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Abstract

Computing the quantile of a massive data stream has been a crucial task in networking and data man-
agement. However, existing solutions assume a centralized model where one data owner has access to all
data. In this paper, we put forward a study of secure quantile aggregation between private data streams,
where data streams owned by different parties would like to obtain a quantile of the union of their data
without revealing anything else about their inputs. To this end, we designed efficient cryptographic
protocols that are secure in the semi-honest setting as well as the malicious setting. By incorporating
differential privacy, we further improve the efficiency by 1.1× to 73.1×. We implemented our protocol,
which shows practical efficiency to aggregate real-world data streams efficiently.

1 Introduction

Processing high-speed, large volumes of data is one of the core tasks in networking analysis and database
systems. The seminal work by Alon, Matias, and Szegedy [1] formalized and popularized the concept
of data stream algorithms, where the algorithms can only make one pass of the data. These algorithms
are particularly useful in practice due to their small memory footprint and high processing speed. They
have been designed for the aggregation of various data, such as sum, max/min, count, quantile, cardinality
estimation, histogram, and heavy hitter [2, 3, 4, 5, 6]. These algorithms can be applied to large volumes of
physical data, medical data, activity data, business data, and more. Based on these algorithms, more complex
tasks, such as service quality management [7], DoS attack detection [8], large area environmental/wildlife
habitat monitoring deployed in sensor networks [9], and query optimization [10], can also be tackled.

However, almost all these algorithms are proposed under the assumption that all data streams are within
the same system or owned by one party, and thus the aggregation of all data could be performed in a
central place. It may not be the case when multiple data streams from different sites with different security
requirements need to be aggregated. A simple illustration of this scenario would be the joint analysis of
hospital visit records from multiple hospitals. In this case, each of the data owners (i.e., the hospitals) is
reluctant to share their raw data, which contains sensitive information about their patients, with each other.
However, they need to aggregate their data for joint analysis. A simple example would be the joint analysis
of hospital visit records from multiple hospitals. In this case, multiple mutually distrusting data owners (i.e.,
the hospitals) need to aggregate their data, but none of the data owners would agree to share their raw data
that contains highly sensitive information about their patients. This could be the cause of policy restrictions
or the fact that the data is too valuable to share with other parties directly.
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Several efforts have been made to realize aggregation in privacy-related applications involving multiple
data owners. There are two broad approaches to this problem: enhancing existing aggregation algorithms in
a centralized manner (such as in [11, 12, 13, 14, 15, 16, 17, 18] or using cryptographic tools or designing
dedicated distributed cryptographic protocols (such as in [19, 20, 21, 22, 23, 24, 25, 26, 27, 28]) for spe-
cific computation tasks. In a centralized manner, differential privacy, the de facto standard of data privacy
proposed by Dwork [29], is a common approach to enhance privacy. However, the data still needs to be
given out to the aggregator though the data has a certain degree of privacy protection, which would lead to
privacy leakage. Besides, a trusted aggregator is not always easy to find. In the distributed manner, the cryp-
tographic protocols take the role of the trusted aggregator, but dedicated protocols are highly dependent on
complex cryptographic tools and hard to follow and extend. Moreover, most cryptographic protocols under
the category of secure multi-party computation (MPC) do not actually ensure the privacy of personal data
in the input, even though their goal is to allow a set of mutually distrusting parties to compute any function
of their choice while ensuring that nothing is revealed except the outcome of the computation. Therefore,
the privacy of the input must be guaranteed by other means. Additionally, many existing works in the dis-
tributed setting require the participants to outsource their data, which results in significant communication
and computation overhead for the applications.

Furthermore, existing works on secure aggregation mainly focus on secure heavy hitter [21, 12, 25, 28]
histogram [27], cardinality estimation problem [23]. Few of them are on secure quantile computation [26,
17]. Quantiles, as known to us, are elements in a sorted dataset that represent specific ranks. They provide
reasonably accurate information about the distribution of a dataset and are less sensitive to outliers than the
moments. As an order statistic, it can also be used to resolve histograms, heavy hitters, frequency problems,
and geometric computations, therefore it is a very basic and important kind of statistical calculation. Mean-
while, there is plenty of research focusing on efficient approximate quantile computation [30, 31]. Based on
our careful research, we found that most of the quantile algorithms were proposed more than ten or twenty
years ago, while the recent works mainly focus on the improvement of algorithms’ performance in some ex-
treme cases. Among them, the algorithm proposed by Shrivastava et al. [9], named as Q-Digest, is the first
famous deterministic algorithm designed in a distributed model. Although Q-Digest is not the best choice
for computing quantiles, it is the only deterministic mergeable summary for quantiles. Therefore, Q-Digest
itself provides a merge algorithm that makes the distributed quantile computation possible.

To better motivate secure quantile aggregation in distributed privacy-preservation applications, we con-
duct our work. First, we choose a candidate algorithm (i.e., Q-Digest in this paper) that is mergeable so that
each data owner can first locally aggregate their own data streams. Then, we design an MPC protocol to
jointly compute a summary over the aggregation of all data. Furthermore, different from previous work, we
use a Differential Privacy mechanism as a tool to protect the input of the MPC protocol without reducing
the accuracy of the data.

However, the use of MPC introduces several challenges: 1) MPC protocols, especially those with mali-
cious security, are highly expensive and thus we would like to minimize the use of MPC as much as possible;
2) MPC protocol requires the function to be represented in a way such that the execution and data access
trace are all independent of the input (a.k.a. obliviousness), this means that the input size and the com-
putation have to incur the worst-case cost to prevent leakage; 3) in the malicious setting, the data owners
could behave arbitrarily and input an invalid local aggregation. Therefore, extra mechanisms are needed to
efficiently check that all inputs are valid. The first challenge in secure quantile aggregation in distributed
privacy-preservation applications can be addressed in two ways. Firstly, more efficient general MPC pro-
tocols [32, 33, 34] can help. Secondly, by using aggregation sketch to reduce the computation overhead
brought to MPC. Our choice of Q-Digest is motivated by this consideration. The second challenge, regard-
ing obliviousness, is faced by all MPC applications and is usually addressed by transforming algorithms with
ORAM [35, 36, 37]. However, this approach increases both computation and communication complexity,
making it unfeasible for complex algorithms. The last challenge is the key to realizing malicious security
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but varies from problem to problem. In this paper, we design a dedicated input validity check to address this
challenge.

In this paper, we design and implement a system for the secure aggregation of multiple private data
streams efficiently. We focus on the problem of quantile estimation based on the Q-Digest algorithm [9],
which is an algorithm designed in the distributed setting. Our system is based on provably secure protocol
and can aggregate a dataset with size 109 and universe 232 under 996 seconds in the semi-honest setting and
6596 seconds in the malicious setting, a much stronger security guarantee. Such impressive performance
is enabled by designing new algorithms at the intersection of approximation algorithms, cryptography, and
privacy. In summary, our contributions are efficient MPC protocols for quantile aggregation with privacy
protection on distributed streams. Concretely,
1. Our first task is to support data aggregation in the semi-honest setting without any leakage. To this end,

we design an efficient data-oblivious Q-digest merge algorithm called OMerge. Compared to a generic
baseline, this protocol is significantly more efficient both asymptotically and concretely.

2. To explore further efficiency improvement, we propose a formal definition for secure two-party Q-digest
aggregation that allows provable trade-offs between security and efficiency. We observe that the bottle-
neck in the above algorithm is the unnecessary padding and thus proposed an improved algorithm that
can achieve better performance by revealing parties’ actual data size but protected by differential privacy.
To minimize the amount of noise needed, we proved that the global sensitivity of the digest size is 2, in-
dependent of all other parameters in the system. As a result, the overhead of differentially private leakage
is only 40.5% under the universe of 28 and 0.8% under the universe of 232. See Section 4.

3. To achieve malicious security, we design an oblivious validity check algorithm OCheck that guarantees
that the input is calculated correctly based on some data stream. The check can be represented efficiently
as a circuit, and at the same time, can be checked using a zero-knowledge proof protocol rather than a
full-blown malicious two-party computation, which further reduces its overhead. See Section 5.

4. Finally, we implement our system and benchmark its efficiency in both the semi-honest and malicious
setting, using both real-world data and also synthetic data.

2 Preliminaries and Model

2.1 Notation

We use := to denote assignment and = to denote equivalence. We use D to denote a dataset, where the
elements of D are drawn from a universe [U ] = {1, 2, . . . , U}. We use a frequency vector f to represent
D such that f [i] is the number of occurrences of i in D, where i ∈ [U ]. We use |D| to denote the size of
D so |D| =

∑
i∈[U ] f [i]. We use T to denote a complete binary tree with U leaves. By convention, we use

[a, b] to denote {x|a ≤ x ≤ b}, use A ∩ B to join two sets A and B, use A \ B to denote the subset which
contains all the elements only in A but not in B, and use A ∪B to denote the union of two sets A and B.

