
From Unbalanced to Perfect: Implementation of
Low Energy Stream Ciphers

Jikang Lin1,2, Jiahui He1,2, Yanhong Fan1,2,3 (�), and Meiqin Wang1,2,3

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan, China

{linjikang,hejiahui2020}@mail.sdu.edu.cn, {yanhongfan,mqwang}@sdu.edu.cn
2 School of Cyber Science and Technology, Shandong University, Qingdao, China

3 Quan Cheng Shandong Laboratory, Jinan, China

Abstract. Low energy is an important aspect of hardware implemen-
tation. For energy-limited battery-powered devices, low energy stream
ciphers can play an important role. In IACR ToSC 2021, Caforio et al.
proposed the Perfect Tree energy model for stream cipher that links the
structure of combinational logic circuits with state update functions to
energy consumption. In addition, a metric given by the model shows a
negative correlation with energy consumption, i.e., the higher the balance
of the perfect tree, the lower the energy consumption. However, Caforio
et al. didn’t give a method that eliminate imbalances of the unrolled
strand tree for the existing stream ciphers.
In this paper, based on the Perfect Tree energy model, we propose a new
redundant design model that improve the balances of the unrolled strand
tree for the purpose of reducing energy consumption. In order to obtain
the redundant design, we propose a search algorithm for returning the
corresponding implementation scheme. For the existing stream ciphers,
the proposed model and search method can be used to provide a low-
power redundancy design scheme. To verify the effectiveness, we apply
our redundant model and search method in the stream ciphers (e.g.,
Trivium and Kreyvium) and conducted a synthetic test. The results of the
energy measurement demonstrate that the proposed model and search
method can obtain lower energy consumption.

Keywords: Low Energy · Stream Cipher · Hardware Implementation ·
Trivium.

1 Introduction

Hardware implementations of symmetric ciphers focus on several hardware per-
formance index such as low latency, low area, low power and low energy consump-
tion. For battery-powered devices, such as portable devices, medical implant
devices or RFID tags, the implementation of low energy consumption plays an
important role.

Power and energy are correlated physical variables, energy is essentially the
integral of power over time, and power is the amount of energy consumed per



2 J.Lin et al.

unit of time, i.e.,

E =

∫
Pdt.

The energy consumption of semiconductor circuits reflects the total work done
by the voltage source during the execution of any operation. The low energy
consumption design reduces battery consumption, which is important in battery-
driven devices with limited energy supply. In the last few years, there have
been a series of works [4,20,7,8,12,21,22,14,2,3,9] on the energy consumption of
symmetric ciphers.

For block ciphers, the authors in [2] investigated the architectural design of
each component (S-box, MixColumn), the clock frequency and the impact of
serialization or unrolling design strategy on energy consumption. To explain the
relation between the degree of unrolling and energy efficiency, the authors gave a
model that illustrated the energy consumption in each clock cycle as a quadratic
function of the degree of unrolling r, with the following expression

E(r) =
(
Ar2 +Br + C

)
·
(
1 +

⌈
R

r

⌉)
,

where
(
Ar2 +Br + C

)
denotes the energy consumed per cycle and

(
1 +

⌈
R
r

⌉)
is

the total clock cycles required for encryption4. Based on this model, the degree
of unrolling of the energy-efficient optimal block ciphers implementation can be
predicted. They concluded that the degree of unrolling r = 2 was the optimal
configuration for lightweight block ciphers (e.g., Present [6], TWINE [24] and
Simon [5]), while for other block ciphers (e.g., AES [12], Noekeon [11] and Piccolo

[23]), the degree of unrolling r = 1 was optimal. Based on the above model
of energy consumption in any r-round unrolled block cipher architecture, the
authors developed energy-efficient linear and non-linear layers, and proposed a
block cipher for low energy called Midori in [1].

For encrypting significantly large data, the stream cipher is a better scheme
than the block cipher. In [3], the authors showed that an unrolled stream cipher
circuit was more energy-efficient when the encryption of multiple data blocks
was considered instead of a single block. The authors found that a Trivium [13]
implementation at degree of unrolling r = 160 was about 9 times more energy
efficient than any block cipher-based large data encryption scheme, implying
that unrolled stream ciphers generally outperformed block ciphers.

For optimizing the energy consumption of stream ciphers, the literature [9]
proposed an energy model (i.e., Perfect Tree model) that links the underlying
algebraic structure of the state update function to the energy consumptive char-
acteristic. The authors divided the whole circuit into smaller circuit strands,
which mainly comprise of the logic functions related to one register update.
Since these strands are interconnected, they seem like a tree. By observing the
variation of the power consumption of the circuit strands in the above tree, the

4 Where A,B,C are constants, R is the number of iterations of the round function
specified in the design of the cipher, and r is the degree of unrolling of the cipher.



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 3

authors found that power consumption was related to the balance degree of the
tree, i.e., if the balance degree of the tree is higher, the corresponding energy
consumption of the tree circuit is lower.

However, the implementation in [9] did not take into account the elimination
of imbalances in the unrolled strand tree for the exiting stream ciphers, the im-
balances can lead to more glitches. In this paper, we propose a redundant design
model for reducing these glitches, and give a method to search the redundant
design scheme.

Our Contributions. In this paper, based on a new redundant design model, we
propose a search algorithm for implementation scheme of the stream cipher,
and reimplement r-round unrolled stream cipher circuits under the redundant
scheme. Moreover, we conduct a synthetic test to obtain the results of the energy
measurements. We now list our contributions as follows.

1. A redundant design model for reducing glitches: We discuss the fac-
tors influencing energy consumption in semiconductor circuits, of which tog-
gle rate is the one focused on in this paper, and illustrate the relation be-
tween glitches and toggle rate. These discussions demonstrate that we can
improve energy efficiency by reducing glitches. The glitches in the circuit
are produced by inconsistent input delays of the combinational logic circuit
modules, so we can reduce the glitches by balancing the delays of all the
inputs of the modules.
According to the definition of Perfect Tree energy model in [9], each circuit
strand (combinational logic module) corresponds to an unrolled strand tree,
and the balance of this tree corresponds to the input delay balance of the
strand. If we want to convert an unbalanced tree into a balanced one, a
natural idea is to add child nodes to the unbalanced tree. Corresponding to
the circuit, this means adding additional combinational logic modules to the
circuit, which we call redundant modules.

