 (KB) 5.86 (MB) 68 (MB)
Table 5: Communication cost of two-party PSI with set size m.

33

Software and hardware. The system is implemented in C++. We use the ate-
pairing library [1] for bilinear maps and the GMP library [2] for field arithmetic.
Our experiments are executed on a BN-curve over a 254-bit prime, which offers
128-bit of security. There are 3200 lines of code for the encrypted polynomial
commitment and 1000 lines for the other building blocks in the MPSI protocol.
We ran all experiments on an AWS c5.9xlarge instance with an Intel Xeon Plat-
inum 8000 processor and 72GB of RAM. We report the average running time
over 5 executions, except for the largest instances due to the long running time.

6.1 Private Polynomial Commitments

Single evaluation. We first present the performance of our encrypted polyno-
mial commitment scheme as a stand-alone primitive. Figure 11 shows the prover
and verifier times (left y-axis) and proof size (right y − axis) of one evaluation
of the variant with committed points (Section 3.2). We vary the degree of the
polynomial from 24 to 216. As shown in the figure, the prover time grows linearly
with the polynomial degree. It takes 11s to generate the proof for d = 210 and
701s to generate the proof for d = 216. The verifier time also grows linearly with
the degree, as it has to update the commitment key together with the prover in
our scheme. It takes 0.93s to verify the proof for d = 210 and 53.7s for d = 216,
which roughly matches the time on reducing the commitment key in the prover’s
time. The proof size is only logarithmic on the degree of the polynomial and is
very small in practice. It is 11.9KB for d = 210 and 18.6KB for d = 216.

24 26 28 210 212 214 216

degree of poly

10−2

10−1

100

101

102

103

104

Ti
m

e
(s

ec
on

ds
)

Prover Time
Verifier Time
Proof Size

1

5

10

15

20

25

30

35

40

45

Pr
oo

f S
ize

 (K
B)

Fig. 11: Performance of single eval-
uation of our encrypted polynomial
commitment with point hiding.

24 26 28 210 212 214 216

degree of poly
10−2

100

102

104

106

Ti
m

e
(s

ec
on

ds
)

Prover Time Batch
Verifier Time
Proof Size

104

105

106

107

108

109

1010

1010

1011

1012

1013

Pr
oo

f S
ize

 (b
yt

es
)

Fig. 12: Performance of multiple
evaluations of our encrypted polyno-
mial commitment with point hiding.
m = d.

Multiple evaluations. The major advantage of our scheme is the batched
proofs for multiple evaluations and we further present the performance of eval-
uating multiple points in Figure 12. In the figure, we set the number of evalua-
tions the same as the degree of the polynomial, but our implementation supports

34

of elements m 28 210 212 214 216

Size of bin M 28 26 26 26 26

of bins B 1 81 334 1,366 5,487
n = 2 13.94 130.01 536.1 2,192 8,264
n = 8 13.96 130.1 536.66 2,194 8,270
n = 32 13.97 130.4 538.4 2,199 8,292
n = 128 14.02 131.7 545.56 2,220 8,376
n = 500 14.26 136.4 562.76 2,301 8,712
n = 1000 14.58 142.9 589.5 2,410 9,141

Table 6: Total running time of our multiparty PSI scheme in seconds.

both a larger degree and a larger number of evaluations. As shown in the fig-
ure, the prover time grows quadratically. It takes 0.225s to generate a proof for
m = d = 24 and 242,395s for m = d = 216.

The proof size and the verifier time are particularly good for multiple evalu-
ations. The proof size is only 7.9KB for m = d = 24 evaluations and 6.1MB for
m = d = 216 evaluations, which is significantly smaller than repeating the single
evaluation protocol the same number of times. The experimental result matches
the logarithmic complexity in d and the linear complexity in m.

The verifier time only grows quasi-linearly now. It only takes 757s to verify
216 proofs of evaluations of a degree-216 polynomial, which is merely 14× larger
than verifying a single proof. The experimental result justifies that the verifier
time is amortized to O(log d) for multiple evaluations and is particularly efficient
in our application of multiparty PSI.

6.2 Performance of Multi-Party PSI

In this section, we report the performance of our multiparty PSI protocol with
malicious security. We executed all parties on the single AWS instance and we
simulated a network connection using the Linux tc command, communicating
via a localhost network. We simulated a LAN setting with 10 Gbps network
bandwidth. We executed P2 to Pn on the same machine but only count the
running time of one of them in the total time. This is to better simulate the
scheme in practice where all the parties can run the computation simultaneously.

We tested our MPSI protocol for 2–1000 parties and 28–216 elements per
party (here we set mmax = mmin) and the total running time are shown in
Table 6. We applied the hashing technique described in Section 4 and the pa-
rameters achieving 40-bit of statistical security are included in the table.

As shown in the table, our protocol is slow for a small number of parties
where it takes 13.94s to compute a two-party intersection with 28 elements per
party. This is 55× slower than the malicious MPSI scheme based on symmetric
key primitives from [9, Table 5]. The gap is even larger on larger sets, which is
expected as our protocol relies on public-key primitives. However, our running
time hardly grew with the number of parties where it still takes 14.02s for 128
parties with 28 elements each, and 14.58s for 1000 parties. This is because most of
the running time is due to evaluating the aggregated polynomial and generating

35

24 26 28 210 212 214 216

degree of poly
10−2

100

102

104

106

Co
m

m
un

ica
tio

n
co

st
 (M

B)
2 parties
128 parties
1000 parties

Fig. 13: Communication of our mul-
tiparty PSI protocol.

2 8 32 128 500 1000
Numer of Parties

0

100

200

300

400

500

600

Ti
m

e
(s

)

Evaluation
Proving

Verify+Decrypt
Communication

Encryption
Random point

Fig. 14: Breakdown of the running
time in our multiparty PSI protocol.
m = 212 elements per party.

the proofs using our commitment scheme, which only depends on the maximum
size of the set mmax and the size of P1’s set mmin. In contrast, the running
time of PSimple [9] grows linearly with the number of parties and is 0.8s for 32
parties with 28 elements each, which is 17× faster than ours. We expect that
our protocol is faster than PSimple for 500 parties with 28 elements per party.