2.2 Q-Digest

Q-Digest [9] is a popular data structure mainly used to answer quantile queries in database and sensor
network systems and is based on a complete binary tree built over the universe of the datasets. By denoting
the universe of our dataset as [U ], we can build a complete binary tree T over the entire universe with depth
logU , in which every node is associated with a tuple 〈id, c〉 where id is the identifier of the node in the
tree and c is a counter used to record the number of elements which lie in the certain range corresponding
to the identifier of this node. We start with a dataset D which has a frequency vector f and the size
n =

∑
i∈[U ] f [i]. In order to calculate the Q-Digest for D, a tree T is initialized such that the counter for

the i-th leaf node is set to the frequency f [i], while the counters of all non-leaf nodes are set to 0. The
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next step is to group the counter values into higher-level nodes through a compression procedure. In their
original paper, the compression condition is referred to as digest properties, which depend on a compression
parameter k and determines not only the size of Q-Digest but also the approximation error. To simplify,
letting θ = bn/kc to be the threshold, the compression condition checked against any node with 〈id, c〉 is
whether c + cp + cs ≤ θ, where cp and cs are the counter values of the parent and sibling of node id. When
c + cp + cs ≤ θ, the counter cp is replaced with c + cp + cs, and the counter value c and cs are set to 0. The
check is executed from bottom to top, from left to right, and then the final Q-Digest can be constructed. A
more detailed description of the original Q-Digest is given in Appendix A.

2                       4              6         3            1        1               1

(a)

4              6         3            1

2                                          2

(b)

4              6         3            1

2                                                   2

(c)

Figure 1: Building the Q-Digest on a dataset where n = 18, U = 8, f = (2, 0, 4, 6, 3, 1, 1, 1) when the
compression parameter k = 5. In this case, θ = bn/kc = b18/5c = 3. In Figure 1a, the compression
condition of id8, id14 ( and id15) is met so the nodes will be compressed with their parents id4 and id7

respectively. Thus we arrive at the state in Figure 1b. At this point, the compression condition of id4 and id7

is still met, so the nodes are compressed and we arrive at Figure 1c. Since the compression condition of id2

and id3 is not met, the compression procedure finishes and we arrive at the final Q-Digest in Figure 1c.
In Figure 1, we provide an example to show the Q-Digest building procedure for a dataset of size n = 18

and U = 8. For every node in the tree, we mark the identifier in the box and the non-zero counter value
above the box. The boxes in blue color are the nodes with non-zero counter values. In Figure 1a, the tree
is constructed on the dataset with frequency vector f = (2, 0, 4, 6, 3, 1, 1, 1); Figure 1b and Figure 1c show
the intermediate compression results executed on each level bottom up; finally, the Q-Digest of the dataset
is a set which contains all the nodes of blue color in Figure 1c.1

2.3 Differential Privacy

Differential privacy is a rigorous and composable privacy notion in the context of data analysis. It provides
a generic mechanism to protect the privacy of any individual whose data is contained in the dataset and aims
at realizing privacy-preserving data analysis.

Following the definition of Dwork and Roth [29], we define the distance between datasets based on the
`1 norm. Given two datasets D and D′, their distance is defined as ‖D − D′‖1 :=

∑
i∈[U ] |f [i] − f ′[i]|.

Then, we say that two datasets D and D′ are neighboring if their distance is at most 1.

Definition 1. (ε, δ)-Differential Privacy. A randomized algorithmM with domain NU is (ε, δ)-differentially
private if for any two neighboring datasets D and D′ and for any set S of possible outputs, we have

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ. (1)

Definition 2. Global Sensitivity. The global sensitivity of a function f : NU → Rm is:

∆f = max
D,D′∈NU ,‖D−D′‖1=1

‖f(D)− f(D′)‖1. (2)

1In the rest of this paper, we regard the data structure Q as a set, where the element is a tuple 〈id, c〉, and the set can be ordered
by the tuple’s identifier id.
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Theorem 1. Post-Processing. Let f∗ : NU → R be a randomized algorithm that is (ε, δ)-differentially
private, g : R → R′ be an arbitrary randomized algorithm. Then g ◦ f∗ : NU → R′ is (ε, δ)-differentially
private.

The property of post-processing was proved by Dwork and Roth [29, Proposition 2.1].

2.4 MPC Security

2.4.1 Adversary Model and Security Definitions

In this paper, we consider two different security settings: the semi-honest model and the malicious model.
In the semi-honest model, the adversaries are called semi-honest adversaries, who control one of the parties
at the onset of the computation and follow the protocol specification exactly. In the malicious model, the
adversaries are called malicious adversaries, who may arbitrarily deviate from the protocol specification.
The goal of all kinds of adversaries is to learn more information than is allowed by taking any action they
want and are allowed during the protocol execution.

To formally define the security of MPC, we use the real-ideal paradigm. In this paradigm, a clear ”ideal”
world is introduced that implicitly captures all security guarantees and defines security in relation to this
ideal world. In real-world execution, parties interact with semi-honest/malicious adversaries and execute an
MPC protocol. In the ideal world, parties interact with a simulator and ideal functionality, which plays the
role of a trusted party that is not corruptible and captures the security properties of the MPC protocol. A real-
world protocol is considered secure in the semi-honest/malicious setting if any effect that an adversary can
achieve in the real world can also be achieved by an adversary in the ideal world, by carefully constructing
a simulator in the ideal world to simulate the real-world view.

For more formal definitions and detailed discussions, readers can refer to the books of Lindell [38] and
Evan et al. [39].

2.4.2 Security Model of Two-Party Computation with Leakage

In this paper, we follow the security model of two-party computation with leakage proposed by Groce et
al. [40]. In their work, the ideal functionality with leakage provides a class L of allowable leakage functions
such that the adversary is allowed to choose the leakage function from L. Besides, the adversary is also
able to corrupt a party and obtain the leakage of the honest party’s input both before and after choosing
his input. In their setting, a protocol π securely realizes function f = (f1, f2) with L leakage if π is a
UC-secure protocol for this functionality. When the leakage function chosen from L is (ε, δ)-differentially
private under the definition of neighboring on the input, the protocol π is said to realize f with (ε, δ)-DP
leakage. For more details, please refer to their paper [40].

In our work, we consider a special case of the leakage functionality for two-party Q-Digest computa-
tion, where the adversary is only given one chance to query the leakage function. The description of our
functionality is shown in the next section.

3 Setup and Functionality

3.1 Overview

As we mentioned in Section 2.2, two or more Q-Digests can be merged to get a new one by running the
Merge algorithm. When two parties want to merge their locally computed Q-Digests, the Merge algorithm
(Algorithm 4) needs to be run by one of the participants or a third party. In this case, the local Q-Digests
need to leak to the executor. To prevent the local Q-Digest from being revealed, we apply generic secure
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Functionality FQDigest

Parameters: [U ] is the universe, L∗(·) is a leakage function.

1. Upon receiving (input, i,fi) from Pi, store fi in the memory and send (received, i) to both parties.
Ignore all subsequent messages of the form (input, i, ·). If both f1 and f2 appear in the memory,
compute a merged Q-Digest Q = Merge(Compress(f1),Compress(f2)) and send Q to both parties.

2. Upon receiving (leakageQuery, i) from the corrupted party S, send L∗(|Compress(fi)|) to S. Ignore
all subsequent messages of the form (leakageQuery, ·).

Figure 2: The functionality of two-party Q-Digest with leakage. To simplify our functionality, we omit
the compression parameter k of the Compress algorithm defined in Appendix A, and also the procedure of
transforming the frequency vector to the form of input described in Algorithm 3.

computation to this task by expressing the Merge algorithm as a circuit. However, if we directly take the
local Q-Digests of two parties as inputs of the secure computation, whether specific nodes are in the Q-
Digests would be leaked from the size of Q-Digest, which would further reflect the distribution of the input
datasets. So we require adding some dummy nodes to hide the actual size of the local Q-Digest such that
any party cannot get the exact information about the size of another party’s local Q-Digest. Differentially
privacy in this setting would ensure that one party cannot learn whether a particular node is in the other
party’s Q-Digest or not.

In this setting, we have two parties, and each of them has a dataset presented by a frequency vector.
They want to merge their locally computed Q-Digest, with the security guarantee that any one of them
cannot get more than differentially private information about another party’s dataset from the execution of
secure computation between them.

3.2 Functionality of Two-party Q-Digest with Leakage

In this section, we formally define the functionality FQDigest as shown in Figure 2. FQDigest securely evalu-
ates Q-Digest of two parties with (differentially private) leakage of the size of the local Q-Digest following
the two-party computation with a leakage model [40]. Different from the original functionality proposed
by them, the adversary in our functionality only has one chance to query the leakage function. So our
functionality is a special case of their original model.