2. A search algorithm for implementation schemes: The essence of our
redundant design is to optimize the input ports with lower delay, i.e., to con-
nect these input ports to the redundant modules. The optimization method
of the ports depend on the parameters of the update function of the ciphers.
We build a set of mappings of the circuit strand to their input ports as a
way to present the entire scheme of implementation. We present our generic
search algorithm, which takes the tap locations of the register as input and
the implementation scheme of the circuit strand as output.

3. Apply our model and search method in the stream ciphers: To ver-
ify the efficiency of our model and algorithm, we apply them to Trivium

[13] and Kreyvium [10]. We obtain the implementation scheme with redun-
dant design using the search algorithm, and describe the circuit in VHDL.
Then we use Synopsys Design Compiler and Synopsys VCS to complete
the synthesis, post-synthesis simulation and energy analysis. As shown in
Table 1, the results of the energy measurements demonstrate our redun-
dant design model and search method can obtain lower energy consump-



4 J.Lin et al.

tion. VHDL codes for describing redundant design schemes are available at
https://github.com/JKLinsdu/RedundantDesign.

Lib Cipher Design
Total

Power (uW)
Energy

(nJ/Mbit)

Lib.1 Trivium w/o 2552.9 93.0
(r = 288) w/ 2394.7 87.2
Kreyvium w/o 2848.4 116.7
(r = 256) w/ 2723.5 111.6

Lib.2 Trivium w/o 2758.1 100.4
(r = 288) w/ 2577.9 93.9
Kreyvium w/o 2637.0 108.1
(r = 256) w/ 2454.5 100.6

Table 1. Part of power/energy measurements in this paper. w/: With
redundant design, w/o: Without redundant design (corresponding to the
implementation in [9]), Lib.1: TSMC 90 nm, Lib.2: UMC 55 nm

Outline of the Paper. The rest of the paper is organized as follows. Section
2 gives the specification of Perfect Tree energy model including the definition
of circuit strand, unrolled strand tree and perfect m-ary tree, in addition, the
energy consumption in semiconductor circuits is also discussed. In Section 3,
we discuss the glitches in semiconductor circuits and gives a redundant design
model that reduces glitches. Section 4 gives an algorithm for searching for ports
to which the outputs of redundant modules should be connected. In Section 5,
We apply the redundant design to stream ciphers and give some test result to
illustrate the effectiveness of the proposed model and search method. Finally, we
conclude the paper in Section 6.

2 Preliminaries

In this section, we first review the definition of circuit strand and illustrate the
role of the Restricted directive for circuits, using Trivium as an example. We
then further review the relation between the circuit strand and tree to introduce
the concepts of Perfect m-ary Tree in Perfect Tree energy model. Finally, we
describe the energy consumption in semiconductor circuits, and point out the
direction for further optimization.

2.1 Circuit Strand

Definition 1 (Circuit Strand [9]). Update functions of a stream cipher cor-
respond to different combinational logic circuit modules. the combinational logic
circuit module can be denoted as circuit strand.

https://github.com/JKLinsdu/RedundantDesign


From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 5

In the case of Trivium, it consists of the following three update functions

t1 ← s65 + (s90 · s91) + s92 + s170

t2 ← s161 + (s174 · s175) + s176 + s263

t3 ← s242 + (s285 · s286) + s287 + s68,

where si (1 ≤ i ≤ 288) are the bits in the state register.
Thus, the update functions of Trivium correspond to three independent cir-

cuit strands (combinational logic circuit modules). These circuit strands can be
represented as

x1 + x2 + (x3 · x4) + x5.

y

x1

x2

x3

x4

x5

(a) 1 NAND2, 3 XNOR2

y

x1

x2

x3

x4

x5

(b) 1 NAND2, 1 XNOR2, 1 XNOR3, 1 NOT

Fig. 1. The combinational logic circuit module that corresponds to the circuit
strand.

For the circuit strand above, there are many circuit implementation schemes.
Fig. 1 gives two schemes with four gates (i.e., Fig. 1a and Fig. 1b). Take a
Trivium implementation at degree of unrolling r = 288 as an example, when us-
ing the Restricted directive of Synopsys Design Compiler, there will be 288×3 =
864 of such modules at the gate-level netlist. And these modules are connected
to each other, but without breaking individual boundaries.



6 J.Lin et al.

The Synopsys Design Compiler has a variety of compilation directives, which
choose different mappings and optimization for the circuit. The experiments in
[9] show that for the circuits compiled under the Restricted directive, the power
consumption was much lower than for circuits compiled under the Regular or
Ultra directives. When using the Restricted directive, the state update circuit
for r = 1 is simply replicated for higher degrees of unrolling, i.e., each circuit
strand has the same gates and structure, and the output of each strand may be
the input of other modules and the input of each strand may be the output of
other modules.

2.2 Unrolled Strand Tree and Perfect m-ary Tree

In [9], an energy model applied to stream ciphers is proposed which uses a
tree structure to portray energy efficiency, i.e., a good shaped tree corresponds
to high energy efficiency, while a bad shaped tree corresponds to low energy
efficiency. According to Definition 1, the update function of Trivium consists of
three strands

t1 = s66 + s93 + (s91 · s92) + s171

t2 = s162 + s177 + (s175 · s176) + s264

t3 = s243 + s288 + (s286 · s287) + s69.

Definition 2 (Strand in the r-th Unrolled Round [9]). ti(r) denotes the
strand for equation ti in the r-th unrolled round, where i ∈ {1, 2, 3}, and when
r ∈ {1, . . . , 288}, ti(r) can be written in recursive form for Trivium as

t1(r) = t3(r − 66) + t3(r − 93) + [t3(r − 91) · t3(r − 92)] + t1(r − 78)

t2(r) = t1(r − 69) + t1(r − 84) + [t1(r − 82) · t1(r − 83)] + t2(r − 87)

t3(r) = t2(r − 66) + t2(r − 111) + [t2(r − 109) · t2(r − 110)] + t3(r − 69),

where t1(r) = s94−r
5, t2(r) = s178−r and t3(r) = s1−r when r ≤ 0.