Our protocol is also efficient in communication. The total communication is
shown in Figure 13. As shown in the figure, the communication size for 2 parties
with 28 elements per party is 279 KB, whereas the total communication for 1000
parties with 28 elements per party is 278MB, which is not the bottleneck of our
protocol. Compared with [9], the communication size is 7.5MB for 2 parties and
7.5GB for 1000 parties respectively, which is around 27× larger than ours. The
jump in Figure 13 for m = 210 is due to using the hashing technique for m ≥ 210.

We further show the breakdown of our total running time in Figure 14. We fix
the size of the set per party at 212 and vary the number of parties from 2 to 1000.
As shown in the figure, our protocol is clearly computation-heavy and most of the
time is on the evaluations of the aggregated polynomial, the proof generation and
the verification of our private polynomial commitment. Even with 1000 parties,
they contribute to 97.5% of the total running time. Due of this observation, we
could improve the total running time significantly through parallelization. Both
the polynomial evaluations and the private polynomial commitment are trivially
parallelizable. Moreover, the total running time of our scheme is not sensitive to
the bandwidth of the network. On a WAN network with 100Mbps bandwidth,
our scheme would become around two times slower for 1000 parties. By contrast,
the performance of symmetric-key-based schemes such as PSimple is limited by
the communication overhead. It cannot be improved through parallelization and
will become worse on a network with lower bandwidth.

Finally, another major advantage of our protocol is memory usage and scal-
ability. As the memory usage of P1 is only O(mmax), we are able to scale up
to 1000 parties and 216 elements per party. The memory usage of P1 on this
largest instance is only 1GB. We did not test more elements per party due to
the long running time, but not have high memory usage. To compare, the PSim-
ple scheme [9] runs out of memory for 12 parties and 220 elements per party.

36

This is because P1 has to store random OTs for the garbled bloom filter with
each party, which leads to a high overhead on the memory.

Overall, the experimental results show that our scheme has good scalability
and communication in practice, and is particularly efficient for applications with
a large number of parties or limited bandwidth networks.

37

7 Acknowledgements

We thank the anonymous PKC‘23 reviewers for their helpful comments. The
first and second authors are supported by ISF grant No. 1316/18. The sec-
ond, third and fifth authors are supported by DARPA under Contract No.
HR001120C0087. The third author was supported by Technology and Humanity
Fund from Georgetown University’s McCourt School of Public Policy. Any opin-
ions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United
States Government or DARPA. Distribution Statement A. Approved for public
release. Distribution Unlimited.

References

1. Ate pairing. https://github.com/herumi/ate-pairing
2. The GNU multiple precision arithmetic library. https://gmplib.org/
3. Abascal, J., Sereshgi, M.H.F., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Is

the classical GMW paradigm practical? the case of non-interactive actively secure
2pc. In: CCS. pp. 1591–1605 (2020)

4. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. J. Cryptol. pp. 363–421
(2016)

5. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: EUROCRYPT. pp. 387–404 (2014)

6. Backes, M., Datta, A., Kate, A.: Asynchronous computational VSS with reduced
communication complexity. In: CT-RSA. vol. 7779, pp. 259–276 (2013)

7. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: CCS. pp. 863–874 (2013)

8. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: EUROCRYPT. pp. 646–663 (2013)

9. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: Psimple: Prac-
tical multiparty maliciously-secure private set intersection. In: ASIA CCS. pp.
1098–1112 (2022)

10. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: CRYPTO. pp. 111–131 (2011)

11. Bhadauria, R., Hazay, C.: Multi-clients verifiable computation via conditional dis-
closure of secrets. In: SCN. pp. 150–171 (2020)

12. Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable compu-
tation on encrypted data. In: Garay, J.A. (ed.) Public-Key Cryptography – PKC
2021 (2021)

13. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: CRYPTO. pp.
41–55 (2004)

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: EUROCRYPT.
pp. 327–357 (2016)

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: IEEE S&P. pp. 315–334
(2018)

38

https://github.com/herumi/ate-pairing
https://gmplib.org/

16. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. In:
EUROCRYPT. pp. 677–706 (2020)

17. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing
products and applications. In: ASIACRYPT. pp. 65–97 (2021)

18. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: Definitions and practical constructions. In:
ASIACRYPT. vol. 9453, pp. 262–288 (2015)

19. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC.
vol. 7778, pp. 55–72 (2013)

20. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions and their applications. In: TCC. pp. 680–699 (2013)

21. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: CRYPTO. pp. 371–389 (2014)

22. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO. pp. 34–63 (2020)

23. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: A cryptocurrency with state-
less transaction validation. IACR Cryptol. ePrint Arch. p. 968 (2018)

24. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zksnarks with universal and updatable srs. In: EUROCRYPT. pp. 738–768
(2020)

25. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable
computation. In: TCC. pp. 499–518 (2013)

26. Cristofaro, E.D., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT. pp. 213–231
(2010)

27. Fenske, E., Mani, A., Johnson, A., Sherr, M.: Distributed measurement with private
set-union cardinality. In: CCS. pp. 2295–2312 (2017)

28. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO. pp. 186–194 (1986)

29. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: CCS. pp. 501–512 (2012)

30. Fiore, D., Gennaro, R., Pastro, V.: Efficiently encrypted data. In: ACM SIGSAC.
pp. 844–855 (2014)

31. Fiore, D., Nitulescu, A., Pointcheval, D.: Boosting verifiable computation on en-
crypted data. In: PKC (2020)

32. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC. pp. 303–324 (2005)

33. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: EUROCRYPT. pp. 1–19 (2004)

34. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol.
ePrint Arch. 2019, 953 (2019)

35. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory pp. 469–472 (1985)

36. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: CRYPTO. pp. 395–425
(2021)

37. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: CRYPTO

39

38. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT.
pp. 629–659 (2017)

39. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: CRYPTO. pp. 536–553. Springer
(2013)

40. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating proofs for
multiple vector commitments. In: ACM SIGSAC. pp. 2007–2023 (2020)