4 Our Protocol in the Semi-honest Setting

In the semi-honest setting, the adversary is one who corrupts parties but follows the protocol as specified.
The security of the protocol is following a real-ideal paradigm. In this section, we show the construction
of a semi-honest protocol ΠsQDigest to realize FQDigest. Recall that the Merge algorithm itself should be
data oblivious to be used in secure computation. In the following, we design an oblivious version of Merge
algorithm called OMerge in Section 4.1 and show how the algorithm can be used for secure computation
in Section 4.2. We also give a rigorous analysis of the global sensitivity of the output of the Compress
algorithm in Section 4.3.
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4.1 OMerge Algorithm

Before the introduction of the OMerge algorithm, let us explain why the original Merge algorithm is not
data oblivious. In fact, as shown in Algorithm 4, the Merge algorithm is constructed on the Compress al-
gorithm. In the Compress algorithm, every node will be checked, and the non-empty ones will be input to
the CompressNode algorithm to do further operations such as compression. No matter whether the node is
compressed or not, the counter value of its sibling and parent will be accessed. Different from the compres-
sion procedure of taking the original dataset as input, which contains all the empty nodes. The merging of
two Q-Digest only takes the non-empty nodes as input. Therefore, when a specific node is checked, even
if the nodes are in order2, we are still not sure the node’s parent is in which place because the position of
the node’s parent is data-dependent. That is to say, the structure of the Q-Digest can reflect the distribution
of the input dataset to some extent. Therefore, by observing the access pattern, some information about the
original dataset would be leaked. In this section, we show how to enhance the Merge algorithm to obtain a
data oblivious version algorithm OMerge.

4.1.1 Algorithm Description

Input and Initialization. The inputs of the OMerge algorithm are two sets of parameters such that each
contains a Q-Digest Qi (with each tuple defined below), the size ni (ni =

∑
j∈[U ] fi[j]) of the dataset cor-

responding to Qi, the size qi of Q-Digest Qi (i.e., the number of tuples in Qi), the compression parameter k
used to calculate Qi, and the depth d of the q-digest tree used to calculate Qi, where i ∈ {1, 2}.3 Without
loss of generality, we explain the set Q1. Q1 contains all the nodes output by Compress algorithm (Algo-
rithm 3) and also a certain number of dummy nodes (i.e., tuples). Different from the setting in Compress
algorithm, now we define every tuple in Q1 as 〈id, c, isDummy, isParent〉, where id and c are defined as
in Section 2.2, isDummy is a binary flag to indicate whether the tuple is valid or not, and isParent is also
a binary flag to indicate whether the tuple is mapped from its parent or not. The initial settings for each
tuple are as follows. First, based on the observation that the compression operation on each node will check
the sibling and parent of the node, we modify the identifier of every non-leaf node to the identifier of its
left child and call this operation a push operation. This operation is the key to realizing data obliviousness
because by doing this, the node and its sibling and parent are next to each other when we order them by
identifier. Therefore, there is no need to search for the whole set to find them. To distinguish the pushed
tuple, the flag isParent of the pushed tuple is set to 1. Therefore, at the very beginning, all non-leaf nodes
are identified with the identifier of its left child, and the binary flag isParent is set to 1. Second, for all nodes
output by Compress algorithm, the counter c remains unchanged and the binary flag isDummy is set to 0. In
contrast, the binary flag isDummy is set to 1 for all the dummy nodes being added to hide the actual size of
the Q-Digest.

Intuition. The high-level idea of the OMerge algorithm is first taking the union of the two sets and
adding the counter value for the tuples with the same identifier and the same parent flag (to distinguish the
original tuple and the pushed tuple) to get a merged list Q, and then repeating the compression process node
by node from bottom level to up level hierarchically by scanning the whole merged list Q each time. The
list Q is resorted to updating the intermediate merging result once the compression procedure of each level
finishes. Finally, the set Q is output, which contains all the nodes updated by the algorithm, while only the
nodes with predicates isParent and isDummy set to 0 at the same time are the valid output of the OMerge
algorithm.

2By regarding the data structure as a set, every tuple as an element, the set can be ordered by the identifier in each tuple, and
this could help to execute the Merge algorithm.

3As with the original Merge algorithm, OMerge algorithm requires two Q-Digests to have the same universe and the same
compression parameter.
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For the compression of the node with identifier id, we do the following operations. We first check 1)
if the node is at the level we are handling now, 2) if the dummy flag is 0 which means that the node is not
a dummy or not processed before, 3) if the next node is not the sibling or parent of the node id, where we
define a function Parent(x) := x/2 to do the check because only the node and its sibling and parent would
get the same output from Parent(·) with their identifier as input. If all the conditions are satisfied, it means
that we have scanned all the necessary nodes that are needed to execute the further compression procedure.
Whether the nodes should be compressed to the upper level or remained at this level is considered separated
under the following three cases:
A. neither the sibling nor the parent of id is in Q or the node itself is a parent node (with the flag isParent set

to 1). When the counter of the node is not bigger than the threshold, a compression operation is executed,
otherwise, the node is kept;

B. either the sibling or the parent of id is in Q. When the sum of the two nodes’ counters is not bigger than
the threshold, a compression operation is executed, otherwise, the nodes are kept;

C. both the sibling and the parent of id are in Q. When the sum of the three nodes’ counters is not bigger
than the threshold, a compression operation is executed, otherwise, the nodes are kept.
When the compression operation is executed in corresponding cases (A, B, or C), the status of the node’s

sibling and parent would also be changed if they exist. On the other hand, when the node should be remained
in corresponding cases (A, B, or C) and there is a parent node, we need to recover the parent node by setting
the node’s identifier back to its parent’s identifier and resetting the isParent flag to 0.

The complete description of OMerge algorithm is given in Appendix B.1.

4.1.2 Security Analysis

The security of OMerge is reflected in two aspects: correctness and obliviousness. For correctness, since the
algorithm handles the node one by one level by level strictly following the line of Merge algorithm described
in Section 2.2, the output should be the same as the original Merge algorithm. The only difference comes
from our algorithm’s design that we do not delete any empty node in Q, which is the key to guaranteeing
privacy. Nevertheless, we distinguish valid nodes from invalid ones by setting some predicates, so only the
nodes with predicates isParent and isDummy set to 0 at the same time are the valid output of the OMerge
algorithm. For the obliviousness, from the description of Section 4.1, since all the access to Q is input
independent, the oblivious nature of the OMerge algorithm is not hard to see.

4.2 Semi-Honest Two-party Q-Digest Protocol

As shown in Figure 3, we construct a two-party protocol ΠsQDigest, which realizes FQDigest in the semi-
honest model and provides differentially private leakage of the size of local Q-Digests.

4.2.1 Protocol Description

The protocol ΠsQDigest consists of local computation and two-party interaction. In the first step: each party
locally executes the Compress algorithm to get a Q-Digest from the frequency vector, adds a certain number
of dummy nodes to their local Q-DigestQi such that the size of the Q-Digest equals the output of the leakage
function L∗(|Qi|). In the second step, the two parties run a two-party computation to calculate the OMerge
algorithm with their padded Q-Digest as inputs to get a two-party merged Q-Digest.

4.2.2 Security Analysis

We prove the security of protocol ΠsQDigest in the semi-honest model.
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Protocol ΠsQDigest

Parameters: [U ] is the universe, k is compression parameter of Compress algorithm defined as Algo-
rithm 3, L∗(·) is a leakage function.

Inputs: Party Pi for i ∈ [2] inputs a frequency vector fi with ni =
∑

j∈[U ] fi[j].

The protocol:

1. Each party Pi locally computes the following:

a. Generate a list Qi based on fi, and compute Compress(Qi, ni, k) to get the local Q-Digest Qi.

b. Execute leakage function L∗(qi) where qi := |Qi| to get the noised size q′i.

c. Add dummy nodes until the size of the Q-Digest Qi equals q′i. The tuple associated with each
node is set according to the description of input for OMerge algorithm in Section 4.1.1. Notably,
the predicate isDummy is set to 1 for every dummy node.

2. Two Parties run a secure computation of OMerge algorithm with their input Qi to get the merged
Q-Digest Q.

Figure 3: Semi-honest two-party Q-Digest with leakage.

Theorem 2. If L∗(·) is (ε, δ)-differentially private function, then the protocol ΠsQDigest shown in Figure 3
securely realizesFQDigest with (ε, δ)-DP leakage against semi-honest adversaries in theF2PC-hybrid model.

Proof. The correctness is straightforward based on the correctness of OMerge as shown in Section 4.1.2.
Now we show a simulator S that generates a view indistinguishable from an honest execution of the protocol
in the case that a single party is corrupted. Let us assume that the corrupted party is Pc and the honest party
is Ph. First, S has the input of the frequency vector fc of the corrupted party. Once S receives a message
(received, Ph) from the functionality, S sends (leakageQuery, Ph) to FQDigest and gets the size of the honest
party’s Q-Digest with dummy nodes. S also simulates F2PC with the input such that the size is the same as
the size returned by the leakage query. S also sends (input, Pc,fc) to FQDigest and gets the the merged Q.
Once the adversary provides input to the F2PC, S returns Q to the corrupted party.