Definition 3 (Unrolled Strand Tree [9]). A strand ti(r) can be written in
a recursive form, i.e., a strand ti(r) can be represented as a unrolled strand tree
Ti(r) with the root node as the output bit whose subtrees are other unrolled strand
trees or leaf nodes.

In general, the leaf nodes of the unrolled strand tree represent the states in
the register, and the non-leaf nodes represent the outputs of strands. As shown
in Fig. 2, we take the example of t1(66) and t1(67), whose corresponding unrolled
strand trees are T1(66) and T1(67).

Definition 4 (Perfect m-ary Tree [9]). A perfect m-ary tree is a tree in which
all non-leaf nodes have m children and all leaf nodes are at the same depth.

5 We denote the state bits in the register by si (1 ≤ i ≤ 288).



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 7

It is noted that not all unrolled strand trees are perfect m-ary trees. The
model in [9] determines whether the circuit strand corresponding to the unrolled
strand tree is highly energy efficient precisely by distinguishing whether the
unrolled strand tree is a perfect m-ary tree, in other words, the perfect m-ary
tree is the tree of good shape in the model.

t1(66)

s106s26s27s28s1

(a) T1(66)

t1(67)

s105s25s26s27t3(1)

s171s286s287s288s243

(b) T1(67)

Fig. 2. The unrolled strand tree that corresponds to the circuit strand. T1(66)
is perfect tree, but T1(67) is not. This means that t1(66) is energy-efficient and
t1(67) is inefficient.

Since a strand corresponds to an unrolled strand tree, we can estimate the
total number of perfect trees in any r-round unrolled implementation of Trivium.
The total number of perfect trees is a metric given by [9], and this metric shows a
negative correlation with energy consumption. Therefore, we can improve energy
efficiency by increasing this metric, and more specifically, we can convert an
unbalanced unrolled strand tree into a perfect tree.

2.3 Energy Consumption in Semiconductor Circuits

In semiconductor circuits, there are two mainly reasons for producing energy
consumption:

(a) Dynamic dissipation. Dynamic dissipation is due to the charging and dis-
charging of load capacitances and the short-circuit current in semiconductor
circuits. on the frequency of the clock driving the circuit.

(b) Static dissipation. Static dissipation is due to leakage current and other
current drawn continuously from the power supply.

In detail, the total energy dissipation for a CMOS gate can be written as

E = Eswitching + Einternal + Eleakage,



8 J.Lin et al.

where Einternal is internal energy, Eswitching is switching energy and Eleakage

is leakage energy. And dynamic dissipation consists of Einternal and Eswitching,
and static dissipation mainly contains Eleakage.

Each 0 → 1/1 → 0 transition contributes to Eswitching, it is the energy
dissipated for charging and discharging the capacitive load of a CMOS gate
when output transitions occur. For the capacitive load CL, the switching power
is given as

Pswitching =
1

2
CLV

2
DDTr,

where VDD is the internal operating voltage of the device and Tr is the toggle
rate (The amount of 0→ 1/1→ 0 transitions per unit time). Einternal is due to
the short-circuit current in a CMOS gate, i.e., the pn Junction loses its unidi-
rectional conductivity and becomes a non-resistive circuit during a 0→ 1/1→ 0
transition, and the internal power is given as

Pinternal =
1

2
(Prise + Pfall)Tr,

where Prise and Pfall depend on the input transition time and the total output
net capacitance load.

Eleakage is due to leakage current, and it increases with any increase in the
physical time required to complete an operation, this means that if we decrease
the frequency, Eleakage will increase (the frequency is inversely proportional to
the clock cycle). When the frequency is high, the value of Eleakage is very small
and negligible compared with the values of Eswitching and Einternal. Thus, our
energy optimization is mainly centered on dynamic dissipation.

According to the expressions Eswitching and Einternal, both of these physical
variables are related to the toggle rate. Therefore, we can optimize the energy
by reducing the toggle rate.

3 Redundant Design for Reducing Glitches

The Perfect Tree energy model in [9] used the total number of perfect trees as
a metric, which is negatively correlated with energy consumption, and proposed
low energy variants of the stream ciphers based on this metric by changing the
tap locations. In this section, an alternative idea for reducing energy consumption
based on this metric is presented, we analyze the relation between the glitches
and the unbalanced unrolled strand tree, and propose a redundant design to
reduce glitches.

3.1 Glitches and Unbalanced Unrolled Strand Tree

According to Definition 3, a circuit strand ti(r) corresponds to an unrolled strand
tree Ti(r), the vertex of an unrolled strand tree Ti(r) is the output value of ti(r),
and the child nodes of ti(r) correspond to the inputs to ti(r). And ti(r) has five
different inputs from the register storing the state values si or other strands.



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 9

We classify the type of input according to the distance to the register (i.e., the
height of the subtree corresponding to ti(r)), and different types of input have
different delays. When the types of the inputs to ti(r) are different, this can
make the delay unbalanced, which is the reason why glitches are produced.

According to Definition 1, each circuit strand corresponds to a combinational
logic circuit module, and for Trivium, the expressions of all the corresponding
strands are exactly the same, which means that these strands have the same gates
and structure and, more importantly, the same delay. When using the Synop-
sys Design Compiler’s Restricted directive to prevent the optimization between
strands, the boundary of each strand is respected and the internal structure is
maintained. Thus, we can convert the problem related to the delay about the
entire combinatorial logic circuit consisting of these strands into the problem of
computing the height and depth of an unrolled strand tree. For example, there
are two typical computational problems related to the delay.

(a) Estimating the delay of the circuit strand. First, we compute the delay of
a single combinational logic circuit module. Then, the height of the unrolled
strand tree corresponding to the circuit strand is observed. According to
the product of the above delay and height, we obtain the overall delay of
the circuit strand. When two different circuit strands correspond to unrolled
strand trees of the same height, it means that the two circuit strands have
the same delay.

(b) Judging whether the input delay of the circuit strand is balanced. We
observe whether all the nodes of the unrolled strand tree corresponding to
the circuit strand meet the definition of the perfect m-ary tree (Definition
4). If an unrolled strand tree satisfies the definition of the perfect m-ary
tree, it means that all the input delays of its corresponding circuit strand
are balanced.