41. Gordon, S.D., Hazay, C., Le, P.H.: Fully secure PSI via mpc-in-the-head. PoPETS
2022(3), 291–313 (2022)

42. Gordon, S.D., Katz, J., Liu, F., Shi, E., Zhou, H.: Multi-client verifiable computa-
tion with stronger security guarantees. In: TCC. pp. 144–168 (2015)

43. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic prfs. In: TCC. pp. 90–120 (2015)

44. Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits
with constant communication overhead in the plain model. In: TCC. pp. 3–39
(2017)

45. Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with simulation-
based security. IACR Cryptol. ePrint Arch. p. 459 (2009)

46. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: PKC. pp. 175–203 (2017)

47. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: EUROCRYPT. pp. 406–425 (2011)

48. Juels, A., Jr., B.S.K.: Pors: proofs of retrievability for large files. In: CCS. pp.
584–597 (2007)

49. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT. pp. 177–194 (2010)

50. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. IACR Cryptol. ePrint Arch. 2020, 1274 (2020)

51. Mohassel, P., Rosulek, M.: Non-interactive secure 2pc in the offline/online and
batch settings. In: EUROCRYPT. pp. 425–455 (2017)

52. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. pp. 1254–
1281 (2006)

53. Nguyen, D.T., Trieu, N.: Mpccache: Privacy-preserving multi-party cooperative
cache sharing at the edge. IACR Cryptol. ePrint Arch. (2021), https://eprint.
iacr.org/2021/317

54. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
TCC. pp. 222–242. Springer (2013)

55. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO. pp. 129–140 (1991)

56. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: Lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO. pp. 401–431 (2019)

57. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from paxos: Fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT. pp. 739–
767 (2020)

58. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT. pp.
122–153. Springer (2019)

59. Raab, M., Steger, A.: "balls into bins" - A simple and tight analysis. In: Random-
ization and Approximation Techniques in Computer Science. pp. 159–170 (1998)

40

https://eprint.iacr.org/2021/317
https://eprint.iacr.org/2021/317

60. Rosulek, M., Trieu, N.: Compact and malicious private set intersection for small
sets. IACR Cryptol. ePrint Arch. p. 1159 (2021)

61. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. pp. 161–174
(1991)

62. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO. pp. 704–737 (2020)

63. Tomescu, A., Chen, R., Zheng, Y., Abraham, I., Pinkas, B., Gueta, G.G., Devadas,
S.: Towards scalable threshold cryptosystems. In: IEEE S&P. pp. 877–893 (2020)

64. Vlasov, A., Panarin, K.: Transparent polynomial commitment scheme with poly-
logarithmic communication complexity. IACR Cryptol. ePrint Arch. 2019, 1020
(2019)

65. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: IEEE S&P. pp. 926–943 (2018)

66. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy:
Statistics in tor by measuring securely. In: CCS. pp. 615–632 (2019)

67. Wieder, U.: Balanced allocations with heterogenous bins. In: SPAA. pp. 188–193
(2007)

68. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: CRYPTO (2019)

69. Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant
communication cost in cloud. In: SCC@ASIACCS. pp. 19–26. ACM (2013)

70. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: IEEE S&P (2020)

71. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vsql: Ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: IEEE S&P.
pp. 863–880 (2017)

72. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vsql. IACR Cryptol. ePrint Arch. 2017, 1146 (2017)

Supplementary Material

A Full proofs

A.1 Proof of Theorem 1

Claim. Protocol PCOM (Figures 3) satisfies completeness.

To argue completeness of PCOM, it suffices to prove that R accepts in each
of the three tests: (1) Private Inner Product Argument (2) Linear Constraints
Test, and (3) Testing Quadratic Test. We argue this for each test below:
Private Inner Product Argument.

This test (Figure 4) has two phases, the Masking Phase (Step 1) and the
Inner Product Phase (Step 2). At the end of the Product Phase, R accepts if
com = comC′ · e(comF ′ , a) · e(c′y, b) and C opens the com to C′, F ′ and c′y in the
last round. We will argue that com′ = comC′ ·e(comF ′ , a)·e(c′y, b) is where comC′

and com′
F are commitments to C′ and F ′ respectively and c′y = ⟨C′, F ′⟩. We

show that the invariant is satisfied after every round. First, we will argue that

41

the invariant holds at the end of the masking phase. The inner product phase
proceeds in rounds and we will argue the invariant holds at the end of each
iteration and this will conclude the proof of completeness of the inner product
phase.

For the Masking Phase, E and M are the masking encrypted polynomial
and vector respectively. To argue that the invariant holds, we show the com′

generated in Step 1(c) is a combined commitment of C′ = C ⊙ Ex, F ′ = F +
x−1 ·M and c′y as the inner product of the two. From Step 1(c) we have that
com′ is :

com · comx
E · e(comM , a)x

−1 · e(cxl · cm · cx
−1

r , b)

=
(
comC · e(comB , a) · e(cy, b)

)
·
(
comx

E · e(comM , a)x
−1)

· e(cxl · cm · cx
−1

r , b)

=
(
comC · comx

E

)
·
(
e(comB , a) · e(comM , a)x

−1

)

·
(
e(cy, b) · e(cxl · cm · cx

−1

r , b)
)

=
(
comC · comx

E

)
·
(
e(comB , a) · e(comx−1

M , a))

·
(
e(cy, b) · e(cxl · cm · cx

−1

r , b)
)

=
(
comC · comx

E

)
· e(comB · comx−1

M , a)

· e(cy · cxl · cm · cx
−1

r , b)
= P1 · e(P2, a) · e(P3, b) (2)

where P1 = comC · comx
E, P2 = comB · comx−1

M and P3 = cy · cxl · cm · cx
−1

r .

In order to prove the invariant holds, we need to show that P1 is a commit-
ment of C′ = C ⊙ Ex, P2 is a commitment of B′ = B + x−1 ·M and P3 is c′y
where c′y = ⟨C′, B′⟩.