Also note that we assume the leakage function L∗(·) is (ε, δ)-differentially private. Therefore, ΠsQDigest

securely realizes FQDigest with (ε, δ)-DP leakage in the F2PC-hybrid model.

4.3 Achieving Differentially Private Leakage for the Size of Local Q-Digest

In order to hide the size of the local Q-Digest such that any party cannot get the true size of the other par-
ticipant from running the two-party secure computation of OMerge algorithm, some dummy nodes should
be added to the local Q-Digests. In our setting, the local Q-Digest is computed by the Compress algorithm.
By defining a function L(·) which outputs the size of the Q-Digest calculated by the Compress algorithm,
we already know that there are multiple ways to achieve the differential privacy for L(·). One is by using
Laplace mechanism [29], and the other one is by adopting the truncated Laplace mechanism [41]. Both of
them add noise based on the parameters decided by the exact value of the sensitivity of L(·). Therefore, in
this section, we analyze the sensitivity of L(·), which is the key to determining the size of the dummy nodes
to be added to guarantee that the Q-Digest size with noise satisfies differential privacy.

We first list all the notations that will be used in this section in Table 1 and provide an example for two
datasets D and D′ in Figure 4 to help understand our notations.
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Table 1: Notations.

Notations Meanings
L(·) the function that outputs the size of the Q-Digest calculated by Compress;
∆L the global sensitivity of L(·);
L∗(·) the leakage function defined on L(·);
D a dataset of size n with frequency vector f where n =

∑
i∈[U ] f [i] and [U ] is

the universe;
T the complete binary tree used to calculate the Q-Digest ofD, every node in the

tree is associated with a tuple 〈id, c〉, the counter value c for the nodes in the
tree would be changed during the processing procedure;

Q the Q-Digest of D, which contains all non-empty nodes of T after the com-
pressing procedure finishes;

q the size of the Q-Digest Q, which is the number of nodes in Q;
Qt the intermediate Q-Digest after merging t times against D, where t ∈

[0, logU ];
σ an item in the universe [U ] such that for the frequencies of dataset D and D′,

there is f [σ]− f ′[σ] = 1 and
∑

i∈[U ]\σ(f [i]− f ′[i]) = 0;
S the set of nodes lying on the path from the leaf node σ in T and their siblings

after the whole compression procedure finishes, which contains all the nodes
(both empty and non-empty nodes);

qS the size of the non-empty nodes of S, i.e., the size of Q ∩ S;
m the number of distinct levels for the non-empty nodes in S except for the root

node;
s the size of the non-empty leaf nodes in S;
r a one-bit binary to indicate whether the root node is in Q or not, where r = 1

means that the root node is in Q, otherwise, r = 0.

The notations T ′, Q′, q′, Q′t, S
′, q′S , m′, s′ and r′ are defined in the similar way for D′.

Following Definition 2, we focus on two datasets D and D′ with frequency vectors f and f ′ such that∑
i∈[U ]

∣∣f [i] − f ′[i]
∣∣ = 1 (where [U ] is the universe). Without loss of generality, we consider the case that∑

i∈[U ](f [i]− f ′[i]) = 1 in our following analysis.
Based on our understanding of Q-Digest algorithm, we have the following two observations.

Fact 1. For the node identified with id in Q except for the root and leaves, the sibling of id is also in Q.

The fact shows that if an inter-level node id exists in Q, then its sibling ids must also be in Q. We can
prove it by contradiction. Assume id is in Q while ids is not. It means that the counter value of node id
exceeds the threshold while the counter value of ids is 0. Note that the counter value of id is compressed
from its children. So in our assumption, id’s children have already violated the compression condition and
should be kept but not merged to node id, which contradicts the assumption that the node id is in Q. So we
have Fact 1.

According to Fact 1, qS could be expressed as one of the following two forms: 1). qS = 2(m−1)+r+s,
where there are s ∈ {1, 2} leaf nodes remains in Q ∩ S so the leaf nodes are counted and contribute 1 to
m; 2). qS = 2m + r, where there is no leaf nodes in Q ∩ S. q′S can be expressed in the same way. The
mentioned expressions of qS and q′S will be used in the proof of Theorem 3.
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4              6         3            1

2                                                   2

(a) The set of Q, which contains all
the non-empty nodes picked out by
the green coil in T .

4              6         3            1

2                                                   2

(b) The set of S, which contains all
the nodes lying on the path from the
leaf node σ to the root (which has
been marked with red line) and their
siblings in T .

4              6         3            1

2                                                   2

(c) r = 0, s = 2, m = 2 because 1)
the root node is empty and the leaf
nodes id12 and id13 are non-empty,
so the value of r = 0 and s = 2; 2)
except the root level, there are two
levels in S such that the nodes id2,
id3, id12 and id13 are non-empty, so
m = 2.

4              6        

3                            2

2

(d) The set of Q′, which contains all
the non-empty nodes picked out by
the green coil in T ′.

4              6        

3                            2

2

(e) The set of S′, which contains all
the nodes lying on the path from the
leaf node σ to the root (which has
been marked with red line) and their
siblings in T ′.

4              6        

3                            2

2

(f) r′ = 1, s′ = 0, m′ = 1 because
1) the root node is non-empty but the
leaf nodes id12 and id13 are empty,
so the value of r′ = 1 and s′ = 0;
2) there are only one level in S′ such
that the nodes id6 and id7 at this level
are non-empty, so m′ = 1.

Figure 4: The example of some notations in the tree T and T ′ constructed on D and D′. In this example, D
is the dataset from Figure 1, and D′ is another dataset with the universe U = 8, size n′ = 17, and frequency
vector f ′ = (2, 0, 4, 6, 3, 0, 1, 1). So

∑
i∈[U ](f [i] − f ′[i]) = 1 and σ = 6. By setting the compression

parameter as k = 5, we can calculate the Q-Digest Q and Q′ for D and D′.

Fact 2. Q and Q′ only differ in S and S′.

The fact shows that Q and Q′ only differ in S and S′. We can also prove it by contradiction. Assume
that there is a node that has different counter values in Q \ S and Q′ \ S′. It means that by tracing back to
the leaf level, there must be some differences for the leaf nodes in the subtree rooted with the observed node
in two trees. It contradicts the assumption that D and D′ only differ at σ and σ ∈ S. So we have Fact 2.

By the above analysis, we know that the counter values for the node with the same identifier in S and S′

would be different. In Lemma 1, we show that by ordering the nodes in S and S′ with their identifiers, for
any non-empty nodes next to each other at two levels in one set, if there is not any non-empty node at the
two levels in another set, there must be non-empty nodes at a level between the two levels. We also draw a
picture as shown in Figure 5 to give a more intuitive description of Lemma 1.

Lemma 1. Let li > lj be the two levels with non-empty nodes in S such that between the two levels, there is
not any non-empty node in S. Suppose that the nodes in S′ at level li and lj are all empty. Then there exist
two nodes in S′ at level le such that li > le > lj .

The concrete proof of Lemma 1 is given in Appendix C.1.
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level

level

(a) The local view of T .

level

level

level

(b) The local view of T ′.

Figure 5: An intuitive view of Lemma 1.The figure shows the local views for nodes in S (resp. S′) between
level li and lj of tree T (in Figure 5a) and T ′ (in Figure 5b). The solid red line means that the two nodes are
the relationship between parent and child, while the dotted red line indicates that several levels have been
omitted between the two nodes.

We also have the following corollaries based on Lemma 1. First, without the limitation that there do not
exist any non-empty nodes at level li and lj , Corollary 1 is straightforward.

Corollary 1. The compression condition is violated by nodes alternately or simultaneously in two trees, i.e.,
if li and lj are the two levels with non-empty nodes in S such that between the two levels, there is not any
non-empty node in S, then there exist nodes in S′ at level le such that li ≥ le > lj or li > le ≥ lj .

Second, by comparing the counter values of the nodes at the same level where the compression procedure
is to execute in two trees, we could infer that the next time for the event that the compression condition is
violated by nodes (the corresponding nodes will be kept) to happen must be in the tree which has bigger
counter values at the level we are observing.

Corollary 2. Assume that the compression now proceeds at level lp, the sum of the counter values for the
nodes at level lp in S is c and that in S′ is c′, if c > c′ (resp. c < c′), the next time for the compression
condition be violated must happen in T (resp. T ′); if c = c′, the two trees will be compressed in the same
way from that level on.

Third, since the compression condition is alternately violated by the nodes in two trees and the first time
the nodes to violate the compression condition must happen in tree T . Every time the compression condition
is violated, the corresponding nodes will be kept and the value of m will be added by 1. Therefore, we have
Corollary 3.

Corollary 3. Let D and D′ be two datasets with
∑

i∈[U ](f [i]− f ′[i]) = 1, and m and m′ be defined as in
Table 1, then we have m ≥ m′.