For combinational logic circuits, at any given moment, the output state is
determined only by the combination of all the input states at the same moment,
independent of the previous state of the circuit, and independent of the state
at any other time. This means that for a combinational logic circuit module, if
one of the inputs arrives faster or slower than the others, it may temporarily
change the output of it, which is not the output after the circuit is stabilized,
we claim that glitches are produced in the circuit at this time. The glitches
reflect the increase in toggle rate, which leads to an increase in internal energy
consumption and switching energy consumption.

In a word, the unbalanced unrolled strand tree, the glitches, and the power
consumption are the same phenomenon from different perspectives. As shown in
Fig. 2, T1(66) is a perfect tree, while T1(67) is not. This means that the input
delay of t1(67) is unbalanced and the input t3(1) arrives slower than the other
inputs, which will cause the output of a to be in an unstable state. Therefore
t1(67) has more glitches, resulting in greater power consumption for t1(67) than
t1(66), which is shown in Fig. 5.



10 J.Lin et al.

3.2 Redundant Modules with the Same Delay

According to the analysis results in Section 3.1, glitches are the cause of the
increased power consumption. Therefore, we can try to reduce glitches. From the
viewpoint of Perfect Tree energy model, not all unrolled strand trees satisfy the
definition of perfect tree. The reason for the imbalance of the unrolled strand
tree is that its leaf nodes are not at the same depth, which means that the
input delays of the corresponding circuit strand are inconsistent. Therefore, the
problem of reducing glitches is equivalent to the problem of how to convert an
unbalanced unrolled strand tree Ti(r) into a perfect tree. A natural idea is to
add child nodes for the leaf nodes with smaller depths until all the leaf nodes
are at the same depth.

t1(67)

edcba

Fig. 3. The adjusted T1(67). The dashed lines connect the newly added child
nodes, corresponding to the five inputs of the redundant module.

According to Definition 3, the leaf nodes of Ti(r) represent the state values
in the register, and the non-leaf nodes represent the output values of strands. As
shown in Fig. 3, taking the circuit strand t1(67) as an example, we can adjust the
unbalanced unrolled strand tree T1(67) into a perfect tree by adding child nodes,
where a, b, c, d and e denote the five child nodes of t1(67). This means that the
input ports corresponding to b, c, d and e change from direct connections to
the states of the register into connections to the outputs of other strands (com-
binational logic circuit modules). For reducing glitches and improving energy
efficiency, the following requirements for redundant module design are required.

(a) The value of the signal arriving at the input port of ti(r) cannot be changed,
only the arrival time is changed, i.e., the outputs of the redundant modules
have to be the same as the state values in the register.

(b) The delays of the redundant modules have to be consistent with the delays
of the other circuit strands, which ensures that the input delays of the circuit
strands are consistent.

(c) The addition of redundant modules will bring additional leakage of power
consumption, and it is important to make this part of the power consumption
as small as possible.

An intuitive scheme for the above requirements is to use the structure in
Fig. 1 and set its input values to ensure that its output value is the same as the



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 11

state value in the register. If we set x1 = si, x2 = 0, x3 = 0, x4 = 0 and x5 = 0,
where si denotes the state in the register, the output value will be y = si. We
apply this redundant module to t1(67), this redundant module design scheme
uses the same gates and structure as the other circuit strands, ensuring that the
signal of a, b, c, d and e arrive at the input port at the same time. In addition,
this scheme makes sure that the values b, c, d and e of the signal arriving at the
input port is not changed. These redundant modules added between the input
ports with low delays and the register states avoid the delay imbalance caused
by the direct connection of the two, thus achieving the goal of reducing glitches.

(a) The subtree of height 2

(b) The subtree of height 3

Fig. 4. Optimizing an input port with lower delay corresponding to a tree of
height 4 is equivalent to converting a subtree of height 2 to a subtree of height
3. This adjustment requires an additional 25 child (leaf) nodes and generates
an additional 5 non-leaf nodes, implying the requirement of five redundant
modules.

For other unbalanced unrolled strand trees, we can also optimize input ports
with lower delay of circuit strands using redundant modules. For the input ports
that need to be optimized, we propose a search algorithm in Section 4 to obtain
these ports with lower delay. In general, we only adjust unbalanced unrolled
strand trees of height 3. After adjusting the tree of height 3, for a tree Ti(r)
of height 4, the subtrees of strand ti(r) are trees of height 2 or 3 and meet the
definition of the perfect tree. As shown in Fig. 4, a subtree corresponds to an
input port of ti(r), so in order to adjust an input port with lower delay for a
circuit strand corresponding to a tree of height 4, we need to add five additional
redundant modules, while for a tree of height 3 only one redundant module is
needed. And so on, adjusting the tree for heights greater than 4 requires more
redundant modules. The addition of redundant modules is not cost-free, but
brings an increase in area and leakage power consumption. The essence of our
redundant design is to trade an increase in area for a decrease in total power
consumption, and we need to make trade-offs for each hardware metric.



12 J.Lin et al.

In addition, the corresponding input ports to be optimized are different for
different circuit strands, i.e., all input ports have to be selected between the
state in the register and the output of the redundant module. When considering
the hardware implementation, the layout of the circuit needs to be chosen in a
targeted way. VHDL’s if-generate statement allows us to conditionally include
blocks of code in the design, we can use this statement to make a selection on
the input port.

4 Search Algorithm

In this section, we propose a generic search algorithm, which is used to search
the input ports of the circuit strands that need to be connected to the outputs
of the redundant modules. According to Definition 3, the vertex of an unrolled
strand tree Ti(r) is the corresponding circuit strand ti(r)’s output value, and
the child nodes of ti(r) correspond to the inputs to ti(r), which possibly have
different delays. By filtering the ports of these circuit strands, we can determine
the corresponding implementation rules and the input types of circuit strands
in different classes which can ensure that the optimized unrolled strand tree will
be balanced, i.e., the optimized unrolled strand tree will meet the definition of
the perfect tree. In other words, the implementation rules for ti(r) indicate the
type of all the input ports. Based on the type of input ports, we can determine
where to add the redundant modules to reach the goal of balancing delays and
reducing glitches.