We denote AFG.Commitck1 as Commitck1 . We have

P1 = comC · comx
E

= Commitck1(C; rC) · Commitck1(E; rE)
x

= Commitck1(C; rC) · Commitck1(E
x; rE)

= Commitck1(C⊙Ex; rC + x · rE)
= Commitck1(C

′; rC + x · rE)
= comC′

42

We denote Ped.Commitck2 as Commitck2 and show that P2 is a commitment
of B′

P2 = comB · comx−1

M

= Commitck2(B, rB) · Commitck2(M, rM)
x−1

= Commitck2(B, rB) · Commitck2(x
−1 ·M, rM)

= Commitck2(B + x−1 ·M, rB + x−1 · rM)

= Commitck2(B
′, rB + x−1 · rM)

= com′
B

Lastly, we show that P3 = c′y where c′y = ⟨C′, B′⟩ :

P3 = cy · cxl · cm · cx
−1

r

= ⟨C, B⟩ · ⟨E, B⟩x · ⟨E,M⟩ · ⟨C,M⟩x−1

= ⟨C, B⟩ · ⟨Ex, B⟩ · ⟨E,M⟩ · ⟨C,Mx−1⟩
= ⟨C, B⟩ · ⟨Ex, B⟩ · ⟨Ex,Mx−1⟩ · ⟨C, x−1 ·M⟩
= ⟨C⊙Ex, B⟩ · ⟨C⊙Ex, x−1 ·M⟩
= ⟨C⊙Ex, B + x−1 ·M⟩
= ⟨C′, B′⟩
= c′y

Substituting the values of P1, P2 and P3 in Equation 2:

com0 = P1 · e(P2, a) · e(P3, b)
= comC′ · e(com′

B , a) · e(c′y, b)

This shows that the invariant is satisfied at the end of the masking phase.

For the Inner Product Phase (Step 2), we argue that com′ = comC′ ·e(comF ′ , a)·
e(c′y, b) where C′ = CL⊙Cx

R, B′ = BL + x−1 ·BR and c′y = ⟨C′, B′⟩ and comC′

and comB′ are commitments to C′ and B′ respectively. Let the com′ generated

43

in step 2(f) be denoted as comi and expanded below:

comi = Lx · com ·Rx

= (comCR
· e(comBL

, a) · e(cl, b))x
· (comC · e(comBL

, a) · e(cy, b))
· (comCL

· e(comBR
, a) · e(cr, b))x

−1

= (comx
CR
· comC · comx−1

CL
)

· (e(comBL
, a)x · e(comB , a) · e(comBR

, a)x
−1

)

· (e(cl, b)x · e(cy, b) · e(cr, b)x
−1

)

= (comx
CR
· comC · comx−1

CL
)

· (e(comx
BL

, a) · e(comB , a) · e(comx−1

BR
, a))

· (e(cxl , b) · e(cy, b) · e(cx
−1

r , b))

= (comx
CR
· comC · comx−1

CL
)

· e(comx
BL
· comB · comx−1

BR
, a)

· e(cxl · cy · cx
−1

r , b)
= P1 · e(P2, a) · e(P3, b) (3)

where P1 =
(
comx

CR
· comC · comx−1

CL

)
, P2 = comx

BL
· comB · comx−1

BR
and P3 =

cxl · cy · cx
−1

r .
In order to prove the invariant, we show that P1 is a commitment of C′ =

CL ⊙Cx
R, P2 is a valid commitment of B′ = BL + x−1 ·BR and P3 is c′y where

c′y = ⟨C′, B′⟩.
We denote AFG.Commitck1 as Commitck1 and we show that P1 is a commit-

ment of C′:

P1 = comx
CR
· comC · comx−1

CL

= Commitck1L(CR, rCR
)x · Commitck1(C, rC)

· Commitck1R(CL, rCL
)x

−1

= Commitck1L(C
x
R, x · rCR

) · Commitck1(C, rC)

· Commit
ckx

−1
1R

(CL, x
−1 · rCL

)

= Commitck1L(C
x
R, x · rCR

) · Commitck1L(CL, rCL
)

· Commitck1R(CR, 0) · Commit
ckx

−1
1R

(CL, x
−1 · rCL

)

= Commitck1L(C
x
R, x · rCR

) · Commitck1L(CL, rC
· Commit

ckx
−1

1R
(Cx

R, 0) · Commit
ckx

−1
1R

(CL, x
−1 · rCL

)

= Commitck1L(CL ⊙Cx
R, x · rCR

+ rC)

· Commit
ckx

−1
1R

(CL ⊙Cx
R, x

−1 · rCL
)

= Commit
ck1L⊙ckx

−1
1R

(CL ⊙Cx
R, x · rCR

+ rC + x−1 · rCL
)

= Commit
ck1L⊙ckx

−1
1R

(C′, x · rCR
+ rC + x−1 · rCL

)

= comC′

44

We denote Ped.Commitck2 as Commitck2 and we show that P2 is a valid com-
mitment of B′:

P2 = comx
BL
· comB · comx−1

BR

= Commitck2R(BL, rBL
)x · Commitck2(B, rB)·

Commitck2L(BR, rBR
)x

−1

= Commitck2R(BL, rBL
)x · Commitck2R(BR, 0)

· Commitck2L(BL, rB) · Commitck2L(BR, rBR
)x

−1

= Commitckx2R(BL, x · rBL
) · Commitck2R(BR, 0)

· Commitck2L(BL, rB) · Commitck2L(x
−1 ·BR, x

−1 · rBR
)

= Commitckx2R(BL, x · rBL
) · Commitckx2R(x

−1 ·BR, 0)

· Commitck2L(BL, rB) · Commitck2L(x
−1 ·BR, x

−1 · rBR
)

= Commitckx2R(BL + x−1 ·BR, x · rBL
)

· Commitck2L(BL + x−1 ·BR, rB + x−1 · rBR
)

= Commitck2L⊙ckx2R
(BL + x−1 ·BR, x · rBL

+ rB + x−1 · rBR
)

= Commitck2L⊙ckx2R
(B′, x · rBL

+ rB + x−1 · rBR
)

= comB′

Lastly, we show that P3 = c′y where c′y = ⟨C′, B′⟩ :