We now analyze the exact bound of m−m′ in Lemma 2, which will be used in the proof of Theorem 3.
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Lemma 2. Let D and D′ be two datasets with
∑

i∈[U ] f [i] − f ′[i] = 1, and m and m′ be defined as in
Table 1, then we have 0 ≤ m−m′ ≤ 1.

The concrete proof of Lemma 2 is given in Appendix C.2.
Finally, we are ready to analyze the bound of qS − q′S in Theorem 3.

Theorem 3. Given two datasets D and D′, we denote the size of non-empty nodes in S (resp. S′) for D
(resp. D′) as qS (resp. q′S). If

∑
i∈[U ](f [i]− f ′[i]) = 1, then qS − q′S ≤ 2.

The concrete proof of Theorem 3 is given in Appendix C.3.
By modifying the constraint condition on D and D′ such that

∑
i∈[U ](f

′[i]− f [i]) = 1 is satisfied and
repeating the whole analysis, we could get Corollary 4.

Corollary 4. Given two datasets D and D′, we denote the size of non-empty nodes in S (resp. S′) for D
(resp. D′) as qS (resp. q′S). If

∑
i∈[U ] |f [i]− f ′[i]| = 1, then |qS − q′S | ≤ 2.

Obviously, the nodes in Q but out of S should be the same as that in Q′ but out of S′. therefore, we can
finally get the global sensitivity ∆L = 2 of function L(·) in Corollary 5.

Corollary 5. Given two datasets D and D′, we denote the size of Q-Digest Q (resp. Q′) for D (resp. D′)
as q (resp. q′). If

∑
i∈[U ]

∣∣f [i] − f ′[i]
∣∣ = 1, then

∣∣q − q′∣∣ ≤ 2, i.e., the global sensitivity ∆L for function
L(·) is 2.

5 Our Protocol with Malicious Security

In the malicious setting, the adversary is one who corrupts parties and causes corrupted parties to deviate
arbitrarily from the prescribed protocol. In the previous section, there is not any input validity check of the
two-party computation. Therefore, there is no way to prevent the malicious participant from inputting any
invalid Q-Digest, which is a behavior that deviates from the protocol where the Q-Digest is calculated from
a valid frequency vector. By providing invalid inputs, the adversary would get some information about the
honest party’s input.

In this section, we explore how to augment the two-party computation to achieve malicious security with
differentially private leakage of the input. Our main idea is to design an algorithm OCheck in Section 5.1 to
obliviously check the validity of input before running the OMerge algorithm. In Section 5.2, we show the
construction of the protocol ΠmQDigest which integrates the OCheck algorithm, and further prove that the
protocol securely realizes FQDigest against malicious adversaries.

5.1 OCheck Algorithm

5.1.1 Algorithm Description

Input and Initialization. The input of OCheck algorithm is the same as that of OMerge algorithm.
Intuition. The goal of our OCheck algorithm is just checking the validity of input and outputting the check
result but not updating any tuple. Intuitively speaking, if a single leaf node is valid, its counter value should
be bigger than the threshold; if two leaf nodes with the same parent are valid, their sum of the counter values
should be bigger than the threshold; if any inter-level node is valid, its counter value should be no bigger
than the threshold since the counter value of the node is merged from lower-level nodes, and the sibling of
the node should exist (which is shown by Fact 1 in Section 4.3). The high-level idea to do the check is first
recovering the non-leaf nodes to their original places by calculating a new list H , taking the union of Q
and H , and setting a check flag to 1, then repeating the checking process (following the principle we have
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mentioned above) node by node from bottom to up hierarchically by scanning the sorted and united list Q.
Once there is a check fails, flag is set to zero. When the whole check finishes, the algorithm outputs the flag
as the check result, 1 for success and 0 for failure.

Specifically, for the validity check of the node with identifier id, we do the following operations. We first
check if we have scanned all the nodes with the same parent, which is realized with the help of Parent(·) as
used in the OMerge algorithm. Then, for the leaf level, we check how many valid nodes belong to the same
parent, here we define predicates 1ValidLeaf and 2ValidLeaf to do the check, only when the conditions are
satisfied, the corresponding predicate will be set to 1; for the intermediate level, only one kind of situation is
valid, we define a predicate 2ValidInternode to reflect it; for the root level, we define predicate ValidRoot.
Any other kinds of situations make the expression in line 26 set to 0 mean that the validity check fails.

The complete description of OCheck algorithm is given in Appendix B.2.

5.1.2 Security Analysis

We now show the correctness and the obliviousness of OCheck. For correctness, we show that only the
Q-Digest computed from a valid frequency vector can pass the check. We construct an algorithm that is
used to recover a valid frequency vector from a given valid Q-Digest as shown in Algorithm 1.

Algorithm 1 takes the Q-Digest Q as input and pushes the non-leaf nodes to the leaf level one by
one from top to bottom by looking for a leaf node such that there is no valid node on the path from the
current node to the leaf node. The way to look for the node is based on the definition of ranges, which has
the property that the parent’s range equals the union of its two children’s ranges. The root node has the
maximum range of the universe [U ], the left child of the root has the range of [1, U/2], the right child with
[U/2 + 1, U ], and so on. For a certain node with range [x, y], we know that it has covered all the range of its
successors. By subtracting the ranges of its successors in Q from range [x, y], we will find at least one valid
range such that we can ensure that the node with [x, y] is merged from the range or these ranges (which is
how the Q-Digest algorithm works).

We now show that if Q is valid, i.e. Q is calculated from a valid frequency vector f , then Algorithm 1
will always return one valid frequency vector f̃ such that the Q-Digest of f̃ is also Q. Since the Q-Digest
algorithm is an approximation algorithm, the elements with high frequency will be kept in Q while the less
frequently occurred elements will be grouped in larger ranges (i.e. at the upper level) such that the exact
frequency information is lost. But on the other hand, the loss of frequency information for the less frequent
elements also means that for a certain Q-Digest Q, there would be more than one valid frequency vector
corresponding to it. Therefore, by arbitrarily pushing the upper ranges down to the leaf nodes following
Algorithm 1 will recover a valid frequency vector for Q.

Algorithm 1 frequency vector reconstruction (Q)

Output: The recovered frequency vector f .
1: Sort Q by id
2: for i := 1 to len(Q) do
3: [x, y] = GetRange(Q[i])
4: W = {}
5: for j := 1 to len(Q)− i do
6: [u, v] = GetRange(Q[j])
7: W = W ∪ [u, v]
8: end for
9: W = [x, y] \W

10: Q[i].id′ = SetId(W )
11: end for
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12: /∗GetRange(·) would calculate the range of this node according to its position (i.e. its id) in the q-digest
tree. ∗/

13: /∗ SetId(·) would choose an identifier according to the given range, choose the leftmost one in the range
if there are multiple valid ranges, choose the leftmost one. ∗/

For the obliviousness, similar to the OMerge algorithm, all the access to Q is input independent, and the
obliviousness of OCheck is obvious.

5.2 Maliciously Secure Two-Party Q-Digest Protocol

In this section, we show the construction of our protocol ΠmQDigest in the malicious setting.

5.2.1 Protocol Description

In brief, protocol ΠmQDigest as shown in Figure 6 adds a Q-Digest input check step based on ΠsQDigest to
resist malicious adversaries.

Protocol ΠmQDigest

Parameters: [U ] is the universe, k is the compression parameter of Compress algorithm defined as
Algorithm 3, L∗(·) is a leakage function.

Inputs: Party Pi for i ∈ [2] inputs a frequency vector fi with ni =
∑

j∈[U ] fi[j].

The protocol:

1. Each party Pi locally computes the following:

a. Generate a list Qi based on fi, and compute f(Qi, ni, k) to get the local Q-Digest Qi.

b. Execute leakage function L∗(qi) where qi := |Qi| to get the noised output q′i.

c. Pad the Q-Digest Qi to the length of q′i, update Qi such that every item is a tuple
〈id, c, isDummy, isParent〉, set isDummy to 1 for all the dummy nodes.

2. Two parties run a secure computation which calculates OCheck algorithm and OMerge algorithm. If
the output of OCheck is 1, then output the merged Q-Digest Q. Otherwise, output 0.

Figure 6: Maliciously secure two-party Q-Digest with leakage.

5.2.2 Security Analysis

Theorem 4. If L∗(·) is (ε, δ)-differentially private function, then the protocol ΠmQDigest shown in Figure 6
securely realizes FQDigest with (ε, δ)-DP leakage against malicious adversaries in the F2PC-hybrid model.

Proof. Let the corrupted party is Pc and the honest party is Ph. We construct a simulator S with ac-
cess to FQDigest. First, once S receives a message (received, Ph) from the functionality, S could send
(leakageQuery, Ph) to FQDigest and get the size of the honest party’s Q-Digest with dummy nodes. S also
simulates F2PC with the input such that the size is the same as the message returned by the leakage query.
S also receives the Q-Digest with dummy nodes Qc from corrupted party Pc by the simulation of F2PC. If
F2PC aborts, then S also aborts. Otherwise, it means that the input validity check of Pc passes. In this case,
in order to query FQDigest, S needs to extract Pc’s frequency vector from Qc. S runs the frequency vector
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reconstruction algorithm as shown in Algorithm 1. Once a valid frequency vector fc which coincides with
Qc is recovered, S invokes FQDigest with input (input, Pc,fc), and gets the merged Q-Digest Q. S returns
Q to Pc in the simulation of the two-party computation functionality.