Our search algorithm takes the tap locations involved in the recursive expres-
sions (in Definition 2) of circuit strand as inputs, and outputs the implementa-
tion rule of the circuit strand. For different strands, the corresponding search
algorithm can also be derived by changing the tap locations parameters.

Before introducing the search method, we give the notations used in this
section as follows.

• r: The degree of unrolling.
• Xi: The tap locations involved in the recursive expressions of circuit strand.
• xi: The input ports for circuit strand.
• T : The set of register’s tap locations.
• M: The mapping set of register’s tap locations to input ports for correspond-
ing circuit strand.

• E : The mapping set of circuit strands to their input ports.

Our search method is applicable to stream ciphers. In stream ciphers, their
update functions can be described using a series of tap location parameters. Def-
inition 2 gives the recursive form of the circuit strand, from the correspondence
between the expression for ti(r) and the unrolled strand tree, we can observe
that the shape of the tree depends on the numerical comparisons of the degree
of unrolling and the tap locations involved in the recursive expressions. And
according to Section 3.2, we only need to adjust the unrolled strand trees with



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 13

height 3 for the trade-off of each hardware metric. The essence of the implemen-
tation scheme of the redundant design is to optimize the input ports with lower
delays, therefore, we propose Algorithm 1 to search for these input ports.

Algorithm 1: E = SearchPorts(T ,M)

Input: The sets T andM
Output: The set E of ports with redundant modules as inputs with the

tap locations inM
1 E ← ϕ
2 for i in range(1,r) do
3 w ← 0
4 foreach element X in T do
5 if i > X then
6 w ← w + 1
7 end

8 end
9 v ← sizeof(T )

10 if w ̸= 0 and w ̸= v then
11 foreach element X in T do
12 if i ≤ X then
13 x← mapping(X,M)
14 E ← E ∪ {(i, x)}
15 end

16 end

17 end

18 end
19 return E

Algorithm 1 consists of two steps: (a) Step 1. Determine whether the delays
of the inputs of ti(r) are balanced. This determination can be done by the
above numerical comparison used to observe the shape of the tree, and this step
corresponds to Line 2-8 in Algorithm 1. (b) Step 2. Filter the input ports with
lower delays corresponding to ti(r) with delay imbalance in Step 1, this step
also uses numerical comparisons and corresponds to Line 10-17 in Algorithm
1. Next, we explain Algorithm 1 line by line:

Line 1 Initialize the set E as an empty set.
Line 2 For the circuit at degree of unrolling r, there are r strands for equation

ti being iterated.
Line 3 Initialize the counter w as 0. We denote the result of a numerical com-

parison by 0 and 1, and accumulate the results. The total result after accu-
mulation is related to the balance of the unrolled strand tree, i.e., the tree
is balanced when the counter has a value of 0 or the number of elements in



14 J.Lin et al.

the set T . In a word, this counter reflects the balance of the unrolled strand
tree corresponding to the circuit strand.

Line 4-8 Iterate through the five taps to get the result of the comparison with
the numerical value of i, and accumulate the results.

Line 9 The sizeof() is used to return the number of elements in the set.
Line 10 Filter unbalanced unrolled strand trees.
Line 11-16 The input ports are classified in more detail, and the ports that

need to be optimized are added to the set E . Where mapping() is used to
return the mapping value of an element X in the setM.

Line 19 Return the set E of mappings of circuit strands to their inputs.

Taking Trivium as an example, as shown in Fig. 1, a circuit strand corre-
sponds to five input ports, so we can create a mapping from the circuit strand
to the input ports that need to be optimized to present a specific implementa-
tion scheme. When considering an implementation of the cipher, we connect the
input ports of the mappings in the set to redundant modules.

Example: Implementation rule for t1(67). As shown in Fig. 2, T1(67) is an un-
balanced tree, thus there are a portion of input ports with lower delays, and
we use Algorithm 1 to filter them. It is noted that the tap locations involved
in the recursive expressions of the circuit strand t1(67) are X1 = 66, X2 =
93, X3 = 91, X4 = 92 and X5 = 78, where the value of X1 is less than 67, so
w = 1. Because w ̸= 0 and w ̸= 5, we further filter the input port for t1(67).
Since the values of X2, X3, X4 and X5 are greater than 67, and (X1, x1) ∈ M,
(X2, x2) ∈ M, (X3, x3) ∈ M, (X4, x4) ∈ M, (X5, x5) ∈ M, so (67, x2) ∈ E ,
(67, x3) ∈ E , (67, x4) ∈ E and (67, x5) ∈ E . Thus, the input ports x2, x3, x4 and
x5 of t1(67) is to be connected to the redundant module.

5 Applications to Stream Ciphers

In this section, we apply the proposed model and search method in two Trivium-
like stream ciphers: Trivium [13] and Kreyvium [10]. The most significant char-
acteristic of Trivium-like ciphers is that the strands corresponding to the update
functions are approximately the same. For Trivium-like ciphers, our redundant
design model can play a positive role in energy optimization. In order to verify
the effectiveness of our model and algorithm, we conduct synthetic tests and
give the experimental results.

We take the tap location parameters of the stream cipher as the input of
the search algorithm and get the mappings of circuit strands to its ports as the
implementation scheme. Based on these mappings, we describe the layout of the
circuit in VHDL, i.e., the input ports of each circuit strand should be connected
to which part of the entire circuit. Then, we use Synopsys Design Compiler



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 15

to convert the circuit described by VHDL into a gate-level netlist based on
the standard cell library, and the two standard cell libraries we used in our
experiments are TSMC 90 nm and UMC 55 nm. We then use Synopsys VCS to
run post-synthesis simulation of gate-level netlist, with the aim of collecting the
switching activity of each gate of the circuit and generating SAIF files containing
the information about the toggle counts. In the last step, the SAIF files are sent
back to the synthesis tool together with the gate-level netlist from the initial
synthesis to run power analysis.

5.1 Application to Trivium

Trivium [13] is a hardware-oriented synchronous stream cipher, which still has a
large margin of security [19,25,18,17], its update functions and their correspond-
ing circuit strands are given in Section 2.1, and these circuit strands are exactly
the same.