P3 = cxl · cy · cx
−1

r

= ⟨CR, BL⟩x · ⟨C, B⟩ · ⟨CL, BR⟩x
−1

= ⟨Cx
R, BL⟩ · ⟨C, B⟩ · ⟨CL, B

x−1

R ⟩
= ⟨Cx

R, BL⟩ · ⟨CL, BL⟩ · ⟨CR, BR⟩ · ⟨CL, B
x−1

R ⟩
= ⟨Cx

R, BL⟩ · ⟨CL, BL⟩ · ⟨Cx
R, BR⟩ · ⟨CL, x

−1 ·BR⟩
= ⟨CL ⊙Cx

R, BL⟩ · ⟨CL ⊙Cx
R, x

−1 ·BR⟩
= ⟨CL ⊙Cx

R, BL + x−1 ·BR⟩
= ⟨C′, B′⟩
= c′y

Substituting the values of P1, P2 and P3 in Equation 3:

comi = P1 · e(P2, a) · e(P3, b)

= comC′ · e(com′
B , a) · e(c′y, b)

This shows that the invariant is satisfied. In the last round, C opens up all
the commitment and is trivially complete.
Linear Constraint Test: In the “Linear Constraint Test", the protocol reduces
checking A×T = X to checking S×A×T ×U = S×X×U where S and U are
generated by R. As S,U are random linear combiners, this allows the reduction
of the problem to go through. Assuming that BBA-IPA satisfies completeness,

45

in the “Linear Constraint Test", we reduce the test from checking ⟨SA, TU ⟩ =
⟨S,XU ⟩ to ⟨L,R⟩ = x · l+x−1r where l = ⟨SA,−XU ⟩ and r = ⟨S, TU ⟩. We show
that ⟨L,R⟩ = x · l + x−1 · r below:

⟨L,R⟩ = x · l + x−1 · r
= x · ⟨SA,−XU ⟩+ x−1 · ⟨S, TU ⟩
= ⟨SA,−x ·XU ⟩+ ⟨x−1 · S, TU ⟩
= ⟨SA,−x ·XU ⟩+ ⟨SA, TU ⟩+
⟨S,−XU ⟩+ ⟨x−1 · S, TU ⟩

= ⟨SA,−x ·XU ⟩+ ⟨SA, TU ⟩+
⟨x−1 · S,−x ·XU ⟩+ ⟨x−1 · S, TU ⟩

= ⟨SA, TU − x ·XU ⟩+ ⟨x−1 · S, TU − x ·XU ⟩
= ⟨SA + x−1 · S, TU − x ·XU ⟩

At the end, the completeness property of BBB-IPA ensures the completeness
of this phase.

Quadratic Constraint Test: In the “Quadratic Constraint Test", the protocol
reduces checking ∀i ∈ [m], Xi⊙Yi = Zi is modified to a single check for each i by
using a random linear combiner and is modified as Xi⊙Yi⊙R = Zi⊙R. This can
furthermore be written as in inner product ∀i ∈ [m]⟨Xi, Yi ⊙R⟩ − ⟨Zi ⊙R⟩ = 0.
This, in turn, can be reduced to a single inner product using another random
linear combiner

∑m
i=1 w

i(⟨Xi, Yi ⊙ R⟩ − ⟨Zi ⊙ R⟩). Using the similar technique
in phase 2 (or "Linear Constraint Test"), the summation formerly introduces
can be reduced to a single inner product (at every iteration, the number of inner
products is reduced by a factor of 2). The analysis used to show the completeness
of phase 2 can also be applied here to show completeness after every iteration.
In the end, the completeness property of BBB-IPA ensures the completeness of
this phase. This concludes the proof of completeness.

Claim. Protocol PCOM (Figures 3) satisfies Binding

To argue the binding property of PCOM, it can be trivially reduced to the
binding property of the Ped and AFG commitment scheme.

Claim. Protocol PCOM (Figures 3) satisfies Witness-Extended Emulation

Consider a public-coin interactive protocol with r rounds. We define (n1, . . . , nr)-
tree of accepting transcripts for this interactive protocol as follows. The tree is of
depth r where the root is labelled with the statement and each node in depth i
has ni children, where each child is associated with the ith challenge. Each edge
from parent to child node is associated with a message sent from the prover to
the verifier. Each root-to-leaf path corresponds to an accepting transcript.

46

Using the Forking Lemma (Lemma 1), we can reduce the witness-extended
emulation property to the existence of a PPT extractor X , which given (n1, . . . , nr)-
tree of accepting transcripts can extract the witness of the polynomial com-
mitment scheme. In the proof discussed below, we will assume we have these
(n1, . . . , nr)-tree of accepting transcripts where each ni = 3 except n1 = m

. This ensures
∏i=1

r ni = m · 3⌈log2(d)+1⌉ ≤ 3 · md3/2 which is bounded by a
polynomial in d and m and in turn λ.

First, we construct a witness-extraction algorithm X1 that succeeds in ex-
tracting the witness of the “Private Inner Product Argument" given (n1, . . . , nr)-
tree of accepting transcripts.

Denote the challenge message send by C in Round i as x(i). We also represent
variables in each round with superscript (i).

In round a, C opens the commitment com. This allows X1 to get C(a) and
B(a) for round a. The extractor X1 rewinds C three times. Except with negligible
probability, it receives three different values of x(i) denoted by x1, x2, x3 such
that xi ̸= xj for 1 ≤ i < j ≤ 3. Let us denote these transcripts as T1, T2, T3.

Using T1, T2, T3, X1 obtains BL and BR by solving the linear equation below:

BL + x−1
i ·BR = B

(a)
i (4)

where B
(a)
j is B(a) extracted in transcript Tj .

X1 extracts B(a−1) = BL||BR.
Using T1, T2, T3, X1 obtains CL and CR by solving the linear equation below:

CL ⊙Cxi

R = C
(a)
j

where C
(i+1)
j is C(i+1) extracted in transcript Tj .