The same as in the semi-honest case, if the leakage functionL∗(·) is (ε, δ)-differentially private, ΠmQDigest

securely realize FQDigest in the two-party secure computation hybrid with (ε, δ)-DP leakage.

6 Experiments

In this section, we first give some discussion on how we choose the privacy parameter ε and present the
results of several experiments on the implementation of our protocols. Specifically, we evaluate the concrete
performance of our protocol under different security guarantees, with different dataset sizes and universe
sizes of the synthetic datasets we generate. Based on this, we also show the performance of our protocol
when handling real datasets.
Privacy parameter selection. First, there are two kinds of commonly used mechanisms to achieve differ-
ential privacy, i.e. Laplace mechanism and truncated Laplace mechanism [41]. The analysis in [41] shows
that the truncated Laplace mechanism is with better privacy properties. So we choose to use the truncated
Laplace mechanism in our later experiments. In our evaluation, we focus on the case that δ = 2−40, which
is the acceptable statistical security parameter in most applications. As for the private budget ε, we follow
the analysis of Ninghui Li et al. [42] that the meaningful range in most applications is 0.01 ≤ ε ≤ 10. More
concretely, ε = 0.1 can usually offer reasonably strong privacy protection, and ε = 1 may be acceptable in
a lot of cases. Readers who are interested in the detailed analysis can refer to their original book. To get
the expected noise to be added, we calculate the expectation for the truncated Laplace mechanism under
different parameters and get Table 2.

Table 2: Expectation of Truncated Laplace mechanism [41] under different privacy parameters.

PDF p · e(−|x−η|/b)

Expectation E(x) = 2pηb

δ 2−40

ε 0.01 0.1 0.5 1 5 10

b 200 20 4 2 0.4 0.2

E(x) 5408.04 542.06 109.03 54.37 8.18 2.58

In this table, b = ∆L
ε , p = eε/∆L−1

eε/∆L+1
, η = −∆L·ln((eε/∆L+1)δ)

ε + ∆L. Also note that, in our analysis of
Section 4.3, ∆L = 2.

Implementation and system. We implement OMerge and OCheck algorithms in C++ and run them as
two-party protocol under the framework of EMP tools [43]. We also execute our experiment on an Amazon
EC2 machine of type c5.2xlarge.
Evaluation of Performance. Following the way to handle generic secure computation protocols, the algo-
rithms OMerge and OCheck are required to be converted into circuits where the circuit layout is independent
of the input values. The evaluation of the performance of the two-party protocol depends critically on the
size of the circuit. Through our modification, obliviousness is achieved by the OMerge algorithm and the
OCheck algorithm. Besides, the circuit of the two-party protocol can be converted by EMP tools. The exe-
cution time of the two-party protocol is measured by us and it mainly depends on the circuit size, which is
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also recorded in our experiments.
Datasets. The synthetic datasets with a certain universe and size used in Section 6.1 are generated such
that every value is sampled from a Gaussian distribution with mean 0 and variance 1, scaled to a certain
range (for example, if the universe U = 232, the range to be scaled is [0, 232 − 1]) and then rounded to an
integer since q-digest cannot handle floating-point numbers. To demonstrate the practicality of our protocol,
we also evaluate the performance of our protocol on two real datasets in Section 6.3, namely the TCP/UDP
packets and web page click data.

6.1 Performances in the Semi-Honest Setting

All our experiments are carried out under the setting that δ = 2−40. In the experiments, there are two
participants Alice and Bob. We consider different cases where Alice and Bob each hold a dataset with size
n ∈ {105, 107, 109} and universe U ∈ {28, 216, 232}, under the cases that ε ∈ {0.01, 0.5, 1}. We also
assume that the OMerge algorithm is executed with the error of 0.01, which is also the common acceptable
error rate in most applications. Following Theorem 1 in [9], we then set the compression parameter k to be
logU/0.01.

Alice and Bob first calculate their local merge separately and then run our protocol under different
privacy guarantees of the two participants’ local merge. In the case of no padding, there is not any privacy
protection of the local merge inputs, i.e., we do not add any noise to the inputs; for DP padding, there is
a certain differential privacy guarantee of the local merge inputs, i.e., we add certain noise based on the
definition of truncated Laplace mechanism; for full padding, there is full privacy guarantee of the inputs,
i.e., we add noise to hide the local merge inputs such that the input length is the upper bound of the size
according to the analysis of Lemma 1 in [9].
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(a) universe is 28
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(c) universe is 232

Figure 7: The performances for synthetic datasets in semi-honest setting. All time is reported in the LAN
setting.

We get the execution time of protocol ΠsQDigest as shown in Figure 7 and also record the detailed circuit
sizes for the synthetic datasets as shown in Table 3. We can see that the running time is linear with the
circuit size and the circuit size is always the same under the cases of the same universe with full padding.
This is because the previous paper of Q-Digest analyzed the upper bound of the data structure’s size as 3k,
so the trivial way to hide the information that would be leaked by the size of the local merge result is to add
dummy data until the theoretic maximum size. Our goal is to reduce the size of dummy data as much as
possible with the help of differential privacy.

Our experiments also show that the privacy of two parties who execute the Q-Digest algorithm can be
achieved at almost no cost since the execution time is almost the same as the case where no privacy is
provided, and also insignificant compared to achieving input privacy protection in a trivial way. This can
also be shown by the expectation of truncated Laplace mechanism as we have calculated in Table 2, where
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the expectation is independent with compression parameter k. Therefore, the percentage of dummy data is
decided only by the universe and the error setting of the algorithm. In the setting that error is 0.01, with
universe grows, the compression parameter k and also the maximum local merge size would grow, while
the expectation is kept the same, so the percentage of dummy data is decreased. under the same universe,
when the error decreases, the compression parameter k and also the maximum local merge size would grow.
Therefore, the percentage of dummy data will also decrease with the error decreases.

Table 3: The circuit size for synthetic datasets under different conditions.

U N

circuit size

no padding
DP padding

full padding
ε = 0.1 ε = 0.5 ε = 1

28

105 11,683,312 112,647,328 28,812,592 19,619,672 560,018,336

107 10,465,248 111,226,320 27,280,384 18,348,784 560,018,336

109 11,097,024 111,955,400 28,059,504 19,077,864 560,018,336

216

105 936,658,560 1,199,216,208 1,093,988,856 961,336,440 2,341,210,752

107 979,268,976 1,250,883,864 1,028,975,016 1,002,510,712 2,341,210,752

109 980,395,776 1,252,526,080 1,030,682,280 1,003,702,560 2,341,210,752

232

105 7,615,775,336 8,597,491,448 7,821,858,200 7,714,318,400 17,007,918,336

107 6,656,984,984 7,523,980,672 6,815,910,864 6,742,216,704 17,007,918,336

109 6,409,268,992 7,183,261,080 6,527,893,312 6,461,997,392 17,007,918,336

Concretely, the cases of inputs with DP padding is only 0.457-11.796 seconds slower compared with the
cases that no privacy is provided, while it is 1.1× to 73.1× faster than the cases of full padding. It should be
noted that the improvement is highly dependent on the input size, and with the universe changes, to guarantee
the same error rate of the Q-Digest computation, the compression parameter is changed. Therefore, the input
size of our protocol is not linear to the universe size.

6.2 Performances in the Malicious Case

We also evaluate the execution time of protocol ΠmQDigest under different cases and get Figure 8, which
consists of two parts: the execution of OCheck in zero-knowledge proof and the execution of OMerge in
two-party computation.

Concretely, the time for the execution of OCheck is measured according to the result of Yang et al. [44]
that Boolean circuits can be proved with the speed of 7.7 million AND gates per second (with one thread);
the time for the execution of OMerge is measured according to the result of [45] that per-authenticated
AND gate can be generated with 0.239 µs (with eight threads).

The evaluation shows that our protocol can achieve security against malicious adversaries with the time
used to do the input validity check almost negligible, compared with the time spent by the two-party com-
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(b) universe is 216
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(c) universe is 232

Figure 8: The performances for synthetic datasets in the malicious setting. All time is reported in the LAN
setting.

putation of OMerge.
In detail, the cases of inputs with DP padding are only 2-32 seconds slower than the cases in that no

privacy is provided, while it is 2.1× to 74.2× faster than the cases of full padding.