We use the Synopsys design compiler’s restriction directive to compile the
circuit to ensure that the boundaries of the circuit strands are not broken, so we
can conduct a separate energy analysis for each circuit strand. Power measure-
ments for all circuit strands ti(r) without redundant design of the two standard
cell libraries (TSMC 90 nm and UMC 55 nm) are shown in Fig. 5. And we can
observe that the power consumption of the circuit strands corresponding to the
perfect trees are relatively low, and the power consumption of the circuit strands
corresponding to the unbalanced unrolled strand trees are relatively high, where
data points with colors close to blue correspond to circuit strand with low en-
ergy consumption, while data points with colors close to red are circuit strand
with high energy consumption. Take the circuit strands t1(r) (1 ≤ r ≤ 93) as
examples, where the unrolled strand trees corresponding to circuit strands t1(r)
for 1 ≤ r ≤ 66 are perfect trees, while the unrolled strand trees corresponding
to circuit strands t1(r) for 67 ≤ r ≤ 93 are imbalanced trees. We can observe a
sudden rise between the data points corresponding to the two parts of the cir-
cuit strands mentioned above in Fig. 5a, more specifically, there is a significant
discontinuity between t1(66) and t1(67). Another phenomenon of interest is that
the data points corresponding to the circuit strands do not rise monotonically as
r rises, but there are sudden drops, and the data points that drop suddenly cor-
respond to the circuit strands corresponding to the perfect trees as well, which
reminds us that converting an unbalanced tree into a perfect one is an idea for
optimizing power consumption, specifically, this can be achieved by introducing
redundant design to the circuit.

For redundant design, we also synthesize the circuit using Synopsys Design
Compile’s Restriction directive. From the gate-level netlist, the circuit with re-
dundant design has some more combinational logic circuit modules (redundant
modules) than the circuit without redundant design. Thanks to Restriction di-
rective, the boundary of each circuit strand is not broken, so we can also use the
power analysis tool to measure the power consumption of each circuit strand of
the circuit with redundant design. Based on the power measurement figures of
the circuit with and without redundant design, we can observe the role of the



16 J.Lin et al.

redundant modules by comparing the two. Note that according to the analysis
in Section 3, we only optimize for unbalanced unrolled strand trees of height
3. As shown in Fig. 5 and Fig. 6, the values of the data points corresponding
to all circuit strands are reduced to different degrees, where the decrease in the
values of the data point corresponding to circuit strands t1(r) for 67 ≤ r ≤ 93
is particularly significant. The main reason for this significant decrease is that
the power consumption of the circuit strands corresponding to the unbalanced
unrolled strand trees of height 3 is reduced due to the fact that we have adjusted
these trees to satisfy the definition of the perfect tree. Taking t1(66) and t1(67)
as examples, in Fig. 5, there is a obvious discontinuity between the two, while
in Fig. 6, there is a continuity between the two, which implies that the redun-
dant modules play the role in reducing glitches. And compared with Fig. 5, the
sudden rise that exists between circuit strands t1(r) for 1 ≤ r ≤ 66 and circuit
strands t1(r) for 67 ≤ r ≤ 93 is eliminated.

Then, we conducted energy measurements on Trivium’s circuit with and
without redundant design, and compared the results in these two cases. In Fig. 7,
we render the energy measurement of the process of encrypting 1 Mbit data re-
sults by using two standard cell libraries (TSMC 90 nm and UMC 55 nm) over
100 Mhz, and the energy consumption is computed as the product of the aver-
age power and the total time required for the encryption process. Our energy
measurement figure shows the energy consumed to encrypt 1 Mbit of data at dif-
ferent degree of unrolling. It is noted that for lower degree of unrolling, since the
number of glitches is small and the effect of redundant design is not obvious, the
two lines in the figure overlap. As shown in Fig. 7, the energy measurement figure
first drops sharply and then tends to be stable. Considering throughput and the
impact of the degree of unrolling r on energy consumption, we take r = 288 as
the optimal parameter. Take the circuit based on TSMC 90 nm as an example,
at degree of unrolling r = 288, the energy consumption of the implementations
with and without redundant design are 87.2 nJ/Mbit (Corresponding dynamic
power consumption is 2335.5 uW and leakage power consumption is 59.2 uW)
and 93.0 nJ/Mbit (Corresponding dynamic power consumption is 2497.7 uW
and leakage power consumption is 55.2 uW) as shown in Fig. 7 and Table 2,
respectively, which indicates a reduction in energy consumption of about 6.2%.
Another example is based on UMC 55 nm, at degree of unrolling r = 288, the
energy consumption of the implementations with and without redundant design
are 93.9 nJ/Mbit (Corresponding dynamic power consumption is 2569.1 uW and
leakage power consumption is 8.8 uW) and 100.4 nJ/Mbit (Corresponding dy-
namic power consumption is 2749.9 uW and leakage power consumption is 8.2
uW), respectively, which indicates a reduction in energy consumption of about
6.5%. According to the comparison results of dynamic and leakage power con-
sumption in Table 2, we can find that the redundant design increases leakage
power consumption, but reduces dynamic power consumption. The reason for
this is that our redundant scheme reduces glitch by adding redundant circuits to
balance the dynamic and leakage power consumption, so as to reduce the power
consumption of the whole scheme.



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 17

0 50 100 150 200 250 300

1

1.5

2

2.5

3

·10−3

m
W

TSMC 90 nm

0 50 100 150 200 250 300

1

2

3

·10−3 UMC 55 nm

(a) t1(r)

0 50 100 150 200 250 300

1

1.5

2

2.5

3
·10−3

m
W

TSMC 90 nm

0 50 100 150 200 250 300

1

2

3

·10−3 UMC 55 nm

(b) t2(r)

0 50 100 150 200 250 300

1

1.5

2

2.5

3

·10−3

m
W

TSMC 90 nm

0 50 100 150 200 250 300

1

2

3

4

·10−3 UMC 55 nm

(c) t3(r)

Fig. 5. Trivium power measurements for all the circuit strands for the TSMC
90 nm and UMC 55 nm cell libraries without redundant design.