X1 extracts C(a−1) = CL||CR.
We can repeat the above steps recursively for every round. We also use this

same technique for extracting the unmasked version of C and B.
Now to extract all the evaluation vectors X extracts different B using X1

based on the random linear combiner (r1, . . . , rm). Now X rewinds the C m−
times where it receives, except with negligible probability, m− transcript T1, . . . Tm

with m− different set of linear combiners where (ri1, . . . r
i
m) is set as the random

linear combiners for each transcript Ti.
Using T1, . . . , Tm, X obtains ti by solving the linear equation below:

Bj =

m∑
i=1

rji ti

where Bj is B extracted in transcript Tj .
Once B is extracted, X can rewind the protocol to Figure 3 (Step 1) and

repeat it till there are m + 1 set of different vectors S. Using this and solving
linear equations, X can extract each evaluation vector {Ti}i∈[m] and can extract
{ti}i∈[m] trivially.

47

Claim. Protocol PCOM (Figures 3) satisfies Honest Verifier Privacy

We describe the Simulator S in Figure 15. Indistinguishability of the sim-
ulation essentially follows from semantic security of the underlying encryption
scheme, hiding of the commitment scheme and masking techniques. More for-
mally, we consider a sequence of intermediate hybrid experiments and argue
indistinguishability via a standard hybrid argument.

Hybrid0: This hybrid experiment proceeds as in the real world, i.e. the
output of the experiment is the output of the malicious receiver when interacting
with the honest committer.

Hybrid1 : This hybrid is identical to Hybrid0 with the exception that we
consider a simulator that proceeds as an honest committer against the malicious
receiver but replaces the protocol of BBB-IPA in “Linear Test Constraints" and
“Quadratic Test Constraints" with its simulation SBBB−IPA. The indistinguisha-
bility of Hybrid0 and Hybrid1 follows from the Zero-Knowledge property of
BBB-IPA.

Hybrid2 : This hybrid is identical to Hybrid1 with the exception that the
simulator replaces all the li and ri vector in “Quadratic Constraint Test" with
random vectors. This is possible due to the fact that any checks related to li and
ri were done in BBB-IPA which is replaced by its simulator SBBB−IPA and will
generate a transcript that is always accepted by R. This is the same as replacing
the “Quadratic Constraint Test" with Sp3.

Hybrid3 : This hybrid is identical to Hybrid2 with the exception that the
simulator chooses a random vector v in “Linear Constraint Test" with a random
vector as well as chooses l, r such that lx + rx

−1

=< sA − x−1 · s, v >. This is
possible due to the fact that any checks related to v, l and r were done in BBB-
IPA which is replaced by its simulator SBBB−IPA and will generate a transcript
that is always accepted by R. This is the same as replacing the “Linear Constraint
Test" with Sp2.

Hybrid4 : This hybrid is identical to Hybrid3 with the exception that the
simulator chooses random encrypted polynomial C′ and a random vector B′ and
set comE such that comC · Exm = comC′ , comM such that comB · comxm

−1

M =

comB′ and cl, cr such that cxm

l · cy · cxm
−1

r = c′y. This is possible due to the fact
the inner product part of the "Private Inner Product Argument" will accept this
proof. This is the same as replacing “Private Inner Product Argument" with Sp1.

Hybrid5: This hybrid is identical to Hybrid4 with the exception that the
simulator replaces cy in Eval algorithm with S3. This involves outputting a ran-
dom ciphertext. The indistinguishability of Hybrid4 and Hybrid5 follows from
the IND-CPA security of the encryption scheme.

Hybrid6 : This hybrid is identical to Hybrid5 with the exception that
the simulator replaces comC generated using Commit algorithm with S1. This
involves committing to a random encrypted polynomial. The indistinguishability
of Hybrid5 and Hybrid6 follows from the hiding property of the commitment
scheme.

Hybrid7 : This hybrid is identical to Hybrid6 with the exception that
the simulator replaces comT generated using CommitPt algorithm with S2. This

48

involves committing to a random point. The indistinguishability of Hybrid6 and
Hybrid7 follows from the hiding property of the commitment scheme.

Hybrid8 : This hybrid is identical to Hybrid7 with the exception that the
simulator replaces protocol (C,R) with S. We argue that Hybrid7 and Hybrid8

are perfectly indistinguishable. This is due to the fact that protocol (C,R) in
Hybrid7 does not use the real inputs in the simulation.

Hybrid9: This hybrid is identical to Hybrid8 with the exception that sim-
ulator does not get the real inputs. We argue that Hybrid8 and Hybrid9 are
perfectly indistinguishable. This is due to the fact that Hybrid8 does not use
the real inputs in the simulation.

A.2 Proof of Theorem 2

We split the analysis into two cases based on whether the set of corrupted parties
includes the central party P1 or not.

Case 1: the corrupted set includes the central party P1 : Consider an
adversary A that corrupts a set of parties that includes P1. We define the simu-
lator S in Figure 16. We prove that the real and simulated executions are com-
putationally indistinguishable. The differences in both executions reduce to the
privacy property of the encryption scheme and the hiding property of the com-
mitment scheme. Our proof follows via a sequence of hybrids between Hybrid0

to Hybrid4 where Hybrid0 is identical to the real execution while Hybrid4 is
identical to the simulated execution.

Hybrid0: The first game is the real execution.

Hybrid1: This hybrid is identical to Hybrid0 with the exception that we define
a simulator that extracts the input of corrupted parties as done in the simulation.
More specifically, let Xi denote the input of party Pi. Recall that the simulator
knows the input of the honest parties as well, it then checks whether the final
output is correct with respect to all inputs and aborts otherwise. Finally, based
on the witness-extended emulation property of PCOM, the correctness of πDecZero
and the binding property of the commitment generated by P1, the extracted
values will be consistent. Therefore the simulator will only abort with negligible
probability. This implies that the output distributions of the two executions are
statistically close.

Hybrid2: This hybrid is identical to Hybrid1 with the exception that the sim-
ulator replaces πGEN and πDecZero with SGEN and SDecZero, respectively. Note
that, this allows the simulator to simulate πDecZero without knowing the actual
secret key. Let Z denote the intersection as computed in the previous hybrid. In
this hybrid, the simulator enforces the output of πDecZero according to whether
the evaluated point is in Z or not. Namely, for every z ∈ X1, if z ∈ Z then
SDecZero enforces the output to be zero, else a random element. This is done
by invoking SDecZero on the public key, the secret key shares of the corrupted
parties and the resultant plaintext. Indistinguishability follows from the security

49

of the threshold encryption scheme. This implies that Hybrid1 and Hybrid2

are indistinguishable.