6.3 Performances on Real Dataset

First, we choose the daily network traffic dataset of WIDE project [46] and arbitrarily choose the collected
data on Nov. 1st, 2020, which contains 88937609 packets in total. We extract the destination port infor-
mation of the TCP/UDP packets from the dataset to do the further experiment. After the filtration and
extraction, we get a dataset with size n = 49, 282, 099. Since the maximum port number is 65535, the
universe size U = 216. Besides, we also conduct our experiments on the Kosarak4 data set. It consists
of 990,000 sequences of click-stream data over 41,270 unique web page ids, a total of 8,019,015 counters.
Therefore, the size of the dataset is n = 8, 019, 015. We randomly split them into two parts and compute
the click frequency of each page and do our further experiment.

Here we only consider the situation ε = 1/300 to show a more extreme case that the accuracy require-
ments are very high. We want to show that the performance of our protocol is still acceptable in such a
situation. The experiment results are given in Table 4.

Table 4: The performances of the real dataset.

setting

TCP/UDP packets Kosarak data

circuit execution circuit execution

size time (s) size time (s)

no padding 1,255,561,824 45.664 1,650,536,968 24.852

DP padding 1,287,095,184 46.846 1,606,637,472 25.747

full padding 8,746,648,704 318.295 8,746,648,704 317.014

The compression parameter is set such that the error rate is 1/300.
4http://fimi.ua.ac.b/e/data/http://fimi.ua.ac.be/data/.
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The scale of the real data is comparable to the experimental data with a dataset of 107 and a universe of
216 in Section 6.1. The execution time is faster because the input data is smaller, which can be reflected in
the circuit size and also shows that the real data set does not obey Gaussian distribution.

6.4 Comparison with Direct Approach

As there is no work on secure quantile aggregation in the distributed setting. The only comparison we can
make is with the direct way that computes quantile from the beginning by two parties under some framework
that can program the original quantile algorithm in a secure way. By saying secure, we mean that the whole
computation procedure is obliviousness, so as to guarantee that no private information is leaked. We follow
the result of GraphSC [47], where the main overhead for any kind of secure computation is sorting, and
compare the circuit size when handling the data with the same magnitude. The detailed comparison results
are shown in Figure 9. As the execution time is proportional to the circuit size, it gives us confidence,
especially in big data scenarios.

105 107 109

dataset size

0

1

2

3

ci
rc
ui
t s

iz
e

1e27

universe = 28 (direct approach)

universe = 216 (direct approach)

universe = 232 (direct approach)

universe = 28 (our approach)

universe = 216 (our approach)

universe = 232 (our approach)

Figure 9: Comparison with direct approach.
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A Q-Digest algorithm

In Q-Digest, the range associated with every node is defined by the position of the node in the tree. To be
specific, the root has a range [1, U ], and given any non-leaf node with range [a, b], its left child and right
child are associated with ranges [a, a+ b−a+1

2 − 1] and [a+ b−a+1
2 , b], respectively. With such a definition,

the range associated with the i-th leaf contains only i. Besides, the identifier of the node is defined in a way
that the root is identified by 1 and given any non-leaf node identified by i, its left child and right child are
identified by 2i and 2i + 1, respectively. Also, we call the node an empty node when its counter value is
zero, otherwise, we call the node a non-empty node.

The compression procedure on a single node is described as Algorithm 2, which determines whether a
node should be compressed to its parent by checking the compression condition as introduced in Section 2.2.
However, there is an exception to the root node. Since the compression procedure is bottom-up, if the root
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Algorithm 2 CompressNode (id, c, cp, cs, θ)

1: if 0 < c + cp + cs ≤ θ then
2: cp = cp + c + cs
3: c = 0
4: cs = 0
5: end if

Algorithm 3 Compress (Q,n, k)

1: l = logU − 1, θ = bn/kc
2: while l > 0 do
3: for all id in level l do
4: if c 6= 0 or cs 6= 0 then
5: CompressNode(id, c, cp, cs, θ)
6: end if
7: Delete empty nodes
8: end for
9: l = l − 1

10: end while

node is non-empty, its counter value must be no bigger than θ. But there is no parent or sibling for the root,
so the root node will not be compressed even though the compression condition is met.

Based on Algorithm 2, the Compress algorithm (Algorithm 3) used to calculate the final Q-Digest can be
constructed. In the beginning, the input to the Compress algorithm is the set Q, which contains all the nodes
in the tree after initialization. After the execution of Compress algorithm, a node with 〈id, c〉 still remains in
Q if and only if the condition in Algorithm 2 is not met; otherwise, a compression procedure will be called
such that the counters of the node and its sibling will be compressed to their parent and the two nodes will
be deleted from Q. Therefore, all the nodes that remain in Q are non-empty nodes since all the empty nodes
have been deleted from Q in Algorithm 3.

Algorithm 4 Merge (Q1(n1, k), Q2(n2, k))
1: Q← Q1 ∪Q2

2: Compress (Q, n1 + n2, k)

Besides, multiple Q-Digests can also be merged to get a new Q-Digest by running the Merge algorithm.
The merging of two Q-Digests is shown as Algorithm 4, where the two Q-Digests should have the same
compression parameter k and the same universe (i.e., the same q-digest depth d). There needs an involved
party or a trusted party to execute the Merge algorithm to get a merged Q-Digest.

B Oblivious Algorithms

B.1 OMerge Algorithm

Algorithm 5 OMerge (Q1(n1, q1, k, d), Q2(n2, q2, k, d))

1: θ = b(n1 + n2)/kc
2: Q = Q1 ∪Q2

3: len(Q) = q1 + q2
4: Sort Q by (−id, isParent)5

5: /∗ merge two input to a single list ∗/

5It means that the items in set Q are sorted first in descending order of id first, and when id is the same, the items are sorted in
ascending order of isParent.
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6: for i := 1 to len(Q)− 1 do
7: if ¬Q[i].isDummy and ¬Q[i+ 1].isDummy and Q[i].id == Q[i+ 1].id and Q[i].isParent == Q[i+ 1].isParent then
8: Q[i].c = Q[i].c +Q[i+ 1].c
9: Q[i+ 1].isDummy = 1

10: end if
11: end for
12: Q = Q ∪ {〈0, 0, 0, 0〉}
13: /∗ start merge q-digest ∗/
14: for j := d to 1 do
15: for i := 1 to len(Q)− 1 do
16: if 2j ≤ Q[i].id < 2j+1 and ¬Q[i].isDummy and the parent of Q[i+ 1] is not the same as Q[i]’s then
17: if there is no node which has the same parent as Q[i] then
18: if Q[i].c ≤ θ then
19: Set Q[i].id to be its parent’s id, and reset isParent to 0.
20: end if
21: else if there is a node Q[i− 1] which has the parent as Q[i] then
22: if Q[i].c +Q[i− 1].c ≤ θ then
23: Merge two nodes by settingQ[i].id to be its parent’s id andQ[i].c toQ[i].c+Q[i−1].c, resetQ[i].isParent

to 0, set Q[i− 1].isDummy to 1.
24: else
25: if Q[i].isParent is 1 then
26: Set Q[i].id to be its parent’s id, reset Q[i].isParent to 0.
27: end if
28: end if
29: else
30: if Q[i].c +Q[i− 1].c +Q[i− 2].c ≤ θ then
31: Merge three nodes by setting Q[i].id to be its parent’s id and Q[i].c to Q[i].c + Q[i − 1].c + Q[i − 2].c,

reset Q[i].isParent to 0, set Q[i− 1].isDummy and Q[i− 2].isDummy to 1.
32: else
33: Set Q[i].id to be its parent’s id, reset Q[i].isParent to 0.
34: end if
35: end if
36: end if
37: end for
38: /∗ resort and update Q for the next level ∗/
39: Sort Q by (isDummy,−id, isParent)
40: end for
Output: List Q which is the merge of Q1 and Q2.

B.2 OCheck Algorithm

Algorithm 6 OCheck(Q,n, q, k, d)

1: if q > 3k then
2: abort
3: end if
4: θ = bn/kc
5: /∗ recover the inter-level nodes ∗/
6: H = {}
7: for i := 1 to q do
8: if Q[i].isParent then
9: H[i] = 〈Parent(Q[i].id), Q[i].c, 0, 0〉

10: else
11: H[i] = 〈0, 0, 0, 0〉
12: end if
13: end for
14: Q = Q ∪H
15: Sort Q by (id,−isParent)
16: Q = Q ∪ {〈0, 0, 0, 0〉}
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17: len(Q) = |Q|
18: /∗ start to check ∗/
19: flag = 1
20: for i := 1 to len(Q)− 1 do
21: if ¬Q[i].isParent and the parent of Q[i+ 1] is not the same as Q[i]’s then
22: 1ValidLeaf = Q[i].id ≥ 2d and Q[i].c > θ and there is not a node Q[i− 1] which has the same parent as Q[i]
23: 2ValidLeaf = Q[i].id ≥ 2d and Q[i− 1].id ≥ 2d and Q[i].c+Q[i− 1].c > θ and there is only a node Q[i− 1] which

has the same parent as Q[i] and ¬Q[i− 1].isParent
24: 2ValidInternode =Q[i].id < 2d andQ[i−1].id < 2d andQ[i].c ≤ θ andQ[i−1].c ≤ θ andQ[i].c+Q[i−1].c > θ

and there is only a node Q[i− 1] which has the same parent as Q[i] and ¬Q[i− 1].isParent
25: ValidRoot = Q[i].id == 1 and Q[i].c ≤ θ and there is not a node Q[i− 1] which has the same parent as Q[i]
26: if ¬(1ValidLeaf or 2ValidLeaf or 2ValidInternode or ValidRoot) then
27: flag = 0
28: end if
29: end if
30: end for
Output: The check result flag, 1 means check passes, otherwise, check fails.

C Proofs

C.1 The proof of Lemma 1

Proof. We prove by contradiction and assume that all nodes located between level li and lj in S′ are all
empty after the compression procedure finishes. We first look at the compression procedure of T from level
li to level lj . Since there are nodes at level li inQ, the parent of them must be not inQ. Besides, all the nodes
at level lx are empty where li > lx > lj while the nodes at level lj are in Q. It means that the compression
condition is met by all the nodes at level lx, and all the counter values are summed up to the counter value
of the node at level lj in the red path. Now we look at the compression procedure of T ′ from level li to level
lj . Since we assume that the nodes located at level ly in S′ are empty, where li ≥ ly ≥ lj . It means that
the compression procedures from at least level li to level lj have not reached the threshold yet. Therefore,
the counter value of the node at level lj in the red path is at least the sum of counter values of the siblings
for the nodes in the red path from li to lj . That is to say, there is at least one more level being counted in T ′

than in T for the node in the red path at level lj . Besides, from Fact 2 we know that the nodes outsides S
and S′ will always be the same in two trees every time the compression procedure on the nodes of the same
level finishes. Therefore, the counter value of the sibling of σ’s ancestor at level lj must be the same in two
trees after the compression procedure of this level finishes. Hence, the sum of the counter values for nodes
at level lj in T ′ should be bigger than that of nodes at the same level in T because the non-zero counter
value of the node at level li has also been counted in T ′. Since the nodes at level lj are in Q while the nodes
at the same level are not in Q′, it means that before the compression procedure of level lj , the compression
condition is violated by at least one time in Q′. Therefore, there must be a node in S′ at level le which is
between li and lj , i.e. li > le > lj . This causes a contradiction with our assumption. Additionally, we know
that there are two nodes at level le from Fact 1.

C.2 The proof of Lemma 2

Proof. According to Corollary 3, we already know that m −m′ ≥ 0. Therefore, in the following analysis,
we only prove that m −m′ ≤ 1. We prove by contradiction and assume that m −m′ > 1. Since there is
f [σ]− f ′[σ] = 1, we have three cases to consider.
Case 1. the leaf node in both S and S′ violates the compression condition. In this case, the leaf nodes
in both S and S′ remain. Therefore, m and m′ are added by 1 at the same time. Besides, all the nodes
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Table 5: The values of qS − q′S in three cases under different conditions.

Case 1 qS − q′S Case 2 qS − q′S Case 3 qS − q′S

m−m′ = 0

r − r′ = 0

s− s′ = 0 0 s = 1 -1

s = s′ = 0

0
s− s′ = 1 1 s = 2 0

r − r′ = 1

s− s′ = 0 1 s = 1 0
1

s− s′ = 1 2 s = 2 1

m−m′ = 1

r − r′ = 0

s− s′ = 0 2 s = 1 1
2

s− s′ = 1 3 s = 2 2

r − r′ = 1

s− s′ = 0 3 s = 1 2
3

s− s′ = 1 4 s = 2 3

The compression parameter is set such that the error rate is the same as the setting in Section 6.1. In all three cases, from
Lemma 2, we need to consider the case that m−m′ = 0 and m−m′ = 1; in each case, we do not know whether the root node is
in Q (and Q′) or not, so we also need to consider them separately. To be more specific, r − r′ = 0 means that the root node is in
or not in Q and Q′ simultaneously, and r − r′ = 1 means that the root node is in Q but not in Q′. However, the relationship of s
and s′ in the three cases is a little complex, which is caused by the different expression of qS − q′S in Equation 3. In Case 1, the
leaf nodes in S and S′ will be kept in Q and Q′, and the number of non-empty leaf nodes in S could be equal to that in S′ (where
f ′[σ] > 0), or bigger than that in S′ by 1 (where f ′[σ] = 0), so we need to consider the cases of s− s′ = 0 and s− s′ = 1. In
Case 2, the leaf nodes in S and S′ will be kept in Q but not in Q′. So the non-empty leaf node number in S will be considered.
Since f [σ]− f ′[σ] = 1, there are at least one leaf nodes in S, therefore, we need to consider the case of s = 1 and s = 2. In Case
3, from Equation 3, we do not need to consider s and s′, while in fact, in this case, both the leaf nodes in S and S′ are empty, so
we always have s = s′ = 0.

outside S and S′ are the same in the two trees and they will be updated in the same way. Therefore, once
the compression procedure finishes at the leaf level, all the nodes on the next level (i.e. the level where the
leaf nodes’ parents reside in) are the same in the two trees. Later on, all the compression procedures for the
upper levels are the same in two trees, so there should be m = m′.
Case 2. the leaf node in S violates the compression condition while that in S′ does not. In this case, the leaf
nodes in S remain while the leaf nodes in S′ do not. Therefore, m is added by 1 while m′ is not. If in the
end, we have m−m′ > 1, it must mean that in S, there exist two levels of non-empty nodes which are in Q
while there is not any non-empty node of S′ between the two levels that belong to Q′, this contradicts with
Lemma 1. Therefore, we have m−m′ ≤ 1.
Case 3. the leaf node in both S and S′ meets the compression condition. In this case, the leaf nodes in both
S and S′ are compressed to their parent and will not be in Q and Q′. Also due to the fact that the merged
counter value for the parent of these leaf nodes in T is bigger than that in T ′ by 1 (due to f [σ]−f ′[σ] = 1),
according to Corollary 2, the first time for the nodes to violate the compression condition must happen in T ,
this case is the same as Case 2. Therefore, we still have m−m′ ≤ 1.

To sum up, we proved that 0 ≤ m−m′ ≤ 1.

C.3 The proof of Theorem 3

Proof. Following the analysis of Lemma 2, we need to consider the same three cases and the expressions of
qS − q′S in corresponding cases are shown in Equation 3, which comes from Fact 1.

qS − q′S =


2(m−m′) + (r − r′) + (s− s′), Case 1
2(m−m′) + (r − r′) + (s− 2), Case 2
2(m−m′) + (r − r′), Case 3

(3)
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We could analyze the bound of qS−q′S case by case and get Table 5 with the exact value of qS−q′S under
certain conditions. But it is easy to see that no matter how to set these parameters, qS − q′S is always bigger
than minus 1. To simplify our analysis, we only show that the following subcases that cause qS − q′S > 2
are impossible (which have been emphasized in boldface in Table 5).

– (SC1). In Case 1, when m − m′ = 1, r − r′ = 0, and s − s′ = 1; or m − m′ = 1, r − r′ = 1, and
s− s′ = 0; or m−m′ = 1, r − r′ = 1, and s− s′ = 1.

– (SC2). In Case 2, when m−m′ = 1, r − r′ = 1, and s = 2.
– (SC3). In Case 3, when m−m′ = 1 and r − r′ = 1.

For case SC1, the leaf nodes of S and S′ are inQ andQ′ because they violate the compression condition.
According to our analysis of Case 1 in Lemma 2, there ism = m′, so all the subcases in SC1 cannot happen.

For case SC2, since s = 2, there are two leaf nodes in S, and the two nodes are also in Q because in
Case 2 they violate the compression condition; since r − r′ = 1, the root node is in Q (r = 1) but not in
Q′ (r′ = 0). Now we introduce a virtual extension method to the trees T and T ′ and use the extended trees
Tex and T ′ex to analyze the subcases. The idea of virtual extension is to extend the trees T and T ′ from their
root as if we are expanding the universe of the dataset from [U ] to [U + E] such that all the frequencies of
elements in the extended range are the same in both trees. Through virtual extension, we would guarantee
that the next time the node violates the compression condition must happen in Tex since the root node is with
a non-zero counter value in T but with zero-counter value in T ′, and all other nodes outside T and T ′ are
the same provided the compression procedure finishes on the same level in two extended trees, which is also
shown by Corollary 2. From Lemma 1, we know that the nodes in two extended trees would alternatively
violate the compression condition according to their levels. So the last time for the same thing to happen
before the virtual extension must be in T ′. Therefore, we should have m = m′ and the subcase SC2 cannot
happen.

For case SC3, the leaf node(s) of S and S′ are not in Q and Q′, and the root node is in Q (r = 1) but not
in Q′ (r′ = 0). By using the same virtual extension technique, similar to in case SC2, we can also infer that
the last time for the node to violate the compression condition should happen in T ′. Therefore, we should
have m = m′ and the case cannot happen too.

In conclusion, we have qS − q′S ≤ 2.
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