18 J.Lin et al.

0 50 100 150 200 250 300

1

1.5

2

2.5

·10−3

m
W

TSMC 90 nm

0 50 100 150 200 250 300

1

1.5

2

2.5

3

3.5
·10−3 UMC 55 nm

(a) t1(r)

0 50 100 150 200 250 300

1

1.5

2

2.5
·10−3

m
W

TSMC 90 nm

0 50 100 150 200 250 300

1

1.5

2

2.5

3

3.5

·10−3 UMC 55 nm

(b) t2(r)

0 50 100 150 200 250 300

1

1.5

2

2.5
·10−3

m
W

TSMC 90 nm

0 50 100 150 200 250 300

1

1.5

2

2.5

3

3.5
·10−3 UMC 55 nm

(c) t3(r)

Fig. 6. Trivium power measurements for all the circuit strands for the TSMC
90 nm and UMC 55 nm cell libraries with redundant design.



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 19

50 100 150 200 250 300

1

1.5

2

2.5

3

·10−7

r

J
/
M
b
it

100 Mhz

With redundant design

Without redundant design

(a) TSMC 90 nm

50 100 150 200 250 300

1

1.5

2

·10−7

r

100 Mhz

(b) UMC 55 nm

Fig. 7. Trivium energy measurements for the TSMC 90 nm and UMC 55 nm
cell libraries. For 100 Mhz, the implementation with redundant design is more
advantageous than the implementation without redundant design.

50 100 150 200 250

1

1.5

2

2.5

3

·10−7

r

J
/
M
b
it

100 Mhz

With redundant design

Without redundant design

(a) TSMC 90 nm

50 100 150 200 250

1

1.5

2

·10−7

r

100 Mhz

(b) UMC 55 nm

Fig. 8. Kreyvium energy measurements for the TSMC 90 nm cell libraries.

5.2 Application to Kreyvium

Kreyvium [10] is a stream cipher designed to be applied to fully homomorphic
encryption schemes. Compared with Trivium, Kreyvium’s security [15,16,17] is
improved from 80-bit to 128-bit. Although Kreyvium and Trivium have the same
structure and taps, the three circuit strands corresponding to Kreyvium’s update



20 J.Lin et al.

functions are not exactly the same. According to Definition 1 and the description
of Kreyvium, the update functions of Kreyvium consists of three strands

t1 = s66 + s93 + (s91 · s92) + s171 + IV ∗
0

t2 = s162 + s177 + (s175 · s176) + s264

t3 = s243 + s288 + (s286 · s287) + s69 +K∗
0 ,

where IV ∗
0 and K∗

0 denote the bits from IV and key.

Lib Cipher Design
Total

Power (uW)
Dynamic

Power (uW)
Leakage

Power (uW)
Energy

(nJ/Mbit)

Lib.1 Trivium w/o 2552.9 2497.7 55.2 93.0
(r = 288) w/ 2394.7 2335.5 59.2 87.2
Kreyvium w/o 2848.4 2791.7 56.7 116.7
(r = 256) w/ 2723.5 2662.8 60.7 111.6

Lib.2 Trivium w/o 2758.1 2749.9 8.2 100.4
(r = 288) w/ 2577.9 2569.1 8.8 93.9
Kreyvium w/o 2637.0 2628.7 8.3 108.1
(r = 256) w/ 2454.5 2445.6 8.9 100.6

Table 2. Part of power/energy measurements at 100 Mhz. w/: With redundant
design, w/o: Without redundant design (corresponding to the implementation
in [9]), Lib.1: TSMC 90 nm, Lib.2: UMC 55 nm

We apply the proposed model and search method to the Kreyvium to give a
redundant design scheme and describe it using VHDL. Based on the Synopsys
Design Compiler and two cell libraries (i.e., TSMC 90 nm and UMC 55 nm), we
synthesise the hardware implementation scheme, and the results of our energy
analysis based on encrypted 1 Mbit data are shown in Fig. 8 and Table 2. We
can also observe that as the degree of unrolling r increases, the energy line first
has a significant drop, and then fluctuates in a small range in Fig. 8. And as
the degree of unrolling r increases, the advantages of our redundant design be-
come more and more apparent. Considering the throughput and the impact of
degree of unrolling on energy (when greater than a certain value, the impact of
degree of unrolling on energy consumption is small), we take r = 256 as the op-
timal. At degree of unrolling r = 256, for TSMC 90 nm, the energy consumption
of the implementations with and without redundant design are 111.6 nJ/Mbit
(Corresponding dynamic power consumption is 2662.8 uW and leakage power
consumption is 60.7 uW) and 116.7 nJ/Mbit (Corresponding dynamic power
consumption is 2791.7 uW and leakage power consumption is 56.7 uW), respec-
tively, which indicates a reduction in energy consumption of about 4.4%; for
UMC 55nm, the energy consumption of the implementations with and without
redundant design are 100.6 nJ/Mbit (Corresponding dynamic power consump-
tion is 2445.6 uW and leakage power consumption is 8.9 uW) and 108.1 nJ/Mbit
(Corresponding dynamic power consumption is 2628.7 uW and leakage power



From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 21

consumption is 8.3 uW), respectively, which indicates a reduction in energy con-
sumption of about 6.9%. These results indicate that our redundant design trades
a portion of the increase in leakage power consumption for a reduction in dy-
namic power consumption, and that our design shows an advantage when the
latter reduction is greater than the former increase.

6 Conclusion

In this paper, we investigated the hardware implementation of low energy stream
ciphers. Based on Perfect Tree energy model, we propose a redundant design
model for reducing glitches. In fact, the intuitive scheme in this paper is not
the only scheme for redundant module, as long as the combined logic circuit
modules that meet requirements of delay balance can be used as redundant
modules. We have not yet found a better design scheme for redundant modules,
so there remains an open problem of finding a better delay balancing scheme.
In addition, we present a search algorithm used to return the implementation
scheme. And we reimplemented the different stream ciphers using the redundant
design, the experimental results show that the energy consumption of the circuit
with redundant design was reduced.

From the experimental results, we can find that applying the redundant de-
sign to Trivium-like ciphers worked well because the strands of the Trivium-like
cipher are approximately the same, which means that the redundant module is
easier to construct. Therefore, from the perspective of energy optimization, we
suggest that cipher designers consider setting the circuit strands corresponding
to the update functions of the stream ciphers to be approximately the same.