Hybrid3: This hybrid is identical to Hybrid2 with the exception that the simu-
lator replaces πEXP with its simulator SEXP respectively. The indistinguishability
of Hybrid2 and Hybrid3 follows from the zero-Knowledge property of πEXP.

Hybrid4: This hybrid is identical to Hybrid3 with the exception that the simu-
lator replaces the real inputs of honest parties with random inputs. Namely, the
simulator sends ciphertexts encrypting random polynomials on behalf of the hon-
est parties. The indistinguishability of Hybrid3 and Hybrid4 follows from the
IND-CPA security of the encryption scheme. As the simulator does not need to
know the secret key, the ciphertexts obtained from the IND-CPA security game
can directly be plugged into the protocol and can be reduced to the IND-CPA
security game.

Finally, we note that the above hybrid is identical to the simulation. This
concludes the proof of the first case.
Case 2: the corrupted set excludes the central party P1: The proof for
this corruption case is very similar to the previous case with the exception that
the simulator does not need to extract the input of P1.

Consider an adversary A that corrupts a set of parties that excludes P1. We
define the simulator S in Figure 17. We prove that the ensemble of real execution
and simulated execution are computationally indistinguishable. The difference in
both the ensemble reduces to the privacy property of the encryption scheme and
hiding property of perfectly hiding commitments. Our proof follows a sequence of
hybrid proofs. Our proof consists of multiple hybrids from Hybrid0 to Hybrid5.
Hybrid0 is identical to the real execution while Hybrid5 is identical to the
simulated execution.

Hybrid0: The first game is the real execution.
Hybrid1: This hybrid is identical to Hybrid0 with the exception that the

simulator extracts the input of corrupted parties. The simulator extracts the
inputs of all corrupted parties from πEXP, and aborts if it fails to extract. Let
Xi be the inputs for each corrupt party Pi. It checks if the final output is correct
with respect to Xi. This is possible as the simulator in this hybrid knows the
real input of honest parties. For extracting the inputs of corrupt parties, the
simulator rewinds to the point where all parties generate a random value u. The
simulator rewinds till d+1 evaluations are recorded where πEXP provides a valid
proof and the message can be extracted. For each corrupt party Pi, the simu-
lator receives d + 1 evaluation on its polynomial and then can be interpolated.
The roots of the interpolated polynomial are the inputs of the corrupt party.
Taking the intersection of these inputs generates X∗. Finally using the witness-
extended emulation of PCOM, soundness of πDecZero and the binding property of
the commitment generated by P1, the extracted values will be consistent. There-
fore the simulator will abort with negligible probability if extracted inputs is not
consistent and will deviate from Hybrid0 otherwise Hybrid0 will be perfectly
indistinguishable from Hybrid1. This shows that Hybrid0 and Hybrid1 are
indistinguishable.

50

Hybrid2: This hybrid is identical to Hybrid1 with the exception that the
simulator replaces πGEN and πDecZero with SGEN and SDecZero respectively. The
set intersection X can also be evaluated based on the extracted inputs of corrupt
parties and inputs of the honest parties. SDecZero is given a message and it needs
to bias the output of decryption according to the message. For every z ∈ X1,
if z ∈ X then SDecZero will bias the output to be zero else a random element.
The indistinguishability follows from the property of threshold decryption. This
shows that Hybrid1 and Hybrid2 are indistinguishable.

Hybrid3: This hybrid is identical to Hybrid2 with the exception that the
simulator replaces PCOM and πEXP with their respective simulators SPCOM and
SEXP respectively. The indistinguishability of Hybrid2 and Hybrid3 follows
from the Zero-Knowledge property of PCOM.

Hybrid4: This hybrid is identical to Hybrid3 with the exception that the
simulator replaces the commitment generated by P1 with a commitment to 0-
message. The indistinguishability of Hybrid3 and Hybrid4 follows from the
hiding property of the commitment scheme. We reduce the indistinguishability
of Hybrid3 and Hybrid4 to the hiding game of commitment.

Hybrid5: This hybrid is identical to Hybrid4 with the exception that the
simulator replaces the real inputs of honest parties with random inputs. The
simulator sends the encryption evaluation of random polynomials on behalf of
the honest parties. The indistinguishability of Hybrid4 and Hybrid5 follows
from the IND-CPA security of the encryption scheme. As the simulator does
not need to know the secret key, the ciphertext obtained from the IND-CPA
security game can directly be plugged into the protocol and can be reduced to
the IND-CPA security game.

51

S for PCOM

S(pp,PK, d; rs) :

1. Invoke Simulator S1, S2 and S3 to generate comC ← S1(pp,PK; rs), comT ←
S2(pp, d; rs) and cy ← S3(PK; rs).

2. The simulators Sp1, Sp2 and Sp3 are simulators for "Private Inner Product Argu-
ment", "Linear Constraint Test" and "Quadratic Constraint Test". S4 invokes the
simulator Sp1(pp,PK, comC, comT , cy; rs), Sp2(pp, comT ; rs) and Sp3(pp, comT ; rs)

comC ← S1(pp,PK; rs) :

1. Generate a random encrypted polynomial C∗ and compute com∗
C as follows:

comC = Commit(pp,C∗; r∗C)

where r∗C is randomly chosen. We use randomness rs to generate C∗ and r∗C.

comT ← S2(pp, d; rs) :

1. Generate a random point t∗ and compute comT as follows:

comT = CommitPt(pp, t∗, d, r∗t)

where r∗t is randomly chosen. We use randomness rs to generate t∗ and r∗t .

cy ← S3(PK; rs) :

1. Generate a random value m and r and compute cy as follows:

cy = BBS.EncPK(m; r)

where PK is the public key.We use randomness rs to generate m and r.

Sp1(pp,PK, comC, comT , cy; rs) :

1. Generate a random encrypted polynomial C′ and a random vector B′ using ran-
domness rs. Also generate their respective commitments comC′ and comB′ hon-
estly. Also set c′y =< C′, B′ >.

2. Based on the challenge xm in the masking phase, set:
– comE such that comC · comxm

E = comC′ is satisfied.
– comM such that comB · comxm

−1

M = comB′ is satisfied.
– cl, cr such that cxm

l · cy · cxm
−1

r = c′y is satisfied.
3. Run the test similar to “Private Inner Product Argument" with the changes above

in the masking part.

Sp2(pp, comT ; rs) :

1. Choose a random vector v using randomness rs and set l, r such that l · x+ x−1 ·
r =< sA − x−1 · s, v >.

2. Run the test similar to “Linear Constraint Test" with the changes above in Step
3 in the protocol as well as replace BBB-IPA and instead execute its simulator
SBBB−IPA on the inner product < sA − x−1 · s, v >= x · l + x−1 · r.

Sp3(pp, {comt1 , . . . , comtm}; rs) :

1. Choose 4m random vector li and ri for i ∈ [2m] using randomness rs.
2. Run the test similar to the “ Quadratic Constraint Test" with the changes above

in Step 3 in the protocol as well as replace BBB-IPA and instead execute its
simulator SBBB−IPA.

Fig. 15: Simulator S for PCOM

52

Simulator S

1. Key Generation: S generates (PK, SK) ← KeyGen and invokes the simulator
SGen(PK) for πGen.

2. Commitment Phase: Upon receiving the commitments on P1 inputs’ as well
as a proof of knowledge πEXP, S extracts the input X1 of P1 by invoking the
extractor EDL.

3. Aggregation:
(a) For every party i ∈ H where H is set of all honest parties, S generates a

random polynomial Ci(·) of degree mi, encrypts its coefficients and sends the
ciphertexts to P1 on behalf of Pi.

(b) Upon receiving the commitment of the encrypted polynomial C denoted by
comC, S participates honestly in πCOIN on behalf of the honest parties.

(c) Let u denote the output of πCOIN. S then participates uses PCOM.Vpub and
verifies whether λ̃ = Eval(PK,C, u) and comC = PCOM.Commit(pp,C).

(d) S honestly evaluates its input polynomial on u and invokes the simulator for
πEXP on behalf of the honest parties.

(e) Excluding the central party P1, S extracts the corrupt parties’ inputs. This
is achieved by extracting d + 1 evaluation points of every corrupted party’s
polynomial. In more details, each corrupt party sends a ciphertext together
with a proof of knowledge πEXP, where these ciphertexts are generated by
evaluating the input polynomials on the evaluation point u. Upon receiv-
ing the ciphertexts and the proofs, S extracts the plaintexts by running the
simulation-extractor EDL. This process is repeated for every corrupted party
multiple times. Namely, to extract the input polynomial of each corrupted
party, S rewinds the adversary to the beginning of πCOIN in order to generate
a new random element v. S records d+1 such evaluations for each corrupted
party and use them to interpolate each input polynomial and extract its roots.
Let the input set extracted for a corrupt party Pi denoted by Xi. S also in-
vokes the simulator of πDecZero on behalf of the honest parties.

4. Intersection:
(a) S sends Xi as an input of corrupt party Pi to the trusted party and receives

set intersection Z from the trusted party.
(b) S receives cyi for each xi ∈ X1. S furthermore participates honestly in PCOM

on behalf of other honest parties to ensure cyi = Eval(PK,C, xi) and comxi

is a commitment to xi.
(c) For every xj

1 ∈ Z where xj
1 is jth element in set X1, S enforces the decryption

to be zero and a random element otherwise. This is achieved by invoking the
simulator SDecZero on the appropriate plaintext (zero if element in Z or a
random element otherwise), PK and corrupted parties’ share of secret key.

5. S outputs the same as A.

Fig. 16: Simulator for MPSI protocol (Case 1)

53

Simulator S

1. Key Generation: S generates (PK, SK) ← KeyGen and invokes the simulator
SGen(PK) for πGen.

2. Commitment Phase: S commits to all 0 for P1 commitment and executes a
fake proof of knowledge by invoking the simulator SEXP.

3. Aggregation:
(a) For every honest party i ∈ H where H is set of all honest parties, S generates

a random polynomial Ci(·) of degree mi, encrypts this random polynomial
by encrypting the coefficients on behalf of Pi.

(b) S generates the commitment comC by invoking the simulator SPCOM and sends
to the adversary on behalf of P1.

(c) S participates honestly in πCOIN on behalf of the honest parties.
(d) Upon receiving u as the output of πCOIN, S invoke the simulator SPCOM to

pass the verification.
(e) S sends a ciphertext and invokes πEXP honestly on behalf of the honest parties

where the input polynomial used is the same polynomial which was encrypted.
(f) S extracts the corrupt parties’ inputs. This is achieved by extracting d + 1

evaluation points of every corrupted party’s polynomial. In more detail, each
corrupt party sends a ciphertext together with a proof of knowledge πEXP,
where these ciphertexts are generated by evaluating the input polynomials
on the evaluation point u. Upon receiving the ciphertexts and the proofs, S
extracts the plaintexts by running the simulation-extractor EDL. This process
is repeated for every corrupted party multiple times. Namely, to extract the
input polynomial of each corrupted party, S rewinds the adversary to the
beginning of πCOIN in order to generate a new random element v. S records
d+ 1 such evaluations for each corrupted party and uses them to interpolate
each input polynomial and extract its roots. Let the input set extracted for a
corrupt party Pi denoted by Xi. S also invokes the simulator of πDecZero on
behalf of the honest parties.

4. Concluding the intersection:
(a) S sends Xi as an input of corrupt party Pi to the trusted party and receives

set intersection Z from the trusted party.
(b) For every xj

1 ∈ Z where xj
1 is jth element in set X1, S biased the decryption

to be zero and random element otherwise. This is achieved by invoking the
simulator SDecZero on the appropriate plaintext (zero if the element in Z), PK
and corrupted parties’ share of the secret key.

5. S outputs the same as A.

Fig. 17: Simulator for MPSI protocol (Case 2)

54

	Private Polynomial Commitments and Applications to MPC