Acknowledgement

This work was partially supported by the National Natural Science Founda-
tion of China (Grant No. 62272273, Grant No. 62002201, Grant No. 62032014),
the National Key Research and Development Program of China (Grant No.
2018YFA0704702), and the Major Basic Research Project of Natural Science
Foundation of Shandong Province, China (Grant No. ZR202010220025).

References

1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) Advances in Cryptology – ASIACRYPT 2015. pp. 411–436. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 17

2. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Dunkelman, O., Keliher, L. (eds.) Selected Areas in Cryptogra-
phy – SAC 2015. pp. 178–194. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 10

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-319-31301-6_10


22 J.Lin et al.

3. Banik, S., Mikhalev, V., Armknecht, F., Isobe, T., Meier, W., Bogdanov,
A., Watanabe, Y., Regazzoni, F.: Towards low energy stream ciphers.
IACR Transactions on Symmetric Cryptology 2018, Issue 2, 1–19 (2018).
https://doi.org/10.13154/tosc.v2018.i2.1-19

4. Batina, L., Das, A., Ege, B., Kavun, E.B., Mentens, N., Paar, C., Verbauwhede, I.,
Yalçın, T.: Dietary recommendations for lightweight block ciphers: power, energy
and area analysis of recently developed architectures. In: Radio Frequency Identi-
fication: Security and Privacy Issues 9th International Workshop, RFIDsec 2013,
Graz, Austria, July 9-11, 2013, Revised Selected Papers 9. pp. 103–112. Springer
(2013). https://doi.org/10.1007/978-3-642-41332-2 7

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
simon and speck families of lightweight block ciphers. Cryptology ePrint Archive,
Paper 2013/404 (2013), https://eprint.iacr.org/2013/404

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2007. pp. 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74735-2 31

7. Caforio, A., Balli, F., Banik, S.: Energy analysis of lightweight aead cir-
cuits. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) Cryptology and Net-
work Security. pp. 23–42. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-65411-5 2

8. Caforio, A., Balli, F., Banik, S., Regazzoni, F.: A deeper look at the en-
ergy consumption of lightweight block ciphers. In: 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). pp. 170–175. IEEE (2021).
https://doi.org/10.23919/DATE51398.2021.9474018

9. Caforio, A., Banik, S., Todo, Y., Meier, W., Isobe, T., Liu, F., Zhang,
B.: Perfect trees: Designing energy-optimal symmetric encryption primitives.
IACR Transactions on Symmetric Cryptology 2021(4), 36–73 (Dec 2021).
https://doi.org/10.46586/tosc.v2021.i4.36-73

10. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M.,
Paillier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient
homomorphic-ciphertext compression. In: Peyrin, T. (ed.) Fast Software En-
cryption. pp. 313–333. Springer Berlin Heidelberg, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 16

11. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: Noekeon.
In: First open NESSIE workshop. pp. 213–230 (2000), http://gro.noekeon.org/
Noekeon-spec.pdf

12. Daemen, J., Rijmen, V.: The design of Rijndael, vol. 2. Springer (2002).
https://doi.org/10.1007/978-3-662-60769-5

13. De Cannière, C., Preneel, B.: Trivium, pp. 244–266. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3 18

14. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: Aes implementation on a
grain of sand. IEE Proceedings-Information Security 152(1), 13–20 (2005).
https://doi.org/10.1049/ip-ifs:20055006

15. Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Links between division
property and other cube attack variants. IACR Transactions on Symmetric Cryp-
tology 2020, Issue 1, 363–395 (2020). https://doi.org/10.13154/tosc.v2020.i1.363-
395

https://doi.org/10.13154/tosc.v2018.i2.1-19
https://doi.org/10.1007/978-3-642-41332-2_7
https://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-030-65411-5_2
https://doi.org/10.23919/DATE51398.2021.9474018
https://doi.org/10.46586/tosc.v2021.i4.36-73
https://doi.org/10.1007/978-3-662-52993-5_16
http://gro.noekeon.org/Noekeon-spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1049/ip-ifs:20055006
https://doi.org/10.13154/tosc.v2020.i1.363-395
https://doi.org/10.13154/tosc.v2020.i1.363-395


From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers 23

16. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2020. pp. 466–495. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 17

17. He, J., Hu, K., Preneel, B., Wang, M.: Stretching cube attacks: Improved methods
to recover massive superpolies. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptol-
ogy – ASIACRYPT 2022. pp. 537–566. Springer Nature Switzerland, Cham (2022).
https://doi.org/10.1007/978-3-031-22972-5 19

18. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recovery
with nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.) Advances
in Cryptology – ASIACRYPT 2021. pp. 392–421. Springer International Publish-
ing, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 14

19. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division prop-
erty: Revisiting degree evaluations, cube attacks, and key-independent sums. In:
Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2020. pp. 446–
476. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-
3-030-64837-4 15

20. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.X.: Towards green
cryptography: a comparison of lightweight ciphers from the energy viewpoint. In:
Cryptographic Hardware and Embedded Systems–CHES 2012: 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings 14. pp. 390–407.
Springer (2012). https://doi.org/10.1007/978-3-642-33027-8 23

21. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very
compact and a threshold implementation of aes. In: Paterson, K.G. (ed.) Advances
in Cryptology – EUROCRYPT 2011. pp. 69–88. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 6

22. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware
architecture with s-box optimization. In: Boyd, C. (ed.) Advances in Cryptology
— ASIACRYPT 2001. pp. 239–254. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 15

23. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) Cryptographic
Hardware and Embedded Systems – CHES 2011. pp. 342–357. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-
9 23

24. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: A lightweight block
cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) Selected Areas in
Cryptography. pp. 339–354. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35999-6 22

25. Ye, C.D., Tian, T.: Algebraic method to recover superpolies in cube attacks.
IET Information Security 14(4), 430–441 (2020). https://doi.org/10.1049/iet-
ifs.2019.0323

https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-031-22972-5_19
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-642-33027-8_23
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1049/iet-ifs.2019.0323
https://doi.org/10.1049/iet-ifs.2019.0323

	From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers

